CN114421165A - A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna - Google Patents
A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna Download PDFInfo
- Publication number
- CN114421165A CN114421165A CN202210039105.2A CN202210039105A CN114421165A CN 114421165 A CN114421165 A CN 114421165A CN 202210039105 A CN202210039105 A CN 202210039105A CN 114421165 A CN114421165 A CN 114421165A
- Authority
- CN
- China
- Prior art keywords
- ridge
- antenna
- curve
- circular waveguide
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0275—Ridged horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/25—Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/50—Feeding or matching arrangements for broad-band or multi-band operation
- H01Q5/55—Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas
Landscapes
- Waveguide Aerials (AREA)
Abstract
本发明公开了一种电阻加载的超宽带双极化四脊喇叭天线,其包括脊片(1)、圆波导(3)、两个同轴探针(5,6),该脊片设为四个,且等间隔沿着圆波导内侧呈圆周安装,构成喇叭口面;圆波导安装在底座(4)上,两个同轴探针分别从第一脊片和第二脊片插入,穿过圆波导中心后分别伸入相对位置的第三脊片和第四脊片,形成两个同轴探针的正交错位放置;圆波导的上边缘安装有固定法兰(2),该法兰上在与其对应的脊片位置分别固定有连接块(9),每个连接块上接有电阻(8),电阻的另一端通过连接杆(7)与对应脊片的顶端连接;该四个脊片的脊线均由直线段和曲线段组成,整个脊线上开有倒角。本发明尺寸小,相位中心稳定,可用于近场天线测量。
The invention discloses a resistance-loaded ultra-wideband dual-polarized four-ridge horn antenna, which comprises a ridge sheet (1), a circular waveguide (3), and two coaxial probes (5, 6). Four, and are circumferentially installed along the inner side of the circular waveguide at equal intervals to form a bell mouth surface; the circular waveguide is installed on the base (4), and two coaxial probes are respectively inserted from the first ridge piece and the second ridge piece, and pass through the circular waveguide. After passing through the center of the circular waveguide, the third ridge sheet and the fourth ridge sheet at opposite positions are respectively extended to form the orthogonal dislocation placement of the two coaxial probes; the upper edge of the circular waveguide is installed with a fixed flange (2). Connecting blocks (9) are respectively fixed on the blue at the positions of the corresponding ridges, each connecting block is connected with a resistor (8), and the other end of the resistor is connected with the top of the corresponding ridge through a connecting rod (7); the four The ridge lines of each ridge piece are composed of straight line segments and curved segments, and the entire ridge line is chamfered. The invention has small size and stable phase center, and can be used for near-field antenna measurement.
Description
技术领域technical field
本发明属于天线技术领域,特别涉及一种电阻加载的超宽带双极化四脊喇叭天线,可用于近场天线测量。The invention belongs to the technical field of antennas, and particularly relates to an ultra-wideband dual-polarized four-ridge horn antenna loaded with resistance, which can be used for near-field antenna measurement.
背景技术Background technique
近场测量方法是天线测量的重要手段,通过用一个特性已知的探头天线,可以在近距离获得天线远场性能参数,这种方法克服了场地大小的限制,同时提高了测量的精度,因此受到了广泛的关注。The near-field measurement method is an important means of antenna measurement. By using a probe antenna with known characteristics, the far-field performance parameters of the antenna can be obtained at a short distance. This method overcomes the limitation of the field size and improves the measurement accuracy. Therefore, received extensive attention.
探头天线的性能直接影响着近场测试的效率。目前开口波导天线是最常用的探头天线,但此类天线带宽窄且为单极化工作,在测试过程中需要根据被测天线的工作频率频繁地更换探头并进行机械调节等,为测试带来了极大的不便。为解决这个问题,市场上出现了一种宽带双极化四脊喇叭天线,例如,例如在2019年西安电子科技大学范朝洋的学位论文《平面近场扫描中宽带双极化探头的设计与补偿理论研究》中,公开了一种双极化四脊喇叭天线如图1所示,包括四个脊片1、反射板2、圆波导3、底座4和同轴探针5等,脊曲线采用指数曲线和Bessel曲线相结合的脊曲线四脊结构,通过两根同轴线分别馈电实现双极化输出,整体尺寸达到了115*110*110mm。该天线虽然可以工作在2GHz到20GHz,但尺寸较大,而且相位中心会随着频率的变化而出现较大的变化,因此这种大尺寸天线的相位中心稳定程度较差,影响近场测量的准确性及测试效率。The performance of the probe antenna directly affects the efficiency of near-field testing. At present, the open-ended waveguide antenna is the most commonly used probe antenna, but this type of antenna has a narrow bandwidth and works with single polarization. a great inconvenience. To solve this problem, a broadband dual-polarized quad-ridged horn antenna has appeared on the market. In "Research", a dual-polarized quad-ridged horn antenna is disclosed, as shown in Figure 1, including four
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术的不足,提出一种电阻加载的超宽带双极化四脊喇叭天线,以通过加载电阻的方式,减小天线的尺寸,稳定相位中心,从而提高近场测量的准确性及测试效率。The purpose of the present invention is to propose a resistance-loaded ultra-wideband dual-polarized quad-ridged horn antenna in view of the above-mentioned deficiencies of the prior art, so as to reduce the size of the antenna and stabilize the phase center by loading the resistance, thereby improving the near field Measurement accuracy and test efficiency.
为实现上述目的,本发明提出的一种电阻加载的超宽带双极化四脊喇叭天线,包括脊片、圆波导、底座和两个同轴探针,该脊片设为四个,且等间隔沿着圆波导内侧呈圆周安装,构成喇叭口面;圆波导安装在底座上,两个同轴探针分别从第一脊片和第二脊片插入,穿过圆波导中心后分别伸入相对位置的第三脊片和第四脊片,形成两个同轴探针的正交错位放置,以便固定,其特征在于:In order to achieve the above purpose, a resistance-loaded ultra-wideband dual-polarized four-ridge horn antenna proposed by the present invention includes a ridge sheet, a circular waveguide, a base and two coaxial probes, and the ridge sheets are set to four, and so on The intervals are installed circumferentially along the inner side of the circular waveguide to form a bell mouth surface; the circular waveguide is installed on the base, and two coaxial probes are inserted from the first ridge sheet and the second ridge sheet respectively, and extend into the center of the circular waveguide respectively. The third ridge sheet and the fourth ridge sheet in opposite positions form an orthogonal offset placement of two coaxial probes for fixing, and are characterized by:
所述圆波导的上边缘安装有固定法兰,该法兰上分别在与四个脊片的对应位置固定有连接块,每个连接块上接有电阻,电阻的另一端通过连接杆与对应脊片的顶端连接,以保证缩小天线尺寸的同时具有较好的匹配特性;A fixed flange is installed on the upper edge of the circular waveguide, and a connection block is fixed on the flange at the corresponding position with the four ridge pieces, each connection block is connected with a resistor, and the other end of the resistor is connected to the corresponding position through the connecting rod. The top of the ridge is connected to ensure better matching characteristics while reducing the size of the antenna;
所述脊片的脊线均由直线段和曲线段组成,且均开有40度-50度的倒角,以改善匹配特性。The ridge lines of the ridge pieces are all composed of straight line segments and curved segments, and are chamfered at 40 degrees to 50 degrees to improve matching characteristics.
进一步,所述脊片底部开设有反射腔,以滤除波导内被激发的高次模,扩展天线的工作带宽,改善匹配特性。Further, a reflection cavity is opened at the bottom of the ridge sheet to filter out high-order modes excited in the waveguide, expand the working bandwidth of the antenna, and improve the matching characteristics.
进一步,所述两个同轴探针穿过圆波导中心后分别伸入相对位置的第三脊片和第四脊片的距离为0.5mm-1mm。Further, the distances between the two coaxial probes extending into the third ridge sheet and the fourth ridge sheet at opposite positions after passing through the center of the circular waveguide are 0.5 mm-1 mm.
进一步,每个脊片的曲线段采用指数曲线和Bessel曲线相结合的脊曲线形式。Further, the curve segment of each ridge piece is in the form of a ridge curve combining an exponential curve and a Bessel curve.
进一步,每个电阻的取值范围为400-1000Ω。Further, the value range of each resistor is 400-1000Ω.
进一步,每个脊片曲线段的高度L为30mm-35mm;脊间距d为0.9mm-1.1mm;喇叭口面直径g的取值范围为40mm-50mm;底座到喇叭口面的距离取值范围为41mm-47mm。Further, the height L of each ridge curve segment is 30mm-35mm; the ridge spacing d is 0.9mm-1.1mm; the value range of the diameter g of the bell mouth surface is 40mm-50mm; the value range of the distance from the base to the bell mouth surface 41mm-47mm.
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明由于在固定法兰和每个脊片与之间加载了电阻,吸收了天线末端的低频回波,因而可减小天线的尺寸,使得天线在具有超宽带和双极化特性的同时具有稳定的相位中心,从而提高近场测量的准确性;1. In the present invention, the resistance is loaded between the fixed flange and each ridge, which absorbs the low-frequency echo at the end of the antenna, so that the size of the antenna can be reduced, so that the antenna can be used in an ultra-wideband and dual-polarized environment. At the same time, it has a stable phase center, thereby improving the accuracy of near-field measurement;
2.本发明中由于在四个脊片底部开始反射腔,滤除了波导内被激发的高次模,拓展了天线的工作带宽且改善了小尺寸天线的匹配特性;2. In the present invention, since the reflection cavity is started at the bottom of the four ridges, the excited high-order modes in the waveguide are filtered, the working bandwidth of the antenna is expanded, and the matching characteristics of the small-sized antenna are improved;
3.本发明由于形成喇叭口径的四个脊片的采用指数曲线和Bessel曲线相结合的脊曲线形式,且在脊线部分开设倒角,进一步提高了小尺寸天线的匹配特性3. The present invention further improves the matching characteristics of the small-sized antenna due to the use of the ridge curve form combining the exponential curve and the Bessel curve of the four ridge pieces forming the horn aperture, and the chamfer is opened at the ridge line part.
仿真实验表明,本发明在与现有技术相比,在具有超宽带和双极化特性的同时具有稳定的相位中心和较好的匹配特性,能够用于近场测量,同时提高近场测量的准确性及测试效率。Simulation experiments show that, compared with the prior art, the present invention has ultra-wideband and dual-polarization characteristics, stable phase center and better matching characteristics, can be used for near-field measurement, and at the same time improves near-field measurement performance. Accuracy and testing efficiency.
附图说明Description of drawings
图1是现有技术的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the prior art;
图2是本发明的整体结构示意图;Fig. 2 is the overall structure schematic diagram of the present invention;
图3是图2的剖视图;Fig. 3 is the sectional view of Fig. 2;
图4是图2的俯视图;Fig. 4 is the top view of Fig. 2;
图5是图2的局部放大图;Fig. 5 is a partial enlarged view of Fig. 2;
图6是本发明中的脊片主视图;Fig. 6 is the front view of the ridge piece in the present invention;
图7是本发明中的脊片侧视图;Fig. 7 is the side view of the ridge piece in the present invention;
图8是本发明天线的两端口电压驻波比VSWR仿真曲线;Fig. 8 is the two-port voltage standing wave ratio VSWR simulation curve of the antenna of the present invention;
图9是本发明天线的两端口S21仿真曲线;Fig. 9 is the two-port S21 simulation curve of the antenna of the present invention;
图10是本发明天线的增益仿真曲线;Fig. 10 is the gain simulation curve of the antenna of the present invention;
图11是本发明天线的相位中心位置曲线。Fig. 11 is the phase center position curve of the antenna of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施例和效果作进一步详细描述。The specific embodiments and effects of the present invention will be described in further detail below with reference to the accompanying drawings.
参照图2、图3、图4和图5,本实例包括脊片1,固定法兰2,圆波导3,底座4、两个同轴探针5和6,其中:2, 3, 4 and 5, this example includes a
所述脊片1设为四个,即第一脊片11,第二脊片12,第三脊片13,第四脊片14,这四个脊片等间隔地沿着圆波导3内侧呈圆周安装,构成喇叭口面。这四个脊片的底部开设有反射腔15,以滤除波导内被激发的高次模,扩展天线的工作带宽,改善匹配特性;每个脊片的顶端固定有垂直向下的连接杆7。The
所述圆波导3安装在底座4上,第一同轴探针5和第二同轴探针6分别从第一脊片11和第二脊片12插入,穿过圆波导3中心后分别伸入相对位置的第三脊片13和第四脊片14的0.5mm-1mm位置处,形成这两个同轴探针的正交错位放置,以便固定,进而使天线具有双极化特性。The
所述固定法兰2安装在圆波导3的上边缘,该法兰2上分别在与四个脊片的对应位置出固定有连接块9,每个连接块9上接有电阻8,电阻8的另一端通过连接杆7与对应脊片的顶端连接,以吸收天线末端的低频回波,保证缩小天线尺寸的同时具有较好的匹配特性。The
参照图6和图7,每个脊片1的脊线均由直线段和曲线段组成,其中曲线段采用指数曲线和Bessel曲线相结合的脊曲线形式,以减少喇叭口径边缘的入射场和喇叭口径自身的衍射,进而消除边缘衍射,以利于阻抗的匹配和频带的展宽,显著地改善高频下的方向图并减少恶化,为了改善匹配性能,本实例在每个脊片的脊线均开有40度-50度的切角,使得脊片在不接触的前提下尽可能靠近,降低了等效输入阻抗。该曲线端的脊曲线方程表示如下:Referring to Figure 6 and Figure 7, the ridge line of each
其中,Y(z)表示指数曲线宽度方向上距脊线起点的横向距离,z表示指数曲线的高度,d表示脊间距,L表示指数曲线高度的最大值,g表示喇叭口面直径,Z(y1)表示Bessel曲线的高度,Y′(L)表示指数曲线末端的斜率,y1表示Bessel曲线宽度方向上距脊线起点的横向距离,hr表示指数曲线末端与喇叭口面处内壁之间横向距离的最大值。Among them, Y(z) represents the lateral distance from the starting point of the ridge line in the width direction of the exponential curve, z represents the height of the exponential curve, d represents the ridge spacing, L represents the maximum height of the exponential curve, g represents the diameter of the bell mouth, Z( y 1 ) represents the height of the Bessel curve, Y′(L) represents the slope of the end of the exponential curve, y 1 represents the lateral distance from the starting point of the ridge line in the width direction of the Bessel curve, and hr represents the distance between the end of the exponential curve and the inner wall of the bell mouth. The maximum lateral distance between them.
上述每个脊片的高度z的取值范围为0-L,脊片曲线段的高度L为30mm-35mm,脊间距d为0.9mm-1.1mm,喇叭口面直径g为40mm-50mm,指数曲线末端与喇叭口面处内壁之间的横向距离hr为6mm-8mm,y1的取值范围为g/2-hr≤y1≤g/2,圆波导的直径D为13mm-15mm,底座4的高度H为1mm-2mm,底座到喇叭口面的距离S取值范围为41mm-47mm,每个电阻R的阻值为400Ω-1000Ω。The value range of the height z of each ridge piece above is 0-L, the height L of the ridge piece curve segment is 30mm-35mm, the ridge spacing d is 0.9mm-1.1mm, the diameter g of the bell mouth surface is 40mm-50mm, the index The lateral distance h r between the end of the curve and the inner wall of the bell mouth surface is 6mm-8mm, the value range of y 1 is g/2-h r ≤y 1 ≤g/2, and the diameter D of the circular waveguide is 13mm-15mm , the height H of the
本实例取但不限于L=30mm,d=1.1mm,g=40mm,hr=8mm,D=13mm,H=1mm,S=41mm切角为45°,切角宽度为1.2mm,R=510ΩIn this example, but not limited to L=30mm, d=1.1mm, g =40mm, hr=8mm, D=13mm, H=1mm, S=41mm, the chamfering angle is 45°, the chamfering width is 1.2mm, R= 510Ω
本发明的效果可通过以下仿真实验进一步说明:The effect of the present invention can be further illustrated by the following simulation experiments:
一.仿真条件:1. Simulation conditions:
仿真频率为2GHz~18GHzThe simulation frequency is 2GHz~18GHz
仿真软件使用的是ANSYS公司的高频结构仿真器The simulation software uses the high-frequency structural simulator from ANSYS.
二.仿真内容与结果:2. Simulation content and results:
仿真1,在上述条件下,对本实例天线两端口电压驻波比VSWR进行仿真,其结果如图8,从图8可以看出在2GHz~18GHz频段内,其两端口VSWR全部小于3,表明天线具有较好的匹配特性。
仿真2,在上述条件下,对本实例天线两端口的S21曲线进行仿真,结果如图9,从图9可以看出在2GHz~18GHz频段内,两端口隔离度大于34.9dB,满足双极化条件。Simulation 2: Under the above conditions, the S21 curve of the two ports of the antenna in this example is simulated. The result is shown in Figure 9. It can be seen from Figure 9 that in the 2GHz-18GHz frequency band, the isolation between the two ports is greater than 34.9dB, which satisfies the dual polarization condition. .
仿真3,在上述条件下,对本实例天线的增益进行仿真,结果如图10,从图10可以看出在2GHz~18GHz频段内,增益为-0.46dB~11.57dB,可以满足实际需求Simulation 3: Under the above conditions, the gain of the antenna of this example is simulated. The result is shown in Figure 10. It can be seen from Figure 10 that in the frequency band of 2GHz to 18GHz, the gain is -0.46dB to 11.57dB, which can meet the actual needs.
仿真34,在上述条件下,对本实例线的相位中心位置进行仿真分析,结果如图11,从图11可以看出在2GHz~18GHz频段内,相位中心起伏为14.4mm,当相位中心位置取16mm时,2GHz~18GHz相位中心起伏均小于22.5°,满足近场测试条件。Simulation 34. Under the above conditions, the phase center position of this example line is simulated and analyzed, and the result is shown in Figure 11. It can be seen from Figure 11 that in the frequency band of 2GHz to 18GHz, the phase center fluctuation is 14.4mm, when the phase center position is 16mm When the 2GHz~18GHz phase center fluctuation is less than 22.5°, it meets the near-field test conditions.
综上,本发明天线在具有超宽带和双极化特性的同时具有稳定的相位中心,能够用于近场测量,同时提高近场测量的准确性及测试效率。To sum up, the antenna of the present invention has ultra-wideband and dual-polarization characteristics and has a stable phase center, can be used for near-field measurement, and simultaneously improves the accuracy and test efficiency of near-field measurement.
以上描述仅是本发明的一个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求的保护范围之内。The above description is only a specific example of the present invention, and does not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principles of the present invention, they may not deviate from the principles and structures of the present invention. Under certain circumstances, various corrections and changes in form and details are made, but these corrections and changes based on the idea of the present invention are still within the protection scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210039105.2A CN114421165A (en) | 2022-01-13 | 2022-01-13 | A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210039105.2A CN114421165A (en) | 2022-01-13 | 2022-01-13 | A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114421165A true CN114421165A (en) | 2022-04-29 |
Family
ID=81272752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210039105.2A Pending CN114421165A (en) | 2022-01-13 | 2022-01-13 | A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114421165A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI854646B (en) * | 2023-05-10 | 2024-09-01 | 川升股份有限公司 | A dual-band dual-polarized vivaldi antenna |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388484A (en) * | 2008-10-09 | 2009-03-18 | 北京航空航天大学 | A Thin-Plate Omnidirectional Broadband Surface Conformal Antenna |
CN103367919A (en) * | 2013-07-04 | 2013-10-23 | 西安电子科技大学 | LFBB (Low Frequency Broadband) dual-polarization four-ridge horn antenna |
JP2018037969A (en) * | 2016-09-02 | 2018-03-08 | 国立研究開発法人情報通信研究機構 | Tapered TEM horn antenna |
CN108172994A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学(威海) | A dual-polarized broadband antenna device based on dielectric integrated coaxial line |
CN108879110A (en) * | 2018-06-21 | 2018-11-23 | 河南师范大学 | Small sized wide-band dual polarization quadruple ridged horn antenna |
CN211182513U (en) * | 2019-12-25 | 2020-08-04 | 深圳市欧铊科技有限公司 | Dual-polarized horn antenna |
CN112510374A (en) * | 2020-12-08 | 2021-03-16 | 南京长峰航天电子科技有限公司 | Dual-polarized conical horn antenna |
CN213483981U (en) * | 2020-12-21 | 2021-06-18 | 湖北三江航天险峰电子信息有限公司 | Four-ridge horn antenna |
CN113363704A (en) * | 2021-04-27 | 2021-09-07 | 西安电子科技大学 | Ultra-wideband double-slot dual-polarization Vivaldi antenna and application |
CN113922090A (en) * | 2021-10-25 | 2022-01-11 | 中国电子科技集团公司第二十九研究所 | Ultra-wideband dual-polarized metal horn antenna |
-
2022
- 2022-01-13 CN CN202210039105.2A patent/CN114421165A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388484A (en) * | 2008-10-09 | 2009-03-18 | 北京航空航天大学 | A Thin-Plate Omnidirectional Broadband Surface Conformal Antenna |
CN103367919A (en) * | 2013-07-04 | 2013-10-23 | 西安电子科技大学 | LFBB (Low Frequency Broadband) dual-polarization four-ridge horn antenna |
JP2018037969A (en) * | 2016-09-02 | 2018-03-08 | 国立研究開発法人情報通信研究機構 | Tapered TEM horn antenna |
CN108172994A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学(威海) | A dual-polarized broadband antenna device based on dielectric integrated coaxial line |
CN108879110A (en) * | 2018-06-21 | 2018-11-23 | 河南师范大学 | Small sized wide-band dual polarization quadruple ridged horn antenna |
CN211182513U (en) * | 2019-12-25 | 2020-08-04 | 深圳市欧铊科技有限公司 | Dual-polarized horn antenna |
CN112510374A (en) * | 2020-12-08 | 2021-03-16 | 南京长峰航天电子科技有限公司 | Dual-polarized conical horn antenna |
CN213483981U (en) * | 2020-12-21 | 2021-06-18 | 湖北三江航天险峰电子信息有限公司 | Four-ridge horn antenna |
CN113363704A (en) * | 2021-04-27 | 2021-09-07 | 西安电子科技大学 | Ultra-wideband double-slot dual-polarization Vivaldi antenna and application |
CN113922090A (en) * | 2021-10-25 | 2022-01-11 | 中国电子科技集团公司第二十九研究所 | Ultra-wideband dual-polarized metal horn antenna |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI854646B (en) * | 2023-05-10 | 2024-09-01 | 川升股份有限公司 | A dual-band dual-polarized vivaldi antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102820534B (en) | Broadband circular polarization patch antenna | |
CN202871984U (en) | 8 mm dual-polarized conical-horn antenna | |
CN109755750A (en) | A Dual-Polarized Feed Feed for Broadband Ridged Orthogonal Mode Converters | |
CN109786929B (en) | Corrugated groove four-ridge horn feed source | |
CN113097726B (en) | A Dual Frequency Dual Circular Polarization Microstrip Antenna | |
CN101694903A (en) | Dual-arm coupling quadrature mode coupler with high cross polarization discrimination | |
CN114142207B (en) | Foldable large-spacing ultra-wideband low-profile tightly-coupled array antenna | |
CN114512827A (en) | An ultra-wideband slanted 45 degree polarization tightly coupled array antenna | |
CN106410355A (en) | L-band four-ridge ortho-mode transducer | |
CN109560375B (en) | Periodic orthogonal meander line leaky-wave antenna | |
US8779998B1 (en) | Wideband horizontally polarized omnidirectional antenna | |
CN205828660U (en) | An X-shaped double-notch ultra-wideband planar monopole antenna | |
CN108987919A (en) | A kind of polygon ultra-wideband antenna of compact unsymmetric structure | |
CN111883915A (en) | Broadband Magnetoelectric Dipole Filter Antenna | |
CN110336121A (en) | A Broadband Circularly Polarized Electromagnetic Dipole Antenna | |
CN111342212A (en) | Dual-polarized high-gain horn antenna for 5G test | |
CN109560380A (en) | A kind of wide band high-gain antenna applied to satellite navigation terminal | |
CN114421165A (en) | A Resistive Loaded Ultra-Broadband Dual-Polarized Quad-ridged Horn Antenna | |
CN209344313U (en) | Circular polarization microstrip antenna based on couple feed | |
CN210926320U (en) | A Filtered Dipole Antenna Applied in Sub-6GHz Band | |
CN212011251U (en) | Dual-polarized low-gain horn antenna for 5G test | |
CN113871856A (en) | High-frequency radiation unit and multi-frequency base station antenna | |
US11418223B2 (en) | Dual-band transformer structure | |
CN212011252U (en) | Dual-polarized high-gain horn antenna for 5G test | |
CN106684544B (en) | A kind of miniaturization monopole ultra-wideband antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220429 |
|
WD01 | Invention patent application deemed withdrawn after publication |