JP2019161938A - Control device and control method for power control device - Google Patents
Control device and control method for power control device Download PDFInfo
- Publication number
- JP2019161938A JP2019161938A JP2018048031A JP2018048031A JP2019161938A JP 2019161938 A JP2019161938 A JP 2019161938A JP 2018048031 A JP2018048031 A JP 2018048031A JP 2018048031 A JP2018048031 A JP 2018048031A JP 2019161938 A JP2019161938 A JP 2019161938A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- control
- transformers
- control unit
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 9
- 230000001629 suppression Effects 0.000 claims abstract description 80
- 230000005347 demagnetization Effects 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 230000005284 excitation Effects 0.000 claims description 85
- 230000005415 magnetization Effects 0.000 abstract description 4
- 230000010354 integration Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/40—Means for preventing magnetic saturation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
- H02M5/04—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
- H02M5/10—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4803—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode with means for reducing DC component from AC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
【課題】変圧器間の励磁電流のばらつきを低減することを可能にする電力変換装置の制御装置を提供する。【解決手段】電力変換装置の制御装置1は、複数のコンバータ及び複数の変圧器を通じて直流電力を交流電力に変換する電力変換装置の制御装置であって、前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成する制御要素を含む全体偏磁抑制制御部62と、前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する複数の制御要素を含む個別偏磁抑制制御部63と、を備える。【選択図】図2A control device of a power conversion device that enables reduction in variation of an exciting current between transformers is provided. A control device of a power conversion device is a control device of a power conversion device that converts DC power into AC power through a plurality of converters and a plurality of transformers, and includes a converter output voltage command transmitted to the plurality of converters. An overall demagnetization suppression control unit 62 including a control element for generating a first correction signal for converging a DC component included in an average value of the exciting current of each of the plurality of transformers to zero as a correction signal to be superimposed on the signal. And a plurality of second correction signals for converging respective exciting currents of the plurality of transformers to an average value of the respective exciting currents as correction signals further superimposed on the first correction signal. An individual magnetization suppression control unit 63 including a control element. [Selection] Figure 2
Description
本発明の実施形態は、電力変換装置の制御装置および制御方法に関する。 Embodiments described herein relate generally to a control device and a control method for a power conversion device.
コンバータ及び変圧器を多重化してなる多重電力変換装置は、複数のコンバータを複数の変圧器を介して直列に接続して構成され、数kV〜数百kVの高電圧を出力できる。また、各コンバータのスイッチングタイミングをずらすことにより、出力高調波電圧を小さくし、リップルが小さくなめらかな電流を負荷に供給できる。このため、多重電力変換装置は、電力系統電圧安定化装置や、鉄道車両、産業用ドライブ装置など、各種の用途に用いられる。 A multiple power conversion device formed by multiplexing a converter and a transformer is configured by connecting a plurality of converters in series via a plurality of transformers, and can output a high voltage of several kV to several hundreds kV. Further, by shifting the switching timing of each converter, the output harmonic voltage can be reduced, and a smooth current with a small ripple can be supplied to the load. For this reason, the multiple power conversion device is used for various applications such as a power system voltage stabilizing device, a railway vehicle, and an industrial drive device.
このような多重電力変換装置においては、コンバータの出力電圧や負荷系統電圧に含まれる直流電圧成分に起因して、変圧器鉄心内の磁束が一方向に偏り、変圧器が磁気飽和する可能性がある。変圧器が磁気飽和すると、変圧器鉄心のインダクタンス成分がゼロに近くなるため、変圧器の励磁電流が増大し、コンバータに過大な電流が流れる。この電流は、コンバータを構成するスイッチングデバイスの破壊を招く可能性がある。そのため、電力変換装置には、一般に、過電流を検出してコンバータを停止される保護機能が備えられる。しかし、この保護機能による電力変換装置の頻繁な停止は装置稼働率を低下させ、経済的な損失を招く。 In such a multiple power converter, there is a possibility that the magnetic flux in the transformer core is biased in one direction due to the DC voltage component included in the output voltage or load system voltage of the converter, and the transformer is magnetically saturated. is there. When the transformer is magnetically saturated, the inductance component of the transformer core becomes close to zero, so that the excitation current of the transformer increases and an excessive current flows through the converter. This current may lead to destruction of the switching devices constituting the converter. Therefore, power converters are generally provided with a protection function that detects an overcurrent and stops the converter. However, frequent stoppage of the power conversion device by this protection function lowers the device operation rate and causes economic loss.
このような課題を解決する技術として、多重電力変換装置の変圧器の直流偏磁を抑制する直流偏磁抑制制御の技術がある。この技術により、各段の変圧器の励磁電流を検出し、当該励磁電流が低減する方向にコンバータ出力電圧を調整することにより、変圧器の磁気飽和を回避することが可能となる。 As a technique for solving such a problem, there is a technique of DC demagnetization suppression control that suppresses DC demagnetization of a transformer of a multiple power converter. With this technique, it is possible to avoid magnetic saturation of the transformer by detecting the excitation current of the transformer at each stage and adjusting the converter output voltage in a direction in which the excitation current is reduced.
直流偏磁抑制制御の技術では、一般に、変圧器の励磁電流の直流成分を検出し、当該直流成分がゼロになるように直流偏磁補正量をコンバータ出力電圧指令値に重畳する。 In the technique of DC bias suppression control, generally, a DC component of a transformer exciting current is detected, and a DC bias correction amount is superimposed on a converter output voltage command value so that the DC component becomes zero.
しかしながら、励磁電流の直流成分を検出するためにフィルタを用いることから、制御上のむだ時間が存在し、制御応答に遅れが生じる。この場合、制御応答が大きくなるようにゲインを調整すると、当該制御応答が振動し、不安定になる可能性がある。このように直流偏磁抑制制御の制御応答の調整には限界があるため、コンバータ間で出力電圧にばらつきが生じることがあり、これに起因して変圧器間で励磁電流にばらつきが生じる場合がある。 However, since a filter is used to detect the direct current component of the excitation current, there is a control dead time and a delay occurs in the control response. In this case, if the gain is adjusted so that the control response becomes large, the control response may vibrate and become unstable. As described above, since there is a limit to the adjustment of the control response of the DC demagnetization suppression control, the output voltage may vary among the converters, which may cause the exciting current to vary among the transformers. is there.
また、定常状態では、励磁電流のばらつきは小さく、過電流に至るまで変圧器が磁気飽和するおそれはないが、例えば負荷系統電圧の突発的な不平衡の発生により各段の変圧器の励磁電流のばらつきが大きくなると、あるコンバータの励磁電流が過電流に達してしまう可能性がある。 Moreover, in the steady state, the variation in the excitation current is small, and there is no possibility that the transformer will be magnetically saturated until an overcurrent is reached, but the excitation current of the transformer in each stage is caused by, for example, a sudden unbalance of the load system voltage. When the variation in the value becomes large, the excitation current of a certain converter may reach an overcurrent.
本発明が解決しようとする課題は、変圧器間の励磁電流のばらつきを低減することを可能にする電力変換装置の制御装置および制御方法を提供することにある。 Problem to be solved by the invention is providing the control apparatus and control method of a power converter device which makes it possible to reduce the dispersion | variation in the excitation current between transformers.
実施形態によれば、複数のコンバータ及び複数の変圧器を通じて直流電力を交流電力に変換する電力変換装置の制御装置であって、前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成する制御要素を含む全体偏磁抑制制御部と、前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する複数の制御要素を含む個別偏磁抑制制御部と、を具備する電力変換装置の制御装置が提供される。 According to the embodiment, a control device for a power conversion device that converts DC power into AC power through a plurality of converters and a plurality of transformers, the correction signal being superimposed on a converter output voltage command signal to be sent to the plurality of converters An overall demagnetization suppression control unit including a control element for generating a first correction signal for converging a DC component included in an average value of excitation currents of each of the plurality of transformers to zero, and the first correction signal As a correction signal further superimposed on the individual magnetic field, the individual bias suppression including a plurality of control elements for generating a second correction signal for converging the respective excitation currents of the plurality of transformers to the average value of the respective excitation currents And a control unit for the power conversion device including the control unit.
実施形態によれば、変圧器間の励磁電流のばらつきを低減することが可能になる。 According to the embodiment, it is possible to reduce variations in excitation current between transformers.
以下、図面を参照して、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、一実施形態に係る制御装置が適用される電力変換装置の構成例を示す図である。 FIG. 1 is a diagram illustrating a configuration example of a power conversion device to which a control device according to an embodiment is applied.
本実施形態に係る電力変換装置は、三相交流のU相,V相,W相の各相について複数段に構成されたコンバータ及び複数の変圧器の組みを備え、これらを通じて直流電力を交流電力に変換する。ここでは、三相交流のU相,V相,W相の各相につき、コンバータ及び複数の変圧器の組みが二段に構成されている場合を例示する。 The power converter according to the present embodiment includes a set of a converter and a plurality of transformers configured in a plurality of stages for each of the U-phase, V-phase, and W-phase of three-phase AC, and through these, DC power is converted into AC power. Convert to Here, a case where a set of a converter and a plurality of transformers is configured in two stages for each of the U-phase, V-phase, and W-phase of the three-phase AC is illustrated.
より具体的には、例えば図1に示されるように、多重電力変換装置は、U相の負荷31(l_u)に対応して設けられるコンバータ11,12(cnv_u2, cnv_u1)及び変圧器21,22(tr_u2, tr_u1)と、V相の負荷32(l_v)に対応して設けられるコンバータ13,14(cnv_v2, cnv_v1)及び変圧器23,24(tr_v2, tr_v1)と、W相の負荷33(l_w)に対応して設けられるコンバータ15,16(cnv_w2, cnv_w1)とを備え、これらにより、直流電源10から供給される直流電圧v_dcを三相交流電圧に変換して、負荷31〜33(l_u ,l_v, l_w)へ交流電力を供給する。 More specifically, for example, as shown in FIG. 1, the multiple power conversion device includes converters 11 and 12 (cnv_u2, cnv_u1) and transformers 21 and 22 provided corresponding to a U-phase load 31 (l_u). (Tr_u2, tr_u1), converters 13 and 14 (cnv_v2, cnv_v1) and transformers 23 and 24 (tr_v2, tr_v1) provided corresponding to the V-phase load 32 (l_v), and a W-phase load 33 (l_w) ) And converters 15 and 16 (cnv_w2, cnv_w1) provided in correspondence with each other, thereby converting the DC voltage v_dc supplied from the DC power supply 10 into a three-phase AC voltage, and loads 31 to 33 (l_u, l_v, l_w).
図1に示されるように、直流電圧v_dcを供給する直流電源10は、U相のコンバータ11,12(cnv_u2, cnv_u1)の各入力端子、V相のコンバータ13,14(cnv_v2, cnv_v1)の各入力端子、およびW相のコンバータ15,16(cnv_w2, cnv_w1)の各入力端子にそれぞれ接続される。 As shown in FIG. 1, the DC power supply 10 that supplies the DC voltage v_dc includes input terminals of U-phase converters 11 and 12 (cnv_u2, cnv_u1) and V-phase converters 13 and 14 (cnv_v2, cnv_v1). The input terminal is connected to each input terminal of W-phase converters 15 and 16 (cnv_w2, cnv_w1).
U相のコンバータ11(u2)の出力端子は、U相の変圧器21(tr_u2)の二次側に接続され、U相のコンバータ12(u1)の出力端子は、U相の変圧器22(tr_u1)の二次側に接続される。変圧器21,22(tr_u2, tr_u1)のうち、低電圧側にある変圧器22(tr_u1)の一次側の負端子は、基準電位点に接続され、変圧器22(tr_u1)の一次側の正端子は、変圧器21(tr_u2)の一次側の負端子に接続され、変圧器21(tr_u2)の一次側の正端子は、負荷31(l_u)に接続される。 The output terminal of the U-phase converter 11 (u2) is connected to the secondary side of the U-phase transformer 21 (tr_u2), and the output terminal of the U-phase converter 12 (u1) is connected to the U-phase transformer 22 ( It is connected to the secondary side of tr_u1). Of the transformers 21 and 22 (tr_u2, tr_u1), the primary negative terminal of the transformer 22 (tr_u1) on the low voltage side is connected to the reference potential point, and the primary side positive terminal of the transformer 22 (tr_u1) is connected. The terminal is connected to the negative terminal on the primary side of the transformer 21 (tr_u2), and the positive terminal on the primary side of the transformer 21 (tr_u2) is connected to the load 31 (l_u).
このように各段の変圧器21,22(tr_u2, tr_u1)を直列接続することで、コンバータ11(cnv_u2)の電圧とコンバータ12(cnv_u1)の電圧とが加算された高い交流電圧が負荷31(l_u)に供給される。 Thus, by connecting the transformers 21 and 22 (tr_u2, tr_u1) of each stage in series, a high AC voltage obtained by adding the voltage of the converter 11 (cnv_u2) and the voltage of the converter 12 (cnv_u1) is added to the load 31 ( l_u).
V相およびW相についても、上述したU相と同様の構成であり、出力交流電圧の位相が120度ずつずれている点だけが異なる。 The V phase and the W phase have the same configuration as the U phase described above, and are different only in that the phase of the output AC voltage is shifted by 120 degrees.
なお、ここでは、多重数(段数)が2である場合を例示しているが、多重数(段数)を3以上にすることで、直列数をさらに増やし、交流電圧出力をさらに高くするように構成してもよい。 Here, the case where the number of multiplexing (number of stages) is 2 is illustrated, but by increasing the number of multiplexing (number of stages) to 3 or more, the number of series is further increased, and the AC voltage output is further increased. It may be configured.
上記多重電力変換装置には、さらに、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)の二次電流i_u2, i_u1, i_v2, i_v1, i_w2, i_w1の値をそれぞれ検出する電流検出器41〜46、および、変圧器21,23,25(r_u2, tr_v2, tr_w2)の一次電流i_u, i_v, i_wの値をそれぞれ検出する電流検出器51〜53が設置される。 The multiplex power converter further includes currents for detecting the values of secondary currents i_u2, i_u1, i_v2, i_v1, i_w2, i_w1 of transformers 21 to 26 (tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1), respectively. Detectors 41 to 46 and current detectors 51 to 53 for detecting values of primary currents i_u, i_v, i_w of transformers 21, 23, 25 (r_u2, tr_v2, tr_w2), respectively, are installed.
各電流検出器により検出される電流値は、当該多重電力変換装置に備えられる制御装置1へ伝えられる。 The current value detected by each current detector is transmitted to the control device 1 provided in the multiple power conversion device.
制御装置1は、上位システムからの電力指令に従って、各段のコンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)に対してそれぞれコンバータ出力電圧指令値Vref_u2, Vref_u1, Vref_v2, Vref_v1, Vref_w2, Vref_w1を供給するとともに、電流検出器41〜46、51〜53によりそれぞれ検出される電流値に基づき、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)で発生し得る直流偏磁が抑制され且つ各相の変圧器間の励磁電流のばらつきが抑制されるように、コンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2を調整するものである。 The control device 1 controls the converter output voltage command values Vref_u2, Vref_u1, Vref_v2, Vref_v1, Vs for the converters 11 to 16 (cnv_u2, cnv_u1, cnv_v2, cnv_w2, cnv_w1) in accordance with the power command from the host system. Vref_w2 and Vref_w1 are supplied, and can be generated by the transformers 21 to 26 (tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1) based on the current values detected by the current detectors 41 to 46 and 51 to 53, respectively. The converter output voltage command values Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, and Vref_w2 are adjusted so that the DC bias is suppressed and the variation in the excitation current between the transformers of each phase is suppressed.
ここで、制御装置1の機能構成の一例を図2に示す。 Here, an example of a functional configuration of the control device 1 is shown in FIG.
制御装置1は、信号受信部61、全体偏磁抑制制御部62、個別偏磁抑制制御部63、信号送信部64等の機能を含む。
この制御装置1は、上記多重電力変換装置の各変圧器の直流偏磁を抑制する直流偏磁抑制制御を実施する。直流偏磁抑制制御は、全体偏磁抑制制御と個別偏磁抑制制御とに分けられる。全体偏磁抑制制御は、全体偏磁抑制制御部62により実施され、個別偏磁抑制制御は、個別偏磁抑制制御部63により実施される。
The control device 1 includes functions of a signal receiving unit 61, an overall demagnetization suppression control unit 62, an individual demagnetization suppression control unit 63, a signal transmission unit 64, and the like.
The control device 1 performs direct current bias suppression control for suppressing direct current bias of each transformer of the multiple power converter. DC bias suppression control is divided into overall bias suppression control and individual bias suppression control. The overall demagnetization suppression control is performed by the overall demagnetization suppression control unit 62, and the individual demagnetization suppression control is performed by the individual demagnetization suppression control unit 63.
信号受信部61は、電流検出器41〜46により検出される変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)の二次電流i_u2, i_u1, i_v2, i_v1, i_w2, i_w1値を示す信号を受信するとともに、電流検出器51〜53により検出される変圧器21,23,25(r_u2, tr_v2, tr_w2)の一次電流i_u, i_v, i_wの値を示す信号を取得する機能である。 The signal receiving unit 61 receives the secondary currents i_u2, i_u1, i_v2, i_v1, i_w2, i_w1 values of the transformers 21 to 26 (tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1) detected by the current detectors 41 to 46. Is a function of receiving signals indicating primary currents i_u, i_v, i_w of transformers 21, 23, 25 (r_u2, tr_v2, tr_w2) detected by current detectors 51-53. is there.
全体偏磁抑制制御部62は、電流検出器41〜46により検出される電流値および電流検出器51〜53により検出される電流値から求められる各変圧器の励磁電流の値に基づき、U相の変圧器21,22(tr_u2, tr_u1)全体の直流偏磁、V相の変圧器23,24(tr_v2, tr_v1)全体の直流偏磁、および、W相の変圧器25,26(tr_w2, tr_w1)全体の直流偏磁、をそれぞれ抑制する制御(全体偏磁抑制制御)を行う機能である。 Based on the current values detected by the current detectors 41 to 46 and the current values detected by the current detectors 51 to 53, the overall bias suppression control unit 62 is based on the value of the excitation current of each transformer. DC bias of the whole transformers 21 and 22 (tr_u2, tr_u1), DC bias of the V phase transformers 23 and 24 (tr_v2, tr_v1), and W phase transformers 25 and 26 (tr_w2, tr_w1) ) This is a function for performing control (overall bias suppression control) for suppressing overall DC bias.
例えば、全体偏磁抑制制御部62は、U相の変圧器21,22(tr_u2, tr_u1)の直流偏磁を抑制するため、U相のコンバータ11,12(cnv_u2, cnv_u1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、U相の変圧器21,22(tr_u2, tr_u1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(U相用)を生成する制御要素を有する。 For example, the overall bias suppression control unit 62 sends the converter output voltage to the U-phase converters 11 and 12 (cnv_u2, cnv_u1) in order to suppress the DC bias of the U-phase transformers 21 and 22 (tr_u2, tr_u1). As a correction signal to be superimposed on the command signal, a first correction signal (for U-phase) that converges the DC component included in the average value of the respective excitation currents of the U-phase transformers 21 and 22 (tr_u2, tr_u1) to zero. A control element for generating
同様に、全体偏磁抑制制御部62は、V相の変圧器23,24(tr_v2, tr_v1)の直流偏磁を抑制するため、V相のコンバータ13,14(cnv_v2, cnv_v1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、V相の変圧器23,24(tr_v2, tr_v1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(V相用)を生成する制御要素を有する。 Similarly, the overall bias suppression control unit 62 sends the converter output to the V-phase converters 13 and 14 (cnv_v2, cnv_v1) in order to suppress the DC bias of the V-phase transformers 23 and 24 (tr_v2, tr_v1). As a correction signal to be superimposed on the voltage command signal, a first correction signal (for V-phase) that converges the DC component included in the average value of the respective excitation currents of the V-phase transformers 23 and 24 (tr_v2, tr_v1) to zero. ) To generate a control element.
同様に、全体偏磁抑制制御部62は、W相の変圧器25,26(tr_w2, tr_w1)の直流偏磁を抑制するため、W相のコンバータ15,16(cnv_w2, cnv_w1)へ送るコンバータ出力電圧指令信号に重畳する補正信号として、W相の変圧器25,26(tr_w2, tr_w1)のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号(W相用)を生成する制御要素を有する。 Similarly, the overall demagnetization suppression control unit 62 outputs the converter output to the W-phase converters 15 and 16 (cnv_w2, cnv_w1) in order to suppress the DC demagnetization of the W-phase transformers 25 and 26 (tr_w2, tr_w1). As a correction signal to be superimposed on the voltage command signal, a first correction signal (for W phase) that converges the DC component included in the average value of the respective excitation currents of the W phase transformers 25 and 26 (tr_w2, tr_w1) to zero. ) To generate a control element.
個別偏磁抑制制御部63は、電流検出器41〜46により検出される電流値および電流検出器51〜53により検出される電流値から求められる各変圧器の励磁電流の値に基づき、U相の変圧器21,22(tr_u2, tr_u1)間の直流偏磁のばらつき、V相の変圧器23,24(tr_v2, tr_v1)間の直流偏磁のばらつき、および、W相の変圧器25,26(tr_w2, tr_w1)間の直流偏磁のばらつき、をそれぞれ抑制する制御(個別偏磁抑制制御)を行う機能である。この個別偏磁抑制制御部63は、制御上のむだ時間を生じさせるフィルタを通過した信号は制御に使用せず、当該フィルタを通過しない信号のみを制御に使用する。 Based on the current value detected by the current detectors 41 to 46 and the current value detected by the current detectors 51 to 53, the individual bias suppression control unit 63 is based on the value of the excitation current of each transformer. Variation in DC bias between the transformers 21 and 22 (tr_u2, tr_u1), variation in DC bias between the V-phase transformers 23 and 24 (tr_v2, tr_v1), and W-phase transformers 25 and 26 This is a function of performing control (individual bias suppression control) for suppressing the variation of DC bias between (tr_w2, tr_w1). The individual demagnetization suppression control unit 63 does not use a signal that has passed through a filter that causes a control dead time for control, and uses only a signal that does not pass through the filter for control.
例えば、個別偏磁抑制制御部63は、U相の変圧器21,22(tr_u2, tr_u1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(U相用)に対して更に重畳する補正信号として、U相の変圧器21,22(tr_u2, tr_u1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(U相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。 For example, the individual demagnetization suppression control unit 63 further controls the first correction signal (for U phase) in order to suppress variation in DC demagnetization between the U phase transformers 21 and 22 (tr_u2, tr_u1). As a correction signal to be superimposed, a second correction signal (for U phase) for converging the respective excitation currents of the U-phase transformers 21 and 22 (tr_u2, tr_u1) to the average value of the respective excitation currents is used. Two control elements generated for each excitation current are included.
同様に、個別偏磁抑制制御部63は、V相の変圧器23,24(tr_v2, tr_v1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(V相用)に対して更に重畳する補正信号として、V相の変圧器23,24(tr_v2, tr_v1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(V相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。 Similarly, the individual demagnetization suppression control unit 63 controls the first correction signal (for V-phase) in order to suppress variation in DC demagnetization between the V-phase transformers 23 and 24 (tr_v2, tr_v1). Further, as a correction signal to be superimposed, a second correction signal (for V-phase) for converging the respective excitation currents of the V-phase transformers 23 and 24 (tr_v2, tr_v1) to the average value of the respective excitation currents. It includes two control elements generated for each excitation current.
同様に、個別偏磁抑制制御部63は、W相の変圧器25,26(tr_w2, tr_w1)間の直流偏磁のばらつきを抑制するため、第1の補正信号(W相用)に対して更に重畳する補正信号として、W相の変圧器25,26(tr_w2, tr_w1)のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号(W相用)を当該それぞれの励磁電流毎に生成する2つの制御要素を含む。 Similarly, the individual demagnetization suppression control unit 63 controls the first correction signal (for W phase) in order to suppress variation in DC demagnetization between the W phase transformers 25 and 26 (tr_w2, tr_w1). Furthermore, as correction signals to be superimposed, second correction signals (for the W phase) for converging the respective excitation currents of the W-phase transformers 25 and 26 (tr_w2, tr_w1) to the average values of the respective excitation currents, respectively. It includes two control elements generated for each excitation current.
信号送信部64は、上位システムからの電力指令に基づく各コンバータ向けのコンバータ出力電圧指令(基準値)に対して上記第1の補正信号および上記第2の補正信号を重畳して得られるコンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2を、コンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)にそれぞれ送信する機能である。 The signal transmission unit 64 superimposes the first correction signal and the second correction signal on the converter output voltage command (reference value) for each converter based on the power command from the host system. This is a function for transmitting the voltage command values Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2 to converters 11 to 16 (cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1), respectively.
図3は、制御装置1による直流偏磁抑制制御を実現するための構成の一例を示す図である。ここでは、U相、V相、W相のうちの、U相に関わる構成のみを図示している。 FIG. 3 is a diagram illustrating an example of a configuration for realizing the direct-current demagnetization suppression control by the control device 1. Here, only the configuration related to the U phase among the U phase, the V phase, and the W phase is illustrated.
制御装置1は、例えば、減算部71,72、加算部73、乗算部74、ローパスフィルタ75、比例積分制御部76、減算部81,91、比例積分制御部82,92、減算部83,93、減算部84,94を含む。 The control device 1 includes, for example, subtraction units 71 and 72, addition unit 73, multiplication unit 74, low-pass filter 75, proportional integration control unit 76, subtraction units 81 and 91, proportional integration control units 82 and 92, and subtraction units 83 and 93. , Subtracting units 84 and 94 are included.
減算部71は、変圧器tr_u1の二次電流の値i_u1から一次電流の値i_uを減算し、変圧器tr_u1の励磁電流(U相1段励磁電流)の値i_m_u1を算出する。同様に、減算部72は、変圧器tr_u2の二次電流の値i_u2から一次電流の値i_uを減算し、変圧器tr_u2の励磁電流(U相2段励磁電流)の値i_m_u2を算出する。 The subtracting unit 71 subtracts the primary current value i_u from the secondary current value i_u1 of the transformer tr_u1 to calculate a value i_m_u1 of the exciting current (U-phase 1-stage exciting current) of the transformer tr_u1. Similarly, the subtraction unit 72 subtracts the primary current value i_u from the secondary current value i_u2 of the transformer tr_u2 to calculate a value i_m_u2 of the exciting current (U-phase two-stage exciting current) of the transformer tr_u2.
加算部73は、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2とを加算して、加算結果を出力する。乗算部74は、その加算結果に対して0.5を乗算し(あるいは2で割り算し)、U相励磁電流の値i_m_uを出力する。すなわち、加算部73と乗算部74との組合せは、U相の変圧器tr_u1,tr_u2の励磁電流の平均値を算出するものである。 The adding unit 73 adds the value i_m_u1 of the U-phase one-stage excitation current and the value i_m_u2 of the U-phase two-stage excitation current, and outputs the addition result. Multiplier 74 multiplies the addition result by 0.5 (or divides by 2), and outputs U-phase excitation current value i_m_u. That is, the combination of the adding unit 73 and the multiplying unit 74 calculates an average value of the excitation currents of the U-phase transformers tr_u1 and tr_u2.
ここでは、多重数(段数)が2である場合を例示しているが、多重数(段数)をn(n:3以上の整数)にする場合は、加算部73がn個の励磁電流の値を加算するものとし、乗算部74が当該加算結果に対して1/nを乗算する(あるいはnで割り算する)ものとする。 Here, the case where the number of multiplexes (number of stages) is 2 is illustrated, but when the number of multiplexes (number of stages) is n (n: an integer of 3 or more), the adding unit 73 generates n excitation currents. It is assumed that values are added, and the multiplication unit 74 multiplies the addition result by 1 / n (or divides by n).
フィルタ75は、加算部73から出力されるU相励磁電流の値i_m_uから、変圧器tr_u1,tr_u2の励磁電流直流成分(U相励磁電流直流成分)i_m_u_dcを抽出する。このフィルタ75には、一般的なローパスフィルタ(ある周波数よりも低い周波数の信号を通過させるフィルタ)を適用してもよいが、当該直流成分をより精度よく検出するため、例えば信号の一定期間の移動平均(例えば交流出力電圧周期の移動平均)を順次出力する移動平均フィルタに置き換えてもよい。 The filter 75 extracts the excitation current DC component (U-phase excitation current DC component) i_m_u_dc of the transformers tr_u1 and tr_u2 from the value i_m_u of the U-phase excitation current output from the adder 73. As this filter 75, a general low-pass filter (a filter that allows a signal having a frequency lower than a certain frequency to pass) may be applied. In order to detect the DC component more accurately, for example, for a certain period of the signal The moving average (for example, the moving average of the AC output voltage period) may be replaced with a moving average filter that sequentially outputs the moving average.
比例積分制御部76は、上述した全体偏磁抑制制御部62の少なくとも一部を構成する。この比例積分制御部76は、全体偏磁抑制制御を実現する制御要素であり、U相励磁電流直流成分i_m_u_dcをゼロに収束させるために例えば比例積分演算PIを実施し、U相のコンバータ向けのU相コンバータ出力電圧指令値(基準値)vref_uに対する補正値としてのU相偏磁抑制補正電圧指令値vref_m_u(上述した第1の補正信号(U相用)に相当)を生成する。なお、比例積分演算PIに使用する比例積分ゲインは、ローパスフィルタ75(または移動平均フィルタ)の位相遅れ分を考慮し、制御系が安定する範囲内に設定する。 The proportional-plus-integral control unit 76 constitutes at least a part of the overall demagnetization suppression control unit 62 described above. The proportional-integral control unit 76 is a control element that realizes overall bias suppression control, and performs, for example, a proportional-integral calculation PI to converge the U-phase excitation current DC component i_m_u_dc to zero, and is used for a U-phase converter. A U-phase bias suppression suppression voltage command value vref_m_u (corresponding to the above-described first correction signal (for U-phase)) is generated as a correction value for the U-phase converter output voltage command value (reference value) vref_u. Note that the proportional integral gain used for the proportional integral calculation PI is set within a range in which the control system is stable in consideration of the phase delay of the low-pass filter 75 (or moving average filter).
減算部81、比例積分制御部82、減算部83、減算部84は、上述した個別偏磁抑制制御部63の一部を構成する。同様に、減算部91、比例積分制御部92、減算部93、減算部94も、上述した個別偏磁抑制制御部63の一部を構成する。 The subtraction unit 81, the proportional integration control unit 82, the subtraction unit 83, and the subtraction unit 84 constitute a part of the above-described individual bias suppression control unit 63. Similarly, the subtraction unit 91, the proportional integration control unit 92, the subtraction unit 93, and the subtraction unit 94 also constitute a part of the above-described individual bias suppression control unit 63.
減算部81は、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部71により算出されたU相1段励磁電流の値i_m_u1を減算し、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分を出力する。 The subtraction unit 81 subtracts the U-phase one-stage excitation current value i_m_u1 calculated by the subtraction unit 71 from the U-phase excitation current value i_m_u calculated by the multiplication unit 74, and the U-phase excitation current value i_m_u and U The difference from the phase i stage excitation current value i_m_u1 is output.
比例積分制御部82は、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分をゼロに収束させるために例えば比例積分演算PI1を実施し、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値(上述した第2の補正信号(U相用)の一つに相当)を生成する。減算部83は、この生成された補正値を、U相偏磁抑制補正電圧指令値vref_m_uから減算し、U相コンバータ出力電圧指令値(基準値)ref_uに対する補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1を生成する。 The proportional-integral control unit 82 performs, for example, the proportional-integral calculation PI1 in order to converge the difference between the U-phase excitation current value i_m_u and the U-phase one-stage excitation current value i_m_u1 to zero, and suppresses the above-described U-phase demagnetization suppression. A correction value (corresponding to one of the above-described second correction signals (for U-phase)) is generated for the correction voltage command value vref_m_u. The subtraction unit 83 subtracts the generated correction value from the U-phase bias suppression suppression voltage command value vref_m_u, and corrects the U-phase converter output voltage command value (reference value) ref_u (U-phase one-stage bias suppression). Correction voltage command value) vref_m_u1 is generated.
減算部84は、生成された補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1を、U相コンバータ出力電圧指令値(基準値)vref_uから減算し、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1を生成する。 The subtracting unit 84 subtracts the generated correction value (U-phase one-stage demagnetization suppression correction voltage command value) vref_m_u1 from the U-phase converter output voltage command value (reference value) vref_u, for the U-phase one-stage converter cnv_u1 Converter output voltage command value vref_u1 is generated.
同様に、減算部91は、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部72により算出されたU相2段励磁電流i_m_u2を減算し、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分を出力する。 Similarly, the subtraction unit 91 subtracts the U-phase two-stage excitation current i_m_u2 calculated by the subtraction unit 72 from the U-phase excitation current value i_m_u calculated by the multiplication unit 74 to obtain the U-phase excitation current value i_m_u. The difference from the value i_m_u2 of the U-phase two-stage excitation current is output.
比例積分制御部92は、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分をゼロに収束させるために例えば比例積分演算PI2を実施し、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値(上述した第2の補正信号(U相用)の一つに相当)を生成する。なお、この比例積分制御部92は、上述した比例積分制御部76よりも、制御ゲインが大きく設定される。減算部93は、この生成された補正値を、U相偏磁抑制補正電圧指令値vref_m_uから減算し、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2を生成する。 The proportional-integral control unit 92 performs, for example, the proportional-integral calculation PI2 in order to converge the difference between the U-phase excitation current value i_m_u and the U-phase two-stage excitation current value i_m_u2 to zero, and suppresses the above-described U-phase magnetization demagnetization. A correction value (corresponding to one of the above-described second correction signals (for U-phase)) is generated for the correction voltage command value vref_m_u. The proportional integral control unit 92 is set to have a control gain larger than that of the proportional integral control unit 76 described above. The subtractor 93 subtracts the generated correction value from the U-phase bias suppression suppression voltage command value vref_m_u, and corrects the U-phase converter output voltage command value (reference value) vref_u (a U-phase two-stage bias suppression). Correction voltage command value) vref_m_u2 is generated.
減算部94は、生成された補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2を、U相コンバータ出力電圧指令値(基準値)vref_uから減算し、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2を生成する。 The subtracting unit 94 subtracts the generated correction value (U-phase two-stage demagnetization suppression correction voltage command value) vref_m_u2 from the U-phase converter output voltage command value (reference value) vref_u, for the U-phase two-stage converter cnv_u2 The converter output voltage command value vref_u2 is generated.
上述した比例積分制御部82,92は、制御上のむだ時間を生じさせるローパスフィルタ等を通過した信号は制御に使用しない。そのため、比例積分制御部82,92は、制御応答に大きな遅れは生じず、制御応答が大きくなるようにゲインを調整しても、当該制御応答が振動して不安定になる可能性は低い。比例積分制御部82,92のそれぞれの制御ゲインを、例えば比例積分制御部76の制御ゲインに比してより大きく設定することにより、制御応答を早くし、U相の変圧器間の励磁電流のばらつきをより一層精度よく抑えることが可能となる。 The above-described proportional-integral control units 82 and 92 do not use a signal that has passed through a low-pass filter or the like that causes a control dead time for control. Therefore, the proportional-integral control units 82 and 92 do not cause a large delay in the control response, and even if the gain is adjusted so that the control response becomes large, the possibility that the control response vibrates and becomes unstable is low. For example, by setting the control gains of the proportional integral control units 82 and 92 to be larger than the control gain of the proportional integral control unit 76, the control response is accelerated, and the excitation current between the U-phase transformers is increased. Variations can be suppressed with higher accuracy.
なお、V相およびW相についても、上述したU相と同様の構成となる。 Note that the V phase and the W phase have the same configuration as the U phase described above.
このように構成された多重電力変換装置の運転中においては、図1に示した電流検出器41〜46および電流検出器51〜53により検出される個々の電流値が連続的に制御装置1へ伝送される。制御装置1においては、これらの電流検出器41〜46および電流検出器51〜53により検出される個々の電流値に基づき、変圧器21〜26(tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1)で発生し得る直流偏磁が抑制され且つ各相の変圧器間の励磁電流のばらつきが抑制されるように、コンバータ11〜16(cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1)へ供給されるコンバータ出力電圧指令値Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, Vref_w2が調整される。 During the operation of the multiplex power conversion device configured as described above, the individual current values detected by the current detectors 41 to 46 and the current detectors 51 to 53 shown in FIG. Is transmitted. In the control device 1, the transformers 21 to 26 (tr_u2, tr_u1, tr_v2, tr_v1, tr_w2, tr_w1) based on the individual current values detected by the current detectors 41 to 46 and the current detectors 51 to 53. Is supplied to the converters 11 to 16 (cnv_u2, cnv_u1, cnv_v2, cnv_v1, cnv_w2, cnv_w1) so that the DC bias that can occur in the transformer is suppressed and the variation of the excitation current between the transformers of each phase is suppressed. Converter output voltage command values Vref_u1, Vref_u2, Vref_v1, Vref_v2, Vref_w1, and Vref_w2 are adjusted.
例えばU相については、図3に示されるように、減算部71において、変圧器tr_u1の二次電流の値i_u1から一次電流の値i_uが減算され、U相1段励磁電流の値i_m_u1が算出される。同様に、減算部72において、変圧器tr_u2の二次電流の値i_u2から一次電流の値i_uが減算され、U相2段励磁電流の値i_m_u2を算出される。 For example, for the U phase, as shown in FIG. 3, the subtraction unit 71 subtracts the primary current value i_u from the secondary current value i_u1 of the transformer tr_u1 to calculate the U phase 1-stage excitation current value i_m_u1. Is done. Similarly, the subtractor 72 subtracts the primary current value i_u from the secondary current value i_u2 of the transformer tr_u2 to calculate the U-phase two-stage excitation current value i_m_u2.
ここで、変圧器tr_u1の二次電流の値i_u1と一次電流の値i_uとの関係、および、変圧器tr_u2の二次電流の値i_u2と一次電流の値i_uとの関係を、図4の波形グラフに示す。 Here, the relationship between the secondary current value i_u1 of the transformer tr_u1 and the primary current value i_u and the relationship between the secondary current value i_u2 of the transformer tr_u2 and the primary current value i_u are shown in the waveform of FIG. Shown in the graph.
図4の波形グラフに示される変圧器tr_u1の二次電流の値i_u1と一次電流の値i_uとの差分は、変圧器tr_u1の励磁電流(U相1段励磁電流)の値i_m_u1に相当する。また、変圧器tr_u2の二次電流の値i_u2と一次電流の値i_uとの差分は、変圧器tr_u2の励磁電流(U相2段励磁電流)の値i_m_u2に相当する。 The difference between the secondary current value i_u1 of the transformer tr_u1 and the primary current value i_u shown in the waveform graph of FIG. 4 corresponds to the value i_m_u1 of the excitation current (U-phase one-stage excitation current) of the transformer tr_u1. The difference between the secondary current value i_u2 of the transformer tr_u2 and the primary current value i_u corresponds to the value i_m_u2 of the excitation current (U-phase two-stage excitation current) of the transformer tr_u2.
次に、加算部73において、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2とが加算され、加算結果が出力される。また、乗算部74において、その加算結果に対して0.5が乗算され、U相励磁電流の値i_m_uが出力される。すなわち、ここではU相の変圧器tr_u1,tr_u2の励磁電流の平均値が算出される。 Next, the adding unit 73 adds the value i_m_u1 of the U-phase one-stage excitation current and the value i_m_u2 of the U-phase two-stage excitation current, and outputs the addition result. In addition, the multiplication unit 74 multiplies the addition result by 0.5, and outputs a U-phase excitation current value i_m_u. That is, here, the average value of the excitation currents of the U-phase transformers tr_u1 and tr_u2 is calculated.
ここで、U相1段励磁電流の値i_m_u1と、U相2段励磁電流の値i_m_u2と、U相励磁電流の値i_m_uとの関係を、図5の波形グラフに示す。 Here, the relationship among the value i_m_u1 of the U-phase one-stage exciting current, the value i_m_u2 of the U-phase two-stage exciting current, and the value i_m_u of the U-phase exciting current is shown in the waveform graph of FIG.
図5の波形グラフから、U相1段励磁電流の値i_m_u1とU相2段励磁電流の値i_m_u2との平均値がU相励磁電流の値i_m_uに相当することがわかる。 From the waveform graph of FIG. 5, it can be seen that the average value of the value i_m_u1 of the U-phase one-stage excitation current and the value i_m_u2 of the U-phase two-stage excitation current corresponds to the value i_m_u of the U-phase excitation current.
次に、フィルタ75において、加算部73から出力されるU相励磁電流の値i_m_uから、変圧器tr_u1,tr_u2の励磁電流直流成分(U相励磁電流直流成分)i_m_u_dcが抽出される。また、比例積分制御部76において、このU相励磁電流直流成分i_m_u_dcをゼロに収束させるために例えば比例積分演算PIが実施され、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値としてのU相偏磁抑制補正電圧指令値vref_m_uが生成される。 Next, the filter 75 extracts the excitation current DC component (U-phase excitation current DC component) i_m_u_dc of the transformers tr_u1 and tr_u2 from the value i_m_u of the U-phase excitation current output from the adder 73. Further, in the proportional-plus-integral control unit 76, for example, a proportional-integral calculation PI is performed in order to converge the U-phase exciting current DC component i_m_u_dc to zero, and a correction value for the U-phase converter output voltage command value (reference value) vref_u is obtained. A U-phase bias suppression suppression voltage command value vref_m_u is generated.
一方で、減算部81において、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部71により算出されたU相1段励磁電流の値i_m_u1が減算され、U相励磁電流の値i_m_uとU相1段励磁電流の値i_m_u1との差分が出力される。また、比例積分制御部82において、その差分をゼロに収束させるために例えば比例積分演算PI1が実施され、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値が生成される。さらに、減算部83において、U相偏磁抑制補正電圧指令値vref_m_uから、この生成された補正値が減算され、U相コンバータ出力電圧指令値(基準値)ref_uに対する補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1が生成される。 On the other hand, in the subtracting unit 81, the value i_m_u1 of the U-phase one-stage excitation current calculated by the subtracting unit 71 is subtracted from the value i_m_u of the U-phase exciting current calculated by the multiplying unit 74 to obtain the value of the U-phase exciting current. The difference between i_m_u and the value i_m_u1 of the U-phase one-stage excitation current is output. Further, in the proportional-plus-integral control unit 82, for example, a proportional-integral calculation PI1 is performed in order to converge the difference to zero, and a correction value for the above-described U-phase demagnetization suppression correction voltage command value vref_m_u is generated. Further, the subtraction unit 83 subtracts the generated correction value from the U-phase bias suppression suppression voltage command value vref_m_u, and corrects the U-phase converter output voltage command value (reference value) ref_u with a correction value (U-phase one-stage bias). Magnetic suppression correction voltage command value) vref_m_u1 is generated.
同様に、減算部91においても、乗算部74により算出されたU相励磁電流の値i_m_uから、減算部72により算出されたU相2段励磁電流i_m_u2が減算され、U相励磁電流の値i_m_uとU相2段励磁電流の値i_m_u2との差分が出力される。また、比例積分制御部92において、その差分をゼロに収束させるために例えば比例積分演算PI2が実施され、上述したU相偏磁抑制補正電圧指令値vref_m_uに対する補正値が生成される。さらに、減算部93において、U相偏磁抑制補正電圧指令値vref_m_uから、この生成された補正値が減算され、U相コンバータ出力電圧指令値(基準値)vref_uに対する補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2が生成される。 Similarly, in the subtractor 91, the U-phase two-stage excitation current i_m_u2 calculated by the subtractor 72 is subtracted from the U-phase excitation current value i_m_u calculated by the multiplier 74, and the U-phase excitation current value i_m_u is subtracted. And the difference between the U phase two-stage excitation current value i_m_u2. Further, in the proportional-integral control unit 92, for example, a proportional-integral calculation PI2 is performed in order to converge the difference to zero, and a correction value for the above-described U-phase bias suppression suppression voltage command value vref_m_u is generated. Further, the subtraction unit 93 subtracts the generated correction value from the U-phase bias suppression suppression voltage command value vref_m_u, and corrects the U-phase converter output voltage command value (reference value) vref_u with a correction value (U-phase two-stage bias). Magnetic suppression correction voltage command value) vref_m_u2 is generated.
ここで、U相1段偏磁抑制補正電圧指令値vref_m_u1と、U相2段偏磁抑制補正電圧指令値vref_m_u2との関係を、図6の波形グラフに示す。 Here, the relationship between the U-phase first-stage demagnetization suppression voltage command value vref_m_u1 and the U-phase second-stage demagnetization suppression correction voltage command value vref_m_u2 is shown in the waveform graph of FIG.
図6の波形グラフから、U相の1段コンバータcnv_u1向けのU相1段偏磁抑制補正電圧指令値vref_m_u1と、U相のコンバータcnv_u2向けのU相2段偏磁抑制補正電圧指令値vref_m_u2とが、それぞれ異なる値であり、コンバータ毎に個別に生成された値であることがわかる。 From the waveform graph of FIG. 6, a U-phase one-stage bias suppression suppression voltage command value vref_m_u1 for the U-phase one-stage converter cnv_u1, and a U-phase two-stage bias suppression suppression voltage command value vref_m_u2 for the U-phase converter cnv_u2 Are different values and are generated individually for each converter.
次に、減算部84において、U相コンバータ出力電圧指令値(基準値)vref_uから、減算部83により生成された補正値(U相1段偏磁抑制補正電圧指令値)vref_m_u1が減算され、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1が生成される。同様に、減算部94においても、U相コンバータ出力電圧指令値(基準値)vref_uから、減算部93により生成された補正値(U相2段偏磁抑制補正電圧指令値)vref_m_u2が減算され、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2が生成される。 Next, the subtraction unit 84 subtracts the correction value (U-phase one-stage demagnetization suppression correction voltage command value) vref_m_u1 generated by the subtraction unit 83 from the U-phase converter output voltage command value (reference value) vref_u. A converter output voltage command value vref_u1 for the phase one-stage converter cnv_u1 is generated. Similarly, the subtraction unit 94 also subtracts the correction value (U-phase two-stage demagnetization suppression voltage command value) vref_m_u2 generated by the subtraction unit 93 from the U-phase converter output voltage command value (reference value) vref_u. Converter output voltage command value vref_u2 for U-phase two-stage converter cnv_u2 is generated.
ここで、U相コンバータ出力電圧指令値(基準値)vref_uと、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1と、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2との関係を、図7の波形グラフに示す。 Here, U-phase converter output voltage command value (reference value) vref_u, converter output voltage command value vref_u1 for U-phase one-stage converter cnv_u1, converter output voltage command value vref_u2 for U-phase two-stage converter cnv_u2, and The relationship is shown in the waveform graph of FIG.
図7の波形グラフから、U相の1段コンバータcnv_u1向けのコンバータ出力電圧指令値vref_u1と、U相の2段コンバータcnv_u2向けのコンバータ出力電圧指令値vref_u2とが、U相コンバータ出力電圧指令値(基準値)vref_uに対してそれぞれ異なる値であり、コンバータ毎に個別に生成された値であることがわかる。 From the waveform graph of FIG. 7, the converter output voltage command value vref_u1 for the U-phase one-stage converter cnv_u1 and the converter output voltage command value vref_u2 for the U-phase two-stage converter cnv_u2 are It can be seen that the reference value is different from vref_u, and is a value generated individually for each converter.
このようにして生成されたコンバータ出力電圧指令値vref_u1, vref_u2は、それぞれ、コンバータ11,12(cnv_u2, cnv_u1)へ個別に供給される。 Converter output voltage command values vref_u1 and vref_u2 generated in this way are individually supplied to converters 11 and 12 (cnv_u2, cnv_u1), respectively.
これにより、コンバータ11,12(cnv_u2, cnv_u1)は、それぞれ、コンバータ出力電圧指令値vref_u1, vref_u2に応じた出力電圧を生成する。このコンバータ出力電圧指令値vref_u1, vref_u2により、コンバータ11,12(cnv_u2, cnv_u1)間の出力電圧のばらつきは抑制されるため、変圧器間の励磁電流のばらつきも抑制されることになる。 Thereby, converters 11 and 12 (cnv_u2, cnv_u1) generate output voltages corresponding to converter output voltage command values vref_u1 and vref_u2, respectively. Since the converter output voltage command values vref_u1 and vref_u2 suppress variations in output voltage between the converters 11 and 12 (cnv_u2, cnv_u1), variations in excitation current between transformers are also suppressed.
なお、V相およびW相についても、上述したU相と同様の動作となる。 Note that the V-phase and W-phase operations are the same as those of the U-phase described above.
このように本実施形態によれば、全体偏磁抑制制御のほか、個別偏磁抑制制御を実施することにより、三相交流の各相における変圧器間の直流偏磁のばらつきを抑制することができ、各変圧器の磁気飽和を回避することができる。 As described above, according to the present embodiment, in addition to the overall demagnetization suppression control, it is possible to suppress variations in DC demagnetization between the transformers in each phase of the three-phase AC by performing individual demagnetization suppression control. And magnetic saturation of each transformer can be avoided.
また、本実施形態の個別偏磁抑制制御においては、制御上のむだ時間を生じさせるフィルタを通過した信号は制御に使用しない。例えば、三相交流の各相について個別偏磁抑制制御を実施する個々の制御要素は、制御上のむだ時間を生じさせるローパスフィルタ等を通過した信号は制御に使用しない。そのため、個別偏磁抑制制御を実施する個々の制御要素は、制御応答に大きな遅れは生じず、制御応答が大きくなるようにゲインを調整しても、当該制御応答が振動して不安定になる可能性は低く、当該制御要素のそれぞれの制御ゲインを、例えば全体偏磁抑制制御を実施する制御要素の制御ゲインに比してより大きく設定することにより、制御応答を早くし、スイッチング等に起因する変圧器間の励磁電流のばらつきをより一層精度よく抑えることが可能となる。 In the individual bias suppression control of the present embodiment, a signal that has passed through a filter that causes a control dead time is not used for the control. For example, each control element that performs individual bias suppression control for each phase of a three-phase alternating current does not use a signal that has passed through a low-pass filter or the like that causes a control dead time for control. Therefore, the individual control elements that perform the individual bias suppression control do not cause a large delay in the control response, and even if the gain is adjusted so that the control response becomes large, the control response vibrates and becomes unstable. Probability is low, for example, by setting the control gain of each control element larger than the control gain of the control element that implements the overall bias suppression control, for example, the control response is quickened, resulting from switching, etc. It is possible to suppress the variation in the excitation current between the transformers with higher accuracy.
以上詳述したように、実施形態によれば、変圧器間の励磁電流のばらつきを低減することが可能になる。 As described above in detail, according to the embodiment, it is possible to reduce variations in excitation current between transformers.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…制御装置、10…直流電源、11〜16…コンバータ、21〜26…変圧器、31〜33…負荷、41〜46,51〜53…電流検出器、61…信号受信部、62…全体偏磁抑制制御部、63…個別偏磁抑制制御部、64…信号送信部。 DESCRIPTION OF SYMBOLS 1 ... Control apparatus, 10 ... DC power supply, 11-16 ... Converter, 21-26 ... Transformer, 31-33 ... Load, 41-46, 51-53 ... Current detector, 61 ... Signal receiving part, 62 ... Whole Demagnetization suppression control unit, 63 ... Individual demagnetization suppression control unit, 64 ... Signal transmission unit.
Claims (7)
前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成する制御要素を含む全体偏磁抑制制御部と、
前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する複数の制御要素を含む個別偏磁抑制制御部と、
を具備する、電力変換装置の制御装置。 A control device for a power converter that converts DC power into AC power through a plurality of converters and a plurality of transformers,
Control for generating a first correction signal for converging a direct current component included in an average value of excitation currents of the plurality of transformers to zero as a correction signal superimposed on a converter output voltage command signal to be sent to the plurality of converters An overall demagnetization suppression control unit including elements;
A plurality of control elements for generating a second correction signal for converging the respective excitation currents of the plurality of transformers to an average value of the respective excitation currents as correction signals further superimposed on the first correction signal Including an individual demagnetization suppression control unit,
A control device for a power conversion device.
請求項1に記載の電力変換装置の制御装置。 Each of the plurality of control elements included in the individual demagnetization suppression control unit has a control gain set larger than that of the control element included in the overall demagnetization suppression control unit.
The control apparatus of the power converter device of Claim 1.
請求項1又は2に記載の電力変換装置の制御装置。 Each of the plurality of control elements included in the individual demagnetization suppression control unit performs PI control or PID control.
The control apparatus of the power converter device of Claim 1 or 2.
ローパスフィルタを用いることにより、前記複数の変圧器のそれぞれの励磁電流の平均値から直流成分を抽出する、
請求項1乃至3のいずれか1項に記載の電力変換装置の制御装置。 The overall demagnetization suppression control unit is
By using a low-pass filter, a direct current component is extracted from the average value of the respective excitation currents of the plurality of transformers.
The control apparatus of the power converter device of any one of Claims 1 thru | or 3.
移動平均フィルタを用いることにより、前記複数の変圧器のそれぞれの励磁電流の平均値から直流成分を抽出する、
請求項1乃至4のいずれか1項に記載の電力変換装置の制御装置。 The overall demagnetization suppression control unit is
By using a moving average filter, a direct current component is extracted from an average value of each exciting current of the plurality of transformers.
The control apparatus of the power converter device of any one of Claims 1 thru | or 4.
請求項1乃至5のいずれか1項に記載の電力変換装置の制御装置。 The individual demagnetization suppression control unit does not use a signal that has passed through a filter that causes control dead time for control, and uses only a signal that does not pass through the filter for control.
The control apparatus of the power converter device of any one of Claims 1 thru | or 5.
第1の制御部により、前記複数のコンバータへ送るコンバータ出力電圧指令信号に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流の平均値に含まれる直流成分をゼロに収束させる第1の補正信号を生成し、
第2の制御部により、前記第1の補正信号に対して更に重畳する補正信号として、前記複数の変圧器のそれぞれの励磁電流を当該それぞれの励磁電流の平均値に収束させる第2の補正信号を生成する、
を具備する、
電力変換装置の制御方法。 A method for controlling a power converter that converts DC power into AC power through a plurality of converters and a plurality of transformers,
A first control unit causes a direct current component included in an average value of excitation currents of the plurality of transformers to converge to zero as a correction signal superimposed on a converter output voltage command signal to be sent to the plurality of converters. Generate a correction signal for
As a correction signal further superimposed on the first correction signal by the second control unit, a second correction signal for converging the respective excitation currents of the plurality of transformers to the average value of the respective excitation currents. Generate
Comprising
Control method of power converter.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048031A JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
DE102019001526.6A DE102019001526A1 (en) | 2018-03-15 | 2019-03-04 | CONTROL DEVICE OF A POWER CONVERTER DEVICE AND METHOD FOR CONTROLLING THEREOF |
CN201910193162.4A CN110277933B (en) | 2018-03-15 | 2019-03-14 | Control device and control method for power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048031A JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019161938A true JP2019161938A (en) | 2019-09-19 |
JP6906464B2 JP6906464B2 (en) | 2021-07-21 |
Family
ID=67774474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018048031A Active JP6906464B2 (en) | 2018-03-15 | 2018-03-15 | Power converter control device and control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6906464B2 (en) |
CN (1) | CN110277933B (en) |
DE (1) | DE102019001526A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031088A (en) * | 1989-03-31 | 1991-07-09 | Kabushiki Kaisha Toshiba | Variable-voltage and variable-frequency power converter |
JP3395310B2 (en) * | 1993-12-28 | 2003-04-14 | 株式会社日立製作所 | Semiconductor power converter |
JPH09247958A (en) * | 1996-03-08 | 1997-09-19 | Toshiba Corp | Anhysteresis suppressing control circuit of power converter |
JPH09294380A (en) * | 1996-04-26 | 1997-11-11 | Hitachi Ltd | Bias suppression control device |
JP4607617B2 (en) * | 2005-02-15 | 2011-01-05 | 東芝三菱電機産業システム株式会社 | Control device for power converter |
US9712070B2 (en) * | 2013-06-04 | 2017-07-18 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
-
2018
- 2018-03-15 JP JP2018048031A patent/JP6906464B2/en active Active
-
2019
- 2019-03-04 DE DE102019001526.6A patent/DE102019001526A1/en active Pending
- 2019-03-14 CN CN201910193162.4A patent/CN110277933B/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102019001526A1 (en) | 2019-09-19 |
CN110277933B (en) | 2021-11-19 |
CN110277933A (en) | 2019-09-24 |
JP6906464B2 (en) | 2021-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9755542B2 (en) | Direct-current power transmission power conversion device and direct-current power transmission power conversion method | |
US20180309379A1 (en) | System and method for controlling a back-to-back three-level converter with voltage ripple compensation | |
JP6050127B2 (en) | Power converter | |
JP6522141B2 (en) | Power converter | |
JPWO2007135730A1 (en) | Power converter | |
JPWO2017046908A1 (en) | Power converter | |
US20100019742A1 (en) | Unified Control of Single and Three-Phase Power Converters | |
WO2019102587A1 (en) | Parallel power supply device | |
JPWO2017046909A1 (en) | Power converter | |
JP2018129963A (en) | Controller of power converter | |
JP5147624B2 (en) | Inverter device | |
JP6394401B2 (en) | 5-level power converter and control method | |
US7528505B2 (en) | Systems and methods for balancing of DC link in three level PWM power conversion equipment | |
JP6906464B2 (en) | Power converter control device and control method | |
JP5115730B2 (en) | PWM converter device | |
JP6443652B2 (en) | Power converter | |
US20100328970A1 (en) | Single-stage high-voltage power supply with high efficiency and low network distortion | |
JP2001258264A (en) | Controller for voltage type self-excited converter | |
JP4607617B2 (en) | Control device for power converter | |
JP5885073B2 (en) | Power converter | |
JP6770656B1 (en) | Power converter | |
JP4285278B2 (en) | Semiconductor power converter | |
JP2016127645A (en) | Multi-output switching power supply device | |
JP6775441B2 (en) | Power supply | |
JP6822110B2 (en) | Power converter and power conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6906464 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |