JP6906464B2 - Power converter control device and control method - Google Patents
Power converter control device and control method Download PDFInfo
- Publication number
- JP6906464B2 JP6906464B2 JP2018048031A JP2018048031A JP6906464B2 JP 6906464 B2 JP6906464 B2 JP 6906464B2 JP 2018048031 A JP2018048031 A JP 2018048031A JP 2018048031 A JP2018048031 A JP 2018048031A JP 6906464 B2 JP6906464 B2 JP 6906464B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- control
- transformers
- value
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000005347 demagnetization Effects 0.000 claims description 86
- 230000001629 suppression Effects 0.000 claims description 69
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000002699 waste material Substances 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 description 25
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/40—Means for preventing magnetic saturation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
- H02M5/04—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
- H02M5/10—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4803—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode with means for reducing DC component from AC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
本発明の実施形態は、電力変換装置の制御装置および制御方法に関する。 Embodiments of the present invention relate to a control device and a control method of a power conversion device.
コンバータ及び変圧器を多重化してなる多重電力変換装置は、複数のコンバータを複数の変圧器を介して直列に接続して構成され、数kV〜数百kVの高電圧を出力できる。また、各コンバータのスイッチングタイミングをずらすことにより、出力高調波電圧を小さくし、リップルが小さくなめらかな電流を負荷に供給できる。このため、多重電力変換装置は、電力系統電圧安定化装置や、鉄道車両、産業用ドライブ装置など、各種の用途に用いられる。 A multiplex power converter obtained by multiplexing a converter and a transformer is configured by connecting a plurality of converters in series via a plurality of transformers and can output a high voltage of several kV to several hundred kV. Further, by shifting the switching timing of each converter, the output harmonic voltage can be reduced, and a smooth current with small ripple can be supplied to the load. Therefore, the multiplex power conversion device is used in various applications such as a power system voltage stabilizer, a railroad vehicle, and an industrial drive device.
このような多重電力変換装置においては、コンバータの出力電圧や負荷系統電圧に含まれる直流電圧成分に起因して、変圧器鉄心内の磁束が一方向に偏り、変圧器が磁気飽和する可能性がある。変圧器が磁気飽和すると、変圧器鉄心のインダクタンス成分がゼロに近くなるため、変圧器の励磁電流が増大し、コンバータに過大な電流が流れる。この電流は、コンバータを構成するスイッチングデバイスの破壊を招く可能性がある。そのため、電力変換装置には、一般に、過電流を検出してコンバータを停止される保護機能が備えられる。しかし、この保護機能による電力変換装置の頻繁な停止は装置稼働率を低下させ、経済的な損失を招く。 In such a multiplex power converter, the magnetic flux in the transformer core may be biased in one direction due to the DC voltage component contained in the output voltage of the converter and the load system voltage, and the transformer may be magnetically saturated. be. When the transformer is magnetically saturated, the inductance component of the transformer core becomes close to zero, so that the exciting current of the transformer increases and an excessive current flows through the converter. This current can lead to the destruction of the switching devices that make up the converter. Therefore, the power converter is generally provided with a protection function that detects an overcurrent and stops the converter. However, frequent outages of the power converter due to this protection function reduce the equipment utilization rate and cause economic loss.
このような課題を解決する技術として、多重電力変換装置の変圧器の直流偏磁を抑制する直流偏磁抑制制御の技術がある。この技術により、各段の変圧器の励磁電流を検出し、当該励磁電流が低減する方向にコンバータ出力電圧を調整することにより、変圧器の磁気飽和を回避することが可能となる。 As a technique for solving such a problem, there is a technique of DC demagnetization suppression control for suppressing the DC demagnetization of a transformer of a multiple power converter. With this technique, it is possible to avoid magnetic saturation of the transformer by detecting the exciting current of the transformer in each stage and adjusting the converter output voltage in a direction in which the exciting current is reduced.
直流偏磁抑制制御の技術では、一般に、変圧器の励磁電流の直流成分を検出し、当該直流成分がゼロになるように直流偏磁補正量をコンバータ出力電圧指令値に重畳する。 In the DC demagnetization suppression control technology, generally, the DC component of the exciting current of the transformer is detected, and the DC demagnetization correction amount is superimposed on the converter output voltage command value so that the DC component becomes zero.
しかしながら、励磁電流の直流成分を検出するためにフィルタを用いることから、制御上のむだ時間が存在し、制御応答に遅れが生じる。この場合、制御応答が大きくなるようにゲインを調整すると、当該制御応答が振動し、不安定になる可能性がある。このように直流偏磁抑制制御の制御応答の調整には限界があるため、コンバータ間で出力電圧にばらつきが生じることがあり、これに起因して変圧器間で励磁電流にばらつきが生じる場合がある。 However, since the filter is used to detect the DC component of the exciting current, there is a waste time in control and a delay occurs in the control response. In this case, if the gain is adjusted so that the control response becomes large, the control response may vibrate and become unstable. Since there is a limit to the adjustment of the control response of the DC demagnetization suppression control in this way, the output voltage may vary between converters, and as a result, the exciting current may vary between transformers. be.
