JP6837833B2 - Iron oxide thin film and its manufacturing method - Google Patents
Iron oxide thin film and its manufacturing method Download PDFInfo
- Publication number
- JP6837833B2 JP6837833B2 JP2016254398A JP2016254398A JP6837833B2 JP 6837833 B2 JP6837833 B2 JP 6837833B2 JP 2016254398 A JP2016254398 A JP 2016254398A JP 2016254398 A JP2016254398 A JP 2016254398A JP 6837833 B2 JP6837833 B2 JP 6837833B2
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- oxide thin
- thin film
- added
- hematite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims description 118
- 239000010409 thin film Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000011019 hematite Substances 0.000 claims description 19
- 229910052595 hematite Inorganic materials 0.000 claims description 19
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 229910001566 austenite Inorganic materials 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001669 Mossbauer spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000779 annular dark-field scanning transmission electron microscopy Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Compounds Of Iron (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Semiconductor Memories (AREA)
Description
本発明は、マグヘマイト結晶相を有する鉄酸化物薄膜およびその製造方法に関する。 The present invention relates to an iron oxide thin film having a maghemite crystal phase and a method for producing the same.
本発明者により、ヘマタイト(α−Fe2O3)のターゲット上にMgチップが配置された複合ターゲットを用いたスパッタリング法により、主にマグヘマイト結晶相からなる鉄酸化物薄膜を任意の基板上に低コストで成膜する方法が提案されている(特許文献1参照)。この鉄酸化物薄膜は、熱酸化シリコン上へ成膜して集積回路との一体化も可能であり、ReRAMの電気抵抗変化層の低コスト化に適している。マグへマイトは可視光吸収性を有することから太陽電池用材料としても適し、強磁性体であることから光アイソレータ等の光磁気素子用材料としても適している。 By the present inventor, an iron oxide thin film mainly composed of a hematite crystal phase is placed on an arbitrary substrate by a sputtering method using a composite target in which Mg chips are arranged on a hematite (α-Fe 2 O 3) target. A method for forming a film at low cost has been proposed (see Patent Document 1). This iron oxide thin film can be formed on hot silicon oxide and integrated with an integrated circuit, and is suitable for reducing the cost of the electric resistance change layer of ReRAM. Since maghemite has visible light absorption, it is also suitable as a material for solar cells, and because it is a ferromagnet, it is also suitable as a material for magneto-optical elements such as optical isolators.
しかし、鉄酸化物薄膜の応用範囲の拡張等の観点から、その質のさらなる向上が望まれている。 However, further improvement in quality is desired from the viewpoint of expanding the application range of the iron oxide thin film.
そこで、本発明は、先行技術と比較して質のさらなる向上が図られた鉄酸化物薄膜およびその製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide an iron oxide thin film and a method for producing the same, which are further improved in quality as compared with the prior art.
本発明の鉄酸化物薄膜は、一般式Fe1-x-yCuxOy(ただし、0.03≦x≦0.125、0.58≦y≦0.61、かつ、0.295≦1−(x+y)≦0.36である。)で表されるようにCuが添加され、かつ、マグへマイト(γ−Fe2O3)結晶相および元素状態のCuからなることを特徴とする。
Iron oxide thin film of the present invention have the general formula Fe 1-xy Cu x O y ( provided that, 0.03 ≦ x ≦ 0.125,0.58 ≦ y ≦ 0.61 and,, 0.295 ≦ 1- It is characterized in that Cu is added as represented by (x + y) ≦ 0.36), and it is composed of maghemite (γ-Fe 2 O 3 ) crystalline phase and elemental state Cu.
本発明の鉄酸化物薄膜の製造方法は、主成分であるヘマタイト(α−Fe2O3)およびCuにより構成される複合ターゲットを用いて、スパッタリング法により、基板上に本発明の鉄酸化物薄膜を成膜することを特徴とする。 The method for producing an iron oxide thin film of the present invention is a method for producing an iron oxide thin film of the present invention on a substrate by a sputtering method using a composite target composed of hematite (α-Fe 2 O 3) and Cu, which are the main components. It is characterized by forming a thin film.
(鉄酸化物薄膜の製造方法)
本発明の一実施形態としての鉄酸化物薄膜の製造方法によれば、図1に示されているように、ヘマタイト(α−Fe2O3)からなるターゲット1の表面に、Cuチップ2が配置されている複合ターゲットが用いられる。Ar等の不活性雰囲気において、この複合ターゲットを用いたスパッタリング法により、基板3の上に鉄酸化物薄膜4が成膜される。基板3の材料は特に限定されないが、例えば表面に熱酸化シリコンが形成されたシリコン基板または板状ガラス等が用いられる。複合ターゲットの表面積に占めるCuチップ2の面積が調節されている。Cuチップ2の厚さは例えば1〜3[mm]である。複合ターゲットの表面積におけるCuチップ2の面積比率と、一般式Fe1-x-yCuxOy(ただし、0.03≦x≦0.125、0.58≦y≦0.61、かつ、0.295≦1−(x+y)≦0.36である。)で組成が表される鉄酸化物薄膜4におけるxの値との間には線形的な相関関係がある。そこで、例えば、当該相関関係が実験的にあらかじめ求められ、当該相関関係にしたがってCuチップ2の面積比率が調節される。
(Manufacturing method of iron oxide thin film)
According to the method for producing an iron oxide thin film as an embodiment of the present invention, as shown in FIG. 1, the Cu chip 2 is formed on the surface of the target 1 made of hematite (α-Fe 2 O 3). The placed composite target is used. In an inert atmosphere such as Ar, an iron oxide thin film 4 is formed on the substrate 3 by a sputtering method using this composite target. The material of the substrate 3 is not particularly limited, and for example, a silicon substrate or plate-shaped glass in which thermal silicon oxide is formed on the surface is used. The area of the Cu chip 2 in the surface area of the composite target is adjusted. The thickness of the Cu chip 2 is, for example, 1 to 3 [mm]. And the area ratio of the Cu chip 2 in the surface area of the composite target, the general formula Fe 1-xy Cu x O y ( provided that, 0.03 ≦ x ≦ 0.125,0.58 ≦ y ≦ 0.61 and 0. There is a linear correlation with the value of x in the iron oxide thin film 4 whose composition is represented by 295 ≦ 1- (x + y) ≦ 0.36). Therefore, for example, the correlation is experimentally obtained in advance, and the area ratio of the Cu chip 2 is adjusted according to the correlation.
なお、ヘマタイト(α−Fe2O3)粉末およびCu粉末が、一般式Fe1-x-yCuxOyで表される鉄酸化物薄膜4が成膜されるような比率で混合され、当該混合粉末が成形されることにより複合ターゲットが作製され、当該複合ターゲットが用いられて鉄酸化物薄膜4が成膜されてもよい。ヘマタイト(α−Fe2O3)およびCuのそれぞれの別個独立のターゲットにより構成される複合ターゲットが用いられて鉄酸化物薄膜4が成膜されてもよい。 Incidentally, hematite (α-Fe 2 O 3) powder and Cu powder, formula Fe 1-xy Cu x O iron oxide thin film 4 which is represented by y are mixed in proportions such as are deposited, the mixture A composite target may be produced by molding the powder, and the iron oxide thin film 4 may be formed using the composite target. The iron oxide thin film 4 may be formed by using a composite target composed of separate and independent targets of hematite (α-Fe 2 O 3) and Cu.
(鉄酸化物薄膜の特性)
鉄酸化物薄膜4は、一般式Fe1-x-yCuxOyで表されるようにCuが添加され、かつ、実質的にマグへマイト(γ−Fe2O3)結晶相からなる。0.03≦x≦0.125、0.58≦y≦0.61、かつ、0.295≦1−(x+y)≦0.36である。すなわち、本発明に係るCu添加鉄酸化物膜は、図2に示されているFe−Cu−Oの3成分相図において、領域Sに含まれるような原子比率を有している。図2には、Fe3O4、CuFeO2およびCuFe2O4のそれぞれの組成に該当する点が示されている。一点鎖線はCu+Fe2O3の化学量論的組成を表している。二点鎖線は、Fe3O4およびCuFe2O4のそれぞれの組成に該当する点を結ぶ、Fe3O4およびCuFe2O4により固溶体が形成されると考えられるラインを表している。
(Characteristics of iron oxide thin film)
Iron oxide thin film 4, the general formula Fe 1-xy Cu x O y Cu as represented by is added, and, substantially chromite to MAG (γ-Fe 2 O 3) composed of a crystalline phase. 0.03 ≦ x ≦ 0.125, 0.58 ≦ y ≦ 0.61, and 0.295 ≦ 1- (x + y) ≦ 0.36. That is, the Cu-added iron oxide film according to the present invention has an atomic ratio such that it is contained in the region S in the three-component phase diagram of Fe—Cu—O shown in FIG. FIG. 2 shows points corresponding to the respective compositions of Fe 3 O 4 , CuFe O 2 and Cu Fe 2 O 4. The alternate long and short dash line represents the stoichiometric composition of Cu + Fe 2 O 3. The two-dot chain line, connecting the points corresponding to each of the composition of Fe 3 O 4 and CuFe 2 O 4, represents a line that is considered a solid solution is formed by Fe 3 O 4 and CuFe 2 O 4.
図3には、鉄酸化物薄膜4のHAADF−STEM(高角散乱環状暗視野走査透過顕微鏡法)観察像の一例が示されている。明度が高い領域がCuを表わし、明度が低い領域がマグへマイト(γ−Fe2O3)結晶相を表わしている。観察方法に由来して膜厚方向に存在するCuがすべて検出されるので、実際の含有量(例えば8%)よりも多量のCuが鉄酸化物膜に存在しているようにみえるが、この画像からCuおよびγ−Fe2O3が明確に相分離され、ヘテロ界面でも両者の反応相が存在しないことがわかる。 FIG. 3 shows an example of a HAADF-STEM (high-angle scattering annular dark-field scanning transmission electron microscopy) observation image of the iron oxide thin film 4. The region with high lightness represents Cu, and the region with low lightness represents the maghemite (γ-Fe 2 O 3 ) crystal phase. Since all Cu existing in the film thickness direction is detected from the observation method, it seems that a larger amount of Cu is present in the iron oxide film than the actual content (for example, 8%). From the image, it can be seen that Cu and γ-Fe 2 O 3 are clearly phase-separated, and that the reaction phases of both do not exist even at the hetero interface.
鉄酸化物薄膜4が実質的にマグへマイト結晶相からなるのは、複合ターゲットの原料として使用するCuが、薄膜中において元素状態でマグへマイト相とともに存在するからであり、同じく複合ターゲットの原料として使用するヘマタイトのみがマグへマイトに相転移するからである。また、薄膜4におけるCuの添加量を原子比率で0.125以下(12.5at.%以下)としたのは、当該添加量を超えると急激に構造が変化し、鉄酸化物がマグへマイトに単相化し難くなるためである。 The iron oxide thin film 4 is substantially composed of a hematite crystal phase because Cu used as a raw material for the composite target exists in the thin film in an elemental state together with the hematite phase, and is also a composite target. This is because only hematite used as a raw material undergoes a phase transition to mug to mite. Further, the reason why the amount of Cu added in the thin film 4 was set to 0.125 or less (12.5 at.% Or less) in terms of atomic ratio is that the structure changes rapidly when the added amount is exceeded, and the iron oxide is maghemite. This is because it becomes difficult to make a single phase.
添加したCuは薄膜中において元素として存在し(図3参照)、マグへマイト薄膜の成膜過程において、酸化または還元には関与しない。すなわち、ターゲット1の原料であるヘマタイトおよび成膜されるマグへマイトはともにFe2O3の化合物組成を有し、Cuが添加されても組成は変化しない。その一方、ターゲット1の原料であるヘマタイトはコランダム構造を有し、マグへマイトは逆スピネル構造を有することから、Cu添加により結晶構造のみが転移する。このとき、鉄酸化物薄膜4の全てがマグヘマイト結晶相になるとは限らないが、主にマグヘマイト結晶相となり、X線回折により明確な逆スピネル構造が得られる。 The added Cu exists as an element in the thin film (see FIG. 3) and does not participate in oxidation or reduction in the process of forming the maghemite thin film. That is, both hematite, which is the raw material of the target 1, and maghemite to be formed have a compound composition of Fe 2 O 3 , and the composition does not change even if Cu is added. On the other hand, since hematite, which is a raw material of target 1, has a corundum structure and maghemite has an inverted spinel structure, only the crystal structure is transferred by the addition of Cu. At this time, not all of the iron oxide thin film 4 has a maghemite crystal phase, but it mainly becomes a maghemite crystal phase, and a clear reverse spinel structure can be obtained by X-ray diffraction.
図4Aには、Cu添加量および鉄酸化物薄膜のX線回折パターンの相関関係が示されている。Cu添加量が0[at%](x=0)である場合、コランダム構造に対応するミラー指数(104)、(110)および(116)のそれぞれに小さなピークがみられる。Cu添加量が5[at%](x=0.05)である場合、コランダム構造に対応するピークはみられず、マグヘマイト特有の逆スピネル構造に対応するミラー指数(311)に小さなピークがみられ、Cu添加量が8[at%](x=0.08)、さらには12[at%](x=0.12)と増加するにつれ、当該ピークが高くなっている。Cu添加量が16[at%](x=0.16)である場合、ミラー指数(311)のピークはみられず、ミラー指数(220)にピークがみられる。Cu添加量が21[at%](x=0.21)である場合、ピークはみられなくなる。 FIG. 4A shows the correlation between the amount of Cu added and the X-ray diffraction pattern of the iron oxide thin film. When the amount of Cu added is 0 [at%] (x = 0), small peaks are observed at each of the Miller indexes (104), (110) and (116) corresponding to the corundum structure. When the amount of Cu added is 5 [at%] (x = 0.05), no peak corresponding to the corundum structure is observed, and a small peak is observed in the Miller index (311) corresponding to the inverse spinel structure peculiar to maghemite. As the amount of Cu added increases to 8 [at%] (x = 0.08) and further to 12 [at%] (x = 0.12), the peak becomes higher. When the amount of Cu added is 16 [at%] (x = 0.16), the peak of the Miller index (311) is not observed, and the peak is observed in the Miller index (220). When the amount of Cu added is 21 [at%] (x = 0.21), no peak is observed.
図4Bには、Cu添加量および鉄酸化物薄膜の格子定数の相関関係が示されている。図4Bにおける一点鎖線は、Fe3O4の格子定数およびCuFe2O4の格子定数を結ぶ直線であり、両者が固溶体を形成する際に予想される格子定数の変化態様を表している(図2/二点鎖線参照)。当該格子定数は一様に減少している。 FIG. 4B shows the correlation between the amount of Cu added and the lattice constant of the iron oxide thin film. The alternate long and short dash line in FIG. 4B is a straight line connecting the lattice constant of Fe 3 O 4 and the lattice constant of Cu Fe 2 O 4 , and represents the mode of change in the lattice constant expected when both form a solid solution (FIG. 4B). See 2 / two-dot chain line). The lattice constant is uniformly decreasing.
Cu添加量が5[at%](x=0.05)から8[at%](x=0.08)にかけてはミラー指数(311)に対応する格子定数は徐々に増加している。その一方、Cu添加量が8[at%](x=0.08)から12[at%](x=0.12)にかけては、ミラー指数(311)に対応する格子定数は徐々に減少している。Cu添加量が16[at%](x=0.16)である場合、ミラー指数(311)のピークは消失し、ミラー定数(220)に対応する格子定数はさらに小さくなっている。このように、ミラー指数(311)に対応する格子定数は、Fe3O4の格子定数およびCuFe2O4が固溶体を形成する際に予想される格子定数の変化態様を表す破線とは異なり、いったん増加してから減少している。これは、Fe3O4およびCuFe2O4により固溶体が形成されるのではなく、Cuおよびγ−Fe2O3が相分離していることを示唆している。 When the amount of Cu added is from 5 [at%] (x = 0.05) to 8 [at%] (x = 0.08), the lattice constant corresponding to the Miller index (311) gradually increases. On the other hand, when the amount of Cu added is from 8 [at%] (x = 0.08) to 12 [at%] (x = 0.12), the lattice constant corresponding to the Miller index (311) gradually decreases. ing. When the amount of Cu added is 16 [at%] (x = 0.16), the peak of the Miller index (311) disappears, and the lattice constant corresponding to the Miller constant (220) becomes smaller. As described above, the lattice constant corresponding to the Miller index (311) is different from the lattice constant of Fe 3 O 4 and the broken line representing the change mode of the lattice constant expected when CuFe 2 O 4 forms a solid solution. It has increased and then decreased. This, Fe 3 O 4 and CuFe 2 O 4 instead of the solid solution is formed by, suggest that Cu and γ-Fe 2 O 3 are phase-separated.
このように本発明は、鉄酸化物にCuを添加することにより、ヘマタイトからマグヘマイトへの相転移を誘発させるものであり、成膜したままの非加熱状態で主にマグヘマイト結晶相からなる構造(ほぼマグヘマイト単相構造)を得ることができる。所定量のCu添加によりターゲット1の原料であるヘマタイトを、ほぼマグヘマイトに単相化することができるため、生産工程における電気抵抗のばらつきを抑えたReRAM素子を安定的に製造することができる。さらに、加熱せずに成膜することができるので、基板として熱に弱い有機フィルムへの成膜も可能であり、マグへマイト単相構造のウエアラブル情報機器への応用も可能となる。 As described above, the present invention induces a phase transition from hematite to maghemite by adding Cu to iron oxide, and has a structure mainly composed of a maghemite crystal phase in an unheated state as it is formed. Almost maghemite single-phase structure) can be obtained. By adding a predetermined amount of Cu, hematite, which is the raw material of the target 1, can be made into a single phase of hematite, so that a ReRAM element that suppresses variations in electrical resistance in the production process can be stably manufactured. Further, since the film can be formed without heating, it is possible to form a film on an organic film which is sensitive to heat as a substrate, and it is also possible to apply it to a wearable information device having a maghemite single-phase structure.
図5Aには、Cu添加量および鉄酸化物薄膜の磁化曲線の相関関係が示されている。図5Bには、Cu添加量および鉄酸化物薄膜の磁化の相関関係が示されている。図5Aおよび図5Bから、Cu添加量がx=0.03〜0.125の範囲に含まれる場合、磁化が1.6kG以上であることがわかる。 FIG. 5A shows the correlation between the amount of Cu added and the magnetization curve of the iron oxide thin film. FIG. 5B shows the correlation between the amount of Cu added and the magnetization of the iron oxide thin film. From FIGS. 5A and 5B, it can be seen that when the amount of Cu added is in the range of x = 0.03 to 0.125, the magnetization is 1.6 kG or more.
(実施例)
(実施例1)
4インチのヘマタイトターゲットの表面に、5mm角のCuチップをカーボン製両面テープにより2枚貼り付け、これを高周波スパッタリング装置の真空槽中に設置した(図1参照)。基板3として板ガラスを真空槽内に設置した。次いで、真空槽内を1.5×10−7Torrの真空度に達するまで真空排気を行い、引き続き、真空槽内にアルゴンガスを供給してガス圧を2mTorrに制御しつつ投入電力200Wで60分間の成膜することで、膜厚1μmの実施例1の鉄酸化物薄膜が作製された。実施例1の鉄酸化物薄膜の組成を分析したところ、x=0.05、y=0.60であった。
(Example)
(Example 1)
Two 5 mm square Cu chips were attached to the surface of a 4-inch hematite target with carbon double-sided tape, and these were placed in a vacuum chamber of a high-frequency sputtering apparatus (see FIG. 1). Plate glass was installed in the vacuum chamber as the substrate 3. Next, the inside of the vacuum chamber is evacuated until the degree of vacuum reaches 1.5 × 10-7 Torr, and then argon gas is supplied into the vacuum chamber to control the gas pressure to 2 mTorr and the input power is 200 W for 60. By forming a film for 1 minute, the iron oxide thin film of Example 1 having a film thickness of 1 μm was produced. When the composition of the iron oxide thin film of Example 1 was analyzed, it was x = 0.05 and y = 0.60.
(実施例2〜8)
ヘマタイトターゲットの表面に張り付けられるCuチップの数(または大きさ)を変化させたほかは、実施例1と同様の方法にしたがって、実施例2〜8のそれぞれの鉄酸化物薄膜が作製された。実施例2〜8のそれぞれの鉄酸化物薄膜の組成を分析したところ、表1に示されているようにxおよびyが同定された。
(Examples 2 to 8)
The iron oxide thin films of Examples 2 to 8 were prepared in the same manner as in Example 1 except that the number (or size) of Cu chips attached to the surface of the hematite target was changed. When the composition of each iron oxide thin film of Examples 2 to 8 was analyzed, x and y were identified as shown in Table 1.
(比較例)
ヘマタイトターゲットの表面に張り付けられるCuチップの数(または大きさ)を変化させたほかは、実施例1と同様の方法にしたがって、比較例1〜7のそれぞれの鉄酸化物薄膜が作製された。比較例1〜7のそれぞれの鉄酸化物薄膜の組成を分析したところ、表1に示されているようにxおよびyが同定された。
(Comparison example)
The iron oxide thin films of Comparative Examples 1 to 7 were prepared according to the same method as in Example 1 except that the number (or size) of Cu chips attached to the surface of the hematite target was changed. When the composition of each of the iron oxide thin films of Comparative Examples 1 to 7 was analyzed, x and y were identified as shown in Table 1.
(評価)
表1には、実施例1〜8の鉄酸化物薄膜の組成および比較例1〜7の鉄酸化物薄膜の組成、ならびに、鉄酸化物薄膜のそれぞれの磁化が示されている。
(Evaluation)
Table 1 shows the composition of the iron oxide thin films of Examples 1 to 8, the composition of the iron oxide thin films of Comparative Examples 1 to 7, and the respective magnetizations of the iron oxide thin films.
表1より、実施例1〜8の鉄酸化物薄膜は、比較例1〜7の鉄酸化物薄膜のいずれよりも磁化に優れていることがわかる。実施例1〜6(x=0.05〜0.12、y=0.58〜0.60)の鉄酸化物薄膜は磁化が1.8kG以上であり、磁化が1.8kG未満である実施例7〜8の鉄酸化物薄膜よりも磁化に優れている。実施例1〜5(x=0.05〜0.09、y=0.59〜0.60)の鉄酸化物薄膜は磁化が2.0kG以上であり、磁化が2.0kG未満である実施例6の鉄酸化物薄膜よりも磁化に優れている。 From Table 1, it can be seen that the iron oxide thin films of Examples 1 to 8 are superior in magnetization to any of the iron oxide thin films of Comparative Examples 1 to 7. The iron oxide thin films of Examples 1 to 6 (x = 0.05 to 0.12, y = 0.58 to 0.60) have a magnetization of 1.8 kG or more and a magnetization of less than 1.8 kG. It is superior in magnetization to the iron oxide thin films of Examples 7 to 8. The iron oxide thin films of Examples 1 to 5 (x = 0.05 to 0.09, y = 0.59 to 0.60) have a magnetization of 2.0 kG or more and a magnetization of less than 2.0 kG. It is superior in magnetization to the iron oxide thin film of Example 6.
図6には、実施例1および特許文献1記載の鉄酸化物薄膜のメスバウアースペクトルが示されている。実施例1の鉄酸化物薄膜(Cu添加)では、特許文献1記載の鉄酸化物薄膜(Mg添加)と比較して、バックグラウンドが減少し、より高品質のマグヘマイトが形成されていることが示されている。 FIG. 6 shows the Mössbauer spectrum of the iron oxide thin film described in Example 1 and Patent Document 1. In the iron oxide thin film (Cu added) of Example 1, the background is reduced and higher quality maghemite is formed as compared with the iron oxide thin film (Mg added) described in Patent Document 1. It is shown.
1‥ヘマタイトターゲット、2‥Cuチップ、3‥基板、4‥鉄酸化物薄膜。 1 Hematite target, 2 Cu chip, 3 Substrate, 4 Iron oxide thin film.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254398A JP6837833B2 (en) | 2016-12-27 | 2016-12-27 | Iron oxide thin film and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254398A JP6837833B2 (en) | 2016-12-27 | 2016-12-27 | Iron oxide thin film and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104784A JP2018104784A (en) | 2018-07-05 |
JP6837833B2 true JP6837833B2 (en) | 2021-03-03 |
Family
ID=62786705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016254398A Active JP6837833B2 (en) | 2016-12-27 | 2016-12-27 | Iron oxide thin film and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6837833B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5754309A (en) * | 1980-09-19 | 1982-03-31 | Nec Corp | Thin magnetic film of oxide |
JP2001176045A (en) * | 1999-10-01 | 2001-06-29 | Toda Kogyo Corp | Magnetic recording medium and method of manufacturing the same |
JP6308795B2 (en) * | 2014-02-13 | 2018-04-11 | 公益財団法人電磁材料研究所 | Iron oxide thin film and method for producing the same |
-
2016
- 2016-12-27 JP JP2016254398A patent/JP6837833B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018104784A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110021469B (en) | Soft magnetic alloy and magnetic component | |
JP5457615B1 (en) | Sputtering target for forming a magnetic recording film and method for producing the same | |
TWI680192B (en) | Soft magnetic alloy and magnetic parts | |
JP5913620B2 (en) | Fe-Pt sintered sputtering target and method for producing the same | |
TWI515167B (en) | An oxide sintered body and a sputtering target, and a method for producing the oxide sintered body | |
TWI753073B (en) | Magnetic material sputtering target and manufacturing method thereof | |
KR101738742B1 (en) | Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact | |
TWI797385B (en) | Sputtering target and manufacturing method of sputtering target | |
KR20150079633A (en) | Ceramic material and sputtering-target member | |
JP6837833B2 (en) | Iron oxide thin film and its manufacturing method | |
Chen et al. | Structural reconstruction and defects transition in mediating room temperature ferromagnetism in Co-doped ZnO film | |
WO2014038022A1 (en) | Nd-Fe-B THIN FILM MAGNET, AND METHOD FOR PRODUCING SAME | |
Bui et al. | Thin films of Co 1.7 Fe 1.3 O 4 prepared by radio frequency sputtering–the first step towards their spinodal decomposition | |
JP5799312B2 (en) | Thin film dielectric | |
JP7165952B2 (en) | Conductor manufacturing method, conductor, superconducting transmission line, superconducting magnet device, and superconducting magnetic shield device | |
JP2013193932A (en) | Method for producing ceramic material, ceramic material, and sputtering target member | |
Tsai et al. | Magnetic properties and microstructure of perpendicular FePt (B-Ag) granular films | |
JPWO2018096992A1 (en) | Physical vapor deposition target member, sputtering target member, physical vapor deposition film, and layer structure manufacturing method | |
Matsui et al. | Metastable ferromagnetic phase formation in 35–50 at.% Mn—Ga thin films | |
JP2005097657A (en) | Sputtering target for forming magnetic layer having reduced production of particle | |
WO2019187324A1 (en) | Mgal2o4 sintered body, sputtering target using sintered body, and method for producing mgal2o4 sintered body | |
CN105655074A (en) | Permanent Magnetic Materials with Positive Temperature Coefficient and Its Application | |
JPWO2015029272A1 (en) | Sintered body and amorphous film | |
Gopalakrishnan et al. | Vacancy‐mediated room‐temperature ferromagnetism in Zn1− xMnxO thin films | |
JP5937318B2 (en) | Magnetic thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6837833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |