[go: up one dir, main page]

JP6767041B2 - Tapered TEM horn antenna - Google Patents

Tapered TEM horn antenna Download PDF

Info

Publication number
JP6767041B2
JP6767041B2 JP2016171431A JP2016171431A JP6767041B2 JP 6767041 B2 JP6767041 B2 JP 6767041B2 JP 2016171431 A JP2016171431 A JP 2016171431A JP 2016171431 A JP2016171431 A JP 2016171431A JP 6767041 B2 JP6767041 B2 JP 6767041B2
Authority
JP
Japan
Prior art keywords
antenna
tem horn
gain
horn antenna
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171431A
Other languages
Japanese (ja)
Other versions
JP2018037969A (en
Inventor
勝茂 張間
勝茂 張間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2016171431A priority Critical patent/JP6767041B2/en
Publication of JP2018037969A publication Critical patent/JP2018037969A/en
Application granted granted Critical
Publication of JP6767041B2 publication Critical patent/JP6767041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

本発明は、広帯域で最大放射方向とアンテナの正面方向を一致させ、EMC試験用アンテナ(例えば、近接放射イミュニティ試験法における電界印加用アンテナ、放射エミッション測定における電界測定用アンテナ等)として好適なテーパーTEMホーンアンテナに関する。 In the present invention, the maximum radiation direction and the front direction of the antenna are matched in a wide band, and the taper is suitable as an EMC test antenna (for example, an antenna for applying an electric field in a proximity radiation immunity test method, an antenna for measuring an electric field in radiation emission measurement, etc.). Regarding TEM horn antenna.

従来より、テーパー状のアンテナ素子を備えるTEMホーンアンテナが知られている。TEMホーンアンテナは、アンテナ給電部とホーンの開口部までをテーパー構造で構成する。その際、反射の影響を最小にするため,給電部と開口面の特性インピーダンスを整合する必要がある。このため、テーパー状アンテナ素子上に抵抗を装荷した抵抗装荷型TEMアンテナが用いられている(例えば、非特許文献1、非特許文献2を参照)。 Conventionally, a TEM horn antenna having a tapered antenna element has been known. The TEM horn antenna has a tapered structure up to the antenna feeding portion and the opening of the horn. At that time, in order to minimize the influence of reflection, it is necessary to match the characteristic impedance of the feeding part and the opening surface. For this reason, a resistance-loaded TEM antenna in which a resistor is loaded on the tapered antenna element is used (see, for example, Non-Patent Document 1 and Non-Patent Document 2).

また、非特許文献1,2に記載された抵抗装荷型TEMホーンアンテナは、EMC試験のうち近接放射イミュニティ試験法において,電界印加用アンテナとして使用が検討されている(例えば、非特許文献3を参照)。しかし、抵抗装荷型TEMホーンアンテナは、テーパー状アンテナ素子上の抵抗によって、放射効率が低下するという問題がある。この放射効率低下という欠点から、抵抗装荷型TEMホーンアンテナは、放射エミッション測定における電界測定用アンテナとしても適切ではない。 Further, the resistance-loaded TEM horn antenna described in Non-Patent Documents 1 and 2 is being studied for use as an electric field application antenna in the proximity radiation immunity test method among EMC tests (for example, Non-Patent Document 3). reference). However, the resistance-loaded TEM horn antenna has a problem that the radiation efficiency is lowered due to the resistance on the tapered antenna element. Due to this drawback of reduced radiation efficiency, the resistance-loaded TEM horn antenna is not suitable as an antenna for electric field measurement in radiation emission measurement.

一方、抵抗装荷の必要が無い指数関数状のテーパー構造をもつ指数関数テーパーTEMホーンアンテナが提案されている(例えば、非特許文献4を参照)。この非特許文献4に記載の指数関数テーパーTEMホーンアンテナによれば、抵抗装荷型TEMホーンアンテナのように放射効率が低下するという問題が無い。 On the other hand, an exponential taper TEM horn antenna having an exponential taper structure that does not require resistance loading has been proposed (see, for example, Non-Patent Document 4). According to the exponential taper TEM horn antenna described in Non-Patent Document 4, there is no problem that the radiation efficiency is lowered unlike the resistance-loaded TEM horn antenna.

M. Kanda, 「The Effects of Resistive Loading of “TEM” Horns」, IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,MAY 1982. VOL. EMC−24, NO. 2,p.245−255M. Kanda, "The Effects of Resistive Loading of" TEM "Horns", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, MAY 1982. VOL. EMC-24, NO. 2, p. 245-255 C.A.Grosvenor, R.T. Johnk, D.R. Novotny, D.R. Canles, S. Canales, B. Davis, and J. Veneman,“TEM Horn Antenna Design Principles”, NIST Technical Note 1544, Jan. 2007.C. A. Grosvenor, R.M. T. Johnk, D.M. R. Novotny, D.I. R. Canles, S.A. Canales, B. Davis, and J. et al. Veneman, "TEM Horn Antenna Design Principles", NIST Technical Note 1544, Jan. 2007. IEC CDV 61000−4−39 − ELECTROMAGNETIC COMPATIBILITY (EMC) − Part 4−39: Testing and measurement techniques − Radiated fields in close proximity − Immunity test, 2015.IEC CDV 61000-4-39-ELECTROMAGNETIC COMPATIBILITY (EMC) -Part 4-39: Testing and measurement techniques-Radiated fields in cross-immunity. H. Choi and S. Lee, “DESIGN OF AN EXPONENTIALLY TAPERED TEM HORN ANTENNA FOR THE WIDE BROADBAND COMMUNICATION”, MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, March 2004. Vol.40, No.6, pp.531−534H. Choi and S. Lee, "DESIGN OF AN EXPONENTIALLY TAPERED TEM HORN ANTENNA FOR THE WIDE BROADBAND COMMUNICATION", MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, M Vol. 40, No. 6, pp. 531-534

しかしながら、上記非特許文献4に記載された発明では、特定の周波数帯で最大放射方向がアンテナの正面方向と一致しない問題がある。このように、放射指向性が劣化する周波数帯があると、1つの指数関数テーパーTEMホーンアンテナで広帯域の電界印加、或いは電界測定を適正に行うことができない。よって、指数関数テーパーTEMホーンアンテナは、EMC試験の近接放射イミュニティ試験法における電界印加用アンテナ、或いは放射エミッション測定における電界測定用アンテナには適さないのである。 However, the invention described in Non-Patent Document 4 has a problem that the maximum radiation direction does not match the front direction of the antenna in a specific frequency band. As described above, if there is a frequency band in which the radiation directivity deteriorates, it is not possible to properly apply a wide band electric field or measure the electric field with one exponential taper TEM horn antenna. Therefore, the exponential taper TEM horn antenna is not suitable for the electric field application antenna in the proximity radiation immunity test method of the EMC test or the electric field measurement antenna in the radiation emission measurement.

そこで、本発明は、広帯域で最大放射方向とアンテナの正面方向を一致させ、EMC試験用アンテナ(近接放射イミュニティ試験法における電界印加用アンテナ、放射エミッション測定における電界測定用アンテナ等)として好適なテーパーTEMホーンアンテナの提供を目的とする。 Therefore, in the present invention, the maximum radiation direction and the front direction of the antenna are matched in a wide band, and the taper is suitable as an EMC test antenna (antenna for applying an electric field in the proximity radiation immunity test method, an antenna for measuring an electric field in radiation emission measurement, etc.). An object of the present invention is to provide a TEM horn antenna.

前記課題を解決するために、請求項1に係るテーパーTEMホーンアンテナは、給電部の入力インピーダンスから開口面の特性インピーダンスまで連続的なインピーダンス変化が生ずるように、目的とする最低周波数に基づくアンテナ長Lで一対のアンテナ素子を設計した指数関数テーパーTEMホーンアンテナに対し、0.06L〜0.11Lの範囲より定めた切り取り長Lcだけ両アンテナ素子の開口面側から均等に切除することで、アンテナ長Ls(Ls=L−Lc)となる一対の短縮アンテナ素子を備えるようにしたことを特徴とする。 In order to solve the above problems, the tapered TEM horn antenna according to claim 1 has an antenna length based on a target minimum frequency so that a continuous impedance change occurs from the input impedance of the feeding portion to the characteristic impedance of the opening surface. For an exponentially tapered TEM horn antenna in which a pair of antenna elements are designed with L, the antenna is cut evenly from the opening surface side of both antenna elements by the cutting length Lc determined from the range of 0.06L to 0.11L. It is characterized in that it is provided with a pair of shortened antenna elements having a length Ls (Ls = L-Lc).

本発明に係るテーパーTEMホーンアンテナによれば、広帯域で最大放射方向とアンテナの正面方向を一致させることができ、EMC試験用アンテナ(近接放射イミュニティ試験法における電界印加用アンテナ、放射エミッション測定における電界測定用アンテナ等)として好適である。 According to the tapered TEM horn antenna according to the present invention, the maximum radiation direction and the front direction of the antenna can be matched in a wide band, and the EMC test antenna (antenna for applying an electric field in the proximity radiation immunity test method, electric field in radiation emission measurement). It is suitable as a measurement antenna, etc.).

(a)は、本発明に係るテーパーTEMホーンアンテナの実施形態を示す構成図である。(b)は、本実施形態に係るテーパーTEMホーンアンテナのベースとなる指数関数テーパーTEMホーンアンテナを示す構成図である。(A) is a block diagram which shows the embodiment of the taper TEM horn antenna which concerns on this invention. (B) is a block diagram showing an exponential taper TEM horn antenna which is a base of the taper TEM horn antenna according to the present embodiment. (a)は、指数関数テーパーTEMホーンアンテナの基本概念である指数関数テーパー伝送線路の説明図である。(b)は、指数関数テーパーTEMホーンアンテナの側面図である。(c)は、指数関数テーパーTEMホーンアンテナの平面(底面)図である。(A) is an explanatory diagram of an exponential taper transmission line, which is a basic concept of an exponential taper TEM horn antenna. (B) is a side view of an exponential taper TEM horn antenna. (C) is a plan view (bottom surface) of an exponential taper TEM horn antenna. 指数関数テーパーTEMホーンアンテナ(切り取り長Lc=L×0%)におけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in an exponential taper TEM horn antenna (cut length Lc = L × 0%). 切り取り長Lc=L×2%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 2%. 切り取り長Lc=L×4%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 4%. 切り取り長Lc=L×6%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 6%. 切り取り長Lc=L×8%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 8%. 切り取り長Lc=L×10%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 10%. 切り取り長Lc=L×15%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 15%. 切り取り長Lc=L×20%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と最大放射利得とを示す利得−周波数特性図である。FIG. 5 is a gain-frequency characteristic diagram showing a gain in the front direction of the antenna and a maximum radiation gain in a tapered TEM horn antenna provided with a shortened antenna element having a cut length Lc = L × 20%. 切り取り長Lc=L×6%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in a tapered TEM horn antenna provided with a shortened antenna element with a cut length Lc = L × 6% and the gain in the front direction of the antenna in an exponential function tapered TEM horn antenna with an antenna length L. Is. 切り取り長Lc=L×8%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in a tapered TEM horn antenna provided with a shortened antenna element with a cut length Lc = L × 8% and the gain in the front direction of the antenna in an exponential function tapered TEM horn antenna with an antenna length L. Is. 切り取り長Lc=L×10%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in a tapered TEM horn antenna provided with a shortened antenna element with a cut length Lc = L × 10% and the gain in the front direction of the antenna in an exponential function tapered TEM horn antenna with an antenna length L. Is. 切り取り長Lc=L×11%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in the tapered TEM horn antenna provided with the shortened antenna element with the cut length Lc = L × 11% and the gain in the front direction of the antenna in the exponential function tapered TEM horn antenna of the antenna length L. Is. 切り取り長Lc=L×12%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in a tapered TEM horn antenna provided with a shortened antenna element with a cut length Lc = L × 12% and the gain in the front direction of the antenna in an exponential function tapered TEM horn antenna with an antenna length L. Is. 切り取り長Lc=L×15%とした短縮アンテナ素子を備えるテーパーTEMホーンアンテナにおけるアンテナ正面方向の利得と、アンテナ長Lの指数関数テーパーTEMホーンアンテナにおけるアンテナ正面方向の利得を示す利得−周波数特性図である。Gain-frequency characteristic diagram showing the gain in the front direction of the antenna in a tapered TEM horn antenna provided with a shortened antenna element with a cut length Lc = L × 15% and the gain in the front direction of the antenna in an exponential function tapered TEM horn antenna with an antenna length L. Is.

次に、添付図面に基づいて、本発明に係るテーパーTEMホーンアンテナの実施形態につき説明する。 Next, an embodiment of the tapered TEM horn antenna according to the present invention will be described with reference to the accompanying drawings.

図1(a)は、テーパーTEMホーンアンテナ10の概略構成を示すもので、テーパー形状の第1短縮アンテナ素子11、この第1短縮アンテナ素子11と同一形状でX−Z平面に対象配置される第2短縮アンテナ素子12、第1短縮アンテナ素子11の受電端11aに接続される第1同軸給電部13a、第2短縮アンテナ素子12の受電端12aに接続される第2同軸給電部13bからなる。なお、以下の説明においては、水平方向をX、鉛直方向をY、テーパーTEMホーンアンテナ10の開口面(第1短縮アンテナ素子11の開放端11bと第2短縮アンテナ素子12の開放端12bを含む略四角形の仮想面)に直交する方向をZとする。 FIG. 1A shows a schematic configuration of the tapered TEM horn antenna 10, in which the tapered first shortened antenna element 11 has the same shape as the first shortened antenna element 11 and is symmetrically arranged on the XZ plane. It is composed of a second shortened antenna element 12, a first coaxial feeding unit 13a connected to a power receiving end 11a of the first shortened antenna element 11, and a second coaxial feeding unit 13b connected to a power receiving end 12a of the second shortened antenna element 12. .. In the following description, the horizontal direction is X, the vertical direction is Y, and the opening surface of the tapered TEM horn antenna 10 (including the open end 11b of the first shortened antenna element 11 and the open end 12b of the second shortened antenna element 12). Let Z be the direction orthogonal to the virtual surface of the substantially quadrangle.

上述したテーパーTEMホーンアンテナ10は、図1(b)に示す指数関数テーパーTEMホーンアンテナ110を基本とし、第1アンテナ素子111と第2アンテナ素子112の開口面(第1アンテナ素子111の開放端111bと第2アンテナ素子112の開放端112bを含む略四角形の仮想面)側から均等に所要量(後に詳述)だけ切除することで、第1,第2短縮アンテナ素子11,12とするのである。 The taper TEM horn antenna 10 described above is based on the exponential taper TEM horn antenna 110 shown in FIG. 1 (b), and is the open surface of the first antenna element 111 and the second antenna element 112 (the open end of the first antenna element 111). The first and second shortened antenna elements 11 and 12 are obtained by cutting the required amount (detailed later) evenly from the side (a substantially square virtual surface including the open end 112b of the second antenna element 112) and the 111b. is there.

指数関数テーパーTEMホーンアンテナ110は、第1,第2同軸給電部113a,113bの入力インピーダンス(例えば、50Ω)から開口面の特性インピーダンス(例えば、377Ω)まで連続的なインピーダンス変化が生ずるように、目的とする最低周波数(例えば、400MHz)に基づくアンテナ長L(例えば、400MHzの波長λの1/2)で第1,第2アンテナ素子111,112を設計したものである。 The exponential function taper TEM horn antenna 110 causes a continuous impedance change from the input impedance (for example, 50Ω) of the first and second coaxial feeding portions 113a and 113b to the characteristic impedance of the opening surface (for example, 377Ω). The first and second antenna elements 111 and 112 are designed with an antenna length L (for example, 1/2 of a wavelength λ of 400 MHz) based on a target minimum frequency (for example, 400 MHz).

図2(a)は、指数関数テーパーTEMホーンアンテナの基本概念である指数関数テーパー伝送線路の説明図である。この電送線路の任意の位置zでの特性インピーダンスZ(z)は、下式(1)となる。 FIG. 2A is an explanatory diagram of an exponential taper transmission line, which is a basic concept of an exponential taper TEM horn antenna. The characteristic impedance Z (z) at an arbitrary position z of the transmission line is given by the following equation (1).

Figure 0006767041
Figure 0006767041

また、Z(0)=Z0 およびZ(L)=ZL とすれば、下式(2)が得られる。 Further, if Z (0) = Z 0 and Z (L) = Z L , the following equation (2) can be obtained.

Figure 0006767041
Figure 0006767041

指数関数テーパーTEMホーンアンテナ110の構造は、図2(b)の側面図および図2(c)の平面図(或いは底面図)に示すもので、第1,第2アンテナ素子111,112の各入力インピーダンスが式(2)におけるZ0 に、第1,第2アンテナ素子111,112の各開口面での特性インピーダンスが式(2)におけるZL に相当する。そして、指数関数テーパーTEMホーンアンテナ110の任意の位置zにおける高さh(z)は、下式(3)で与えられる。 The structure of the exponential taper TEM horn antenna 110 is shown in the side view of FIG. 2B and the plan view (or bottom view) of FIG. 2C, and the first and second antenna elements 111 and 112 are respectively shown. The input impedance corresponds to Z 0 in the equation (2), and the characteristic impedance at each opening surface of the first and second antenna elements 111 and 112 corresponds to Z L in the equation (2). The height h (z) of the exponential taper TEM horn antenna 110 at an arbitrary position z is given by the following equation (3).

Figure 0006767041
Figure 0006767041

ここで、第1,第2同軸給電部113a,113bのプレート間隔をh0 (=h(0))、第1アンテナ素子111の開放端111bと第2アンテナ素子112の開放端112bとの離隔距離である開口長Hをアンテナ長と同じL(=h(L))とすると、下式(4),(5)が得られる。 Here, the plate spacing between the first and second coaxial feeding portions 113a and 113b is h 0 (= h (0)), and the separation between the open end 111b of the first antenna element 111 and the open end 112b of the second antenna element 112. Assuming that the aperture length H, which is the distance, is L (= h (L)), which is the same as the antenna length, the following equations (4) and (5) are obtained.

Figure 0006767041
Figure 0006767041
Figure 0006767041
Figure 0006767041

また、位置zでの第1,第2アンテナ素子111,112の幅W(z)は、平行平板の特性インピーダンスの近似式である下式(6)により与えられる。 Further, the widths W (z) of the first and second antenna elements 111 and 112 at the position z are given by the following equation (6) which is an approximate equation of the characteristic impedance of the parallel plate.

Figure 0006767041
Figure 0006767041

なお、第1,第2同軸給電部113a,113bのプレート間隔h0 (=h(0))と幅(W0 )は、同軸給電の入力インピーダンスと第1,第2アンテナ素子111,112の各給電端111a,112aにおける特性インピーダンスが整合するように与える。 The plate spacing h 0 (= h (0)) and width (W 0 ) of the first and second coaxial feeding portions 113a and 113b are the input impedance of the coaxial feeding and the first and second antenna elements 111 and 112. It is given so that the characteristic impedances at the feeding ends 111a and 112a are matched.

上述したテーパー伝送線路を適用した指数関数テーパーTEMホーンアンテナ110の特性を、有限積分法(FIM)に基づく電磁界解析ソルバーであるMW−Studio(ドイツCST社製)を用いて評価した。指数関数テーパーTEMホーンアンテナ110の解析モデルは、最低周波数を400MHzとしてH=W=L=375〔mm〕の寸法に設定し、第1,第2アンテナ素子111,112の材質は完全導体と仮定し、最大λ/20の不均一メッシュでモデル化した。解析領域の外周に吸収境界として8層のPML(Perfectly Matched Layer)を用いた。 The characteristics of the exponential taper TEM horn antenna 110 to which the taper transmission line described above was applied were evaluated using MW-Studio (manufactured by CST, Germany), which is an electromagnetic field analysis solver based on the finite integral method (FIM). The analysis model of the exponential taper TEM horn antenna 110 is set to the dimension of H = W = L = 375 [mm] with the minimum frequency set to 400 MHz, and the materials of the first and second antenna elements 111 and 112 are assumed to be perfect conductors. Then, it was modeled with a non-uniform mesh with a maximum of λ / 20. An 8-layer PML (Perfectly Matched Layer) was used as an absorbing boundary on the outer periphery of the analysis region.

図3に、指数関数テーパーTEMホーンアンテナ110の利得−周波数特性の計算結果を示す。本図より分かるように、0.4〜6〔GHz〕という広帯域において、4〔dBi〕以上の比較的フラットな利得特性を得ることができる。しかしながら、指数関数テーパーTEMホーンアンテナ110では、アンテナ利得の最大値がアンテナ正面であるボアサイト方向と一致しない二つの周波数帯(2〜3〔GHz〕帯、4.5〜5.5〔GHz〕帯)がある。よって、指数関数テーパーTEMホーンアンテナ110は、EMC試験用アンテナ(近接放射イミュニティ試験法における電界印加用アンテナ、放射エミッション測定における電界測定用アンテナ等)には適さないのである。 FIG. 3 shows the calculation results of the gain-frequency characteristics of the exponential taper TEM horn antenna 110. As can be seen from this figure, a relatively flat gain characteristic of 4 [dBi] or more can be obtained in a wide band of 0.4 to 6 [GHz]. However, in the exponential taper TEM horn antenna 110, two frequency bands (2 to 3 [GHz] band, 4.5 to 5.5 [GHz]] in which the maximum value of the antenna gain does not match the bore sight direction in front of the antenna. There is a band). Therefore, the exponential taper TEM horn antenna 110 is not suitable for an EMC test antenna (an antenna for applying an electric field in the proximity radiation immunity test method, an antenna for measuring an electric field in radiation emission measurement, etc.).

しかして、本発明に係るテーパーTEMホーンアンテナ10は、上述した指数関数テーパーTEMホーンアンテナ110をベースとして用いた構造であり、これによって、放射特性を改善することができる。 Thus, the tapered TEM horn antenna 10 according to the present invention has a structure using the above-mentioned exponential tapered TEM horn antenna 110 as a base, whereby the radiation characteristics can be improved.

図1(a)に示すように、アンテナ長Lで第1,第2アンテナ素子111,112を設計した指数関数テーパーTEMホーンアンテナ110(図1(a)中、破線で示す)に対し、0.06L〜0.11Lの範囲より定めた切り取り長Lcだけ第1,第2アンテナ素子111,112の開口面側から、それぞれ第1素子除去部14a、第2素子除去部14bだけ均等に切除することで、アンテナ長Ls(Ls=L−Lc)となる第1,第2短縮アンテナ素子11.12を備えるテーパーTEMホーンアンテナ10となる。 As shown in FIG. 1 (a), the exponential function taper TEM horn antenna 110 (indicated by the broken line in FIG. 1 (a)) in which the first and second antenna elements 111 and 112 are designed with the antenna length L is 0. Only the cutting length Lc determined from the range of 06L to 0.11L is evenly cut from the opening surface side of the first and second antenna elements 111 and 112, respectively, only the first element removing portion 14a and the second element removing portion 14b. As a result, the tapered TEM horn antenna 10 including the first and second shortened antenna elements 11.12 having an antenna length Ls (Ls = L-Lc) is obtained.

なお、本実施形態に係るテーパーTEMホーンアンテナ10も、テーパー伝送線路を適用した指数関数テーパー形状の一部を第1,第2短縮アンテナ素子11,12に備えるものである。しかしながら、第1,第2短縮アンテナ素子11,12の指数関数テーパー形状は、アンテナ長Lsに対して指数関数テーパー構造を適用したものではないことから、本来の指数関数テーパー構造を備える指数関数テーパーTEMホーンアンテナ110と混同することがないよう、本発明は単に「テーパーTEMホーンアンテナ」と称することとした。 The tapered TEM horn antenna 10 according to the present embodiment also has a part of the exponential taper shape to which the tapered transmission line is applied in the first and second shortened antenna elements 11 and 12. However, since the exponential taper shapes of the first and second shortened antenna elements 11 and 12 do not apply the exponential taper structure to the antenna length Ls, the exponential taper having the original exponential taper structure is provided. In order not to be confused with the TEM horn antenna 110, the present invention is simply referred to as a "tapered TEM horn antenna".

そして、テーパーTEMホーンアンテナ10は、第1,第2アンテナ素子111,112から夫々第1,第2素子除去部14a,14bを切除することで、アンテナ長がLsになることは勿論、アンテナ開口面における開口幅(第1,第2短縮アンテナ素子11,12の各開放端11b,12bの長さ)はWsに、開口高さ(第1短縮アンテナ素子11の開放端11bと第2短縮アンテナ素子12の開放端12bとの離隔距離)はHsになるので、第1,第2素子除去部14a,14bのサイズに応じて、テーパーTEMホーンアンテナ10自体を小型化できるという利点もある。 Then, in the tapered TEM horn antenna 10, the antenna length becomes Ls by cutting the first and second element removing portions 14a and 14b from the first and second antenna elements 111 and 112, respectively, and the antenna opening The opening width (the length of each open end 11b, 12b of the first and second shortened antenna elements 11 and 12) on the surface is Ws, and the opening height (open end 11b of the first shortened antenna element 11 and the second shortened antenna) Since the (separation distance) of the element 12 from the open end 12b is Hs, there is an advantage that the tapered TEM horn antenna 10 itself can be miniaturized according to the sizes of the first and second element removing portions 14a and 14b.

また、本実施形態に係るテーパーTEMホーンアンテナ10は、アンテナ利得の最大値がアンテナ正面(ボアサイト方向)と一致することで、放射指向性を高められるという利点もあるが、第1,第2素子除去部14a,14bのサイズ(切り取り長Lc)と、テーパーTEMホーンアンテナ10おける放射特性改善との因果関係は明らかになっていない。しかしながら、切り取り長Lcを変化させてモデリングしたテーパーTEMホーンアンテナ10の放射特性を確認することにより、テーパーTEMホーンアンテナ10の放射特性改善に効果がある切り取り長Lcとして、0.06L(L×6%)以上を要することを確認できた。以下に示す利得−周波数特性の計算にもMW−Studioを用いた。 Further, the tapered TEM horn antenna 10 according to the present embodiment has an advantage that the radiation directivity can be enhanced by matching the maximum value of the antenna gain with the front surface of the antenna (boresite direction), but the first and second The causal relationship between the sizes of the element removing portions 14a and 14b (cutting length Lc) and the improvement of the radiation characteristics in the tapered TEM horn antenna 10 has not been clarified. However, by confirming the radiation characteristics of the tapered TEM horn antenna 10 modeled by changing the cut length Lc, the cut length Lc effective for improving the radiation characteristics of the taper TEM horn antenna 10 is 0.06 L (L × 6). %) It was confirmed that more than that was required. The MW-Studio was also used to calculate the gain-frequency characteristics shown below.

図4に示すのは、切り取り量(Cutoff length)Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの2%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.02Lでは、第1,第2素子除去部14a,14bのサイズが小さためか、2.5〜3.5〔GHz〕帯、5〜6〔GHz〕帯でアンテナ利得の最大値がアンテナ正面方向からずれている。従って、切り取り長Lc=0.02Lとしたアンテナ長Ls=0.98LのテーパーTEMホーンアンテナ10は、所期の目的を達成できない。 FIG. 4 is a gain-frequency characteristic diagram of the taper TEM horn antenna 10 to which 2% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutoff amount (Cutoff lens) Lc. When the cutting amount Lc = 0.02L, the antenna gain is increased in the 2.5 to 3.5 [GHz] band and the 5 to 6 [GHz] band, probably because the sizes of the first and second element removing portions 14a and 14b are small. The maximum value deviates from the front direction of the antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.98L with a cutting length Lc = 0.02L cannot achieve the intended purpose.

図5に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの4%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.04Lでも、まだ第1,第2素子除去部14a,14bのサイズが小さためか、3〜4〔GHz〕帯、5.5〜6〔GHz〕帯でアンテナ利得の最大値がアンテナ正面方向からずれている。従って、切り取り長Lc=0.04Lとしたアンテナ長Ls=0.96LのテーパーTEMホーンアンテナ10は、所期の目的を達成できない。 FIG. 5 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 4% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Even if the cutting amount Lc = 0.04L, the maximum antenna gain is in the 3-4 [GHz] band and the 5.5-6 [GHz] band, probably because the sizes of the first and second element removing portions 14a and 14b are still small. The value deviates from the front direction of the antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.96L with a cutting length Lc = 0.04L cannot achieve the intended purpose.

図6に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの6%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.06Lでは、3〜4〔GHz〕帯にてアンテナ利得の最大値がアンテナ正面方向から若干ずれていることが認められる。しかしながら、その利得差は極微少であり、EMC試験用アンテナとして用いても実用上問題ないと考えられる。従って、切り取り長Lc=0.06Lとしたアンテナ長Ls=0.94LのテーパーTEMホーンアンテナ10は、放射指向性が改善されるので、この0.06Lが切り取り量Lcの下限値となる。 FIG. 6 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 6% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. When the cutting amount Lc = 0.06L, it is recognized that the maximum value of the antenna gain is slightly deviated from the front direction of the antenna in the 3 to 4 [GHz] band. However, the gain difference is extremely small, and it is considered that there is no practical problem even if it is used as an EMC test antenna. Therefore, since the radiation directivity of the tapered TEM horn antenna 10 having an antenna length Ls = 0.94L with a cutting length Lc = 0.06L is improved, this 0.06L is the lower limit value of the cutting amount Lc.

図7に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの8%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.08Lであれば、0.4〔GHz〕〜6〔GHz〕の広帯域においてアンテナ利得の最大値がアンテナ正面方向と一致しており、切り取り長Lc=0.08Lとしたアンテナ長Ls=0.92LのテーパーTEMホーンアンテナ10は、EMC試験用アンテナとして好適である。従って、テーパーTEMホーンアンテナ10の放射指向性が改善できる切り取り長Lcの範囲として、0.06L≦Lc≦0.8Lが想定される。 FIG. 7 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 8% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. If the cutting amount Lc = 0.08L, the maximum value of the antenna gain in a wide band of 0.4 [GHz] to 6 [GHz] coincides with the front direction of the antenna, and the cutting length Lc = 0.08L. The tapered TEM horn antenna 10 having a length Ls = 0.92 L is suitable as an antenna for EMC testing. Therefore, 0.06L ≦ Lc ≦ 0.8L is assumed as the range of the cutting length Lc in which the radiation directivity of the tapered TEM horn antenna 10 can be improved.

図8に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの10%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.1Lにおいても、0.4〔GHz〕〜6〔GHz〕の広帯域においてアンテナ利得の最大値がアンテナ正面方向と一致しており、切り取り長Lc=0.1Lとしたアンテナ長Ls=0.9LのテーパーTEMホーンアンテナ10は、EMC試験用アンテナとして好適である。従って、テーパーTEMホーンアンテナ10の放射指向性が改善できる切り取り長Lcの範囲として、0.06L≦Lc≦1.0Lが想定される。 FIG. 8 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 10% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Even when the cutting amount Lc = 0.1L, the maximum value of the antenna gain in a wide band of 0.4 [GHz] to 6 [GHz] coincides with the front direction of the antenna, and the cutting length Lc = 0.1L is the antenna length. The tapered TEM horn antenna 10 having Ls = 0.9L is suitable as an EMC test antenna. Therefore, 0.06L ≦ Lc ≦ 1.0L is assumed as the range of the cutting length Lc in which the radiation directivity of the tapered TEM horn antenna 10 can be improved.

図9に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの15%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.15Lにおいても、0.4〔GHz〕〜6〔GHz〕の広帯域においてアンテナ利得の最大値がアンテナ正面方向と一致しており、切り取り長Lc=0.15Lとしたアンテナ長Ls=0.85LのテーパーTEMホーンアンテナ10は、EMC試験用アンテナとして好適である。従って、テーパーTEMホーンアンテナ10の放射指向性が改善できる切り取り長Lcの範囲として、0.06L≦Lc≦1.5Lが想定される。 FIG. 9 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 15% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Even when the cutting amount Lc = 0.15L, the maximum value of the antenna gain in the wide band of 0.4 [GHz] to 6 [GHz] coincides with the front direction of the antenna, and the cutting length Lc = 0.15L is the antenna length. The tapered TEM horn antenna 10 having Ls = 0.85 L is suitable as an EMC test antenna. Therefore, 0.06L ≦ Lc ≦ 1.5L is assumed as the range of the cutting length Lc in which the radiation directivity of the tapered TEM horn antenna 10 can be improved.

図10に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの20%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。切り取り量Lc=0.2Lにおいても、0.4〔GHz〕〜6〔GHz〕の広帯域においてアンテナ利得の最大値がアンテナ正面方向と一致しており、切り取り長Lc=0.2Lとしたアンテナ長Ls=0.8LのテーパーTEMホーンアンテナ10は、EMC試験用アンテナとして好適である。従って、テーパーTEMホーンアンテナ10の放射指向性が改善できる切り取り長Lcの範囲として、0.06L≦Lc≦2.0Lが想定される。 FIG. 10 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 20% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Even when the cutting amount Lc = 0.2L, the maximum value of the antenna gain in a wide band of 0.4 [GHz] to 6 [GHz] coincides with the front direction of the antenna, and the cutting length Lc = 0.2L is the antenna length. The tapered TEM horn antenna 10 having Ls = 0.8 L is suitable as an EMC test antenna. Therefore, 0.06L ≦ Lc ≦ 2.0L is assumed as the range of the cutting length Lc in which the radiation directivity of the tapered TEM horn antenna 10 can be improved.

切り取り量Lcを20%より大きくした場合は示さないが、広帯域でアンテナ利得の最大値がアンテナ正面方向と一致している傾向は、切り取り量Lcを20%より大きくしても、ある程度まで続くものと想定される。しかしながら、切り取り長Lc=0.2Lとしたアンテナ長Ls=0.8LのテーパーTEMホーンアンテナ10は、低い周波数帯での利得が非常に劣化していることが分かる。このように、アンテナ利得が著しく劣化しているようでは、放射指向性が改善されても、EMC試験用アンテナに適しているとは言えない。 Although not shown when the cutout amount Lc is larger than 20%, the tendency that the maximum value of the antenna gain matches the antenna front direction in a wide band continues to some extent even if the cutout amount Lc is larger than 20%. Is assumed. However, it can be seen that the taper TEM horn antenna 10 having an antenna length Ls = 0.8L with a cutting length Lc = 0.2L has a very deteriorated gain in a low frequency band. As described above, if the antenna gain is significantly deteriorated, even if the radiation directivity is improved, it cannot be said that the antenna is suitable for the EMC test antenna.

そこで、本実施形態のテーパーTEMホーンアンテナ10としては、切り取り量Lcの上限を、低周波数帯での利得低下から定めるものとした。利得低下の判定基準として、本実施形態では、指数関数テーパーTEMホーンアンテナ110における1.0〔GHz〕辺りでの利得に対して、その低下量が約3〔dBi〕以内に抑えられている切り取り量Lcを上限値に設定するものとした。 Therefore, for the tapered TEM horn antenna 10 of the present embodiment, the upper limit of the cutting amount Lc is determined from the decrease in gain in the low frequency band. As a criterion for determining the gain decrease, in the present embodiment, the amount of decrease is suppressed within about 3 [dBi] with respect to the gain in the exponential taper TEM horn antenna 110 around 1.0 [GHz]. The amount Lc was set to the upper limit value.

図11に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの6%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.06LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも1.5〔dBi〕程度低下しているものと認められる。しかしながら、その利得低下量は3〔dBi〕以内に抑えられているので、EMC試験用アンテナとして用いても実用上問題ないと考えられる。従って、切り取り長Lc=0.06Lとしたアンテナ長Ls=0.94LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たしており、この0.06Lが切り取り量Lcの下限値となる。 FIG. 11 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 6% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, in the taper TEM horn antenna 10 with a cutout amount Lc = 0.06 L, it is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 1.5 [dBi]. However, since the gain reduction amount is suppressed within 3 [dBi], it is considered that there is no practical problem even if it is used as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.94L with a cutting length Lc = 0.06L satisfies the condition for determining the gain decrease, and this 0.06L is the lower limit value of the cutting amount Lc.

図12に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの8%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.08LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも2〔dBi〕程度低下しているものと認められる。しかしながら、その利得低下量は3〔dBi〕以内に抑えられているので、EMC試験用アンテナとして用いても実用上問題ないと考えられる。従って、切り取り長Lc=0.08Lとしたアンテナ長Ls=0.92LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たしており、切り取り長Lcの範囲として、0.06L≦Lc≦0.08Lが想定される。 FIG. 12 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 8% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, the taper TEM horn antenna 10 with a cutout amount Lc = 0.08 L is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 2 [dBi]. However, since the gain reduction amount is suppressed within 3 [dBi], it is considered that there is no practical problem even if it is used as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.92L with a cutting length Lc = 0.08L satisfies the condition for determining the gain decrease, and the cutting length Lc is 0.06L ≦ Lc ≦ 0. .08L is assumed.

図13に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの10%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.10LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも2.8〔dBi〕程度低下しているものと認められる。しかしながら、その利得低下量は3〔dBi〕以内に抑えられているので、EMC試験用アンテナとして用いても実用上問題ないと考えられる。従って、切り取り長Lc=0.10Lとしたアンテナ長Ls=0.9LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たしており、切り取り長Lcの範囲として、0.06L≦Lc≦0.10Lが想定される。 FIG. 13 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 10% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, the taper TEM horn antenna 10 with a cutout amount Lc = 0.10 L is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 2.8 [dBi]. However, since the gain reduction amount is suppressed within 3 [dBi], it is considered that there is no practical problem even if it is used as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.9L with a cutting length Lc = 0.10L satisfies the condition for determining the gain decrease, and the cutting length Lc is 0.06L ≦ Lc ≦ 0. .10L is assumed.

図14に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの11%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.11LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも3.1〔dBi〕程度低下しているものと認められる。しかしながら、その利得低下量は約3〔dBi〕程度に抑えられているので、EMC試験用アンテナとして用いても実用上問題ないと考えられる。従って、切り取り長Lc=0.11Lとしたアンテナ長Ls=0.89LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たしており、切り取り長Lcの範囲として、0.06L≦Lc≦0.11Lが想定される。 FIG. 14 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 11% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, in the taper TEM horn antenna 10 with a cutout amount Lc = 0.11 L, it is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 3.1 [dBi]. However, since the amount of gain reduction is suppressed to about 3 [dBi], it is considered that there is no practical problem even if it is used as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.89L with a cutting length Lc = 0.11L satisfies the condition for determining the gain decrease, and the cutting length Lc is 0.06L ≦ Lc ≦ 0. .11L is assumed.

図15に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの12%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.12LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも3.4〔dBi〕程度低下しているものと認められる。この利得低下量は約3〔dBi〕程度に抑えられているとはいえないので、EMC試験用アンテナとして用いることは適当でないと考えられる。従って、切り取り長Lc=0.12Lとしたアンテナ長Ls=0.88LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たさないので、切り取り長Lcの範囲に0.12Lは含まず、0.06L≦Lc≦0.11Lが適当である。 FIG. 15 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 12% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, in the taper TEM horn antenna 10 with a cutout amount Lc = 0.12 L, it is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 3.4 [dBi]. Since it cannot be said that this gain reduction amount is suppressed to about 3 [dBi], it is considered that it is not appropriate to use it as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.88L with a cutting length Lc = 0.12L does not satisfy the condition for determining the gain decrease, and therefore 0.12L is not included in the cutting length Lc range and is 0. .06L ≦ Lc ≦ 0.11L is suitable.

図16に示すのは、切り取り量Lcとして、指数関数テーパーTEMホーンアンテナ110におけるアンテナ長Lの15%を適用したテーパーTEMホーンアンテナ10の利得−周波数特性図である。同図中に破線で示した指数関数テーパーTEMホーンアンテナ110の特性(ボアサイト方向の利得)と比較すると、切り取り量Lc=0.15LのテーパーTEMホーンアンテナ10では、1〔GHz〕辺りで、指数関数テーパーTEMホーンアンテナ110よりも4.2〔dBi〕程度低下しているものと認められる。この利得低下量は3〔dBi〕を大きく超えているので、EMC試験用アンテナとして用いることは適当でない。従って、切り取り長Lc=0.15Lとしたアンテナ長Ls=0.85LのテーパーTEMホーンアンテナ10は、利得低下の判定条件を満たさないので、切り取り長Lcの範囲に0.15Lは含まず、0.06L≦Lc≦0.11Lが適当である。 FIG. 16 is a gain-frequency characteristic diagram of the tapered TEM horn antenna 10 to which 15% of the antenna length L of the exponential taper TEM horn antenna 110 is applied as the cutout amount Lc. Compared with the characteristics (gain in the boresight direction) of the exponential taper TEM horn antenna 110 shown by the broken line in the figure, the taper TEM horn antenna 10 with a cutout amount Lc = 0.15 L is around 1 [GHz]. It is recognized that the exponential function is lower than that of the tapered TEM horn antenna 110 by about 4.2 [dBi]. Since this gain reduction amount greatly exceeds 3 [dBi], it is not suitable for use as an EMC test antenna. Therefore, the tapered TEM horn antenna 10 having an antenna length Ls = 0.85L with a cutting length Lc = 0.15L does not satisfy the condition for determining the gain decrease, and therefore 0.15L is not included in the cutting length Lc range and is 0. .06L ≦ Lc ≦ 0.11L is suitable.

以上のように、本実施形態のテーパーTEMホーンアンテナ10は、放射指向性を改善可能な切り取り量Lcの範囲と、低周波帯域での利得低下抑制基準に基づく切り取り量Lcの範囲とから、0.06L≦Lc≦0.11Lに設定した。従って、この範囲内で定めた切り取り量Lcによってアンテナ長LsのテーパーTEMホーンアンテナ10とすれば、EMC試験用アンテナに適したものとなる。 As described above, the tapered TEM horn antenna 10 of the present embodiment has 0 from the range of the cut amount Lc that can improve the radiation directivity and the range of the cut amount Lc based on the gain reduction suppression standard in the low frequency band. It was set to .06L ≦ Lc ≦ 0.11L. Therefore, if the tapered TEM horn antenna 10 having an antenna length of Ls is set according to the cutting amount Lc determined within this range, it is suitable for an EMC test antenna.

以上、本発明に係るテーパーTEMホーンアンテナを実施形態に基づき説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全てのテーパーTEMホーンアンテナを権利範囲として包摂するものである。 Although the tapered TEM horn antenna according to the present invention has been described above based on the embodiment, the present invention is not limited to this embodiment and can be realized as long as the configuration described in the claims is not changed. It includes all tapered TEM horn antennas as a claim.

10 テーパーTEMホーンアンテナ
11 第1短縮アンテナ素子
11a 受電端
11b 開放端
12 第2短縮アンテナ素子
12a 受電端
12b 開放端
13a 第1同軸給電部
13b 第2同軸給電部
10 Taper TEM horn antenna 11 1st shortened antenna element 11a Power receiving end 11b Open end 12 2nd shortened antenna element 12a Power receiving end 12b Open end 13a 1st coaxial feeding part 13b 2nd coaxial feeding part

Claims (1)

給電部の入力インピーダンスから開口面の特性インピーダンスまで連続的なインピーダンス変化が生ずるように、目的とする最低周波数に基づくアンテナ長Lで一対のアンテナ素子を設計した指数関数テーパーTEMホーンアンテナに対し、0.06L〜0.11Lの範囲より定めた切り取り長Lcだけ両アンテナ素子の開口面側から均等に切除することで、アンテナ長Ls(Ls=L−Lc)となる一対の短縮アンテナ素子を備えるようにしたことを特徴とするテーパーTEMホーンアンテナ。 0 for an exponential taper TEM horn antenna in which a pair of antenna elements are designed with an antenna length L based on the target minimum frequency so that a continuous impedance change occurs from the input impedance of the feeding section to the characteristic impedance of the opening surface. A pair of shortened antenna elements having an antenna length Ls (Ls = L-Lc) are provided by evenly cutting the cut length Lc determined from the range of .06L to 0.11L from the opening surface side of both antenna elements. A tapered TEM horn antenna characterized by the fact that it is made.
JP2016171431A 2016-09-02 2016-09-02 Tapered TEM horn antenna Active JP6767041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171431A JP6767041B2 (en) 2016-09-02 2016-09-02 Tapered TEM horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171431A JP6767041B2 (en) 2016-09-02 2016-09-02 Tapered TEM horn antenna

Publications (2)

Publication Number Publication Date
JP2018037969A JP2018037969A (en) 2018-03-08
JP6767041B2 true JP6767041B2 (en) 2020-10-14

Family

ID=61567802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171431A Active JP6767041B2 (en) 2016-09-02 2016-09-02 Tapered TEM horn antenna

Country Status (1)

Country Link
JP (1) JP6767041B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324245B (en) * 2018-09-27 2021-01-05 西北核技术研究所 Movable electromagnetic pulse radiation wave simulator based on TEM horn
CN109546347B (en) * 2018-10-30 2020-10-20 北京航空航天大学 A TEM horn antenna with a three-segment composite crescent trough design
CN109713454A (en) * 2019-02-03 2019-05-03 中国科学院电子学研究所 Ultra wide band electromagnetic assembled TEM electromagnetic horn and its parameter determination method
CN110323568A (en) * 2019-06-28 2019-10-11 南京邮电大学 Pyramidal horn antenna
CN110289486A (en) * 2019-06-28 2019-09-27 南京邮电大学 Broadband High Gain Horn Antenna
CN110767992B (en) * 2019-09-29 2022-05-03 西北核技术研究院 An ultra-wide spectrum electromagnetic pulse measurement antenna and measurement system
CN110767978B (en) * 2019-09-29 2021-05-25 西北核技术研究院 Ultra-wide spectrum electromagnetic pulse radiation antenna
JP7511867B2 (en) 2020-03-26 2024-07-08 国立研究開発法人情報通信研究機構 Tapered TEM horn antenna
CN114421165A (en) * 2022-01-13 2022-04-29 西安电子科技大学 A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876334B2 (en) * 2003-02-28 2005-04-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Wideband shorted tapered strip antenna
US6995728B2 (en) * 2003-08-19 2006-02-07 Ets Lindgren, L.P. Dual ridge horn antenna
DE102007044895B4 (en) * 2007-09-20 2013-06-20 Rohde & Schwarz Gmbh & Co. Kg horn antenna
US20100007568A1 (en) * 2008-03-24 2010-01-14 Uti Limited Partnership Antenna with Balun
GB2498546B (en) * 2012-01-18 2015-07-22 Thales Holdings Uk Plc Horn antenna

Also Published As

Publication number Publication date
JP2018037969A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6767041B2 (en) Tapered TEM horn antenna
Sharma et al. Impedance matching techniques for microstrip patch antenna
US2151118A (en) Termination for dielectric guides
US8773312B1 (en) Magnetic pseudo-conductor conformal antennas
CN107317115B (en) Time domain ultra-wideband TEM horn antenna for ground penetrating radar
Madhav et al. Fractal shaped Sierpinski on EBG structured ground plane
US10749256B1 (en) Waveguide adapter for slot antennas
KR101952208B1 (en) Antenna for changing ploarisation using hinge
Schultz et al. A comparison of material measurement accuracy of RF spot probes to a lens-based focused beam system
Berdnik et al. E-plane T-junction of rectangular waveguides with vibrator-slot coupling between arms
JP7511867B2 (en) Tapered TEM horn antenna
US9425514B2 (en) Wideband antenna
Douglas Design and Analysis of microstrip antenna for 2.4 GHz applications
Workman et al. Flexible textile antenna array
Huang et al. A dielectric material loaded TEM horn antenna
Holopainen et al. Equivalent circuit model-based approach on the user body effect of a mobile terminal antenna
Harima Numerical estimation for TEM horn antennas with transmission line taper shapes
US2568710A (en) Wide-band antenna
Choukiker et al. Compact sectoral fractal planar monopole antenna for wideband wireless applications
Chung et al. The design of a wideband TEM horn antenna with a microstrip-type Balun
Palson et al. Analysis of coaxial stub type balun fed dipole antenna
JP6338401B2 (en) Inverted L antenna
RU2746544C1 (en) Microstrip load
Su Investigations of RC-loaded bow-tie antennas for impulse ground penetrating radar applications
Yanagi et al. Simulation of direct measurement method for balanced and unbalanced mode of a small antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6767041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250