また、定常状態では、励磁電流のばらつきは小さく、過電流に至るまで変圧器が磁気飽和するおそれはないが、例えば負荷系統電圧の突発的な不平衡の発生により各段の変圧器の励磁電流のばらつきが大きくなると、あるコンバータの励磁電流が過電流に達してしまう可能性がある。 Further, in the steady state, the variation of the exciting current is small, and there is no possibility that the transformer is magnetically saturated until the overcurrent occurs. However, for example, the exciting current of the transformer in each stage due to the sudden imbalance of the load system voltage. If the variation becomes large, the exciting current of a certain converter may reach an overcurrent.
本発明が解決しようとする課題は、変圧器間の励磁電流のばらつきを低減することを可能にする電力変換装置の制御装置および制御方法を提供することにある。 An object to be solved by the present invention is to provide a control device and a control method for a power conversion device that can reduce variations in exciting currents between transformers.
実施形態によれば、複数のコンバータ及び複数の変圧器を通じて直流電力を交流電力に変換する電力変換装置の制御装置であって、前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成する制御要素を含む全体偏磁抑制制御部と、前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する複数の制御要素を含む個別偏磁抑制制御部と、を具備し、前記個別偏磁抑制制御部は、制御上のむだ時間を生じさせるフィルタを通過した信号を除いた当該フィルタを通過しない信号のみを制御に使用する、電力変換装置の制御装置が提供される。 According to the embodiment, it is a control device of a power conversion device that converts DC power into AC power through a plurality of converters and a plurality of transformers, and as a correction signal superimposed on a converter output voltage command signal sent to the plurality of converters. An overall demagnetization suppression control unit including a control element that generates a first correction signal that converges the DC component included in the average value of the exciting currents of the plurality of transformers to zero, and the first correction signal. Individual demagnetization suppression including a plurality of control elements that generate a second correction signal that converges the exciting currents of the plurality of transformers to the average value of the respective exciting currents as correction signals further superimposed on the transformer. A power conversion device comprising a control unit , wherein the individual demagnetization suppression control unit uses only signals that do not pass through the filter, excluding signals that have passed through the filter that causes wasteful time in control, for control. A control device is provided.
実施形態によれば、変圧器間の励磁電流のばらつきを低減することが可能になる。 According to the embodiment, it is possible to reduce the variation in the exciting current between the transformers.
以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、一実施形態に係る制御装置が適用される電力変換装置の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a power conversion device to which the control device according to the embodiment is applied.
本実施形態に係る電力変換装置は、三相交流のU相,V相,W相の各相について複数段に構成されたコンバータ及び複数の変圧器の組みを備え、これらを通じて直流電力を交流電力に変換する。ここでは、三相交流のU相,V相,W相の各相につき、コンバータ及び複数の変圧器の組みが二段に構成されている場合を例示する。 The power conversion device according to the present embodiment includes a set of a converter and a plurality of transformers configured in a plurality of stages for each of the three-phase AC U-phase, V-phase, and W-phase, and DC power is converted into AC power through these. Convert to. Here, an example is illustrated in which a converter and a plurality of transformers are configured in two stages for each of the three-phase alternating current U-phase, V-phase, and W-phase.
より具体的には、例えば図1に示されるように、多重電力変換装置は、U相の負荷31(l_u)に対応して設けられるコンバータ11,12(cnv_u2, cnv_u1)及び変圧器21,22(tr_u2, tr_u1)と、V相の負荷32(l_v)に対応して設けられるコンバータ13,14(cnv_v2, cnv_v1)及び変圧器23,24(tr_v2, tr_v1)と、W相の負荷33(l_w)に対応して設けられるコンバータ15,16(cnv_w2, cnv_w1)とを備え、これらにより、直流電源10から供給される直流電圧v_dcを三相交流電圧に変換して、負荷31〜33(l_u ,l_v, l_w)へ交流電力を供給する。
More specifically, as shown in FIG. 1, for example, the multiplex power converter includes
図1に示されるように、直流電圧v_dcを供給する直流電源10は、U相のコンバータ11,12(cnv_u2, cnv_u1)の各入力端子、V相のコンバータ13,14(cnv_v2, cnv_v1)の各入力端子、およびW相のコンバータ15,16(cnv_w2, cnv_w1)の各入力端子にそれぞれ接続される。
As shown in FIG. 1, the
U相のコンバータ11(u2)の出力端子は、U相の変圧器21(tr_u2)の二次側に接続され、U相のコンバータ12(u1)の出力端子は、U相の変圧器22(tr_u1)の二次側に接続される。変圧器21,22(tr_u2, tr_u1)のうち、低電圧側にある変圧器22(tr_u1)の一次側の負端子は、基準電位点に接続され、変圧器22(tr_u1)の一次側の正端子は、変圧器21(tr_u2)の一次側の負端子に接続され、変圧器21(tr_u2)の一次側の正端子は、負荷31(l_u)に接続される。
The output terminal of the U-phase converter 11 (u2) is connected to the secondary side of the U-phase transformer 21 (tr_u2), and the output terminal of the U-phase converter 12 (u1) is the U-phase transformer 22 ( It is connected to the secondary side of tr_u1). Of the
このように各段の変圧器21,22(tr_u2, tr_u1)を直列接続することで、コンバータ11(cnv_u2)の電圧とコンバータ12(cnv_u1)の電圧とが加算された高い交流電圧が負荷31(l_u)に供給される。
By connecting the
V相およびW相についても、上述したU相と同様の構成であり、出力交流電圧の位相が120度ずつずれている点だけが異なる。 The V phase and the W phase have the same configuration as the U phase described above, except that the phases of the output AC voltage are shifted by 120 degrees.
