JP6824510B2 - Polypropylene resin composition - Google Patents
Polypropylene resin composition Download PDFInfo
- Publication number
- JP6824510B2 JP6824510B2 JP2016146005A JP2016146005A JP6824510B2 JP 6824510 B2 JP6824510 B2 JP 6824510B2 JP 2016146005 A JP2016146005 A JP 2016146005A JP 2016146005 A JP2016146005 A JP 2016146005A JP 6824510 B2 JP6824510 B2 JP 6824510B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- content
- polypropylene
- mass
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- -1 Polypropylene Polymers 0.000 title claims description 65
- 239000004743 Polypropylene Substances 0.000 title claims description 39
- 229920001155 polypropylene Polymers 0.000 title claims description 39
- 239000011342 resin composition Substances 0.000 title claims description 18
- 238000010828 elution Methods 0.000 claims description 22
- 238000005227 gel permeation chromatography Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 7
- 235000012222 talc Nutrition 0.000 description 22
- 239000000454 talc Substances 0.000 description 21
- 229910052623 talc Inorganic materials 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、耐傷付き性、剛性、耐衝撃性に優れた成形品を製造しうるポリプロピレン樹脂組成物に関する。 The present invention relates to a polypropylene resin composition capable of producing a molded product having excellent scratch resistance, rigidity, and impact resistance.
従来、自動車のインストルメントパネルやドアトリム等の内装部品の材質としては、ポリ塩化ビニルが主流であった。しかし、成形性、軽量性、リサイクル性、経済性に優れる等の点から、タルクを配合したポリプロピレン複合材への代替が進んでいる。しかし、このポリプロピレン複合材は、タルクを起点とした材料破壊が起きやすく、ポリ塩化ビニルと比較して、耐傷付き性、耐衝撃性が劣るといった欠点がある。 Conventionally, polyvinyl chloride has been the mainstream material for interior parts such as automobile instrument panels and door trims. However, in terms of moldability, light weight, recyclability, economy, and the like, substitution with polypropylene composite materials containing talc is progressing. However, this polypropylene composite material has a drawback that the material is easily broken from talc and is inferior in scratch resistance and impact resistance as compared with polyvinyl chloride.
タルクを配合したポリプロピレン複合材に付いた傷は、傷表面にタルクを起点とした材料破壊による微細な凹凸ができたことで、光の散乱が起き、傷が白く目立つ問題を抱えている。このような問題を解決するために、様々な手法が提案されている。
たとえば特許文献1においては、タルクを配合したポリプロピレン系複合材に脂肪酸アミドを添加することによって、耐傷付き性を向上させた組成物が提案されている。しかし、脂肪酸アミドはポリプロピレンに対して比較的相容しやすいため、成形品の表面に移行しにくく、耐傷付き性の改良効果が不十分である。
The scratches on the polypropylene composite material containing talc have a problem that the scratches are white and conspicuous due to the scattering of light due to the formation of fine irregularities on the scratch surface due to the material destruction starting from talc. Various methods have been proposed to solve such problems.
For example, Patent Document 1 proposes a composition in which scratch resistance is improved by adding a fatty acid amide to a polypropylene-based composite material containing talc. However, since fatty acid amide is relatively compatible with polypropylene, it is difficult to transfer to the surface of the molded product, and the effect of improving scratch resistance is insufficient.
本発明は、耐傷付き性、剛性、耐衝撃性に優れた成形品を製造しうるポリプロピレン樹脂組成物を提供することを課題とする。 An object of the present invention is to provide a polypropylene resin composition capable of producing a molded product having excellent scratch resistance, rigidity and impact resistance.
本発明のポリプロピレン樹脂組成物は、下記成分(A)、成分(B)および成分(C)を含有し、前記成分(A)の含有量と前記成分(B)の含有量との合計を100質量部としたとき、前記成分(A)の含有量が70〜90質量部であり、前記成分(B)の含有量が10〜30質量部であり、前記成分(C)の含有量が1〜5質量部であることを特徴とする。
(A)ポリプロピレン
(B)平均粒子径が1μm〜8μmであるタルク
(C)ポリオキシエチレンモノメチルエーテルであって、ゲル浸透クロマトグラフィーによって示差屈折率計を用いて得られたクロマトグラムにおいて屈折率強度最大点での分子量が2,000〜4,000であり、前記クロマトグラム上の前記屈折率強度最大点とベースラインの距離をLとしたとき、溶出開始点Oから屈折率強度がL/3となる最速溶出時間Tまでのピーク面積S1と、前記最速溶出時間Tから溶出終了点Eまでのピーク面積S2との比(S1/S2)が0.15以下である。
The polypropylene resin composition of the present invention contains the following component (A), component (B) and component (C), and the total of the content of the component (A) and the content of the component (B) is 100. In terms of parts by mass, the content of the component (A) is 70 to 90 parts by mass, the content of the component (B) is 10 to 30 parts by mass, and the content of the component (C) is 1. It is characterized by having ~ 5 parts by mass.
(A) Polypropylene (B) Talk having an average particle size of 1 μm to 8 μm (C) Polyoxyethylene monomethyl ether, refractive index intensity in a chromatogram obtained by gel permeation chromatography using a differential refractometer. When the molecular weight at the maximum point is 2,000 to 4,000 and the distance between the maximum refractive index intensity point on the chromatogram and the baseline is L, the refractive index intensity is L / 3 from the elution start point O. The ratio (S 1 / S 2 ) of the peak area S 1 up to the fastest elution time T and the peak area S 2 from the fastest elution time T to the elution end point E is 0.15 or less.
本発明によれば、タルクを配合したポリプロピレンに、特定のポリオキシエチレンモノメチルエーテルを配合することで、成形品表面の滑性と、ポリプロピレンとタルクとの界面強度を向上し、耐傷付き性、剛性、耐衝撃性に優れた成形品を製造しうるポリプロピレン樹脂組成物を提供することができる。 According to the present invention, by blending a specific polyoxyethylene monomethyl ether with polypropylene containing talc, the slipperiness of the surface of the molded product and the interfacial strength between polypropylene and talc are improved, and scratch resistance and rigidity are improved. , A polypropylene resin composition capable of producing a molded product having excellent impact resistance can be provided.
以下、本発明について詳細に説明する。
<(A)ポリプロピレン>
本発明で用いられる(A)ポリプロピレンとしては、プロピレンを単独で重合したホモポリプロピレン、プロピレンとエチレンを共重合したランダムポリプロピレン、ホモポリプロピレンを重合し引き続きホモポリプロピレンの存在下にプロピレンとエチレンを共重合したブロックポリプロピレンが挙げられる。この中でも耐衝撃性と剛性の観点から、ブロックポリプロピレンが特に好ましい。
Hereinafter, the present invention will be described in detail.
<(A) Polypropylene>
As the polypropylene (A) used in the present invention, homopolypropylene obtained by polymerizing propylene alone, random polypropylene obtained by copolymerizing propylene and ethylene, and homopolypropylene were polymerized and subsequently copolymerized with propylene and ethylene in the presence of homopolypropylene. Block polypropylene can be mentioned. Of these, block polypropylene is particularly preferable from the viewpoint of impact resistance and rigidity.
ブロックポリプロピレンとしては、例えば、プライムポリマー製J708UG、J830HV、J715M、サンアロマー製PMA60Z、PMB60A、日本ポリプロ製BC02N、BC03GS等が挙げられる。 Examples of the block polypropylene include Prime Polymer J708UG, J830HV, J715M, SunAllomer PMA60Z, PMB60A, Japan Polypropylene BC02N, BC03GS and the like.
<(B)タルク>
本発明に用いるタルクは、レーザー回折法で測定される平均粒子径が1μm〜8μmの範囲とする。タルクの平均粒子径が8μmより大きいと、耐傷付き性や剛性が悪化する。平均粒子径が1μmより小さいと、タルク同士の凝集力が大きく、ポリプロピレン中での分散不良を起こすため、耐傷付き性や剛性が悪化する。
<(B) Talc>
The talc used in the present invention has an average particle size of 1 μm to 8 μm measured by a laser diffraction method. If the average particle size of talc is larger than 8 μm, scratch resistance and rigidity deteriorate. If the average particle size is smaller than 1 μm, the cohesive force between talcs is large, causing poor dispersion in polypropylene, resulting in deterioration of scratch resistance and rigidity.
<(C)ポリオキシエチレンモノメチルエーテル>
本発明に用いるポリオキシエチレンモノメチルエーテルは、ゲル浸透クロマトグラフィーによって示差屈折率計を用いて得られたクロマトグラムにおいて、屈折率強度最大点に対応する分子量が2,000〜4,000である。ポリオキシエチレンモノメチルエーテルの前記分子量が2,000〜4,000を外れると、組成物の耐傷付き性が低下する。この観点からは、ポリオキシエチレンモノメチルエーテルの前記分子量を、2,300以上とすることが好ましく、また3,800以下とすることが好ましい。
<(C) Polyoxyethylene monomethyl ether>
The polyoxyethylene monomethyl ether used in the present invention has a molecular weight of 2,000 to 4,000 corresponding to the maximum refractive index intensity point in a chromatogram obtained by gel permeation chromatography using a differential refractometer. When the molecular weight of the polyoxyethylene monomethyl ether deviates from 2,000 to 4,000, the scratch resistance of the composition is lowered. From this point of view, the molecular weight of the polyoxyethylene monomethyl ether is preferably 2,300 or more, and preferably 3,800 or less.
また、本発明では、クロマトグラム上の屈折率強度最大点とベースラインの距離をLとしたとき、溶出開始点Oから屈折率強度がL/3となる最速溶出時間Tまでのピーク面積S1と、前記最速溶出時間Tから溶出終了点Eまでのピーク面積S2との比(S1/S2)が0.15以下である。前記分子量が2,000〜4,000である場合に、このピーク面積比が0.15よりも小さいと、組成物の剛性と耐衝撃性が著しく向上する。このピーク面積比(S1/S2)は、0.11以下とすることが好ましく、また0.07以上とすることが好ましい。 In the present invention, when the distance of refractive index intensity maxima and baseline on the chromatogram is L, the peak area from the elution starting point O to the highest elution time T in which the refractive index intensity becomes L / 3 S 1 The ratio (S 1 / S 2 ) to the peak area S 2 from the fastest elution time T to the elution end point E is 0.15 or less. When the molecular weight is 2,000 to 4,000 and the peak area ratio is smaller than 0.15, the rigidity and impact resistance of the composition are significantly improved. This peak area ratio (S 1 / S 2 ) is preferably 0.11 or less, and preferably 0.07 or more.
以下、この要件について更に説明する。
ピーク面積比(S1/S2)は、ゲル浸透クロマトグラフィー(GPC)において、示差屈折率計を用いて得られたクロマトグラムによって規定される。このクロマトグラムとは、屈折率強度と溶出時間との関係を表すグラフである。
This requirement will be further described below.
The peak area ratio (S 1 / S 2 ) is defined by a chromatogram obtained using a differential refractometer in gel permeation chromatography (GPC). This chromatogram is a graph showing the relationship between the refractive index intensity and the elution time.
ここで、図1、図2は、それぞれ、ポリオキシエチレンモノメチルエーテルのゲル浸透クロマトグラフィーにより得られるクロマトグラムのモデル図であり、横軸は溶出時間を、縦軸は示差屈折率計を用いて得られた屈折率強度を示す。 Here, FIGS. 1 and 2 are model diagrams of chromatograms obtained by gel permeation chromatography of polyoxyethylene monomethyl ether, respectively, with the horizontal axis representing the elution time and the vertical axis using a differential refractometer. The obtained refractive index intensity is shown.
ゲル浸透クロマトグラフに試料溶液を注入して展開すると、最も分子量の高い分子から溶出が始まり、屈折率強度の増加に伴い、溶出曲線が上昇していく。その後、屈折率強度最大点Kを過ぎると、溶出曲線は下降していく。 When the sample solution is injected into the gel permeation chromatograph and developed, elution starts from the molecule with the highest molecular weight, and the elution curve increases as the refractive index intensity increases. After that, when the maximum refractive index intensity point K is passed, the elution curve descends.
ポリオキシエチレンモノメチルエーテルは、後で述べるように、副生物を含むため、ゲル浸透クロマトグラフィーにおいて、クロマトグラムの屈折率極大点を二つ持つピークとなる。この際、ゲル浸透クロマトグラフィーに使用した展開溶媒などに起因するピークや、使用したカラムや装置に起因するベースラインの揺らぎによる疑似ピークは除く。 Since polyoxyethylene monomethyl ether contains by-products, as will be described later, it becomes a peak having two maximum refractive index points of the chromatogram in gel permeation chromatography. At this time, peaks caused by the developing solvent used for gel permeation chromatography and pseudo peaks caused by baseline fluctuations caused by the columns and devices used are excluded.
ここで、クロマトグラム上の屈折率強度最大点KとベースラインBの距離をLとする。屈折率強度最大点KからベースラインBへと向かって垂線を引くと、垂線の長さが前記距離Lとなる。ここで、図1に示すように、溶出開始点Oから屈折率強度がL/3となる最速溶出時間Tまでのピーク面積をS1とする。また、図2に示すように、屈折率強度がL/3となる最速溶出時間Tから溶出終了点Eまでのピーク面積をS2とする。 Here, let L be the distance between the maximum refractive index intensity point K and the baseline B on the chromatogram. When a perpendicular line is drawn from the maximum refractive index intensity point K toward the baseline B, the length of the perpendicular line becomes the distance L. Here, as shown in FIG. 1, the peak area from the elution starting point O to the highest elution time T in which the refractive index intensity becomes L / 3 and S 1. Further, as shown in FIG. 2, the peak area from the fastest elution time T at which the refractive index intensity becomes L / 3 to the elution end point E is defined as S 2 .
ポリオキシエチレンモノメチルエーテルは、メタノールを出発原料とし、アルカリ又は酸触媒の存在下において、エチレンオキサイドを直接付加させることにより製造されるが、製造条件によって複数の副生物が生成することが知られている(大島義彦、水谷敏康、塗装工学、第22巻、397〜403頁、1987年)。例えば、アルカリ金属やアルカリ土類金属の水酸化物を触媒として、メタノールにエチレンオキサイドを付加させる場合や、反応容器内に水が存在した状態でエチレンオキサイドの付加反応を行った場合、水分子とエチレンオキサイドが反応して2官能のエチレングリコールが生成し、さらに生成したエチレングリコールにエチレンオキサイドが付加する。その結果、1価のアルコール化合物であるポリオキシエチレンモノメチルエーテルと同時に、副生物としてポリオキシエチレンモノメチルエーテルのおおよそ2倍の分子量の2価のアルコール化合物であるポリエチレングリコールが生成する。前記ピーク面積比(S1/S2)が0.15よりも大きいということは、副生成物であるポリエチレングリコールが多く存在することを意味する。 Polyoxyethylene monomethyl ether is produced by directly adding ethylene oxide using methanol as a starting material in the presence of an alkali or an acid catalyst, but it is known that a plurality of by-products are produced depending on the production conditions. (Yoshihiko Oshima, Toshiyasu Mizutani, Painting Engineering, Vol. 22, pp. 397-403, 1987). For example, when ethylene oxide is added to methanol using a hydroxide of alkali metal or alkaline earth metal as a catalyst, or when the addition reaction of ethylene oxide is performed in the presence of water in the reaction vessel, it becomes a water molecule. Ethylene oxide reacts to produce bifunctional ethylene glycol, and ethylene oxide is added to the produced ethylene glycol. As a result, polyethylene glycol, which is a divalent alcohol compound having a molecular weight approximately twice that of polyoxyethylene monomethyl ether, is produced as a by-product at the same time as polyoxyethylene monomethyl ether, which is a monohydric alcohol compound. The fact that the peak area ratio (S 1 / S 2 ) is larger than 0.15 means that a large amount of polyethylene glycol, which is a by-product, is present.
ポリオキシエチレンモノメチルエーテルとポリエチレングリコールは、ポリプロピレン樹脂組成物の表面に移行し、滑性を向上させるのと同時に、ポリプロピレンとタルクの界面に存在し、界面強度を向上させている。このとき、1価のアルコール化合物であるポリオキシエチレンモノメチルエーテルが、2価のアルコール化合物であるポリエチレングリコールよりも、極性が低く、ポリプロピレンとタルクの界面強度向上に有利である。よって、前記ピーク面積比を0.15以下とするということは、ポリエチレングリコールが少ないことを意味しており、タルク含有ポリプロピレン樹脂組成物の剛性と耐衝撃性の向上に有利であることを見いだした。 Polyoxyethylene monomethyl ether and polyethylene glycol migrate to the surface of the polypropylene resin composition to improve the slipperiness, and at the same time, are present at the interface between polypropylene and talc to improve the interfacial strength. At this time, the polyoxyethylene monomethyl ether, which is a monohydric alcohol compound, has a lower polarity than polyethylene glycol, which is a divalent alcohol compound, and is advantageous for improving the interfacial strength between polypropylene and talc. Therefore, it was found that setting the peak area ratio to 0.15 or less means that the amount of polyethylene glycol is small, which is advantageous for improving the rigidity and impact resistance of the talc-containing polypropylene resin composition. ..
本発明において、前記ピーク面積比(S1/S2)を求めるためのゲル浸透クロマトグラフィー(GPC)は、GPCシステムとしてTOSOH HLC−8320GPCを用い、カラムとしてTOSOH TSKgel Super Multipore HZ−Mを2本とTOSOH TSKgel Super H−RCを1本連続装着する。そして、カラム温度を40℃とし、基準物質をポリスチレンとし、展開溶剤としてテトラヒドロフランを用いる。展開溶剤は、1ml/分の流速で流し、サンプル濃度0.1重量%のサンプル溶液0.1mlを注入し、EcoSEC−Work Station GPC計算プログラムを用いて、屈折率強度と溶出時間で表されるクロマトグラムを得る。 In the present invention, gel permeation chromatography (GPC) for determining the peak area ratio (S 1 / S 2 ) uses TOSOH HLC-8320 GPC as a GPC system and two TOSOH TSKgel Super Multipore HZ-M as columns. And one TOSOH TSKgel Super H-RC are continuously installed. Then, the column temperature is set to 40 ° C., the reference substance is polystyrene, and tetrahydrofuran is used as the developing solvent. The developing solvent is flowed at a flow rate of 1 ml / min, 0.1 ml of a sample solution having a sample concentration of 0.1% by weight is injected, and it is expressed by the refractive index intensity and the elution time using the EcoSEC-WorkStation GPC calculation program. Obtain a chromatogram.
(各成分の比率)
本発明では、成分(A)の含有量と成分(B)の含有量との合計を100質量部としたとき、成分(A)の含有量が70〜90質量部であり、成分(B)の含有量が10〜30質量部である。成分(B)(タルク)の含有量が30質量部を超えると、樹脂組成物の耐傷付き性と耐衝撃性とが低下する。また、成分(B)の含有量が10質量部以下であると、樹脂組成物の剛性と耐衝撃性とが低下する。
(Ratio of each component)
In the present invention, when the total of the content of the component (A) and the content of the component (B) is 100 parts by mass, the content of the component (A) is 70 to 90 parts by mass, and the component (B) The content of is 10 to 30 parts by mass. When the content of the components (B) and (talc) exceeds 30 parts by mass, the scratch resistance and impact resistance of the resin composition are lowered. Further, when the content of the component (B) is 10 parts by mass or less, the rigidity and impact resistance of the resin composition are lowered.
(A)ポリプロピレンの含有量と(B)タルクの含有量との合計を100質量部としたとき、(C)ポリオキシエチレンモノメチルエーテルの含有量は1〜5質量部とする。これによって、ポリプロピレン樹脂組成物の耐傷付き性、剛性、耐衝撃性が向上する。この観点からは、(C)ポリオキシエチレンモノメチルエーテルの含有量は、2質量部以上とすることが好ましい。 When the total content of (A) polypropylene and (B) talc is 100 parts by mass, the content of (C) polyoxyethylene monomethyl ether is 1 to 5 parts by mass. As a result, the scratch resistance, rigidity, and impact resistance of the polypropylene resin composition are improved. From this point of view, the content of (C) polyoxyethylene monomethyl ether is preferably 2 parts by mass or more.
<その他の添加剤>
本発明のポリプロピレン樹脂組成物には、効果を阻害しない範囲で、ゴム、可塑剤、軟化剤、酸化防止剤、加工助剤、難燃剤、紫外線吸収剤、着色剤等のその他の添加剤を添加することができる。
<Other additives>
Other additives such as rubber, plasticizer, softener, antioxidant, processing aid, flame retardant, ultraviolet absorber, colorant, etc. are added to the polypropylene resin composition of the present invention as long as the effect is not impaired. can do.
本発明のポリプロピレン樹脂組成物は、(A)ポリプロピレンと、(B)タルクと、(C)ポリオキシエチレンモノメチルエーテルとを溶融混練することにより、製造することができ、混練温度は、180〜260℃、好ましくは200〜240℃で行うことができる。 The polypropylene resin composition of the present invention can be produced by melt-kneading (A) polypropylene, (B) talc, and (C) polyoxyethylene monomethyl ether, and the kneading temperature is 180 to 260. It can be carried out at ° C., preferably 200 to 240 ° C.
(A)ポリプロピレンと、(B)タルクと、(C)ポリオキシエチレンモノメチルエーテルとの混練には、一軸押出機、二軸押出機、二軸ローター型押出機等の連続式押出機を使用することができる。得られたポリプロピレン樹脂組成物は、押出成形法、射出成形法、ブロー成形法、圧縮成形法等、公知の成形方法により所定形状に成形加工することができる。 For kneading (A) polypropylene, (B) talc, and (C) polyoxyethylene monomethyl ether, a continuous extruder such as a single-screw extruder, a twin-screw extruder, or a twin-screw rotor type extruder is used. be able to. The obtained polypropylene resin composition can be molded into a predetermined shape by a known molding method such as an extrusion molding method, an injection molding method, a blow molding method, or a compression molding method.
本発明のポリプロピレン樹脂組成物は、耐傷付き性、剛性、耐衝撃性に優れる。そのため、自動車のインストルメントパネルやドアトリム等の内装部品の材質として利用することができる。 The polypropylene resin composition of the present invention is excellent in scratch resistance, rigidity, and impact resistance. Therefore, it can be used as a material for interior parts such as automobile instrument panels and door trims.
以下、本発明の具体的な実施例について説明する。
<ポリプロピレン樹脂組成物>
各成分を表1、表2に示す組成でドライブレンドし、二軸押出機にて230℃の設定温度で混練造粒することにより、各ポリプロピレン樹脂組成物を得た。得られたポリプロピレン樹脂組成物を射出成形機にてシリンダ温度230℃、金型温度30℃の設定で射出成形し、耐傷付き性、剛性、耐衝撃性を評価した。ポリプロピレンは、プライムポリマー製J708UGを使用した。
Hereinafter, specific examples of the present invention will be described.
<Polypropylene resin composition>
Each component was dry-blended with the compositions shown in Tables 1 and 2, and kneaded and granulated at a set temperature of 230 ° C. with a twin-screw extruder to obtain each polypropylene resin composition. The obtained polypropylene resin composition was injection molded by an injection molding machine at a cylinder temperature of 230 ° C. and a mold temperature of 30 ° C., and scratch resistance, rigidity, and impact resistance were evaluated. As polypropylene, J708UG made of prime polymer was used.
各性能の評価方法は次の通りである。
<耐傷付き性>
試験片(80mm×55mm×t2mm)に、ERICHSEN製スクラッチテスター430Pにて、荷重5N、ピン形状1mmφ、引っかき速度1,000mm/minの条件で、2mm間隔で縦横20本ずつ碁盤目状に引っかき傷を付けた。日本電色工業製SQ−2000にて、光源C、視野10°、測定面φ30mmの条件で、試験片の傷付き前後の明度指数Lをそれぞれ測定し、その差(ΔL)を算出した。このLは、JIS Z 8781−4に規定されているL*a*b*色空間の値である。
The evaluation method of each performance is as follows.
<Scratch resistance>
A test piece (80 mm x 55 mm x t2 mm) is scratched in a grid pattern with 20 vertical and horizontal lines at 2 mm intervals under the conditions of a load of 5 N, a pin shape of 1 mmφ, and a scratching speed of 1,000 mm / min using an ERICHSEN scratch tester 430P. Was attached. The brightness index L before and after the scratch on the test piece was measured with SQ-2000 manufactured by Nippon Denshoku Kogyo under the conditions of light source C, field of view 10 °, and measurement surface φ30 mm, and the difference (ΔL) was calculated. This L is the value of the L * a * b * color space defined in JIS Z 8781-4.
<剛性>
JIS K 7203に準拠し、23℃において曲げ速度2mm/minにて曲げ弾性率を測定した。
<Rigidity>
The flexural modulus was measured at a bending speed of 2 mm / min at 23 ° C. according to JIS K 7203.
<耐衝撃性>
JIS K 7110に準拠し、23℃においてノッチ付き試験片のアイゾット衝撃強度を測定した。
<Impact resistance>
The Izod impact strength of the notched test piece was measured at 23 ° C. in accordance with JIS K 7110.
表1の結果から明らかなように、実施例1〜10は、いずれも耐傷付き性、剛性、耐衝撃性に優れていた。 As is clear from the results in Table 1, all of Examples 1 to 10 were excellent in scratch resistance, rigidity, and impact resistance.
一方、比較例1〜9は、これらの性能バランスが不十分であった。
具体的には、比較例1は、タルクが過剰なため、耐傷付き性と耐衝撃性に劣っていた。比較例2は、タルクが過少なため、剛性と耐衝撃性に劣っていた。比較例3は、タルクの平均粒子径が過小なため、全ての性能が劣っていた。比較例4は、タルクの平均粒子径が過大なため、耐傷付き性に劣っていた。
On the other hand, in Comparative Examples 1 to 9, these performance balances were insufficient.
Specifically, Comparative Example 1 was inferior in scratch resistance and impact resistance due to the excess of talc. In Comparative Example 2, the rigidity and impact resistance were inferior because the amount of talc was too small. In Comparative Example 3, all the performances were inferior because the average particle size of talc was too small. In Comparative Example 4, the average particle size of talc was excessive, so that the scratch resistance was inferior.
比較例5は、ポリオキシエチレンモノメチルエーテルの分子量が過小なため、耐傷付き性に劣っていた。比較例6は、ポリオキシエチレンモノメチルエーテルの分子量が過大なため、耐傷付き性に劣っていた。 In Comparative Example 5, the molecular weight of polyoxyethylene monomethyl ether was too small, so that the scratch resistance was inferior. Comparative Example 6 was inferior in scratch resistance because the molecular weight of polyoxyethylene monomethyl ether was excessive.
比較例7は、ピーク面積比S1/S2が大きいため、剛性と耐衝撃性に劣っていた。比較例8は、ポリオキシエチレンモノメチルエーテルの配合量が過少なため、耐傷付き性と耐衝撃性に劣っていた。比較例9は、ポリオキシエチレンモノメチルエーテルの配合量が過剰なため、全ての性能が劣っていた。 In Comparative Example 7, since the peak area ratio S 1 / S 2 was large, the rigidity and impact resistance were inferior. In Comparative Example 8, since the amount of polyoxyethylene monomethyl ether compounded was too small, it was inferior in scratch resistance and impact resistance. In Comparative Example 9, all the performances were inferior because the amount of polyoxyethylene monomethyl ether compounded was excessive.
Claims (1)
(A)ポリプロピレン
(B)平均粒子径が1μm〜8μmであるタルク
(C)ポリオキシエチレンモノメチルエーテルであって、ゲル浸透クロマトグラフィーによって示差屈折率計を用いて得られたクロマトグラムにおいて屈折率強度最大点での分子量が2,000〜4,000であり、前記クロマトグラム上の前記屈折率強度最大点とベースラインの距離をLとしたとき、溶出開始点Oから屈折率強度がL/3となる最速溶出時間Tまでのピーク面積S1と、前記最速溶出時間Tから溶出終了点Eまでのピーク面積S2との比(S1/S2)が0.15以下である。 When the following component (A), component (B) and component (C) are contained, and the total of the content of the component (A) and the content of the component (B) is 100 parts by mass, the component ( The content of A) is 70 to 90 parts by mass, the content of the component (B) is 10 to 30 parts by mass, and the content of the component (C) is 1 to 5 parts by mass. , Polypropylene resin composition.
(A) Polypropylene (B) Talk having an average particle size of 1 μm to 8 μm (C) Polyoxyethylene monomethyl ether, refractive index intensity in a chromatogram obtained by gel permeation chromatography using a differential refractometer. When the molecular weight at the maximum point is 2,000 to 4,000 and the distance between the maximum refractive index intensity point on the chromatogram and the baseline is L, the refractive index intensity is L / 3 from the elution start point O. The ratio (S 1 / S 2 ) of the peak area S 1 up to the fastest elution time T and the peak area S 2 from the fastest elution time T to the elution end point E is 0.15 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146005A JP6824510B2 (en) | 2016-07-26 | 2016-07-26 | Polypropylene resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146005A JP6824510B2 (en) | 2016-07-26 | 2016-07-26 | Polypropylene resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018016680A JP2018016680A (en) | 2018-02-01 |
JP6824510B2 true JP6824510B2 (en) | 2021-02-03 |
Family
ID=61075608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016146005A Expired - Fee Related JP6824510B2 (en) | 2016-07-26 | 2016-07-26 | Polypropylene resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6824510B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5879043A (en) * | 1981-11-04 | 1983-05-12 | Mitsubishi Petrochem Co Ltd | Talc-containing propylene polymer resin composition |
JPH0525333A (en) * | 1991-05-10 | 1993-02-02 | Sekisui Chem Co Ltd | Resin composition for injection for molding |
JP3700343B2 (en) * | 1997-09-26 | 2005-09-28 | 三井化学株式会社 | Polypropylene resin composition for automobile parts |
JP3296332B2 (en) * | 1998-06-17 | 2002-06-24 | 日本油脂株式会社 | Polyoxyalkylene monoalkyl ether, method for producing the same, polymerizable polyoxyalkylene monoalkyl ether derivative, copolymer of the derivative, and dispersant containing the copolymer |
CN105199220A (en) * | 2015-09-17 | 2015-12-30 | 苏州新区佳合塑胶有限公司 | Polypropylene composite |
-
2016
- 2016-07-26 JP JP2016146005A patent/JP6824510B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2018016680A (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568301B2 (en) | Acrylic thermoplastic resin composition | |
JP5535433B2 (en) | Acrylic thermoplastic resin composition | |
JP5378692B2 (en) | Acrylic resin film and method for producing the same | |
CA2676992A1 (en) | Moulding compositions for matt pmmi mouldings | |
JP6824510B2 (en) | Polypropylene resin composition | |
JP5667536B2 (en) | Acrylic thermoplastic resin composition | |
JP6824511B2 (en) | Polypropylene resin composition | |
JPWO2017179415A1 (en) | Molded body made of acrylic resin composition | |
JP6177309B2 (en) | Polycarbonate compound product and method for producing the same | |
JP6916990B2 (en) | Polypropylene resin composition | |
JP6985643B2 (en) | Acrylic resin composition | |
JP5667533B2 (en) | Acrylic thermoplastic resin composition | |
TW201425032A (en) | Laminate sheet, manufacturing method therefor, and surface protection sheet | |
JP2019081851A (en) | Acrylic resin composition | |
JP2019099782A (en) | Polypropylene resin composition | |
JP5683300B2 (en) | Acrylic thermoplastic resin composition | |
JP2021095482A (en) | Methacrylic resin composition, molding, and vehicle member | |
KR102716047B1 (en) | Bio plastic manufactring method utilizing natural pulp high molecule | |
JP6618239B2 (en) | Polycarbonate resin composition and molded article comprising the same | |
JP5485095B2 (en) | Methacrylic polymer composition and molded article | |
JP2017186392A (en) | Thermoplastic resin composition, molded article and housing equipment | |
CA2946355A1 (en) | Thermoplastic composition | |
JP2012158722A (en) | Acrylic thermoplastic resin composition | |
KR20170031335A (en) | Transparent pmma composites with improved chemical resistant | |
JP2019019177A (en) | Polycarbonate resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6824510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |