[go: up one dir, main page]

JP6827355B2 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
JP6827355B2
JP6827355B2 JP2017067877A JP2017067877A JP6827355B2 JP 6827355 B2 JP6827355 B2 JP 6827355B2 JP 2017067877 A JP2017067877 A JP 2017067877A JP 2017067877 A JP2017067877 A JP 2017067877A JP 6827355 B2 JP6827355 B2 JP 6827355B2
Authority
JP
Japan
Prior art keywords
temperature
current
charge
battery
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067877A
Other languages
Japanese (ja)
Other versions
JP2018170904A (en
Inventor
晋 山内
晋 山内
啓 坂部
啓 坂部
ファニー マテ
ファニー マテ
大輝 小松
大輝 小松
石津 竹規
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2017067877A priority Critical patent/JP6827355B2/en
Priority to PCT/JP2018/003905 priority patent/WO2018179855A1/en
Publication of JP2018170904A publication Critical patent/JP2018170904A/en
Application granted granted Critical
Publication of JP6827355B2 publication Critical patent/JP6827355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、電池制御装置に関する。 The present invention relates to a battery control device.

世界各地で燃費規制が強化される中、HEV(ハイブリッド自動車)やPHEV(プラグインハイブリッド自動車)やEV(電池自動車)など電動走行車両の市場が拡大しつつある。これらの車両に搭載される車載用電池には、リチウムイオン二次電池が使用されている。今後の電動走行車両の普及拡大には、リチウムイオン二次電池の低価格化が求められており、その手段として自然空冷化が求められている。一方で、リチウムイオン二次電池は安全保護や劣化防止のために使用する温度範囲が決められており、充放電による発熱に伴う電池の温度変化を適切な使用範囲に制御しなくてはならず、自然空冷化する場合は、電流を制御することでそれを実現する。 As fuel economy regulations are tightened around the world, the market for electric vehicles such as HEVs (hybrid vehicles), PHEVs (plug-in hybrid vehicles), and EVs (battery vehicles) is expanding. Lithium-ion secondary batteries are used as in-vehicle batteries mounted on these vehicles. In order to spread the use of electric vehicles in the future, it is required to reduce the price of lithium ion secondary batteries, and natural air cooling is required as a means for doing so. On the other hand, the temperature range used for lithium-ion secondary batteries is determined for safety protection and deterioration prevention, and it is necessary to control the temperature change of the battery due to heat generation due to charging and discharging to an appropriate usage range. In the case of natural air cooling, it is realized by controlling the current.

電池の充放電電流の制御の際には、電池が過放電や過充電にならないよう守るべき上下限電圧、電池システムに使用する部品の定格電流など、温度以外にも考慮すべきことがある。また、電池の温度は、電池の発熱量によって変化するため、大きな電流であっても短時間であれば温度上昇はしないか、温度上昇は微小である。 When controlling the charge / discharge current of a battery, there are other things to consider besides temperature, such as the upper and lower limit voltages that should be protected from over-discharging or over-charging the battery, and the rated current of parts used in the battery system. Further, since the temperature of the battery changes depending on the calorific value of the battery, the temperature does not rise for a short time even with a large current, or the temperature rise is small.

特許文献1には、電池の温度を温度計測手段により計測し、計測された温度が上限温度を越えないように許容電流を演算して、充放電電流を制御する手法が開示されている。 Patent Document 1 discloses a method of controlling the charge / discharge current by measuring the temperature of a battery by a temperature measuring means and calculating an allowable current so that the measured temperature does not exceed the upper limit temperature.

特開2012−096712号公報Japanese Unexamined Patent Publication No. 2012-096712

特許文献1に記載の技術は、単純に温度によって一律に電流を抑制しているので、温度上昇しない短時間の電流も抑制してしまい、電動自動車の燃費悪化や運転性の低下に繋がる欠点がある。 Since the technique described in Patent Document 1 simply suppresses the current uniformly by the temperature, it also suppresses the current for a short time without the temperature rising, which has a drawback that it leads to deterioration of fuel efficiency and drivability of the electric vehicle. is there.

本発明による電池制御装置は、蓄電池の充放電電流を制御する制御部を備えた電池制御装置において、前記制御部は、電池温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて前記蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する。 The battery control device according to the present invention is a battery control device including a control unit that controls the charge / discharge current of the storage battery, and the control unit predicts a temperature rise of the storage battery based on the battery temperature and the charge / discharge current amount. Then, using the prediction result of the temperature rise, one upper limit charge / discharge current value is selected from a plurality of upper limit charge / discharge current values so as not to exceed the upper limit temperature of the storage battery, and the charge / discharge current is controlled.

本発明の電池制御装置によれば、適切な温度制御が可能になり、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。 According to the battery control device of the present invention, appropriate temperature control becomes possible, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle.

電池システムの構成図である。It is a block diagram of a battery system. 電池制御装置の機能ブロック図である。It is a functional block diagram of a battery control device. 温度対応電流制御部による上限電流を示す図である。It is a figure which shows the upper limit current by a temperature correspondence current control part. 上限電流選択部による上限電流の選択を示す図である。It is a figure which shows the selection of the upper limit current by the upper limit current selection part. 電池制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of a battery control device.

以下、本発明の実施形態について図面を参照して説明する。図1は本実施形態による電池システム100の構成の一例である。電池システム100の出力電圧は、電池の残容量や出力電流等により変動する直流電圧のため、負荷111に直接電力を供給するには適さない場合がある。そこで本実施形態では上位コントローラ112により制御されるインバータ110により電池システム100の出力電圧を三相交流に変換し負荷111に供給している。負荷111に直流電圧や他の多相交流、単相交流を供給する場合も同様の構成となる。また、負荷111が電力を出力する場合はインバータ110を双方向インバータとすることにより、負荷111が出力した電力を電池システム100に蓄えることができる。また、インバータ110と並列に充電システムを電池システム100に接続することで、必要に応じ電池システム100を充電することも可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an example of the configuration of the battery system 100 according to the present embodiment. Since the output voltage of the battery system 100 is a DC voltage that fluctuates depending on the remaining capacity of the battery, the output current, and the like, it may not be suitable for directly supplying electric power to the load 111. Therefore, in the present embodiment, the output voltage of the battery system 100 is converted into three-phase alternating current by the inverter 110 controlled by the host controller 112 and supplied to the load 111. The same configuration is used when a DC voltage or other multi-phase AC or single-phase AC is supplied to the load 111. Further, when the load 111 outputs electric power, the electric power output by the load 111 can be stored in the battery system 100 by using the inverter 110 as a bidirectional inverter. Further, by connecting the charging system to the battery system 100 in parallel with the inverter 110, it is possible to charge the battery system 100 as needed.

電池システム100はインバータ110や負荷111の制御に有用なSOCやSOH、流すことのできる最大充電電流、放電電流(許容電流)、電池温度、電池異常の有無等の電池状態に関する情報を上位コントローラ112に送信する。上位コントローラ112はこれらの情報に基づき、エネルギーマネージメントや異常検知等を行う。また上位コントローラ112は電池システム100をインバータ110または負荷111から切り離すべきと判断した場合は切断指示を電池システム100に対し送信する。 The battery system 100 provides information on the battery status such as SOC and SOH useful for controlling the inverter 110 and the load 111, the maximum charge current that can be passed, the discharge current (allowable current), the battery temperature, and the presence or absence of a battery abnormality. Send to. The host controller 112 performs energy management, abnormality detection, and the like based on this information. When the host controller 112 determines that the battery system 100 should be disconnected from the inverter 110 or the load 111, the host controller 112 transmits a disconnection instruction to the battery system 100.

電池システム100は複数個の電池からなる1台以上の電池モジュール105と、電池システム100の状態を監視、推定、および制御する電池制御装置103、電池システム100の出力を断続するリレー106、電池に流れた電流を計測する電流センサ108、電池電圧を計測する電圧センサ202、電池システム100と、例えばアースとの間の絶縁抵抗を計測する漏電センサ203、そして電池システムの出力電圧に応じ設けられる遮断器107から構成される。 The battery system 100 includes one or more battery modules 105 composed of a plurality of batteries, a battery control device 103 that monitors, estimates, and controls the state of the battery system 100, a relay 106 that interrupts the output of the battery system 100, and a battery. A current sensor 108 that measures the flowing current, a voltage sensor 202 that measures the battery voltage, an electric leakage sensor 203 that measures the insulation resistance between the battery system 100 and, for example, the ground, and a cutoff provided according to the output voltage of the battery system. It is composed of a vessel 107.

電池モジュール105は複数個の単位電池を有し、電池モジュール105内部の温度や各電池の電圧を計測し、また必要に応じ単電池単位での充放電を行う。これにより単電池単位での電圧監視や電圧調整が可能となり、また温度に応じて特性が変化する電池の状態推定に必要な温度情報を計測可能となる。詳細は後述する。 The battery module 105 has a plurality of unit batteries, measures the temperature inside the battery module 105 and the voltage of each battery, and charges / discharges in units of a single battery as needed. This makes it possible to monitor the voltage and adjust the voltage on a cell-by-cell basis, and to measure the temperature information necessary for estimating the state of the battery whose characteristics change according to the temperature. Details will be described later.

電池モジュール105には電流センサ108とリレー106を電池モジュール105に直列に接続する。これにより電池モジュール105の状態を監視、および推定するために必要な電流値が計測可能となり、また電池システム100の出力を上位コントローラ112の指令に基づき断続可能となる。電池モジュール105が、例えば100V以上の高電圧となる場合は、手動により電池システム100への電力入出力を遮断するための遮断器107を追加することがある。遮断器107を用いて強制的に遮断を行うことで、電池システム100の組み立て時や解体時や、電池システム100を搭載した装置の事故対応時に、感電事故や短絡事故の発生を防ぐことが可能となる。なお、電池モジュール105が複数台並列に接続されている場合は、各列にリレー106、遮断器107、電流センサ108を設けてもよいし、電池システム100の出力部分にのみリレー106、遮断器107、電流センサ108を設けてもよい。また、各列および電池システム100の出力部の両方にリレー106、遮断器107、電流センサ108を設けてもよい。 A current sensor 108 and a relay 106 are connected in series to the battery module 105 in series with the battery module 105. As a result, the current value required for monitoring and estimating the state of the battery module 105 can be measured, and the output of the battery system 100 can be interrupted based on the command of the host controller 112. When the battery module 105 has a high voltage of, for example, 100 V or more, a circuit breaker 107 for manually cutting off power input / output to the battery system 100 may be added. By forcibly shutting off the battery system 100 using the circuit breaker 107, it is possible to prevent the occurrence of an electric shock accident or a short circuit accident when assembling or disassembling the battery system 100 or when dealing with an accident of a device equipped with the battery system 100. It becomes. When a plurality of battery modules 105 are connected in parallel, a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in each row, or a relay 106 and a circuit breaker may be provided only in the output portion of the battery system 100. 107, the current sensor 108 may be provided. Further, a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in both the row and the output unit of the battery system 100.

リレー106は1台のリレーで構成してもよいし、メインリレーとプリチャージリレー、抵抗の組で構成してもよい。後者の構成ではプリチャージリレーと直列に抵抗を配置し、これらをメインリレーと並列接続する。そしてリレー106を接続する場合、まずプリチャージリレーを接続する。プリチャージリレーを流れる電流は直列接続した抵抗により制限されるため、前者の構成で生じうる突入電流を制限することができる。そしてプリチャージリレーを流れる電流が十分小さくなったのちにメインリレーを接続する。メインリレー接続のタイミングはプリチャージリレーを流れる電流を基準にしてもよいし、抵抗にかかる電圧やメインリレーの端子間電圧を基準にしてもよく、またプリチャージリレーを接続してから経過した時間を基準にしてもよい。 The relay 106 may be composed of one relay, or may be composed of a main relay, a precharge relay, and a resistor. In the latter configuration, resistors are placed in series with the precharge relay and these are connected in parallel with the main relay. When connecting the relay 106, first connect the precharge relay. Since the current flowing through the precharge relay is limited by the resistors connected in series, the inrush current that can occur in the former configuration can be limited. Then, connect the main relay after the current flowing through the precharge relay becomes sufficiently small. The timing of connecting the main relay may be based on the current flowing through the precharge relay, the voltage applied to the resistor or the voltage between the terminals of the main relay, and the time elapsed since the precharge relay was connected. May be used as a reference.

電圧センサ202は、1台または複数台の電池モジュール105、または電池モジュール105の各1直列に対し並列に接続され、電池モジュール105の状態監視、および推定に必要な電圧値を計測する。また、電池モジュール105には漏電センサ203が接続され、漏電が生じる前に漏電が生じうる状態、すなわち絶縁抵抗が低下した状態を検知し、事故の発生を予防可能とする。 The voltage sensor 202 is connected in parallel to one or more battery modules 105 or one series of each of the battery modules 105, and measures the voltage value required for condition monitoring and estimation of the battery modules 105. Further, an electric leakage sensor 203 is connected to the battery module 105 to detect a state in which an electric leakage can occur before the electric leakage occurs, that is, a state in which the insulation resistance is lowered, and it is possible to prevent the occurrence of an accident.

電池モジュール105、電流センサ108、電圧センサ202、漏電センサ203が計測した値は、電池制御装置103に送信され、電池制御装置103はこれを元に電池の状態監視や推定、および制御を行う。ここで制御とは、例えば各単位電池の電圧を均等化するための単位電池毎の充放電や、各センサの電源制御、センサのアドレッシング、電池制御装置103に接続されたリレー106の制御等を指す。電池の状態監視や推定、および制御に必要な演算はCPU201が行う。電池制御装置103は電圧センサ202や漏電センサ203を内蔵してもよい。このようにすることで個別のセンサを用意する場合にくらべハーネス本数を減らし、センサ取り付けの手間も削減できる。ただしセンサを内蔵することで電池制御装置103が対応可能な電池システム100の規模(最大出力電圧、電流等)が限定されてしまうため、あえて電圧センサ202や漏電センサ203を電池制御装置103とは別部品とすることで自由度を持たせてもよい。また、図1には記載はしないが、電池モジュール105および106内には電池の温度や外気の温度を計測する温度センサまたはサーミスタが内蔵されている。 The values measured by the battery module 105, the current sensor 108, the voltage sensor 202, and the leakage sensor 203 are transmitted to the battery control device 103, and the battery control device 103 monitors, estimates, and controls the battery status based on the values. Here, the control includes, for example, charging / discharging of each unit battery for equalizing the voltage of each unit battery, power supply control of each sensor, addressing of the sensor, control of the relay 106 connected to the battery control device 103, and the like. Point to. The CPU 201 performs calculations necessary for battery status monitoring, estimation, and control. The battery control device 103 may include a voltage sensor 202 and an earth leakage sensor 203. By doing so, the number of harnesses can be reduced and the time and effort required to attach the sensors can be reduced as compared with the case where individual sensors are prepared. However, since the scale (maximum output voltage, current, etc.) of the battery system 100 that the battery control device 103 can handle is limited by incorporating the sensor, the voltage sensor 202 and the leakage sensor 203 are intentionally referred to as the battery control device 103. A degree of freedom may be given by making it a separate part. Further, although not shown in FIG. 1, a temperature sensor or a thermistor for measuring the temperature of the battery and the temperature of the outside air is built in the battery modules 105 and 106.

図2は電池制御装置103内で各種演算を実施するCPU201において、電池システムの充放電電流の上限値を決定する上限電流選択の機能を実現する機能ブロック図である。この機能ブロック図で示す各機能はCPU201とそのソフトウエアにより実現される。温度対応電流制御部204は、電池温度や外気温度、電池充電状態を示すSOCなどの情報から、電池システムの温度と充放電電流による温度変化を予測して電流の上限値を求める。上下限電圧対応電流制御部205は、電池の電圧、電池温度、SOCなどの情報から上下限電圧の範囲内に留められる最大電流を演算して電流の上限値を求める。上限電流選択部206は、実際に充放電されている充放電電流に基づいて、温度対応電流制御部204の上限値、または上下限電圧対応電流制御部205の上限値による上限電流を選択する。 FIG. 2 is a functional block diagram that realizes a function of selecting an upper limit current that determines an upper limit value of a charge / discharge current of a battery system in the CPU 201 that performs various calculations in the battery control device 103. Each function shown in this functional block diagram is realized by the CPU 201 and its software. The temperature-responsive current control unit 204 predicts the temperature change due to the temperature of the battery system and the charge / discharge current from information such as the battery temperature, the outside air temperature, and the SOC indicating the battery charge state, and obtains the upper limit value of the current. The current control unit 205 corresponding to the upper and lower limit voltages calculates the maximum current that can be kept within the range of the upper and lower limit voltages from information such as the battery voltage, the battery temperature, and the SOC, and obtains the upper limit value of the current. The upper limit current selection unit 206 selects the upper limit value of the temperature corresponding current control unit 204 or the upper limit current of the upper / lower limit voltage corresponding current control unit 205 based on the charge / discharge current actually charged / discharged.

図3に、温度対応電流制御部204での上限電流の決定方法の一例を示す。図3(a)では、現時点tから所定の電流i1、il、iqを流した際の時刻Δt1、Δtl、Δtq先の到達温度を予測する。図3(b)は図3(a)の次の制御周期を示している。例えば、図3(b)で、i1の電流を流した際にΔt1以内に温度が上限値を超えることが予想される場合は、Δtl秒後を予測した上限電流に切り替える。さらに図3(c)でも同様に、Δtl以内に温度が上限値を超えることが予想された場合には、iqに電流値を変化させる。このように特定時間先の電池の到達温度を予測し、上限温度を超えないように電流を制御する。 FIG. 3 shows an example of a method for determining the upper limit current in the temperature-responsive current control unit 204. In FIG. 3A, the arrival temperature at the time Δt1, Δtl, Δtq ahead when the predetermined currents i1, il, and iq are passed from the current t is predicted. FIG. 3B shows the next control cycle of FIG. 3A. For example, in FIG. 3B, when the temperature is expected to exceed the upper limit value within Δt1 when the current of i1 is passed, the temperature is switched to the predicted upper limit current after Δtl seconds. Further, also in FIG. 3C, when the temperature is expected to exceed the upper limit value within Δtl, the current value is changed to iq. In this way, the arrival temperature of the battery at a specific time ahead is predicted, and the current is controlled so as not to exceed the upper limit temperature.

上下限電圧対応電流制御部205は、リチウム電池では上下限電圧範囲を維持するよう電流を制御するものであり、この技術は公知技術であり、本実施形態ではこの技術を用いることで実現する。 The upper / lower limit voltage corresponding current control unit 205 controls the current so as to maintain the upper / lower limit voltage range in the lithium battery, and this technique is a known technique, which is realized by using this technique in the present embodiment.

次に、上限電流選択部206での上限電流の選択の一例について、図4を用いて説明する。横軸は温度対応電流制御部204による上限値、縦軸は実際に電池が充放電している充放電電流を示している。図中の破線は温度対応電流制御部204による上限値と充放電電流が一致している点を示している。このため、破線よりも上の領域では、温度対応電流制御部204による上限値よりも大きな電流が充放電されていることを示しており、下の領域では同上限値よりも小さな電流が充放電されている。従って、破線よりも上の領域で充放電された場合は、電池温度が上限温度に到達または、現在の温度の上限温度に対する余裕が小さくなっていく傾向となるため、このような領域では温度対応電流制御部204による上限値を選択する。一方、破線よりも下の領域で使用されている場合には、電池温度が低下または、上限温度に対する余裕が大きくなっていく傾向となるため、上下限電圧対応電流制御部205による上限値を選択する。 Next, an example of selecting the upper limit current by the upper limit current selection unit 206 will be described with reference to FIG. The horizontal axis shows the upper limit value by the temperature-responsive current control unit 204, and the vertical axis shows the charge / discharge current actually charged / discharged by the battery. The broken line in the figure indicates that the upper limit value by the temperature-corresponding current control unit 204 and the charge / discharge current match. Therefore, in the region above the broken line, it is shown that a current larger than the upper limit value by the temperature-responsive current control unit 204 is charged and discharged, and in the region below, a current smaller than the upper limit value is charged and discharged. Has been done. Therefore, when the battery is charged and discharged in the area above the broken line, the battery temperature tends to reach the upper limit temperature or the margin for the upper limit temperature of the current temperature tends to become smaller. The upper limit value by the current control unit 204 is selected. On the other hand, when the battery is used in a region below the broken line, the battery temperature tends to decrease or the margin for the upper limit temperature tends to increase, so the upper limit value by the current control unit 205 corresponding to the upper and lower limits is selected. To do.

図5は、電池制御装置103の動作を示すフローチャートである。S500で本実施形態に関する制御処理がスタートすると、S501で制御処理に必要な電池電圧、充放電電流、電池温度を検出する。なお、検出する情報は一例であり、これらのパラメータの他にも、電池の電圧、電流、温度に関する情報を推定できるパラメータを使用しても良い。S502では、検出されたデータから、それぞれ温度対応電流制御部204による電流の上限値、および上下限電圧対応電流制御部205による電流の上限値を演算する。S503では、上限値の初期値として上下限電圧対応電流制御部205の上限値を設定する。なお、初期値の値はこの値に限定するものではなく、任意の値を設定して良い。S504では実際に充放電されている充放電電流と、温度対応電流制御部204による充放電電流の上限値を比較する。充放電電流の方が大きい場合はS505へ進み、温度対応電流制御部204による上限値を優先して本制御の上限値として採用し、充放電電流の方が小さい場合はS506へ進み、上下限電圧対応電流制御部205による上限値を優先して採用して充放電電流を制御する。さらに、S507では電池制御装置のシャットダウン処理など、本制御処理に関する終了信号の有無を確認し、信号が無い場合はS504からS507を繰り返し、終了信号があれば本制御を終了する。 FIG. 5 is a flowchart showing the operation of the battery control device 103. When the control process according to the present embodiment is started in S500, the battery voltage, charge / discharge current, and battery temperature required for the control process are detected in S501. The information to be detected is an example, and in addition to these parameters, parameters that can estimate information on the voltage, current, and temperature of the battery may be used. In S502, the upper limit value of the current by the temperature corresponding current control unit 204 and the upper limit value of the current by the upper and lower limit voltage corresponding current control units 205 are calculated from the detected data, respectively. In S503, the upper limit value of the upper / lower limit voltage corresponding current control unit 205 is set as the initial value of the upper limit value. The initial value is not limited to this value, and any value may be set. In S504, the charge / discharge current actually charged / discharged is compared with the upper limit value of the charge / discharge current by the temperature-corresponding current control unit 204. If the charge / discharge current is larger, proceed to S505, prioritize the upper limit value by the temperature-responsive current control unit 204 and adopt it as the upper limit value of this control, and if the charge / discharge current is smaller, proceed to S506 and proceed to the upper and lower limits. The charge / discharge current is controlled by preferentially adopting the upper limit value of the voltage-corresponding current control unit 205. Further, in S507, the presence or absence of an end signal related to this control process such as the shutdown process of the battery control device is confirmed, and if there is no signal, S504 to S507 are repeated, and if there is an end signal, this control is terminated.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)電池制御装置103は、蓄電池105の充放電電流を制御する制御部を備え、制御部は、電池温度、及び充放電電流量に基づいて、蓄電池105の温度上昇を予測し、温度上昇の予測結果を用いて蓄電池105の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御する。これにより、適切な温度制御が可能になり、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(2)電池制御装置103の制御部は、蓄電池105の温度が上限温度を超えない範囲で電流を制御する温度対応電流制御部204と、蓄電池105の電圧が上下限電圧範囲を超えない範囲で電流を制御する上下限電圧対応電流制御部205とを有し、制御部は、さらに、蓄電池105に流れる充放電電流に基づいて、温度対応電流制御部204による上限充放電電流の値、または上下限電圧対応電流制御部205による上限充放電電流の値のいずれかを上限充放電電流とするよう優先順位を決定する。これにより、上限充放電電流を決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(3)電池制御装置103の制御部は、優先順位を、温度対応電流制御部204で求めた上限充放電電流の値と実際に蓄電池105が充放電している充放電電流の比較に基づき決定する。これにより、上限充放電電流を適切に決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(4)電池制御装置103の制御部は、温度対応電流制御部204による上限充放電電流の値と、蓄電池105に流れる充放電電流を比較し、蓄電池105に流れる充放電電流が温度対応電流制御部204による上限充放電電流の値よりも大きい場合は温度対応電流制御部204の上限充放電電流の値を優先し、温度対応電流制御部204の上限値よりも小さい場合は、上下限電圧対応電流制御部205の上限充放電電流の値を優先する。これにより、上限充放電電流を適切に決定し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
(5)電池制御装置103において、温度対応電流制御部204は、蓄電池105の温度、及び充放電電流量に基づいて、蓄電池105の温度上昇予測を算出し、蓄電池105の上限温度を超えない温度上昇予測の条件に基づいて上限充放電電流を制御する。これにより、上限充放電電流を適切に制御し、電動車両の燃費性能や運転性能を損なうことなく、充放電制御を行うことができる。
According to the embodiment described above, the following effects can be obtained.
(1) The battery control device 103 includes a control unit that controls the charge / discharge current of the storage battery 105, and the control unit predicts a temperature rise of the storage battery 105 based on the battery temperature and the charge / discharge current amount, and the temperature rises. The charge / discharge current is controlled by selecting one upper limit charge / discharge current value from a plurality of upper limit charge / discharge current values so as not to exceed the upper limit temperature of the storage battery 105 using the prediction result of. As a result, appropriate temperature control becomes possible, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle.
(2) The control unit of the battery control device 103 includes a temperature-compatible current control unit 204 that controls the current within a range in which the temperature of the storage battery 105 does not exceed the upper limit temperature, and a range in which the voltage of the storage battery 105 does not exceed the upper and lower limit voltage ranges. It has an upper / lower limit voltage corresponding current control unit 205 for controlling the current, and the control unit further increases the value of the upper limit charge / discharge current by the temperature corresponding current control unit 204 based on the charge / discharge current flowing through the storage battery 105. The priority is determined so that any one of the values of the upper limit charge / discharge current by the current control unit 205 corresponding to the lower limit voltage is set as the upper limit charge / discharge current. As a result, the upper limit charge / discharge current can be determined, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle.
(3) The control unit of the battery control device 103 determines the priority order based on the comparison between the value of the upper limit charge / discharge current obtained by the temperature-compatible current control unit 204 and the charge / discharge current actually charged / discharged by the storage battery 105. To do. As a result, the upper limit charge / discharge current can be appropriately determined, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle.
(4) The control unit of the battery control device 103 compares the value of the upper limit charge / discharge current by the temperature-compatible current control unit 204 with the charge / discharge current flowing through the storage battery 105, and the charge / discharge current flowing through the storage battery 105 controls the temperature-compatible current. If it is larger than the upper limit charge / discharge current value of the unit 204, the upper limit charge / discharge current value of the temperature compatible current control unit 204 is prioritized, and if it is smaller than the upper limit value of the temperature compatible current control unit 204, the upper / lower limit voltage is supported. Priority is given to the value of the upper limit charge / discharge current of the current control unit 205. As a result, the upper limit charge / discharge current can be appropriately determined, and charge / discharge control can be performed without impairing the fuel efficiency performance and driving performance of the electric vehicle.
(5) In the battery control device 103, the temperature-responsive current control unit 204 calculates the temperature rise prediction of the storage battery 105 based on the temperature of the storage battery 105 and the amount of charge / discharge current, and the temperature does not exceed the upper limit temperature of the storage battery 105. The upper limit charge / discharge current is controlled based on the conditions for predicting the rise. As a result, the upper limit charge / discharge current can be appropriately controlled, and charge / discharge control can be performed without impairing the fuel efficiency and driving performance of the electric vehicle.

本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. ..

100 電池システム
103 電池制御装置
105 電池モジュール
106 リレー
107 遮断器
108 電流センサ
110 インバータ
111 負荷
112 上位コントローラ
201 CPU
202 電圧センサ
203 漏電センサ
100 Battery system 103 Battery control device 105 Battery module 106 Relay 107 Circuit breaker 108 Current sensor 110 Inverter 111 Load 112 Upper controller 201 CPU
202 Voltage sensor 203 Leakage sensor

Claims (2)

蓄電池の充放電電流を制御する制御部を備えた電池制御装置において、
前記制御部は、電池温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて前記蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御するものであり、
前記制御部は、
電池温度や外気温度、電池充電状態を示すSOCの情報から、電池システムの温度と充放電電流による温度変化を予測して電流の上限値を求め、前記蓄電池の温度が上限温度を超えない範囲で電流を制御する温度対応電流制御部と、
実際に充放電している電池の電圧、電池温度、SOCの情報から上下限電圧の範囲内に留められる最大電流を演算して電流の上限値を求め、前記蓄電池の電圧が上下限電圧範囲を超えない範囲で電流を制御する上下限電圧対応電流制御部とを有し、
前記制御部は、さらに、前記蓄電池に流れる充放電電流に基づいて、前記温度対応電流制御部による上限充放電電流の値、または前記上下限電圧対応電流制御部による上限充放電電流の値のいずれかを上限充放電電流とするよう優先順位を決定するものであり、
前記優先順位を、前記温度対応電流制御部で求めた上限充放電電流の値と実際に蓄電池が充放電している充放電電流の比較に基づき決定する電池制御装置。
In a battery control device provided with a control unit that controls the charge / discharge current of the storage battery,
The control unit predicts a temperature rise of the storage battery based on the battery temperature and the amount of charge / discharge current, and uses the prediction result of the temperature rise to use a plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery. The charge / discharge current is controlled by selecting one upper limit charge / discharge current value from the value of .
The control unit
From the SOC information indicating the battery temperature, outside air temperature, and battery charge status, the temperature change due to the battery system temperature and charge / discharge current is predicted to obtain the upper limit value of the current, and within the range where the temperature of the storage battery does not exceed the upper limit temperature. A temperature-compatible current control unit that controls the current,
The maximum current that can be kept within the upper and lower limit voltage range is calculated from the information of the voltage, battery temperature, and SOC of the battery that is actually charged and discharged to obtain the upper limit value of the current, and the voltage of the storage battery determines the upper and lower limit voltage range. It has an upper / lower voltage compatible current control unit that controls the current within a range that does not exceed it.
The control unit further has either a value of the upper limit charge / discharge current by the temperature corresponding current control unit or a value of the upper limit charge / discharge current by the upper / lower limit voltage corresponding current control unit based on the charge / discharge current flowing through the storage battery. The priority is determined so that the upper limit charge / discharge current is set.
A battery control device that determines the priority order based on a comparison between the value of the upper limit charge / discharge current obtained by the temperature-compatible current control unit and the charge / discharge current actually charged / discharged by the storage battery.
蓄電池の充放電電流を制御する制御部を備えた電池制御装置において、
前記制御部は、電池温度、及び充放電電流量に基づいて、前記蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて前記蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制御するものであり、
前記制御部は、
電池温度や外気温度、電池充電状態を示すSOCの情報から、電池システムの温度と充放電電流による温度変化を予測して電流の上限値を求め、前記蓄電池の温度が上限温度を超えない範囲で電流を制御する温度対応電流制御部と、
実際に充放電している電池の電圧、電池温度、SOCの情報から上下限電圧の範囲内に留められる最大電流を演算して電流の上限値を求め、前記蓄電池の電圧が上下限電圧範囲を超えない範囲で電流を制御する上下限電圧対応電流制御部とを有し、
前記制御部は、さらに、前記蓄電池に流れる充放電電流に基づいて、前記温度対応電流制御部による上限充放電電流の値、または前記上下限電圧対応電流制御部による上限充放電電流の値のいずれかを上限充放電電流とするよう優先順位を決定するものであり、
前記制御部は、前記温度対応電流制御部による上限充放電電流の値と、前記蓄電池に流れる充放電電流を比較し、前記蓄電池に流れる充放電電流が前記温度対応電流制御部による上限充放電電流の値よりも大きい場合は前記温度対応電流制御部の上限充放電電流の値を優先し、前記温度対応電流制御部の上限値よりも小さい場合は、前記上下限電圧対応電流制御部の上限充放電電流の値を優先する電池制御装置。
In a battery control device provided with a control unit that controls the charge / discharge current of the storage battery,
The control unit predicts a temperature rise of the storage battery based on the battery temperature and the amount of charge / discharge current, and uses the prediction result of the temperature rise to use a plurality of upper limit charge / discharge currents so as not to exceed the upper limit temperature of the storage battery. The charge / discharge current is controlled by selecting one upper limit charge / discharge current value from the value of.
The control unit
From the SOC information indicating the battery temperature, outside air temperature, and battery charge status, the temperature change due to the battery system temperature and charge / discharge current is predicted to obtain the upper limit value of the current, and within the range where the temperature of the storage battery does not exceed the upper limit temperature. A temperature-compatible current control unit that controls the current,
The maximum current that can be kept within the upper and lower limit voltage range is calculated from the information of the voltage, battery temperature, and SOC of the battery that is actually charged and discharged to obtain the upper limit value of the current, and the voltage of the storage battery determines the upper and lower limit voltage range. It has an upper / lower voltage compatible current control unit that controls the current within a range that does not exceed it.
The control unit further has either a value of the upper limit charge / discharge current by the temperature corresponding current control unit or a value of the upper limit charge / discharge current by the upper / lower limit voltage corresponding current control unit based on the charge / discharge current flowing through the storage battery. The priority is determined so that the upper limit charge / discharge current is set.
The control unit compares the value of the upper limit charge / discharge current by the temperature-compatible current control unit with the charge / discharge current flowing through the storage battery, and the charge / discharge current flowing through the storage battery is the upper limit charge / discharge current by the temperature-compatible current control unit. If it is larger than the value of, the value of the upper limit charge / discharge current of the temperature-compatible current control unit is prioritized, and if it is smaller than the upper limit value of the temperature-compatible current control unit, the upper limit charge of the upper / lower limit voltage-compatible current control unit is given. battery control device to give priority to the value of the discharge current.
JP2017067877A 2017-03-30 2017-03-30 Battery control device Active JP6827355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017067877A JP6827355B2 (en) 2017-03-30 2017-03-30 Battery control device
PCT/JP2018/003905 WO2018179855A1 (en) 2017-03-30 2018-02-06 Battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067877A JP6827355B2 (en) 2017-03-30 2017-03-30 Battery control device

Publications (2)

Publication Number Publication Date
JP2018170904A JP2018170904A (en) 2018-11-01
JP6827355B2 true JP6827355B2 (en) 2021-02-10

Family

ID=63675062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067877A Active JP6827355B2 (en) 2017-03-30 2017-03-30 Battery control device

Country Status (2)

Country Link
JP (1) JP6827355B2 (en)
WO (1) WO2018179855A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251357B2 (en) * 2019-06-28 2023-04-04 株式会社デンソー Control device for in-vehicle power supply
JP7234892B2 (en) * 2019-10-02 2023-03-08 株式会社デンソー charging controller
WO2022269835A1 (en) * 2021-06-23 2022-12-29 株式会社EViP Battery power supply circuit
KR102604792B1 (en) * 2021-12-21 2023-11-20 세메스 주식회사 Article transport vehicle with power operation funtion, article transport system and method for operation of article transport vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304572A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Charging device
JP5219485B2 (en) * 2007-12-12 2013-06-26 三洋電機株式会社 Charging method
CN103826899B (en) * 2011-10-26 2016-10-12 三菱电机株式会社 The control device of electric vehicle
US9963043B2 (en) * 2013-12-27 2018-05-08 Sanyo Electric Co., Ltd. Control system and vehicle power supply
DE102015001069A1 (en) * 2015-01-29 2016-08-04 Man Truck & Bus Ag Method and device for temperature-dependent current limitation of an energy storage device for electrical energy

Also Published As

Publication number Publication date
JP2018170904A (en) 2018-11-01
WO2018179855A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US11247581B2 (en) Battery control device
US11532841B2 (en) Storage battery control device
US7800345B2 (en) Battery management system and method of operating same
EP1914559B1 (en) Battery management system (BMS) and driving method thereof
JP6228666B2 (en) Battery system
US20170120775A1 (en) Electric power storage system
JP5105031B2 (en) Power storage system
EP2509186B1 (en) Power supply apparatus and method of controlling the same
US20140103859A1 (en) Electric storage system
CN102959790B (en) A kind of method of the charging process for monitoring storage battery
JP6827355B2 (en) Battery control device
KR101624644B1 (en) System and method for derating a power limit associated with a battery pack
JP7594528B2 (en) Battery Control Unit
JP6752286B2 (en) Battery system
JP2020134279A (en) Battery control device
CN103688438B (en) Accumulating system and the method for the state that differentiates power storage block
JP2014087243A (en) Power storage system
JP5975925B2 (en) Battery control device, power storage device
JP2020187964A (en) Voltage measurement circuit and battery pack
JP2020180891A (en) Disconnection detector of battery block
JP2021164223A (en) Device and method for power control
WO2024201588A1 (en) Control device and method for determining allowable output power of battery
JP2024039528A (en) Battery control method and battery control device
JP2020193821A (en) Voltage measurement circuit and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6827355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250