なお、ここでは、多重数(段数)が2である場合を例示しているが、多重数(段数)を3以上にすることで、直列数をさらに増やし、交流電圧出力をさらに高くするように構成してもよい。 Here, the case where the number of multiplex (number of stages) is 2 is illustrated, but by increasing the number of multiples (number of stages) to 3 or more, the number of series can be further increased and the AC voltage output can be further increased. It may be configured.
上記多重電力変換装置には、さらに、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)の二次電流i_u2, i_u1, i_v2, i_v1, i_w2, i_w1の値をそれぞれ検出する電流検出器41〜46、および、変圧器21,23,25(r_u2, tr_v2, tr_w2)の一次電流i_u, i_v, i_wの値をそれぞれ検出する電流検出器51〜53が設置される。
In the multiple power converter, the currents for detecting the values of the secondary currents i_u2, i_u1, i_v2, i_v1, i_w2, i_w1 of the
各電流検出器により検出される電流値は、当該多重電力変換装置に備えられる制御装置1へ伝えられる。
The current value detected by each current detector is transmitted to the
制御装置1は、上位システムからの電力指令に従って、各段のコンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)に対してそれぞれコンバータ出力電圧指令値Vref_u2, Vref_u1, Vref_v2, Vref_v1, Vref_w2, Vref_w1を供給するとともに、電流検出器41〜46、51〜53によりそれぞれ検出される電流値に基づき、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)で発生し得る直流偏磁が抑制され且つ各相の変圧器間の励磁電流のばらつきが抑制されるように、コンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2を調整するものである。
The
ここで、制御装置1の機能構成の一例を図2に示す。
Here, an example of the functional configuration of the
制御装置1は、信号受信部61、全体偏磁抑制制御部62、個別偏磁抑制制御部63、信号送信部64等の機能を含む。
この制御装置1は、上記多重電力変換装置の各変圧器の直流偏磁を抑制する直流偏磁抑制制御を実施する。直流偏磁抑制制御は、全体偏磁抑制制御と個別偏磁抑制制御とに分けられる。全体偏磁抑制制御は、全体偏磁抑制制御部62により実施され、個別偏磁抑制制御は、個別偏磁抑制制御部63により実施される。
The
The
信号受信部61は、電流検出器41〜46により検出される変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)の二次電流i_u2, i_u1, i_v2, i_v1, i_w2, i_w1値を示す信号を受信するとともに、電流検出器51〜53により検出される変圧器21,23,25(r_u2, tr_v2, tr_w2)の一次電流i_u, i_v, i_wの値を示す信号を取得する機能である。
The
全体偏磁抑制制御部62は、電流検出器41〜46により検出される電流値および電流検出器51〜53により検出される電流値から求められる各変圧器の励磁電流の値に基づき、U相の変圧器21,22(tr_u2, tr_u1)全体の直流偏磁、V相の変圧器23,24(tr_v2, tr_v1)全体の直流偏磁、および、W相の変圧器25,26(tr_w2, tr_w1)全体の直流偏磁、をそれぞれ抑制する制御(全体偏磁抑制制御)を行う機能である。
The overall demagnetization
例えば、全体偏磁抑制制御部62は、U相の変圧器21,22(tr_u2, tr_u1)の直流偏磁を抑制するため、U相のコンバータ11,12(cnv_u2, cnv_u1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、U相の変圧器21,22(tr_u2, tr_u1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(U相用)を生成する制御要素を有する。
For example, the overall demagnetization
同様に、全体偏磁抑制制御部62は、V相の変圧器23,24(tr_v2, tr_v1)の直流偏磁を抑制するため、V相のコンバータ13,14(cnv_v2, cnv_v1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、V相の変圧器23,24(tr_v2, tr_v1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(V相用)を生成する制御要素を有する。
Similarly, the overall demagnetization
同様に、全体偏磁抑制制御部62は、W相の変圧器25,26(tr_w2, tr_w1)の直流偏磁を抑制するため、W相のコンバータ15,16(cnv_w2, cnv_w1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、W相の変圧器25,26(tr_w2, tr_w1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(W相用)を生成する制御要素を有する。
Similarly, the overall demagnetization
個別偏磁抑制制御部63は、電流検出器41〜46により検出される電流値および電流検出器51〜53により検出される電流値から求められる各変圧器の励磁電流の値に基づき、U相の変圧器21,22(tr_u2, tr_u1)間の直流偏磁のばらつき、V相の変圧器23,24(tr_v2, tr_v1)間の直流偏磁のばらつき、および、W相の変圧器25,26(tr_w2, tr_w1)間の直流偏磁のばらつき、をそれぞれ抑制する制御(個別偏磁抑制制御)を行う機能である。この個別偏磁抑制制御部63は、制御上のむだ時間を生じさせるフィルタを通過した信号は制御に使用せず、当該フィルタを通過しない信号のみを制御に使用する。
The individual demagnetization
例えば、個別偏磁抑制制御部63は、U相の変圧器21,22(tr_u2, tr_u1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(U相用)に対して更に重畳する補正信号として、U相の変圧器21,22(tr_u2, tr_u1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(U相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。
