[go: up one dir, main page]

JP6788957B2 - Generator - Google Patents

Generator Download PDF

Info

Publication number
JP6788957B2
JP6788957B2 JP2015023222A JP2015023222A JP6788957B2 JP 6788957 B2 JP6788957 B2 JP 6788957B2 JP 2015023222 A JP2015023222 A JP 2015023222A JP 2015023222 A JP2015023222 A JP 2015023222A JP 6788957 B2 JP6788957 B2 JP 6788957B2
Authority
JP
Japan
Prior art keywords
rotor
stator
salient pole
circumferential direction
pole portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023222A
Other languages
Japanese (ja)
Other versions
JP2016146712A (en
Inventor
和男 島
和男 島
深見 正
正 深見
岳志 藤原
岳志 藤原
拓郎 神部
拓郎 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimano Inc
Original Assignee
Shimano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Inc filed Critical Shimano Inc
Priority to JP2015023222A priority Critical patent/JP6788957B2/en
Priority to CN201610010636.3A priority patent/CN105871092B/en
Priority to DE102016201848.5A priority patent/DE102016201848B4/en
Publication of JP2016146712A publication Critical patent/JP2016146712A/en
Application granted granted Critical
Publication of JP6788957B2 publication Critical patent/JP6788957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Description

本発明は、自転車のハブダイナモ等に用いられる発電機に関する。 The present invention relates to a generator used for a bicycle hub dynamo or the like.

自転車のハブダイナモは、車輪と同程度の速度で回転子が回転するため、ローラーダイナモと比べて回転子の回転速度が遅くなり易く、低速走行時の誘導起電力が不十分になる傾向がある。そこで、ハブダイナモには、回転子の回転速度が小さい場合でも高周波数の交流電力が得られるように工夫したものが好適に用いられる。 Since the rotor of a bicycle hub dynamo rotates at the same speed as the wheels, the rotation speed of the rotor tends to be slower than that of the roller dynamo, and the induced electromotive force at low speed tends to be insufficient. .. Therefore, as the hub dynamo, a hub dynamo devised so that high-frequency AC power can be obtained even when the rotation speed of the rotor is low is preferably used.

この一例として、特許文献1には、クローポール型発電機が提案されている。この発電機は、固定子と、固定子の外周側に配置される回転子とを備える。回転子は周方向に並べて配置される複数の磁石を有し、各磁石は固定子と対向する磁極が周方向に交互に異なる磁極となる。固定子は軸方向両側に配置される一対の固定子コアを備える。各固定子コアは互いに近づく側に向けて延びる複数の爪部を有し、別々の固定子コアの爪部が周方向に交互に位置するように設けられる。各固定子コアの爪部は回転子の各磁石の径方向内側に配置され、その磁石により周方向に交互に異なる極性が生じるように励磁される。固定子には磁石から各固定子コアの爪部を介して磁束が通過する位置に電機子コイルが配置される。 As an example of this, Patent Document 1 proposes a claw pole type generator. This generator includes a stator and a rotor arranged on the outer peripheral side of the stator. The rotor has a plurality of magnets arranged side by side in the circumferential direction, and each magnet has magnetic poles facing the stator that are alternately different in the circumferential direction. The stator comprises a pair of stator cores arranged on both sides in the axial direction. Each stator core has a plurality of claws extending toward the side approaching each other, and the claws of the separate stator cores are provided so as to be alternately positioned in the circumferential direction. The claws of each stator core are arranged inside each magnet of the rotor in the radial direction, and the magnets are excited so as to alternately generate different polarities in the circumferential direction. An armature coil is arranged on the stator at a position where magnetic flux passes from the magnet through the claw portion of each stator core.

この発電機では、回転子の回転により各固定子コアの爪部に対する磁石の相対位置が変わり、これに伴い各爪部の極性が切り替わることで、電機子コイルを鎖交する主磁束の向きが反転し、電機子コイルに誘導起電力が生じる。このとき得られる交流電力は、磁石の極数に比例する大きさの周波数となるため、磁石の極数に応じた高周波数の交流電力を得やすくなっている。 In this generator, the rotation of the rotor changes the relative position of the magnet with respect to the claws of each stator core, and the polarity of each claw is switched accordingly, so that the direction of the main magnetic flux interlinking the armature coil is changed. It reverses and an induced electromotive force is generated in the armature coil. Since the AC power obtained at this time has a frequency proportional to the number of poles of the magnet, it is easy to obtain a high frequency AC power corresponding to the number of poles of the magnet.

特開2007−49839号公報Japanese Unexamined Patent Publication No. 2007-94839

近年、自転車の意匠性の向上を図るため、ハブの外径寸法の小型化が要求されており、これに伴い、ハブダイナモの外径寸法の小型化が望まれている。クローポール型発電機では、異なる極性に励磁される各固定子コアの爪部が周方向に交互に並ぶように構成される。よって、ハブダイナモの外径寸法が小さくなるにつれて、隣り合う爪部間の距離が過度に小さくなる。この結果、異なる極性に励磁された爪部の間に磁束が通り易くなり、電機子コイルを鎖交しない漏れ磁束が増大し易くなる。従って、クローポール型発電機では、外径寸法の低減に伴い漏れ磁束が増大し、十分な誘導起電力を得にくいという問題点があった。 In recent years, in order to improve the design of a bicycle, it has been required to reduce the outer diameter of the hub, and along with this, it is desired to reduce the outer diameter of the hub dynamo. In the claw pole type generator, the claws of the stator cores excited to have different polarities are arranged alternately in the circumferential direction. Therefore, as the outer diameter of the hub dynamo becomes smaller, the distance between adjacent claws becomes excessively small. As a result, the magnetic flux easily passes between the claws excited to have different polarities, and the leakage flux that does not interlink the armature coil tends to increase. Therefore, the claw pole type generator has a problem that the leakage flux increases as the outer diameter dimension is reduced, and it is difficult to obtain a sufficient induced electromotive force.

本発明は、このような課題に鑑みてなされており、その目的の1つは、回転子の回転速度が小さい場合でも高周波数の交流電力を得やすく、更には外径寸法の小型化に適した発電機を提供することにある。 The present invention has been made in view of such a problem, and one of the objects thereof is that it is easy to obtain high-frequency AC power even when the rotation speed of the rotor is small, and further, it is suitable for miniaturization of the outer diameter dimension. It is to provide a generator.

本発明のある態様に係る発電機は、回転子と、周方向に間隔を空けて配置され、周方向に対向する磁極が同極となる複数の磁石と、磁石の周方向両側に配置されるコイルスロット部を含む固定子コアと、磁石を周方向に跨ぐようにコイルスロット部間に巻き回される電機子コイルとを有する固定子と、を備え、回転子は、周方向に間隔を空けて形成される複数の回転子突極部を含む回転子コアを有し、固定子コアは、コイルスロット部に対して周方向の一方に隣接する磁路部に回転子と対向して設けられる第1固定子突極部と、コイルスロット部に対して周方向の他方に隣接する磁路部に回転子と対向して設けられる第2固定子突極部と、を有する。 The generator according to an aspect of the present invention is arranged with a rotor, a plurality of magnets which are spaced apart from each other in the circumferential direction and have magnetic poles facing each other in the circumferential direction, and are arranged on both sides of the magnet in the circumferential direction. A stator core including a coil slot portion and a stator having an armature coil wound between the coil slot portions so as to straddle the magnet in the circumferential direction are provided, and the rotors are spaced apart in the circumferential direction. It has a rotor core including a plurality of rotor salient poles formed therein, and the stator core is provided in a magnetic path portion adjacent to one of the coil slot portions in the circumferential direction so as to face the rotor. It has a first stator salient pole portion and a second stator salient pole portion provided on a magnetic path portion adjacent to the other in the circumferential direction with respect to the coil slot portion so as to face the rotor.

本発明によれば、回転子の回転速度が小さい場合でも高周波数の交流電力を得やすく、更には外径寸法の小型化に適した発電機を得られる。 According to the present invention, it is easy to obtain high-frequency AC power even when the rotation speed of the rotor is small, and it is possible to obtain a generator suitable for miniaturization of the outer diameter dimension.

第1実施形態に係る自転車用発電機が搭載される自転車を示す部分側面図である。It is a partial side view which shows the bicycle on which the bicycle generator which concerns on 1st Embodiment is mounted. 第1実施形態に係る自転車のハブや周囲の構成を示す前面図である。It is a front view which shows the structure of the hub and the surroundings of the bicycle which concerns on 1st Embodiment. 第1実施形態に係る自転車用発電機を示す断面図である。It is sectional drawing which shows the generator for a bicycle which concerns on 1st Embodiment. 第1実施形態に係る自転車用発電機の電機子コイルを示す断面図である。It is sectional drawing which shows the armature coil of the bicycle generator which concerns on 1st Embodiment. 第1実施形態に係る回転子突極部、固定子突極部の位置関係を示す図である。It is a figure which shows the positional relationship of the rotor salient pole portion and the stator salient pole portion which concerns on 1st Embodiment. 第1実施形態に係る発電機の電気角が零である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is zero. 第1実施形態に係る発電機の電気角がπ/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is π / 2. 第1実施形態に係る発電機の電気角がπである状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is π. 第1実施形態に係る発電機の電気角が3π/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 1st Embodiment is 3π / 2. 第2実施形態に係る発電機の断面図である。It is sectional drawing of the generator which concerns on 2nd Embodiment. 第2実施形態に係る発電機の電機子コイルを示す断面図である。It is sectional drawing which shows the armature coil of the generator which concerns on 2nd Embodiment. 第2実施形態に係る発電機の電気角が零である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is zero. 第2実施形態に係る発電機の電気角がπ/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is π / 2. 第2実施形態に係る発電機の電気角がπである状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is π. 第2実施形態に係る発電機の電気角が3π/2である状態を示す図である。It is a figure which shows the state which the electric angle of the generator which concerns on 2nd Embodiment is 3π / 2.

以下、各実施形態の説明では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略する。 Hereinafter, in the description of each embodiment, the same components are designated by the same reference numerals, and duplicate description will be omitted. Further, in each drawing, for convenience of explanation, some of the components are omitted as appropriate.

[第1の実施の形態]
図1は第1実施形態に係る自転車用発電機10(以下、単に発電機10という)が搭載される自転車12を示す部分側面図である。自転車12は、メインフレーム14のヘッドチューブ16に回転可能に支持されるフロントフォーク18と、フロントフォーク18に取り付けられるハブ軸20とを備える。ハブ軸20には車輪としての前輪22が回転自在に支持される。前輪22の横側には前照灯24が設置され、これには発電機10により得られた電力が供給される。
[First Embodiment]
FIG. 1 is a partial side view showing a bicycle 12 on which a bicycle generator 10 (hereinafter, simply referred to as a generator 10) according to the first embodiment is mounted. The bicycle 12 includes a front fork 18 rotatably supported by the head tube 16 of the main frame 14, and a hub shaft 20 attached to the front fork 18. A front wheel 22 as a wheel is rotatably supported on the hub shaft 20. A headlight 24 is installed on the side of the front wheel 22, and the electric power obtained by the generator 10 is supplied to the headlight 24.

前輪22はハブ軸20に軸受け(図示せず)を介して回転自在に支持される筒状のハブ26と、ハブ26の外周部に取り付けられる複数のスポーク28と、各スポーク28の外周部に取り付けられるリム30とを更に有する。リム30にはタイヤ32が取り付けられる。 The front wheel 22 has a tubular hub 26 rotatably supported by a hub shaft 20 via a bearing (not shown), a plurality of spokes 28 attached to the outer peripheral portion of the hub 26, and an outer peripheral portion of each spoke 28. It also has a rim 30 to be attached. A tire 32 is attached to the rim 30.

図2は自転車12のハブ26や周囲の構成を示す前面図である。ハブ26以外の構成は二点鎖線で示す。ハブ26内にはハブダイナモとなる発電機10が収容される。ハブ軸20の軸方向の両端部には雄ねじ34が形成される。ハブ軸20は、各雄ねじ34に螺合したナット36の締め付けにより、ハブ26とともにフロントフォーク18に固定される。 FIG. 2 is a front view showing the configuration of the hub 26 and the surroundings of the bicycle 12. Configurations other than the hub 26 are indicated by alternate long and short dash lines. A generator 10 serving as a hub dynamo is housed in the hub 26. Male threads 34 are formed at both ends of the hub shaft 20 in the axial direction. The hub shaft 20 is fixed to the front fork 18 together with the hub 26 by tightening the nut 36 screwed into each male screw 34.

図3は発電機10の断面図である。本図は後述する回転子40の回転中心の軸線方向に直交する断面図であり、図2のA−A線断面でもある。なお、本図ではハブ26を省略する。また、以下の説明では、後述する固定子38及び回転子40の各構成要素の位置関係を説明するうえで、「軸方向」、「周方向」、「径方向」の用語を使うことがある。このうち「軸方向」は回転子40の回転中心の軸線方向を意味し、「周方向」、「径方向」のそれぞれは回転子40の回転中心に関して周方向、径方向を意味する。 FIG. 3 is a cross-sectional view of the generator 10. This figure is a cross-sectional view orthogonal to the axial direction of the rotation center of the rotor 40 described later, and is also a cross-sectional view taken along the line AA of FIG. The hub 26 is omitted in this figure. Further, in the following description, the terms "axial direction", "circumferential direction", and "diameter direction" may be used in explaining the positional relationship of each component of the stator 38 and the rotor 40, which will be described later. .. Of these, the "axial direction" means the axial direction of the rotation center of the rotor 40, and the "circumferential direction" and the "diameter direction" mean the circumferential direction and the radial direction with respect to the rotation center of the rotor 40, respectively.

発電機10は、ハブ軸20に対して固定される固定子38と、ハブ軸20に対して回転自在に支持される回転子40とを備える。発電機10は、固定子38の外周側に回転子40が配置されるアウターロータ型発電機である。また、発電機10は同期発電機である。回転子40は、前輪22の一部であるハブ26と一体に回転可能に設けられる。回転子40は前輪22の回転に連動して回転可能となる。 The generator 10 includes a stator 38 that is fixed to the hub shaft 20 and a rotor 40 that is rotatably supported by the hub shaft 20. The generator 10 is an outer rotor type generator in which the rotor 40 is arranged on the outer peripheral side of the stator 38. Further, the generator 10 is a synchronous generator. The rotor 40 is rotatably provided integrally with the hub 26 which is a part of the front wheel 22. The rotor 40 can rotate in conjunction with the rotation of the front wheels 22.

回転子40は、全体として環状をなす。回転子40は、環状基部42と、環状基部42の固定子38と対向する側である環状基部42の内周側に設けられる複数の回転子突極部44と、を含む回転子コア46を有する。 The rotor 40 forms an annular shape as a whole. The rotor 40 includes a rotor core 46 including an annular base 42 and a plurality of rotor salient poles 44 provided on the inner peripheral side of the annular base 42 facing the stator 38 of the annular base 42. Have.

各回転子突極部44は環状基部42から固定子38と対向する側である径方向内側に向けて突出する。各回転子突極部44は所定の幅wと同等の幅となるように構成される。ここでの「同等」とは、完全に同一である場合と、略同一である場合とを含む。「同等」の解釈は以下も同様である。 Each rotor salient pole 44 projects from the annular base 42 inward in the radial direction on the side facing the stator 38. Each rotor salient pole 44 is configured to have a width equivalent to a predetermined width w. The term "equivalent" here includes the case where they are completely the same and the case where they are substantially the same. The interpretation of "equivalent" is the same as follows.

各回転子突極部44は所定の角度λ(以下、突極ピッチともいう)と同等の角度で周方向にずらした位置に間隔を空けて配置される。回転子突極部44は、本例では、合計20個設けられており、突極ピッチλを18°(=360°/20)としている。この突極ピッチλは発電機10の電気角2πに相当し、回転子40が突極ピッチλだけ回転すると、後述のように、電機子コイル60により一周期分の交流電力が生じる。 The rotor salient poles 44 are arranged at positions shifted in the circumferential direction at an angle equivalent to a predetermined angle λ (hereinafter, also referred to as salient pole pitch) at intervals. In this example, a total of 20 rotor salient poles 44 are provided, and the salient pole pitch λ is set to 18 ° (= 360 ° / 20). This salient pole pitch λ corresponds to the electric angle 2π of the generator 10, and when the rotor 40 rotates by the salient pole pitch λ, the armature coil 60 generates AC power for one cycle as described later.

固定子38は、全体として環状をなす。固定子38は、周方向に間隔を空けて配置される複数の磁石48と、複数の磁石48間につき一つ配置される複数の固定子コア50A、50Bを有する。複数の磁石48と複数の固定子コア50A、50Bは周方向に交互に並べられ、接着等により接合することにより環状を呈する。磁石48と固定子コア50A、50Bとは、本例では、それぞれ合計4個、つまり、偶数個設けられる。 The stator 38 forms an annular shape as a whole. The stator 38 has a plurality of magnets 48 arranged at intervals in the circumferential direction, and a plurality of stator cores 50A and 50B arranged one by each of the plurality of magnets 48. The plurality of magnets 48 and the plurality of stator cores 50A and 50B are alternately arranged in the circumferential direction and are joined by adhesion or the like to form an annular shape. In this example, a total of four magnets 48 and the stator cores 50A and 50B, that is, an even number of magnets 48 are provided.

磁石48は永久磁石である。磁石48は後述の電機子コイル60の界磁に用いる。磁石48は周方向が着磁方向となる。磁石48は周方向に同等の角度をずらした位置に間隔を空けて配置される。周方向に隣り合う複数の磁石48は周方向に対向する磁極が同極となる。磁石48は、周方向に隣り合う固定子コア50A、50Bを径方向に分断するように、径方向に沿って延びる板状に設けられる。 The magnet 48 is a permanent magnet. The magnet 48 is used for the field of the armature coil 60 described later. The circumferential direction of the magnet 48 is the magnetizing direction. The magnets 48 are arranged at intervals at positions shifted by the same angle in the circumferential direction. The magnetic poles of the plurality of magnets 48 adjacent to each other in the circumferential direction have the same poles. The magnet 48 is provided in a plate shape extending along the radial direction so as to divide the stator cores 50A and 50B adjacent to each other in the circumferential direction in the radial direction.

固定子コア50A、50Bや前述の回転子コア46は回転子40の軸方向に複数の金属板を積層して構成される。この金属板は電磁鋼板等の軟磁性体を素材とする。 The stator cores 50A and 50B and the rotor core 46 described above are configured by laminating a plurality of metal plates in the axial direction of the rotor 40. This metal plate is made of a soft magnetic material such as an electromagnetic steel plate.

固定子コア50A、50Bは、周方向に1つおきに配置される一つの磁石48(たとえば、図中上側の磁石48)に対して周方向の一方(図中の時計回り方向)に隣接する第1固定子コア50Aと、その一つの磁石48に対して周方向の他方(図中の反時計回り方向)に隣接する第2固定子コア50Bとを含む。本例では、第1固定子コア50Aは2個、第2固定子コア50Bは2個設けられる。 The stator cores 50A and 50B are adjacent to one of the circumferential directions (clockwise in the drawing) with respect to one magnet 48 (for example, the magnet 48 on the upper side in the drawing) arranged every other in the circumferential direction. It includes a first stator core 50A and a second stator core 50B adjacent to the other magnet 48 in the circumferential direction (counterclockwise in the drawing). In this example, two first stator cores 50A and two second stator cores 50B are provided.

各固定子コア50A、50Bは、周方向に1つおきに配置される磁石48の周方向両側に配置されるコイルスロット部52を有する。コイルスロット部52は複数の磁石48間につき1つ配置されることになる。コイルスロット部52は、各第1固定子コア50A、各第2固定子コア50Bのそれぞれにつき1つ形成される。コイルスロット部52は、回転子40と対向する側である径方向外側から反対側の径方向内側に窪むように形成される。 Each of the stator cores 50A and 50B has coil slot portions 52 arranged on both sides in the circumferential direction of magnets 48 arranged every other in the circumferential direction. One coil slot portion 52 is arranged between the plurality of magnets 48. One coil slot portion 52 is formed for each of the first stator core 50A and each second stator core 50B. The coil slot portion 52 is formed so as to be recessed from the radial outer side on the side facing the rotor 40 to the radial inner side on the opposite side.

各固定子コア50A、50Bは、コイルスロット部52の他に、コイルスロット部52に対して底側に隣接する弧状の磁路接続部54と、コイルスロット部52に対して周方向両側に隣接する磁路部56A、56Bとを有する。磁路接続部54は各磁路部56A、56Bを周方向に接続する。磁路部56A、56Bは回転子40と対向する側である径方向外側に延びる。磁路部56A、56Bは、コイルスロット部52の周方向の一方(図中時計回り方向)に隣接する第1磁路部56Aと、周方向の他方(図中反時計回り方向)に隣接する第2磁路部56Bとを含む。 In addition to the coil slot portion 52, the stator cores 50A and 50B have an arcuate magnetic circuit connection portion 54 adjacent to the bottom side of the coil slot portion 52 and adjacent to both sides in the circumferential direction with respect to the coil slot portion 52. It has magnetic path portions 56A and 56B. The magnetic path connecting portion 54 connects the magnetic path portions 56A and 56B in the circumferential direction. The magnetic path portions 56A and 56B extend radially outward on the side facing the rotor 40. The magnetic path portions 56A and 56B are adjacent to the first magnetic path portion 56A adjacent to one of the circumferential directions of the coil slot portion 52 (clockwise in the drawing) and the other in the circumferential direction (counterclockwise in the drawing). Includes the second magnetic path portion 56B.

図4は発電機10の電機子コイル60を示す断面図である。本図では回転子40の軸方向の一方(紙面手前側)での電機子コイル60の巻き方向Bを併せて示す。固定子38は、各磁石48のそれぞれを周方向に跨ぐように、各磁石48に対して周方向両側に隣り合うコイルスロット部52間に巻き回される電機子コイル60を更に有する。電機子コイル60は複数の磁石48のそれぞれに対応して設けられ、磁石48の数と同数のものが設けられる。電機子コイル60は、対応する磁石48を周方向両側、軸方向両側から取り囲むように巻き回される。 FIG. 4 is a cross-sectional view showing the armature coil 60 of the generator 10. In this figure, the winding direction B of the armature coil 60 in one of the axial directions of the rotor 40 (the front side of the paper surface) is also shown. The stator 38 further has an armature coil 60 wound between coil slot portions 52 adjacent to each magnet 48 on both sides in the circumferential direction so as to straddle each of the magnets 48 in the circumferential direction. The armature coil 60 is provided corresponding to each of the plurality of magnets 48, and the same number as the number of magnets 48 is provided. The armature coil 60 is wound so as to surround the corresponding magnet 48 from both sides in the circumferential direction and both sides in the axial direction.

電機子コイル60は周方向に隣り合うコイルスロット部52間に集中巻きで巻き回されるが、他のコイルスロット部52を経由するように分布巻きで巻き回されてもよい。周方向に隣り合う電機子コイル60は互いに逆向きの巻き方向Bで巻き回されるが、同方向に巻き回されてもよい。 The armature coil 60 is wound in a concentrated winding between the coil slot portions 52 adjacent to each other in the circumferential direction, but may be wound in a distributed winding so as to pass through another coil slot portion 52. The armature coils 60 adjacent to each other in the circumferential direction are wound in the winding directions B opposite to each other, but they may be wound in the same direction.

電機子コイル60には、後述のように、回転子40が回転するとき、同相の交流電力が生じる。各電機子コイル60は電気的に並列に接続され、その出力端は図示しない整流回路に接続され、整流回路には単相の交流電力が出力される。整流回路は交流電力を整流、平滑等して直流電力に変換したうえで、これを外部電気機器としての前照灯24(図1参照)に供給する。なお、各電機子コイル60は電気的に直列に接続されてもよい。 As will be described later, the armature coil 60 generates in-phase AC power when the rotor 40 rotates. Each armature coil 60 is electrically connected in parallel, its output end is connected to a rectifier circuit (not shown), and single-phase AC power is output to the rectifier circuit. The rectifier circuit rectifies and smoothes AC power to convert it into DC power, and then supplies this to the headlight 24 (see FIG. 1) as an external electric device. The armature coils 60 may be electrically connected in series.

ここで、固定子38は、図3に示すように、複数の第1磁路部56Aのそれぞれに回転子40と対向して設けられる第1固定子突極部62Aと、複数の第2磁路部56Bのそれぞれに回転子40と対向して設けられる第2固定子突極部62Bとを有する。各固定子突極部62A、62Bは各磁路部56A、56Bから回転子40と対向する側である径方向外側に向けて突出する。第1固定子突極部62Aは1つの第1磁路部56Aにつき2つ設けられ、第2固定子突極部62Bは1つの第2磁路部56Bにつき2つ設けられる。固定子突極部62A、62Bは、本例では、合計16個設けられる。 Here, as shown in FIG. 3, the stator 38 includes a first stator salient pole 62A provided in each of the plurality of first magnetic path portions 56A so as to face the rotor 40, and a plurality of second magnetic paths. Each of the road portions 56B has a second stator salient pole portion 62B provided so as to face the rotor 40. The stator salient poles 62A and 62B project from the magnetic path portions 56A and 56B toward the outside in the radial direction on the side facing the rotor 40. Two first stator salient poles 62A are provided for each first magnetic path 56A, and two second stator salient poles 62B are provided for each second magnetic path 56B. In this example, a total of 16 stator salient poles 62A and 62B are provided.

各固定子突極部62A、62Bは回転子突極部44に対して径方向に所定のギャップを空けて配置される。各固定子突極部62A、62Bは回転子突極部44の幅wと同等の幅となるように構成される。 The stator salient poles 62A and 62B are arranged with a predetermined gap in the radial direction with respect to the rotor salient pole 44. The stator salient poles 62A and 62B are configured to have a width equivalent to the width w of the rotor salient pole 44.

図5は回転子突極部44、固定子突極部62A、62Bの位置関係を示す図である。本図では、複数の突極部のうちの一部を区別するため、それぞれの符号の末尾に(a)等のアルファベットを付して示す。以下の図でも同様に示す場合がある。 FIG. 5 is a diagram showing the positional relationship between the rotor salient pole portion 44 and the stator salient pole portions 62A and 62B. In this figure, in order to distinguish a part of the plurality of salient poles, alphabets such as (a) are added to the end of each code. The same may be shown in the following figure.

1つの第1磁路部56Aに設けられる複数の第1固定子突極部62Aは、各回転子突極部44の突極ピッチλと同等の角度で周方向にずらした位置に配置される。1つの第2磁路部56Bに設けられる複数の第2固定子突極部62Bも、突極ピッチλと同等の角度で周方向にずらした位置に配置される。また、第1固定子突極部62Aの近傍にて周方向に隣り合う他の第2固定子突極部62Bはλ×1.5と同等の角度で周方向にずらした位置に配置される。 A plurality of first stator salient poles 62A provided in one first magnetic path portion 56A are arranged at positions shifted in the circumferential direction at an angle equivalent to the salient pole pitch λ of each rotor salient pole portion 44. .. A plurality of second stator salient poles 62B provided in one second magnetic path portion 56B are also arranged at positions shifted in the circumferential direction at an angle equivalent to the salient pole pitch λ. Further, the other second stator salient poles 62B adjacent to each other in the circumferential direction in the vicinity of the first stator salient pole 62A are arranged at positions shifted in the circumferential direction at an angle equivalent to λ × 1.5. ..

これにより、第1固定子突極部62Aは、nを1以上の自然数としたとき、他の第1固定子突極部62Aに対して、λ×nと同等の角度で周方向にずらした位置に配置される。たとえば、第1固定子突極部62A(d)は、その時計方向に隣り合う他の第1固定子突極部62A(g)に対してλ×4(=λ×1.5+λ+λ×1.5)でずれており、その反時計方向に隣り合う他の第1固定子突極部62A(c)に対してλ×1.0でずれている。第2固定子突極部62Bも同様に、他の第2固定子突極部62Bに対して、λ×nと同等の角度で周方向にずらした位置に配置される。 As a result, the first stator salient pole portion 62A is displaced in the circumferential direction at an angle equivalent to λ × n with respect to the other first stator salient pole portion 62A when n is a natural number of 1 or more. Placed in position. For example, the first stator salient pole 62A (d) is λ × 4 (= λ × 1.5 + λ + λ × 1.) With respect to other first stator salient poles 62A (g) adjacent to each other in the clockwise direction. It is deviated at 5), and is deviated by λ × 1.0 with respect to the other first stator salient poles 62A (c) adjacent to each other in the counterclockwise direction. Similarly, the second stator salient pole portion 62B is also arranged at a position shifted in the circumferential direction at an angle equivalent to λ × n with respect to the other second stator salient pole portion 62B.

また、第2固定子突極部62Bは、第1固定子突極部62Aに対して、λ×(n+0.5)と同等の角度で周方向にずらした位置に配置される。たとえば、第2固定子突極部62B(e)は、その時計方向に隣り合う第1固定子突極部62A(g)に対してλ×2.5(=λ+λ×1.5)でずれており、その反時計方向に隣り合う第1固定子突極部62A(d)に対してλ×1.5でずれている。 Further, the second stator salient pole portion 62B is arranged at a position shifted in the circumferential direction at an angle equivalent to λ × (n + 0.5) with respect to the first stator salient pole portion 62A. For example, the second stator salient pole portion 62B (e) is displaced by λ × 2.5 (= λ + λ × 1.5) with respect to the first stator salient pole portion 62A (g) adjacent to the clockwise direction. It is offset by λ × 1.5 with respect to the first stator salient poles 62A (d) adjacent to each other in the counterclockwise direction.

以上の発電機10の動作を図6〜図9を用いて説明する。各図は回転子40が電気角でπ/2ずつ方向Pに回転したときの状態を示す。また、図6、図8では回転子コア46等を流れる磁束のうち、主磁束の流れを主に示し、漏れ磁束の流れは省略する。また、図7、図9では、漏れ磁束の流れを示す。以下では図6の位置関係にあるときの電気角が零であり、図7〜図9では電気角がπ/2、π、3π/2であるとする。また、便宜的に、一つの回転子突極部44(a)に「○」印を付して示す。 The operation of the generator 10 described above will be described with reference to FIGS. 6 to 9. Each figure shows a state when the rotor 40 is rotated in the direction P by π / 2 at an electric angle. Further, in FIGS. 6 and 8, among the magnetic fluxes flowing through the rotor core 46 and the like, the flow of the main magnetic flux is mainly shown, and the flow of the leakage flux is omitted. Further, FIGS. 7 and 9 show the flow of the leakage flux. In the following, it is assumed that the electric angle is zero when the positional relationship is shown in FIG. 6, and the electric angles are π / 2, π, and 3π / 2 in FIGS. 7 to 9. Further, for convenience, one rotor salient pole portion 44 (a) is indicated by a “◯” mark.

図6に示すように、電気角が零のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して周方向の全幅に亘り重なる位置にある。また、第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して周方向の全幅に亘り重ならない位置、つまり、周方向にずれた位置にある。言い換えると、第1固定子突極部62Aが近傍の一つの回転子突極部44に対して周方向に重なる範囲(以下、第1重なり範囲という)の方が、第2固定子突極部62Bが近傍の他の回転子突極部44に対して周方向に重なる範囲(以下、第2重なり範囲という)より大きくなる。これにより、第1固定子突極部62Aと回転子突極部44の間の磁気抵抗である第1磁気抵抗R1より、第2固定子突極部62Bと回転子突極部44の間の磁気抵抗である第2磁気抵抗R2が大幅に大きくなる。 As shown in FIG. 6, when the electric angle is zero, the first stator salient pole portion 62A has the total width in the circumferential direction with respect to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps. Further, the second stator salient pole portion 62B is displaced in the circumferential direction at a position where it does not overlap the rotor salient pole portion 44 in the vicinity thereof over the entire width in the circumferential direction when viewed from the radial direction of the rotor 40. Is in the right position. In other words, the range in which the first stator salient pole 62A overlaps with one nearby rotor salient pole 44 in the circumferential direction (hereinafter referred to as the first overlapping range) is the second stator salient pole portion. 62B is larger than the range in which the rotor salient pole portion 44 in the vicinity overlaps in the circumferential direction (hereinafter, referred to as the second overlapping range). As a result, from the first magnetoresistive R1 which is the magnetic resistance between the first stator salient pole portion 62A and the rotor salient pole portion 44, between the second stator salient pole portion 62B and the rotor salient pole portion 44. The second magnetic resistance R2, which is a magnetic resistance, becomes significantly large.

この結果、一つの磁石48から生じる磁束により、その磁石48の一方の磁極面に隣接する第1固定子コア50Aの第1固定子突極部62Aと、他方の磁極面に隣接する第2固定子コア50Bの第1固定子突極部62Aとを通る閉ループの磁路Mpが形成される。たとえば、図中上側の磁石48(b)は、第1固定子コア50A(b)の磁路接続部54→第1固定子コア50A(b)の第1磁路部56A→第1固定子突極部62A(g)→回転子突極部44(g)→回転子40の環状基部42→回転子突極部44(c)、(d)→第1固定子突極部62A(c)、62A(d)→第2固定子コア50B(a)の第1磁路部56Aを経由して元の磁石48(b)に戻る磁路Mpを形成する。 As a result, due to the magnetic flux generated from one magnet 48, the first stator salient pole 62A of the first stator core 50A adjacent to one magnetic pole surface of the magnet 48 and the second stator adjacent to the other magnetic pole surface are fixed. A closed-loop magnetic path Mp is formed that passes through the first stator salient pole portion 62A of the child core 50B. For example, the magnet 48 (b) on the upper side in the drawing is the magnetic path connection portion 54 of the first stator core 50A (b) → the first magnetic path portion 56A of the first stator core 50A (b) → the first stator. Salient pole 62A (g) → rotor salient pole 44 (g) → annular base 42 of rotor 40 → rotor salient pole 44 (c), (d) → first stator salient pole 62A (c) ), 62A (d) → A magnetic path Mp that returns to the original magnet 48 (b) via the first magnetic path portion 56A of the second stator core 50B (a) is formed.

この磁路Mpは各電機子コイル60内を径方向に鎖交するように形成される。このとき、複数の磁石48は周方向に対向する磁極が同極となるため、周方向に隣り合う磁石48により生じる磁路Mpの回転方向は互いに逆向きとなる。たとえば、図中上側の磁石48(b)により生じる磁路Mpは反時計回りとなり、図中左側の磁石48(b)により生じる磁路Mpは時計回りとなる。この結果、一つの電機子コイル60内には別々の磁石48から生じた磁束を同じ向きにして鎖交させられる。たとえば、図中上側の電機子コイル60(b)内には、図中上側の磁石48(b)により生じる磁束と、図中左側の磁石48(a)により生じる磁束とが同じ向きで鎖交させられる。 The magnetic path Mp is formed so as to interlink in each armature coil 60 in the radial direction. At this time, since the magnetic poles of the plurality of magnets 48 facing each other in the circumferential direction are the same pole, the rotation directions of the magnetic paths Mp generated by the magnets 48 adjacent to each other in the circumferential direction are opposite to each other. For example, the magnetic path Mp generated by the magnet 48 (b) on the upper side in the figure is counterclockwise, and the magnetic path Mp generated by the magnet 48 (b) on the left side in the figure is clockwise. As a result, the magnetic fluxes generated by the different magnets 48 are linked in the same direction in one armature coil 60. For example, in the armature coil 60 (b) on the upper side in the figure, the magnetic flux generated by the magnet 48 (b) on the upper side in the figure and the magnetic flux generated by the magnet 48 (a) on the left side in the figure are chained in the same direction. Be made to.

図7に示すように、電気角がπ/2のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の略半幅に亘り重なる位置にある。また、第2固定子突極部62Bも同様である。言い換えると、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲と、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲とが同等となる。これにより、第1磁気抵抗R1、第2磁気抵抗R2が同等の大きさとなる。 As shown in FIG. 7, when the electric angle is π / 2, the first stator salient pole portion 62A is peripheral to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps approximately half the width of the direction. The same applies to the second stator salient pole portion 62B. In other words, the first overlapping range of the first stator salient pole portion 62A with respect to the rotor salient pole portion 44 and the second overlapping range of the second stator salient pole portion 62B with respect to the rotor salient pole portion 44 are equivalent. .. As a result, the first reluctance R1 and the second reluctance R2 have the same magnitude.

この結果、一つの磁石48から生じる磁束により、その磁石48の一方の磁極面に隣接する第1固定子コア50Aの第2固定子突極部62Bと、他方の磁極面に隣接する第2固定子コア50Bの第1固定子突極部62Aとを通る閉ループの磁路Mpが形成される。たとえば、図中上側の磁石48(b)は、第1固定子コア50A(b)の第2磁路部56B→第2固定子突極部62B(e)、(f)→回転子突極部44(e)、44(f)→回転子40の環状基部42→回転子突極部44(c)、44(d)→第1固定子突極部62A(c)、(d)→第2固定子コア50B(a)の第1磁路部56Aを経由して元の磁石48(b)に戻る磁路Mpを形成する。この磁路Mpは各電機子コイル60内を径方向に往復しており、各電機子コイル60内を鎖交しないように形成される。 As a result, due to the magnetic flux generated from one magnet 48, the second stator salient pole 62B of the first stator core 50A adjacent to one magnetic pole surface of the magnet 48 and the second stator adjacent to the other magnetic pole surface are fixed. A closed-loop magnetic path Mp is formed that passes through the first stator salient pole portion 62A of the child core 50B. For example, the magnet 48 (b) on the upper side in the drawing is the second magnetic path portion 56B of the first stator core 50A (b) → the second stator salient pole portion 62B (e), (f) → the rotor salient pole. Parts 44 (e), 44 (f) → annular base 42 of rotor 40 → rotor salient poles 44 (c), 44 (d) → first stator salient poles 62A (c), (d) → A magnetic path Mp that returns to the original magnet 48 (b) via the first magnetic path portion 56A of the second stator core 50B (a) is formed. The magnetic path Mp reciprocates in each armature coil 60 in the radial direction, and is formed so as not to interlink in each armature coil 60.

図8に示すように、電気角がπのとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重ならない位置、つまり、周方向にずれた位置にある。また、第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重なる位置にある。言い換えると、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲よりも、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲の方が大きくなる。これにより、第2磁気抵抗R2より第1磁気抵抗R1が大幅に大きくなる。 As shown in FIG. 8, when the electric angle is π, the first stator salient pole portion 62A is in the circumferential direction with respect to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it does not overlap over the entire width, that is, in a position shifted in the circumferential direction. Further, the second stator salient pole portion 62B is located at a position where it overlaps the rotor salient pole portion 44 in the vicinity thereof over the entire width in the circumferential direction when viewed from the radial direction of the rotor 40. In other words, the second overlapping range of the second stator salient pole 62B with respect to the rotor salient pole 44 is larger than the first overlapping range of the first stator salient pole 62A with respect to the rotor salient pole 44. Become. As a result, the first reluctance R1 becomes significantly larger than the second reluctance R2.

この結果、一つの磁石48から生じる磁束により、その磁石48の一方の磁極面に隣接する第1固定子コア50Aの第2固定子突極部62Bと、他方の磁極面に隣接する第2固定子コア50Bの第2固定子突極部62Bとを通る閉ループの磁路Mpが形成される。たとえば、図中上側の磁石48(b)は、第1固定子コア50A(b)の第2磁路部56B→第2固定子突極部62B(e)、(f)→回転子突極部44(e)、44(f)→回転子40の環状基部42→回転子突極部44(a)、44(t)→第2固定子突極部62B(a)、62B(b)→第2固定子コア50B(a)の磁路接続部54を経由して元の磁石48(b)に戻る磁路Mpを形成する。 As a result, due to the magnetic flux generated from one magnet 48, the second stator salient pole 62B of the first stator core 50A adjacent to one magnetic pole surface of the magnet 48 and the second stator adjacent to the other magnetic pole surface are fixed. A closed-loop magnetic path Mp is formed that passes through the second stator salient pole portion 62B of the child core 50B. For example, the magnet 48 (b) on the upper side in the drawing is the second magnetic path portion 56B of the first stator core 50A (b) → the second stator salient pole portion 62B (e), (f) → the rotor salient pole. Parts 44 (e), 44 (f) → annular base 42 of rotor 40 → rotor salient poles 44 (a), 44 (t) → second stator salient poles 62B (a), 62B (b) → A magnetic path Mp that returns to the original magnet 48 (b) via the magnetic path connecting portion 54 of the second stator core 50B (a) is formed.

この磁路Mpは、各電機子コイル60内を径方向に鎖交するように形成される。このとき、磁路Mpは、電気角が零のとき(図6参照)と比べて、電機子コイル60内を鎖交する向きが径方向の逆向きとなる。 The magnetic path Mp is formed so as to interlink in each armature coil 60 in the radial direction. At this time, in the magnetic path Mp, the direction of interlinking in the armature coil 60 is opposite in the radial direction as compared with the case where the electric angle is zero (see FIG. 6).

図9に示すように、電気角が3π/2のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。また、第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。これにより、第1磁気抵抗R1、第2磁気抵抗R2が同等の大きさとなる。この結果、電気角がπ/2のときと同様の磁路Mpが形成される。 As shown in FIG. 9, when the electric angle is 3π / 2, the first stator salient pole portion 62A is peripheral to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps over half the width in the direction. Further, the second stator salient pole portion 62B is positioned so as to overlap the rotor salient pole portion 44 in the vicinity thereof over a half width in the circumferential direction when viewed from the radial direction of the rotor 40. As a result, the first reluctance R1 and the second reluctance R2 have the same magnitude. As a result, a magnetic path Mp similar to that when the electric angle is π / 2 is formed.

以上のように、電気角が零の状態(以下、第1状態という)のとき、第1磁気抵抗R1より第2磁気抵抗R2が大幅に大きくなり、電気角が3π/2の状態(以下、第2状態という)のとき、第2磁気抵抗R2より第1磁気抵抗R1が大幅に大きくなる。回転子40が回転すると、これら第1状態と第2状態とが交互に切り替わる。 As described above, when the electric angle is zero (hereinafter referred to as the first state), the second reluctance R2 is significantly larger than the first reluctance R1 and the electric angle is 3π / 2 (hereinafter referred to as the first state). In the second state), the first reluctance R1 is significantly larger than the second reluctance R2. When the rotor 40 rotates, the first state and the second state are alternately switched.

図6、図8に示すように、一つの電機子コイル60(たとえば、電機子コイル60(b))では、第1状態のとき、径方向の一方に向けて鎖交する磁路Mpが形成され、第2状態のとき、径方向の他方に向けて鎖交する磁路Mpが形成される。つまり、第1状態と第2状態との間で切り替わると、各電機子コイル60内を鎖交する磁束の径方向での向きが反転するように切り替わり、各電機子コイル60に交流の誘導起電力が生じる。このとき、各電機子コイル60では同相の交流電力が生じる。このように、発電機10では、第1状態と第2状態とが交互に切り替わるように、複数の回転子突極部44及び複数の固定子突極部62A、62Bの位置が定められる。 As shown in FIGS. 6 and 8, in one armature coil 60 (for example, the armature coil 60 (b)), in the first state, a magnetic path Mp interlinking in one direction in the radial direction is formed. In the second state, a magnetic path Mp interlinking with the other in the radial direction is formed. That is, when switching between the first state and the second state, the direction of the magnetic flux interlinking in each armature coil 60 in the radial direction is reversed, and alternating current is induced in each armature coil 60. Power is generated. At this time, AC power of the same phase is generated in each armature coil 60. In this way, in the generator 10, the positions of the plurality of rotor salient poles 44 and the plurality of stator salient poles 62A and 62B are determined so that the first state and the second state are alternately switched.

以上の発電機10の作用効果を説明する。
一般に、発電機の周波数f(Hz)は、回転子の回転速度N(r/min)と、発電機の極数Pとの間で下記の式(1)の関係を満たす。
N=120×f/P ・・・ (1)
The operation and effect of the above generator 10 will be described.
In general, the frequency f (Hz) of the generator satisfies the relationship of the following equation (1) between the rotation speed N (r / min) of the rotor and the number of poles P of the generator.
N = 120 × f / P ・ ・ ・ (1)

本発明者は、本実施形態に係る発電機10において、回転子突極部44の数を2倍した数が発電機の極数Pになる知見を得た。この知見は、図3に示す構造を用いた解析により得られた。この解析では、回転子40の回転速度Nを120(r/min)とし、各電機子コイル60により発電される電力の周波数f(Hz)を求めた。この結果、周波数fは40(Hz)であることが求められ、式(1)より、回転子突極部44の数(20個)を2倍した数が発電機の極数Pとなることが確認された。 The present inventor has obtained the finding that in the generator 10 according to the present embodiment, the number obtained by doubling the number of rotor salient poles 44 is the number of poles P of the generator. This finding was obtained by analysis using the structure shown in FIG. In this analysis, the rotation speed N of the rotor 40 was set to 120 (r / min), and the frequency f (Hz) of the power generated by each armature coil 60 was determined. As a result, the frequency f is required to be 40 (Hz), and from the equation (1), the number of poles P of the generator is obtained by doubling the number (20) of the rotor salient poles 44. Was confirmed.

従って、本実施形態に係る発電機10では、所定の位置に回転子突極部44や固定子突極部62A、62Bが配置されていれば、回転子突極部44の数が増えるほど誘導起電力の周波数が増大し、回転子40の回転速度が小さい場合でも高周波数の交流電力を得やすくなる。なお、誘導起電力の電圧は、電機子コイル60を鎖交する磁束と周波数の積に比例することから、高周波数の交流電力を得られるということは、それだけ高電圧の交流電力を得られることになる。 Therefore, in the generator 10 according to the present embodiment, if the rotor salient poles 44 and the stator salient poles 62A and 62B are arranged at predetermined positions, the number of the rotor salient poles 44 increases. The frequency of the electromotive force increases, and even when the rotation speed of the rotor 40 is low, it becomes easy to obtain high-frequency AC power. Since the voltage of the induced electromotive force is proportional to the product of the magnetic flux interlinking the armature coil 60 and the frequency, the fact that a high frequency AC power can be obtained means that a high voltage AC power can be obtained. become.

また、第1固定子突極部62Aと第2固定子突極部62Bが磁石48やコイルスロット部52を挟んだ位置に設けられ、これらの間隔を離し易くなる。よって、磁石48によりこれらが異なる極性に励磁されても、第1固定子突極部62Aと第2固定子突極部62Bの間での漏れ磁束の発生を抑え易くなる。このため、これらの間での漏れ磁束の発生を抑えつつ、発電機10の回転子40や固定子38の外径寸法を小型化し易くなる。なお、このような第1固定子突極部62Aや第2固定子突極部62Bの間での漏れ磁束の発生を抑えられるということは、電機子コイル60を鎖交する磁束の低減を抑えられ、発電機10により十分な出力の電圧を得やすくなることになる。 Further, the first stator salient pole portion 62A and the second stator salient pole portion 62B are provided at positions sandwiching the magnet 48 and the coil slot portion 52, so that the distance between them can be easily separated. Therefore, even if these are excited to different polarities by the magnet 48, it becomes easy to suppress the generation of leakage flux between the first stator salient pole portion 62A and the second stator salient pole portion 62B. Therefore, it becomes easy to reduce the outer diameter dimension of the rotor 40 and the stator 38 of the generator 10 while suppressing the generation of the leakage flux between them. It should be noted that the fact that the generation of the leakage flux between the first stator salient pole portion 62A and the second stator salient pole portion 62B can be suppressed means that the reduction of the magnetic flux interlinking the armature coil 60 is suppressed. Therefore, it becomes easy to obtain a sufficient output voltage by the generator 10.

また、たとえば、特開2012−182961号に記載のような、固定子の複数の突極部のそれぞれに電機子コイルを巻き回す三相交流発電機では、回転子の磁極数の増大に伴い電機子コイルの数が増大し、それだけ高コストや組み立て性の低下を招く。この点、本実施形態では、高周波数の交流電力を得るうえで、磁石48や電機子コイル60の数を増やさずに回転子突極部44の数を増やすだけでよいため、それだけ部品数を削減でき、低コストにしつつ良好な組み立て性を得られる。 Further, for example, in a three-phase AC generator in which an armature coil is wound around each of a plurality of salient poles of a stator as described in Japanese Patent Application Laid-Open No. 2012-182961, an electric machine is used as the number of magnetic poles of the rotor increases. The number of child coils increases, which leads to high cost and reduced assemblability. In this regard, in the present embodiment, in order to obtain high-frequency AC power, it is only necessary to increase the number of rotor salient poles 44 without increasing the number of magnets 48 and armature coils 60, so the number of parts is increased accordingly. It can be reduced, and good assembleability can be obtained while keeping the cost low.

また、従来のクローポール型発電機では、回転子の磁石から各固定子コアの爪部に流れる磁束は、爪部内で軸方向に向きを変えたうえで爪部の根元部に向けて流れる。この爪部の磁路方向(軸方向)と直交する磁路断面積は、爪部の径方向の厚みや周長に応じて定まる。ここで、発電機の軸長を変えずに外径寸法を小型化した場合、固定子コアの爪部は、軸長が変わらずに周方向に細くなり、磁石と対向するギャップ面が細くなるうえ、径方向の厚みが小さくなる結果、爪部の根元部での磁路断面積が小さくなる。よって、固定子コアの爪部がギャップ面で受け取った磁束は、磁路断面積が小さい爪部の根元部に集中し易くなり、根元部で磁気飽和が発生し易くなる。この結果、電機子コイルを鎖交する磁束が流れにくくなり、発電機により十分な出力の電圧を得にくくなる。 Further, in the conventional claw pole type generator, the magnetic flux flowing from the magnet of the rotor to the claw portion of each stator core is changed in the axial direction in the claw portion and then flows toward the root portion of the claw portion. The magnetic path cross-sectional area orthogonal to the magnetic path direction (axial direction) of the claw portion is determined according to the radial thickness and the peripheral length of the claw portion. Here, when the outer diameter dimension is miniaturized without changing the shaft length of the generator, the claw portion of the stator core becomes thinner in the circumferential direction without changing the shaft length, and the gap surface facing the magnet becomes thinner. Moreover, as a result of the decrease in the radial thickness, the magnetic path cross-sectional area at the base of the claw portion becomes small. Therefore, the magnetic flux received by the claw portion of the stator core at the gap surface tends to be concentrated on the root portion of the claw portion having a small magnetic path cross-sectional area, and magnetic saturation is likely to occur at the root portion. As a result, it becomes difficult for the magnetic flux interlinking the armature coil to flow, and it becomes difficult for the generator to obtain a sufficient output voltage.

この点、本実施形態に係る発電機10では、固定子コア50の固定子突極部62A、62Bには、軸方向ではなく径方向に向けて磁束が流れる。この固定子突極部62A、62Bの磁路方向(径方向)と直交する磁路断面積は、固定子突極部62A、62Bの軸長や周長に応じて定まり、発電機10の外径寸法を小型化した場合でも変化しにくい。このため、発電機10の外径寸法を小型化した場合でも、固定子コア50の軸長を長くすることにより固定子突極部62A、62Bの磁路断面積を確保できる。よって、発電機10の外径寸法を小型化した場合でも、固定子突極部62A、62Bの磁気飽和の発生を抑えられ、電機子コイル50を鎖交する磁束の減少を抑え、発電機10により十分な出力の電圧を得やすくなる。 In this regard, in the generator 10 according to the present embodiment, magnetic flux flows through the stator salient poles 62A and 62B of the stator core 50 in the radial direction instead of the axial direction. The magnetic path cross-sectional area orthogonal to the magnetic path direction (diameter direction) of the stator salient poles 62A and 62B is determined according to the axial length and the peripheral length of the stator salient poles 62A and 62B, and is outside the generator 10. It does not change easily even when the diameter is reduced. Therefore, even when the outer diameter of the generator 10 is reduced, the magnetic path cross-sectional areas of the stator salient poles 62A and 62B can be secured by increasing the axial length of the stator core 50. Therefore, even when the outer diameter of the generator 10 is miniaturized, the generation of magnetic saturation of the stator salient poles 62A and 62B can be suppressed, the decrease of the magnetic flux interlinking the armature coil 50 can be suppressed, and the generator 10 can be suppressed. This makes it easier to obtain a sufficient output voltage.

また、第1状態と第2状態との間で切り替わる度に、1つの磁石48により生じる磁路Mpの電機子コイル60内での向きを反転させることができ、その向きが反転しないよりも電機子コイル60を鎖交する磁束の変化量を大きくでき、それだけ高電圧の交流電力を得やすくなる。また、第1状態と第2状態との間で切り替わる度に、1つの磁石48を用いて1つの電機子コイル60内で生じる磁路Mpの向きを反転させることができるため、磁石48の数を抑えつつも高電圧の交流電力を得やすくなる。 Further, each time the state is switched between the first state and the second state, the direction of the magnetic path Mp generated by one magnet 48 in the armature coil 60 can be reversed, and the direction is not reversed. The amount of change in the magnetic flux interlinking the child coil 60 can be increased, and it becomes easier to obtain high-voltage AC power. Further, each time the state is switched between the first state and the second state, one magnet 48 can be used to reverse the direction of the magnetic path Mp generated in one armature coil 60, so that the number of magnets 48 can be reversed. It becomes easier to obtain high-voltage AC power while suppressing the above.

また、各第1固定子突極部62Aは他の第1固定子突極部62Aに対してλ×nと同等の角度でずれ、各第2固定子突極部62Bは第1固定子突極部62Aに対してλ×(n+0.5)と同等の角度でずれる。よって、回転子突極部44に対する各固定子突極部62A、62Bの相対位置が揃えられ、各磁石48から生じる磁束により形成される磁路Mpの変化の仕方を合わせられ、各電機子コイル60により同相の交流電力を得やすくできる。 Further, each first stator salient pole portion 62A is displaced from the other first stator salient pole portion 62A at an angle equivalent to λ × n, and each second stator salient pole portion 62B is displaced from the other first stator salient pole portion 62B by the first stator protrusion. It deviates from the pole 62A at an angle equivalent to λ × (n + 0.5). Therefore, the relative positions of the stator salient poles 62A and 62B with respect to the rotor salient pole 44 are aligned, the way of changing the magnetic path Mp formed by the magnetic flux generated from each magnet 48 is matched, and each armature coil is matched. With 60, it is possible to easily obtain AC power of the same phase.

また、各固定子コア50A、50Bや回転子コア46を複数の金属板を積層して構成できるため、主磁束が通る部分での渦電流による鉄損を大きく抑えられる。 Further, since the stator cores 50A and 50B and the rotor core 46 can be formed by laminating a plurality of metal plates, iron loss due to eddy current in a portion through which the main magnetic flux passes can be greatly suppressed.

[第2の実施の形態]
図10は第2実施形態に係る発電機10を示す断面図であり、図11は発電機10の電機子コイル60を示す断面図である。回転子40の回転子突極部44は、図3の例では、合計20個設けられたが、本例では合計18個設けられる。突極ピッチλは20°(=360°/18)となる。
[Second Embodiment]
FIG. 10 is a cross-sectional view showing the generator 10 according to the second embodiment, and FIG. 11 is a cross-sectional view showing the armature coil 60 of the generator 10. In the example of FIG. 3, a total of 20 rotor salient poles 44 are provided in the rotor 40, but in this example, a total of 18 rotor salient poles 44 are provided. The salient pole pitch λ is 20 ° (= 360 ° / 18).

固定子38の磁石48と固定子コア50A、50Bとは、図3の例では、それぞれ合計4個設けられたが、本例では、それぞれ合計2個設けられる。また、第1固定子コア50A、第2固定子コア50Bは、図3の例では、それぞれ2個ずつ設けられたが、本例では、それぞれ1個ずつ設けられる。また、第1固定子突極部62A、第2固定子突極部62Bは、図3の例では、第1磁路部56A、第2磁路部56Bに2つずつ設けられたが、本例では4つずつ設けられる。このように、回転子突極部44、固定子突極部62A、62Bの数は特に限られない。 In the example of FIG. 3, a total of four magnets 48 of the stator 38 and the stator cores 50A and 50B are provided, but in this example, a total of two magnets are provided. Further, in the example of FIG. 3, two first stator cores 50A and two second stator cores 50B are provided, but in this example, one each is provided. Further, in the example of FIG. 3, two first stator salient poles 62A and two second stator salient poles 62B are provided in the first magnetic path portion 56A and the second magnetic path portion 56B. In the example, four are provided. As described above, the number of the rotor salient poles 44 and the stator salient poles 62A and 62B is not particularly limited.

以上の発電機10の動作を図12〜図15を用いて説明する。各図は回転子40が電気角でπ/2ずつ方向Pに回転したときの状態を示す。図12、図14では、回転子コア46等を流れる磁束のうち、主磁束の流れを主に示し、漏れ磁束の流れは省略する。また、図13、図15では、漏れ磁束の流れを示す。以下では図12の位置関係にあるときの電気角が零であり、図13〜図15では電気角がπ/2、π、3π/2であるとする。 The operation of the generator 10 described above will be described with reference to FIGS. 12 to 15. Each figure shows a state when the rotor 40 is rotated in the direction P by π / 2 at an electric angle. In FIGS. 12 and 14, among the magnetic fluxes flowing through the rotor core 46 and the like, the flow of the main magnetic flux is mainly shown, and the flow of the leakage flux is omitted. Further, FIGS. 13 and 15 show the flow of the leakage flux. In the following, it is assumed that the electric angle is zero when the positional relationship is shown in FIG. 12, and that the electric angles are π / 2, π, and 3π / 2 in FIGS. 13 to 15.

図12に示すように、電気角が零のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重なる位置にある。第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重ならない位置、つまり、周方向にずれた位置にある。言い換えると、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲の方が、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲より大きくなる。これにより、第1実施形態と同様に、各電機子コイル60内を径方向に鎖交するように閉ループの磁路Mpが形成される。 As shown in FIG. 12, when the electric angle is zero, the first stator salient pole portion 62A is in the circumferential direction with respect to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps over the entire width. The second stator salient pole portion 62B is displaced from the rotor salient pole portion 44 in the vicinity thereof at a position where it does not overlap over the entire width in the circumferential direction, that is, in the circumferential direction when viewed from the radial direction of the rotor 40. In position. In other words, the first overlap range of the first stator salient pole portion 62A with respect to the rotor salient pole portion 44 is larger than the second overlap range of the second stator salient pole portion 62B with respect to the rotor salient pole portion 44. .. As a result, a closed-loop magnetic path Mp is formed so as to radially interlink the inside of each armature coil 60, as in the first embodiment.

図13に示すように、電気角がπ/2のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。また、第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。言い換えると、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲と、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲とが同等となる。これにより、第1実施形態と同様に、各電機子コイル60内を径方向に往復するように閉ループの磁路Mpが形成される。 As shown in FIG. 13, when the electric angle is π / 2, the first stator salient pole portion 62A is peripheral to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps over half the width in the direction. Further, the second stator salient pole portion 62B is positioned so as to overlap the rotor salient pole portion 44 in the vicinity thereof over a half width in the circumferential direction when viewed from the radial direction of the rotor 40. In other words, the first overlapping range of the first stator salient pole portion 62A with respect to the rotor salient pole portion 44 and the second overlapping range of the second stator salient pole portion 62B with respect to the rotor salient pole portion 44 are equivalent. .. As a result, a closed-loop magnetic path Mp is formed so as to reciprocate in the radial direction in each armature coil 60 as in the first embodiment.

図14に示すように、電気角がπのとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重ならない位置、つまり、周方向にずれた位置にある。第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の全幅に亘り重なる位置にある。言い換えると、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲よりも、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲の方が大きくなる。これにより、第1実施形態と同様に、各電機子コイル60内を径方向に鎖交するように閉ループの磁路Mpが形成される。 As shown in FIG. 14, when the electric angle is π, the first stator salient pole portion 62A is in the circumferential direction with respect to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it does not overlap over the entire width, that is, in a position shifted in the circumferential direction. The second stator salient pole portion 62B is located at a position where it overlaps the rotor salient pole portion 44 in the vicinity thereof over the entire width in the circumferential direction when viewed from the radial direction of the rotor 40. In other words, the second overlapping range of the second stator salient pole 62B with respect to the rotor salient pole 44 is larger than the first overlapping range of the first stator salient pole 62A with respect to the rotor salient pole 44. Become. As a result, a closed-loop magnetic path Mp is formed so as to radially interlink the inside of each armature coil 60, as in the first embodiment.

図15に示すように、電気角が3π/2のとき、第1固定子突極部62Aは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。また、第2固定子突極部62Bは、回転子40の径方向から見て、その近傍の回転子突極部44に対して、周方向の半幅に亘り重なる位置にある。これにより、電気角がπ/2のときと同様の磁路Mpが形成される。 As shown in FIG. 15, when the electric angle is 3π / 2, the first stator salient pole portion 62A is peripheral to the rotor salient pole portion 44 in the vicinity thereof when viewed from the radial direction of the rotor 40. It is in a position where it overlaps over half the width in the direction. Further, the second stator salient pole portion 62B is positioned so as to overlap the rotor salient pole portion 44 in the vicinity thereof over a half width in the circumferential direction when viewed from the radial direction of the rotor 40. As a result, a magnetic path Mp similar to that when the electric angle is π / 2 is formed.

本発明者は、以上の発電機10においても、回転子突極部44の数を2倍した数が発電機の極数Pになる知見を得た。この知見は、図10に示す構造を用いた解析により得られた。この解析では、回転子40の回転速度Nを120(r/min)とし、各電機子コイル60により発電される電力の周波数f(Hz)を求めた。この結果、周波数fは36(Hz)であることが求められ、式(1)より、回転子突極部44の数(18個)を2倍した数が発電機の極数Pとなることが確認された。 The present inventor has obtained the finding that even in the above generator 10, the number obtained by doubling the number of rotor salient poles 44 becomes the number of poles P of the generator. This finding was obtained by analysis using the structure shown in FIG. In this analysis, the rotation speed N of the rotor 40 was set to 120 (r / min), and the frequency f (Hz) of the power generated by each armature coil 60 was determined. As a result, the frequency f is required to be 36 (Hz), and from the equation (1), the number of poles P of the generator is obtained by doubling the number (18) of the rotor salient poles 44. Was confirmed.

従って、本実施形態に係る発電機10によっても、第1実施形態と同様、回転子突極部44の数が増えるほど誘導起電力の周波数が増大し、回転子40の回転速度が小さい場合でも高周波数の交流電力を得やすくなる。この他の点でも、第1実施形態と同様の作用効果を得られる。 Therefore, also in the generator 10 according to the present embodiment, as in the first embodiment, the frequency of the induced electromotive force increases as the number of the rotor salient poles 44 increases, and even when the rotation speed of the rotor 40 is small. It becomes easier to obtain high-frequency AC power. In other respects as well, the same effect as that of the first embodiment can be obtained.

以上、実施の形態に基づき本発明を説明したが、実施の形態は、本発明の原理、応用を示すにすぎない。また、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。 Although the present invention has been described above based on the embodiments, the embodiments merely show the principles and applications of the present invention. Further, in the embodiment, many modifications and arrangements can be changed without departing from the idea of the present invention defined in the claims.

発電機10は自転車用発電機を例に説明したが、その用途はこれに限られない。また、発電機10は、自転車用発電機とする場合、自転車12の回転部の回転に連動して回転子40が回転可能であればよい。ここでの回転部は、車輪としての前輪22を例に説明したが、ハブシェル、クランクの他、リアディレイラー(チェーンテンショナー)のプーリー等でもよい。また、発電機10は、ハブダイナモではなくローラーダイナモ等として構成されてもよい。発電機10はアウターロータ型発電機を例示したが、固定子38の内周側に回転子40が配置されるインナーロータ型発電機でもよい。 Although the generator 10 has been described by taking a bicycle generator as an example, its use is not limited to this. Further, when the generator 10 is a bicycle generator, the rotor 40 may be rotatable in conjunction with the rotation of the rotating portion of the bicycle 12. Although the front wheel 22 as a wheel has been described as an example of the rotating portion here, a hub shell, a crank, a pulley of a rear derailleur (chain tensioner), or the like may be used. Further, the generator 10 may be configured as a roller dynamo or the like instead of a hub dynamo. Although the generator 10 is an outer rotor type generator, it may be an inner rotor type generator in which the rotor 40 is arranged on the inner peripheral side of the stator 38.

固定子38は、第1固定子コア50A、第2固定子コア50Bが別体に構成される例を説明したが、これらが一体に構成されてもよい。また、固定子突極部62A、62Bの幅は、回転子突極部44の幅wと同等である例を説明したが、回転子突極部44の幅w以下でもよいし、回転子突極部44の幅w以上でもよい。 As for the stator 38, an example in which the first stator core 50A and the second stator core 50B are separately configured has been described, but these may be integrally configured. Further, although the example in which the widths of the stator salient poles 62A and 62B are the same as the width w of the rotor salient pole 44 has been described, the width w of the rotor salient pole 44 or less may be used, or the rotor protrusion The width w of the pole portion 44 or more may be used.

回転子突極部44、固定子突極部62A、62Bの位置は、図示の例に限られず、第1磁気抵抗より第2磁気抵抗が大きい第1状態と、第2磁気抵抗より第1磁気抵抗が大きい第2状態とが交互に切り替わるように定められていればよい。 The positions of the rotor salient poles 44 and the stator salient poles 62A and 62B are not limited to the illustrated examples, and are the first state in which the second reluctance is larger than the first reluctance and the first magnetism than the second reluctance. It suffices if it is set so that the second state having a large resistance is alternately switched.

この条件を満たすうえで、第1状態では、第1固定子突極部62Aの回転子突極部44に対する第1重なり範囲の方が、第2固定子突極部62Bの回転子突極部44に対する第2重なり範囲より大きくなるようにしてもよい。また、この条件を満たすうえで、第2状態では、第1重なり範囲よりも第2重なり範囲の方が大きくなるようにしてもよい。 In order to satisfy this condition, in the first state, the first overlapping range of the first stator salient pole portion 62A with respect to the rotor salient pole portion 44 is the rotor salient pole portion of the second stator salient pole portion 62B. It may be larger than the second overlap range with respect to 44. Further, in order to satisfy this condition, in the second state, the second overlapping range may be larger than the first overlapping range.

たとえば、図6、図12では、第1状態にあるとき、第1重なり範囲は第1固定子突極部62Aの周方向の全幅に亘る範囲であり、第2重なり範囲はない例を説明した。この他にも、第1状態にあるとき、たとえば、第1重なり範囲は図示の例と同じ範囲としつつ、第2重なり範囲は、第2固定子突極部62Bの近傍の回転子突極部44に対して、第2固定子突極部62Bの半幅以下の範囲に亘り重なる範囲としてもよい。このとき、第2固定子突極部62Bは、第1重なり範囲よりも第2重なり範囲の方が小さくなるように、一つの回転子突極部44に対して周方向にずれた位置にあることになる。 For example, in FIGS. 6 and 12, when in the first state, the first overlapping range is the range extending over the entire width of the first stator salient pole portion 62A in the circumferential direction, and there is no second overlapping range. .. In addition to this, when in the first state, for example, the first overlapping range is the same as the illustrated example, while the second overlapping range is the rotor salient pole portion in the vicinity of the second stator salient pole portion 62B. It may be a range that overlaps with 44 over a range of half the width or less of the second stator salient pole portion 62B. At this time, the second stator salient pole portion 62B is located at a position displaced in the circumferential direction with respect to one rotor salient pole portion 44 so that the second overlapping range is smaller than the first overlapping range. It will be.

同様に、図8、図14では、第2状態にあるとき、第1重なり範囲はなく、第2重なり範囲は第2固定子突極部62Bの周方向の全幅に亘る範囲である例を説明した。この他にも、第2状態にあるとき、たとえば、第2重なり範囲は図示の例と同じ範囲としつつ、第1重なり範囲は、第1固定子突極部62Aの近傍の回転子突極部44に対して、第1固定子突極部62Aの半幅以下の範囲に亘り重なる範囲としてもよい。 Similarly, in FIGS. 8 and 14, when in the second state, there is no first overlapping range, and the second overlapping range is a range extending over the entire width of the second stator salient pole portion 62B in the circumferential direction. did. In addition to this, when in the second state, for example, the second overlapping range is the same as the illustrated example, while the first overlapping range is the rotor salient pole portion in the vicinity of the first stator salient pole portion 62A. It may be a range that overlaps with 44 over a range of half the width or less of the first stator salient pole portion 62A.

10…発電機、12…自転車、22…前輪(回転部)、26…ハブ、38…固定子、40…回転子、44…回転子突極部、46…回転子コア、48…磁石、50A…第1固定子コア、50B…第2固定子コア、52…コイルスロット部、56A…第1磁路部、56B…第2磁路部、60…電機子コイル、62A…固定子突極部、62A…第1固定子突極部、62B…第2固定子突極部。 10 ... Generator, 12 ... Bicycle, 22 ... Front wheel (rotor), 26 ... Hub, 38 ... Stator, 40 ... Rotor, 44 ... Rotor salient pole, 46 ... Rotor core, 48 ... Magnet, 50A ... 1st stator core, 50B ... 2nd stator core, 52 ... Coil slot part, 56A ... 1st magnetic path part, 56B ... 2nd magnetic path part, 60 ... Armor coil, 62A ... Stator salient pole part , 62A ... 1st stator salient pole, 62B ... 2nd stator salient pole.

Claims (4)

回転子と、
周方向に間隔を空けて配置され、周方向に対向する磁極が同極となる複数の磁石と、前記磁石の周方向両側に配置される複数の固定子コアと、前記複数の固定子コアそれぞれに設けられるコイルスロット部と、前記磁石を周方向に跨ぐように前記コイルスロット部間に巻き回される電機子コイルと、を有する固定子と、を備え、
前記磁石は、前記磁石の周方向両側に隣り合う前記複数の固定子コアを径方向に分断するように設けられ、
前記回転子は、周方向に間隔を空けて形成される複数の回転子突極部を含む回転子コアを有し、
前記固定子コアは、複数の第1固定子突極部と複数の第2固定子突極部とを有し、
前記第1固定子突極部は、前記コイルスロット部に対して周方向の一方に隣接する磁路部に前記回転子と対向して設けられ、
前記第2固定子突極部は、前記コイルスロット部に対して周方向の他方に隣接する磁路部に前記回転子と対向して設けられ、
前記複数の回転子突極部は、所定の角度λと同等の角度で周方向にずらした位置に配置され、
前記第1固定子突極部は、他の第1固定子突極部に対してλ×n(nは1以上の自然数)と同等の角度で周方向にずらした位置に配置され、
前記第2固定子突極部は、前記第1固定子突極部に対してλ×(n+0.5)と同等の角度で周方向にずらした位置に配置され、
1状態と、第2状態とが交互に切り替わるように、前記複数の回転子突極部、前記第1固定子突極部及び前記第2固定子突極部の位置が定められ、
前記第1状態にあるとき、全ての前記第1固定子突極部は、その近傍の前記回転子突極部に対して周方向の全幅に亘り重なる位置にあり、全ての前記第2固定子突極部は、その近傍の前記回転子突極部に対して周方向の全幅に亘り重ならない位置にあり、
前記第2状態にあるとき、全ての前記第1固定子突極部は、その近傍の前記回転子突極部に対して周方向の全幅に亘り重ならない位置にあり、全ての前記第2固定子突極部は、その近傍の前記回転子突極部に対して周方向の全幅に亘り重なる位置にあることを特徴とする発電機。
Rotor and
Circumferentially arranged at intervals, and a plurality of magnets are opposite poles in the circumferential direction becomes the same polarity, and a plurality of stator cores that will be arranged in the circumferential direction on both sides of the magnet, wherein the plurality of stator cores, respectively A stator having an armature coil provided in the coil slot portion and an armature coil wound between the coil slot portions so as to straddle the magnet in the circumferential direction.
The magnet is provided so as to radially divide the plurality of stator cores adjacent to each other on both sides in the circumferential direction of the magnet.
The rotor has a rotor core including a plurality of rotor salient poles formed at intervals in the circumferential direction.
The stator core has a plurality of first stator salient poles and a plurality of second stator salient poles.
The first stator salient pole portion is provided in a magnetic path portion adjacent to one of the coil slot portions in the circumferential direction so as to face the rotor.
The second stator salient pole portion is provided in a magnetic path portion adjacent to the other in the circumferential direction with respect to the coil slot portion so as to face the rotor.
The plurality of rotor salient poles are arranged at positions shifted in the circumferential direction at an angle equivalent to a predetermined angle λ.
The first stator salient pole portion is arranged at a position shifted in the circumferential direction at an angle equivalent to λ × n (n is a natural number of 1 or more) with respect to the other first stator salient pole portion.
The second stator salient pole portion is arranged at a position shifted in the circumferential direction at an angle equivalent to λ × (n + 0.5) with respect to the first stator salient pole portion.
The positions of the plurality of rotor salient poles, the first stator salient pole, and the second stator salient pole are determined so that the first state and the second state are alternately switched.
When in the first state, all the first stator salient poles are positioned so as to overlap the rotor salient poles in the vicinity over the entire width in the circumferential direction, and all the second stators. The salient pole portion is located at a position where it does not overlap with the rotor salient pole portion in the vicinity over the entire width in the circumferential direction.
In the second state, all the first stator salient poles are at positions that do not overlap the rotor salient poles in the vicinity over the entire width in the circumferential direction, and all the second stator poles are fixed. The child salient pole portion is a generator characterized in that it is located at a position where it overlaps the rotor salient pole portion in the vicinity thereof over the entire width in the circumferential direction .
前記回転子コア及び前記固定子コアは、前記回転子の回転中心の軸線方向に複数の金属板を積層して構成されることを特徴とする請求項1に記載の発電機。 The generator according to claim 1, wherein the rotor core and the stator core are formed by laminating a plurality of metal plates in the axial direction of the rotation center of the rotor. 本発電機は、自転車の回転部の回転に連動して前記回転子が回転可能な自転車用発電機であることを特徴とする請求項1からのいずれかに記載の発電機。 The generator according to any one of claims 1 to 2 , wherein the generator is a bicycle generator in which the rotor can rotate in conjunction with the rotation of a rotating portion of the bicycle. 本発電機は、自転車のハブダイナモであることを特徴とする請求項に記載の発電機。 The generator according to claim 3 , wherein the generator is a hub dynamo for a bicycle.
JP2015023222A 2015-02-09 2015-02-09 Generator Active JP6788957B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015023222A JP6788957B2 (en) 2015-02-09 2015-02-09 Generator
CN201610010636.3A CN105871092B (en) 2015-02-09 2016-01-08 Generator
DE102016201848.5A DE102016201848B4 (en) 2015-02-09 2016-02-08 generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023222A JP6788957B2 (en) 2015-02-09 2015-02-09 Generator

Publications (2)

Publication Number Publication Date
JP2016146712A JP2016146712A (en) 2016-08-12
JP6788957B2 true JP6788957B2 (en) 2020-11-25

Family

ID=56498312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023222A Active JP6788957B2 (en) 2015-02-09 2015-02-09 Generator

Country Status (3)

Country Link
JP (1) JP6788957B2 (en)
CN (1) CN105871092B (en)
DE (1) DE102016201848B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109572802B (en) * 2017-09-29 2020-08-07 比亚迪股份有限公司 Vehicle steering system and storage vehicle
EP3605801B1 (en) * 2018-07-31 2022-06-15 GE Renewable Technologies Rotor for a synchronous generator
CN109302101B (en) * 2018-08-28 2025-01-24 杨济阁 Rare earth permanent magnet magnetic suspension AC and DC wheel hub motor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150960A (en) * 1980-03-11 1981-11-21 Bosch Gmbh Robert Generator
JPH0648341A (en) * 1992-07-31 1994-02-22 Isonic:Kk Dynamo for bicycle
FR2762158B1 (en) 1997-04-14 1999-06-25 Valeo Equip Electr Moteur POLYPHASE BRUSHED MACHINE, ESPECIALLY A MOTOR VEHICLE ALTERNATOR
JP2001037189A (en) * 1999-07-27 2001-02-09 Sankyo Seiki Mfg Co Ltd Dynamo-electric machine
JP2001275321A (en) * 2000-03-27 2001-10-05 Shr Ltd Bvi Inductor type ac power generator
JP4207386B2 (en) * 2000-12-28 2009-01-14 株式会社デンソー Inductor-type electric machine with magnet-equipped armature
JP4250878B2 (en) * 2001-08-08 2009-04-08 パナソニック株式会社 Vernier type brushless motor
JP2003284305A (en) * 2002-03-20 2003-10-03 Japan Servo Co Ltd Three-phase brushless motor with inductor type core armature
JP4111966B2 (en) 2005-08-10 2008-07-02 三洋電機株式会社 Bicycle dynamo and bicycle lighting device equipped with the bicycle dynamo
DE102005045348A1 (en) * 2005-09-22 2007-04-05 Siemens Ag Tooth module for a permanent magnet excited primary part of an electrical machine
CN101562384B (en) 2009-05-14 2011-01-05 浙江大学 Magnetic-field-enhanced permanent-magnetic switching flux linkage motor with high fault tolerance
JP2012182961A (en) * 2011-03-03 2012-09-20 Sanyo Electric Co Ltd Hub dynamo for bicycle
DE102011121174B4 (en) 2011-12-16 2014-04-03 Eads Deutschland Gmbh Electric machine, in particular for aircraft
JP2013207979A (en) * 2012-03-29 2013-10-07 Panasonic Corp Rotary machine, driving method of motor and motor driving system
WO2013157165A1 (en) 2012-04-20 2013-10-24 三菱電機株式会社 Permanent magnet type rotating electrical machine and method for manufacturing same
CN103051138B (en) * 2012-12-20 2015-04-15 东南大学 Multi-tooth magnetic flux switching permanent magnetic memory motor
CN203289210U (en) * 2013-05-15 2013-11-13 东南大学 A mixed excitation-type stator surface mounting-type double-salient-pole motor

Also Published As

Publication number Publication date
DE102016201848A1 (en) 2016-08-11
DE102016201848B4 (en) 2025-01-02
JP2016146712A (en) 2016-08-12
CN105871092A (en) 2016-08-17
CN105871092B (en) 2019-07-05

Similar Documents

Publication Publication Date Title
JP6592234B2 (en) Single phase brushless motor
WO2013047076A1 (en) Rotating electric machine
US10622853B2 (en) Synchronous reluctance type rotary electric machine
JP2011010375A (en) Axial motor
JP6241444B2 (en) Magnetless rotating electric machine
CN106487140B (en) Rotating electric machine
JP6569396B2 (en) Rotating electric machine
JP2018082600A (en) Double rotor type rotating electrical machine
JP6788957B2 (en) Generator
JP2014100054A (en) Transverse flux electric motor
JP6766575B2 (en) Rotating electric machine
JP5782850B2 (en) Electromagnetic rotating electric machine
CN103532328A (en) Rotating electrical machine
JP6766574B2 (en) Rotating electric machine
JP5143119B2 (en) Printing machine or electrical machine for printing machine
JP2012125021A (en) Axial gap rotating machine
JP6561693B2 (en) Rotating electric machine
JP2012019605A (en) Permanent magnet rotating electrical machine
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
JP6894661B2 (en) Generator
WO2018221449A1 (en) Electric motor
JP5708566B2 (en) Electromagnetic coupling
JP2016067138A (en) Dynamo-electric machine
JP2016158318A (en) Rotating electric machine
JP2016167898A (en) Synchronous drive motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190628

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190702

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190816

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190820

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200128

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200519

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200901

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201006

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6788957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250