For example, the individual demagnetization
同様に、個別偏磁抑制制御部63は、V相の変圧器23,24(tr_v2, tr_v1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(V相用)に対して更に重畳する補正信号として、V相の変圧器23,24(tr_v2, tr_v1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(V相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。
Similarly, the individual demagnetization
同様に、個別偏磁抑制制御部63は、W相の変圧器25,26(tr_w2, tr_w1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(W相用)に対して更に重畳する補正信号として、W相の変圧器25,26(tr_w2, tr_w1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(W相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。
Similarly, the individual demagnetization
信号送信部64は、上位システムからの電力指令に基づく各コンバータ向けのコンバータ出力電圧指令(基準値)に対して上記第1の補正信号および上記第2の補正信号を重畳して得られるコンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2を、コンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)にそれぞれ送信する機能である。
The
図3は、制御装置1による直流偏磁抑制制御を実現するための構成の一例を示す図である。ここでは、U相、V相、W相のうちの、U相に関わる構成のみを図示している。
FIG. 3 is a diagram showing an example of a configuration for realizing DC demagnetization suppression control by the
制御装置1は、例えば、減算部71,72、加算部73、乗算部74、ローパスフィルタ75、比例積分制御部76、減算部81,91、比例積分制御部82,92、減算部83,93、減算部84,94を含む。
The
減算部71は、変圧器tr_u1の二次電流の値i_u1から一次電流の値i_uを減算し、変圧器tr_u1の励磁電流(U相1段励磁電流)の値i_m_u1を算出する。同様に、減算部72は、変圧器tr_u2の二次電流の値i_u2から一次電流の値i_uを減算し、変圧器tr_u2の励磁電流(U相2段励磁電流)の値i_m_u2を算出する。
The subtracting
加算部73は、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2とを加算して、加算結果を出力する。乗算部74は、その加算結果に対して0.5を乗算し(あるいは2で割り算し)、U相励磁電流の値i_m_uを出力する。すなわち、加算部73と乗算部74との組合せは、U相の変圧器tr_u1,tr_u2の励磁電流の平均値を算出するものである。
The adding
ここでは、多重数(段数)が2である場合を例示しているが、多重数(段数)をn(n:3以上の整数)にする場合は、加算部73がn個の励磁電流の値を加算するものとし、乗算部74が当該加算結果に対して1/nを乗算する(あるいはnで割り算する)ものとする。
Here, the case where the multiple number (number of stages) is 2 is illustrated, but when the multiple number (number of stages) is n (an integer of n: 3 or more), the
フィルタ75は、加算部73から出力されるU相励磁電流の値i_m_uから、変圧器tr_u1,tr_u2の励磁電流直流成分(U相励磁電流直流成分)i_m_u_dcを抽出する。このフィルタ75には、一般的なローパスフィルタ(ある周波数よりも低い周波数の信号を通過させるフィルタ)を適用してもよいが、当該直流成分をより精度よく検出するため、例えば信号の一定期間の移動平均(例えば交流出力電圧周期の移動平均)を順次出力する移動平均フィルタに置き換えてもよい。
The
比例積分制御部76は、上述した全体偏磁抑制制御部62の少なくとも一部を構成する。この比例積分制御部76は、全体偏磁抑制制御を実現する制御要素であり、U相励磁電流直流成分i_m_u_dcをゼロに収束させるために例えば比例積分演算PIを実施し、U相のコンバータ向けのU相コンバータ出力電圧指令値(基準値)vref_uに対する補正値としてのU相偏磁抑制補正電圧指令値vref_m_u(上述した第1の補正信号(U相用)に相当)を生成する。なお、比例積分演算PIに使用する比例積分ゲインは、ローパスフィルタ75(または移動平均フィルタ)の位相遅れ分を考慮し、制御系が安定する範囲内に設定する。
The proportional
減算部81、比例積分制御部82、減算部83、減算部84は、上述した個別偏磁抑制制御部63の一部を構成する。同様に、減算部91、比例積分制御部92、減算部93、減算部94も、上述した個別偏磁抑制制御部63の一部を構成する。
The
減算部81は、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部71により算出されたU相1段励磁電流の値i_m_u1を減算し、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分を出力する。
The subtracting
比例積分制御部82は、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分をゼロに収束させるために例えば比例積分演算PI1を実施し、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値(上述した第2の補正信号(U相用)の一つに相当)を生成する。減算部83は、この生成された補正値を、U相偏磁抑制補正電圧指令値vref_m_uから減算し、U相コンバータ出力電圧指令値(基準値)ref_uに対する補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1を生成する。
The proportional
減算部84は、生成された補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1を、U相コンバータ出力電圧指令値(基準値)vref_uから減算し、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1を生成する。
The
同様に、減算部91は、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部72により算出されたU相2段励磁電流i_m_u2を減算し、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分を出力する。
Similarly, the subtracting
比例積分制御部92は、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分をゼロに収束させるために例えば比例積分演算PI2を実施し、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値(上述した第2の補正信号(U相用)の一つに相当)を生成する。なお、この比例積分制御部92は、上述した比例積分制御部76よりも、制御ゲインが大きく設定される。減算部93は、この生成された補正値を、U相偏磁抑制補正電圧指令値vref_m_uから減算し、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2を生成する。
The proportional
減算部94は、生成された補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2を、U相コンバータ出力電圧指令値(基準値)vref_uから減算し、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2を生成する。
The
上述した比例積分制御部82,92は、制御上のむだ時間を生じさせるローパスフィルタ等を通過した信号は制御に使用しない。そのため、比例積分制御部82,92は、制御応答に大きな遅れは生じず、制御応答が大きくなるようにゲインを調整しても、当該制御応答が振動して不安定になる可能性は低い。比例積分制御部82,92のそれぞれの制御ゲインを、例えば比例積分制御部76の制御ゲインに比してより大きく設定することにより、制御応答を早くし、U相の変圧器間の励磁電流のばらつきをより一層精度よく抑えることが可能となる。
The proportional
なお、V相およびW相についても、上述したU相と同様の構成となる。 The V phase and the W phase have the same configuration as the U phase described above.
このように構成された多重電力変換装置の運転中においては、図1に示した電流検出器41〜46および電流検出器51〜53により検出される個々の電流値が連続的に制御装置1へ伝送される。制御装置1においては、これらの電流検出器41〜46および電流検出器51〜53により検出される個々の電流値に基づき、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)で発生し得る直流偏磁が抑制され且つ各相の変圧器間の励磁電流のばらつきが抑制されるように、コンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)へ供給されるコンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2が調整される。
During the operation of the multiplex power converter configured in this way, the individual current values detected by the
例えばU相については、図3に示されるように、減算部71において、変圧器tr_u1の二次電流の値i_u1から一次電流の値i_uが減算され、U相1段励磁電流の値i_m_u1が算出される。同様に、減算部72において、変圧器tr_u2の二次電流の値i_u2から一次電流の値i_uが減算され、U相2段励磁電流の値i_m_u2を算出される。
For example, for the U phase, as shown in FIG. 3, in the
ここで、変圧器tr_u1の二次電流の値i_u1と一次電流の値i_uとの関係、および、変圧器tr_u2の二次電流の値i_u2と一次電流の値i_uとの関係を、図4の波形グラフに示す。 Here, the relationship between the secondary current value i_u1 of the transformer tr_u1 and the primary current value i_u, and the relationship between the secondary current value i_u2 of the transformer tr_u2 and the primary current value i_u are shown in the waveform of FIG. Shown in the graph.
図4の波形グラフに示される変圧器tr_u1の二次電流の値i_u1と一次電流の値i_uとの差分は、変圧器tr_u1の励磁電流(U相1段励磁電流)の値i_m_u1に相当する。また、変圧器tr_u2の二次電流の値i_u2と一次電流の値i_uとの差分は、変圧器tr_u2の励磁電流(U相2段励磁電流)の値i_m_u2に相当する。 The difference between the secondary current value i_u1 of the transformer tr_u1 and the primary current value i_u shown in the waveform graph of FIG. 4 corresponds to the exciting current (U-phase one-stage exciting current) value i_m_u1 of the transformer tr_u1. The difference between the secondary current value i_u2 of the transformer tr_u2 and the primary current value i_u corresponds to the exciting current (U-phase two-stage exciting current) value i_m_u2 of the transformer tr_u2.
次に、加算部73において、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2とが加算され、加算結果が出力される。また、乗算部74において、その加算結果に対して0.5が乗算され、U相励磁電流の値i_m_uが出力される。すなわち、ここではU相の変圧器tr_u1,tr_u2の励磁電流の平均値が算出される。
Next, in the
ここで、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2と、U相励磁電流の値i_m_uとの関係を、図5の波形グラフに示す。 Here, the relationship between the U-phase one-stage exciting current value i_m_u1, the U-phase two-stage exciting current value i_m_u2, and the U-phase two-stage exciting current value i_m_u is shown in the waveform graph of FIG.
図5の波形グラフから、U相1段励磁電流の値i_m_u1とU相2段励磁電流の値i_m_u2との平均値がU相励磁電流の値i_m_uに相当することがわかる。 From the waveform graph of FIG. 5, it can be seen that the average value of the U-phase 1-stage exciting current value i_m_u1 and the U-phase 2-stage exciting current value i_m_u2 corresponds to the U-phase exciting current value i_m_u.
次に、フィルタ75において、加算部73から出力されるU相励磁電流の値i_m_uから、変圧器tr_u1,tr_u2の励磁電流直流成分(U相励磁電流直流成分)i_m_u_dcが抽出される。また、比例積分制御部76において、このU相励磁電流直流成分i_m_u_dcをゼロに収束させるために例えば比例積分演算PIが実施され、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値としてのU相偏磁抑制補正電圧指令値vref_m_uが生成される。
Next, in the
一方で、減算部81において、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部71により算出されたU相1段励磁電流の値i_m_u1が減算され、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分が出力される。また、比例積分制御部82において、その差分をゼロに収束させるために例えば比例積分演算PI1が実施され、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値が生成される。さらに、減算部83において、U相偏磁抑制補正電圧指令値vref_m_uから、この生成された補正値が減算され、U相コンバータ出力電圧指令値(基準値)ref_uに対する補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1が生成される。
On the other hand, in the
同様に、減算部91においても、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部72により算出されたU相2段励磁電流i_m_u2が減算され、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分が出力される。また、比例積分制御部92において、その差分をゼロに収束させるために例えば比例積分演算PI2が実施され、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値が生成される。さらに、減算部93において、U相偏磁抑制補正電圧指令値vref_m_uから、この生成された補正値が減算され、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2が生成される。
Similarly, in the
ここで、U相1段偏磁抑制補正電圧指令値vref_m_u1と、U相2段偏磁抑制補正電圧指令値vref_m_u2との関係を、図6の波形グラフに示す。 Here, the relationship between the U-phase one-stage demagnetization suppression correction voltage command value vref_m_u1 and the U-phase two-stage demagnetization suppression correction voltage command value vref_m_u2 is shown in the waveform graph of FIG.
図6の波形グラフから、U相の1段コンバータcnv_u1向けのU相1段偏磁抑制補正電圧指令値vref_m_u1と、U相のコンバータcnv_u2向けのU相2段偏磁抑制補正電圧指令値vref_m_u2とが、それぞれ異なる値であり、コンバータ毎に個別に生成された値であることがわかる。 From the waveform graph of FIG. 6, the U-phase 1-stage demagnetization suppression correction voltage command value vref_m_u1 for the U-phase 1-stage converter cnv_u1 and the U-phase 2-stage demagnetization suppression correction voltage command value vref_m_u2 for the U-phase converter cnv_u2. However, it can be seen that the values are different from each other and are individually generated for each converter.
次に、減算部84において、U相コンバータ出力電圧指令値(基準値)vref_uから、減算部83により生成された補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1が減算され、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1が生成される。同様に、減算部94においても、U相コンバータ出力電圧指令値(基準値)vref_uから、減算部93により生成された補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2が減算され、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2が生成される。
Next, in the
ここで、U相コンバータ出力電圧指令値(基準値)vref_uと、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1と、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2との関係を、図7の波形グラフに示す。 Here, the U-phase converter output voltage command value (reference value) vref_u, the converter output voltage command value vref_u1 for the U-phase one-stage converter cnv_u1, and the converter output voltage command value vref_u2 for the U-phase two-stage converter cnv_u2. The relationship between the above is shown in the waveform graph of FIG.
図7の波形グラフから、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1と、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2とが、U相コンバータ出力電圧指令値(基準値)vref_uに対してそれぞれ異なる値であり、コンバータ毎に個別に生成された値であることがわかる。 From the waveform graph of FIG. 7, the converter output voltage command value vref_u1 for the U-phase one-stage converter cnv_u1 and the converter output voltage command value vref_u2 for the U-phase two-stage converter cnv_u2 are the U-phase converter output voltage command values ( Reference value) It can be seen that the values are different for vref_u and are individually generated for each converter.
このようにして生成されたコンバータ出力電圧指令値vref_u1, vref_u2は、それぞれ、コンバータ11,12(cnv_u2, cnv_u1)へ個別に供給される。
The converter output voltage command values vref_u1 and vref_u2 generated in this way are individually supplied to the
これにより、コンバータ11,12(cnv_u2, cnv_u1)は、それぞれ、コンバータ出力電圧指令値vref_u1, vref_u2に応じた出力電圧を生成する。このコンバータ出力電圧指令値vref_u1, vref_u2により、コンバータ11,12(cnv_u2, cnv_u1)間の出力電圧のばらつきは抑制されるため、変圧器間の励磁電流のばらつきも抑制されることになる。
As a result, the
なお、V相およびW相についても、上述したU相と同様の動作となる。 The operation of the V phase and the W phase is the same as that of the U phase described above.
このように本実施形態によれば、全体偏磁抑制制御のほか、個別偏磁抑制制御を実施することにより、三相交流の各相における変圧器間の直流偏磁のばらつきを抑制することができ、各変圧器の磁気飽和を回避することができる。 As described above, according to the present embodiment, it is possible to suppress the variation in the DC demagnetization between the transformers in each phase of the three-phase AC by implementing the individual demagnetization suppression control in addition to the overall demagnetization suppression control. It is possible to avoid magnetic saturation of each transformer.
また、本実施形態の個別偏磁抑制制御においては、制御上のむだ時間を生じさせるフィルタを通過した信号は制御に使用しない。例えば、三相交流の各相について個別偏磁抑制制御を実施する個々の制御要素は、制御上のむだ時間を生じさせるローパスフィルタ等を通過した信号は制御に使用しない。そのため、個別偏磁抑制制御を実施する個々の制御要素は、制御応答に大きな遅れは生じず、制御応答が大きくなるようにゲインを調整しても、当該制御応答が振動して不安定になる可能性は低く、当該制御要素のそれぞれの制御ゲインを、例えば全体偏磁抑制制御を実施する制御要素の制御ゲインに比してより大きく設定することにより、制御応答を早くし、スイッチング等に起因する変圧器間の励磁電流のばらつきをより一層精度よく抑えることが可能となる。 Further, in the individual demagnetization suppression control of the present embodiment, the signal that has passed through the filter that causes a waste time in control is not used for the control. For example, the individual control elements that perform individual demagnetization suppression control for each phase of three-phase alternating current do not use the signal that has passed through a low-pass filter or the like that causes a waste time in control for control. Therefore, the individual control elements that perform the individual demagnetization suppression control do not have a large delay in the control response, and even if the gain is adjusted so that the control response becomes large, the control response vibrates and becomes unstable. The possibility is low, and by setting the control gain of each of the control elements to be larger than the control gain of the control element that performs overall demagnetization suppression control, for example, the control response is made faster, which is caused by switching, etc. It is possible to suppress the variation of the exciting current between the transformers with higher accuracy.
以上詳述したように、実施形態によれば、変圧器間の励磁電流のばらつきを低減することが可能になる。 As described in detail above, according to the embodiment, it is possible to reduce the variation in the exciting current between the transformers.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
1…制御装置、10…直流電源、11〜16…コンバータ、21〜26…変圧器、31〜33…負荷、41〜46,51〜53…電流検出器、61…信号受信部、62…全体偏磁抑制制御部、63…個別偏磁抑制制御部、64…信号送信部。 1 ... Control device, 10 ... DC power supply, 11-16 ... Converter, 21-26 ... Transformer, 31-33 ... Load, 41-46, 51-53 ... Current detector, 61 ... Signal receiver, 62 ... Overall Demagnetization suppression control unit, 63 ... Individual demagnetization suppression control unit, 64 ... Signal transmission unit.
Claims (6)
前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成する制御要素を含む全体偏磁抑制制御部と、
前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する複数の制御要素を含む個別偏磁抑制制御部と、
を具備し、
前記個別偏磁抑制制御部は、制御上のむだ時間を生じさせるフィルタを通過した信号を除いた当該フィルタを通過しない信号のみを制御に使用する、
電力変換装置の制御装置。 A control device for a power converter that converts DC power into AC power through multiple converters and multiple transformers.
Control to generate a first correction signal that converges the DC component included in the average value of the excitation currents of the plurality of transformers to zero as the correction signal superimposed on the converter output voltage command signal sent to the plurality of converters. Overall demagnetization suppression control unit including elements,
As a correction signal further superimposed on the first correction signal, a plurality of control elements that generate a second correction signal that converges the exciting currents of the plurality of transformers to the average value of the respective exciting currents. Individual demagnetization suppression control unit including
Equipped with
The individual demagnetization suppression control unit uses only signals that do not pass through the filter, excluding the signals that have passed through the filter that causes a waste time in control, for control.
A control device for a power converter.
請求項1に記載の電力変換装置の制御装置。 Each of the plurality of control elements included in the individual demagnetization suppression control unit is set to have a larger control gain than the control elements included in the overall demagnetization suppression control unit.
The control device for the power conversion device according to claim 1.
請求項1又は2に記載の電力変換装置の制御装置。 Each of the plurality of control elements included in the individual demagnetization suppression control unit performs PI control or PID control.
The control device for the power conversion device according to claim 1 or 2.
ローパスフィルタを用いることにより、前記複数の変圧器のそれぞれの励磁電流の平均値から直流成分を抽出する、
請求項1乃至3のいずれか1項に記載の電力変換装置の制御装置。 The overall demagnetization suppression control unit
By using a low-pass filter, a DC component is extracted from the average value of the exciting currents of each of the plurality of transformers.
The control device for the power conversion device according to any one of claims 1 to 3.
移動平均フィルタを用いることにより、前記複数の変圧器のそれぞれの励磁電流の平均値から直流成分を抽出する、
請求項1乃至4のいずれか1項に記載の電力変換装置の制御装置。 The overall demagnetization suppression control unit
By using a moving average filter, a DC component is extracted from the average value of the exciting currents of each of the plurality of transformers.
The control device for the power conversion device according to any one of claims 1 to 4.
第1の制御部により、前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成することと、
第2の制御部により、前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成することと、
を含み、
前記第2の制御部による前記第2の補正信号の生成においては、制御上のむだ時間を生じさせるフィルタを通過した信号を除いた当該フィルタを通過しない信号のみを制御に使用する、
電力変換装置の制御方法。 A control method for a power converter that converts DC power into AC power through multiple converters and multiple transformers.
The first control unit converges the DC component included in the average value of the exciting currents of the plurality of transformers to zero as a correction signal superimposed on the converter output voltage command signals sent to the plurality of converters. To generate a correction signal for
As a correction signal further superimposed on the first correction signal by the second control unit, a second correction signal that converges the exciting currents of the plurality of transformers to the average value of the respective exciting currents. To generate and
Including
In the generation of the second correction signal by the second control unit, only the signal that does not pass through the filter except for the signal that has passed through the filter that causes the control dead time is used for control.
How to control the power converter.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048031A JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
DE102019001526.6A DE102019001526A1 (en) | 2018-03-15 | 2019-03-04 | CONTROL DEVICE OF A POWER CONVERTER DEVICE AND METHOD FOR CONTROLLING THEREOF |
CN201910193162.4A CN110277933B (en) | 2018-03-15 | 2019-03-14 | Control device and control method for power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048031A JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019161938A JP2019161938A (en) | 2019-09-19 |
JP6906464B2 true JP6906464B2 (en) | 2021-07-21 |
Family
ID=67774474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018048031A Active JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6906464B2 (en) |
CN (1) | CN110277933B (en) |
DE (1) | DE102019001526A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031088A (en) * | 1989-03-31 | 1991-07-09 | Kabushiki Kaisha Toshiba | Variable-voltage and variable-frequency power converter |
JP3395310B2 (en) * | 1993-12-28 | 2003-04-14 | 株式会社日立製作所 | Semiconductor power converter |
JPH09247958A (en) * | 1996-03-08 | 1997-09-19 | Toshiba Corp | Anhysteresis suppressing control circuit of power converter |
JPH09294380A (en) * | 1996-04-26 | 1997-11-11 | Hitachi Ltd | Magnetic deviation suppression controller |
JP4607617B2 (en) * | 2005-02-15 | 2011-01-05 | 東芝三菱電機産業システム株式会社 | Control device for power converter |
US9712070B2 (en) * | 2013-06-04 | 2017-07-18 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
-
2018
- 2018-03-15 JP JP2018048031A patent/JP6906464B2/en active Active
-
2019
- 2019-03-04 DE DE102019001526.6A patent/DE102019001526A1/en active Pending
- 2019-03-14 CN CN201910193162.4A patent/CN110277933B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110277933B (en) | 2021-11-19 |
CN110277933A (en) | 2019-09-24 |
DE102019001526A1 (en) | 2019-09-19 |
JP2019161938A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9755542B2 (en) | Direct-current power transmission power conversion device and direct-current power transmission power conversion method | |
JP6509352B2 (en) | Power converter | |
JP6522141B2 (en) | Power converter | |
JP6050127B2 (en) | Power converter | |
US8912767B2 (en) | Reactive energy compensator and associated method for balancing half-bus voltages | |
WO2017046909A1 (en) | Power conversion device | |
JPWO2007135730A1 (en) | Power converter | |
JP2009201224A (en) | Single-phase voltage-type ac/dc conversion device and three-phase voltage type ac/dc conversion device | |
JP2018129963A (en) | Controller of power converter | |
KR102066162B1 (en) | Apparatus for dc link voltage imbalance compensation | |
JP2010088162A (en) | Inverter device | |
JP6394401B2 (en) | 5-level power converter and control method | |
JP6906464B2 (en) | Power converter control device and control method | |
JP5115730B2 (en) | PWM converter device | |
JP6443652B2 (en) | Power converter | |
US20140063877A1 (en) | Power conversion apparatus | |
JP6354503B2 (en) | Power conversion system | |
JP5351944B2 (en) | Power converter | |
JPH09294380A (en) | Magnetic deviation suppression controller | |
JP2014014232A (en) | Dc power supply device | |
JP7051575B2 (en) | Controls, self-excited power transducer control methods, and programs | |
JP2001258264A (en) | Controller for voltage type self-excited converter | |
JP6402521B2 (en) | AC-DC converter parallel connection system | |
JP6822110B2 (en) | Power converter and power conversion system | |
JP2016127645A (en) | Multi-output switching power supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6906464 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |