[go: up one dir, main page]

JP6748586B2 - ガス供給システム、基板処理システム及びガス供給方法 - Google Patents

ガス供給システム、基板処理システム及びガス供給方法 Download PDF

Info

Publication number
JP6748586B2
JP6748586B2 JP2017011378A JP2017011378A JP6748586B2 JP 6748586 B2 JP6748586 B2 JP 6748586B2 JP 2017011378 A JP2017011378 A JP 2017011378A JP 2017011378 A JP2017011378 A JP 2017011378A JP 6748586 B2 JP6748586 B2 JP 6748586B2
Authority
JP
Japan
Prior art keywords
gas
flow path
valve
orifice
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017011378A
Other languages
English (en)
Other versions
JP2018014479A (ja
Inventor
淳 澤地
淳 澤地
紀彦 網倉
紀彦 網倉
西野 功二
功二 西野
洋平 澤田
洋平 澤田
好晴 岸田
好晴 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to KR1020170086320A priority Critical patent/KR102313423B1/ko
Priority to TW106122807A priority patent/TWI737764B/zh
Priority to US15/645,521 priority patent/US10665430B2/en
Priority to CN201710555971.6A priority patent/CN107608396B/zh
Priority to CN202011142969.4A priority patent/CN112286238B/zh
Publication of JP2018014479A publication Critical patent/JP2018014479A/ja
Application granted granted Critical
Publication of JP6748586B2 publication Critical patent/JP6748586B2/ja
Priority to KR1020210134183A priority patent/KR102358828B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Drying Of Semiconductors (AREA)
  • Fluid-Driven Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Multiple-Way Valves (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ガス供給システム、基板処理システム及びガス供給方法に関する。
特許文献1には、圧力式流量制御装置が開示されている。圧力式流量制御装置は、ガスの流量を所定量に制御するコントロールバルブと、コントロールバルブの下流に設けられたオリフィスと、コントロールバルブとオリフィスとの間に配置された温度センサ及び圧力センサと、センサ検出値及び目標値に基づいてコントロールバルブの開閉量を制御する制御回路とを備えている。圧力式流量制御装置においては、制御回路により、センサ検出値に基づいて温度補正された流量が演算される。そして、制御回路により、演算された流量と目標値とが比較され、差分が小さくなるようにコントロールバルブが制御される。
国際公開第2015/064035号
ところで、基板処理プロセスにおいては、複数のガスを用いて処理することがある。例えば、複数のガス源のガスを合流させてチャンバへ供給したり、ステップごとに利用するガスを切り替えたりすることがある。
このようなプロセスを実現するために、例えば、図28に示されるように、ガス供給源100のガス流量を制御する圧力式流量制御装置FC3の下流側に開閉バルブ102を配置し、混合されるガスの選択、又は、チャンバへ供給されるガスの切り替えに開閉バルブ102を利用することが考えられる。また、例えば、図29に示されるように、第1ガスの流路103に対して,第2ガスの流路104を接続箇所105で合流させて、混合ガスとしてチャンバへ供給することが考えられる。
しかしながら、図28に示される構成では、開閉バルブ102を閉としたときに流路103のうちオリフィス101と開閉バルブ102との間の流路にガスが留まる。このような残留ガスは、圧力及び流量を制御することができないため、開閉バルブ102を開としたときに、流量が制御されていない状態でガスがチャンバへ供給されることになる。また、図29に示される構成では、流路103を流れる第1ガスの圧力が、流路104を流れる第2ガスの圧力よりも大きい場合、第2ガスが開閉バルブ102Aと接続箇所105との間の流路を満たすまでに時間がかかるおそれがある。このように、複数のガスを制御してプロセスを実行するために、ガス供給システムは改善の余地がある。
本発明の一側面に係るガス供給システムは、基板処理装置のチャンバへガスを供給するガス供給システムであって、第1ガスの第1ガスソースとチャンバとを接続する第1流路と、第2ガスの第2ガスソースと第1流路とを接続する第2流路と、第2流路に設けられ、第2ガスの流量を所定量に制御するコントロールバルブと、コントロールバルブの下流であって第2流路の終端に設けられたオリフィスと、第1流路と第2流路の終端との接続箇所に設けられ、オリフィスの出口から第1流路へ供給される第2ガスの供給タイミングを制御する開閉バルブと、第2流路のうちコントロールバルブとオリフィスとの間の流路に接続され、第2ガスを排気する排気機構と、コントロールバルブ、開閉バルブ及び排気機構を動作させるコントローラと、を備える。
このガス供給システムにおいては、オリフィスがコントロールバルブの下流であって第2流路の終端に設けられ、開閉バルブが第1流路と第2流路の終端との接続箇所に設けられる。つまり、第1流路と第2流路の終端との接続箇所にオリフィス及び開閉バルブが配置されているため、オリフィスから開閉バルブまでの流路を極小化することができる。これにより、開閉バルブを開としたときに、オリフィスから開閉バルブまでの流路に留まったガスが流量制御されていない状態でチャンバへ供給されることを回避することができる。さらに、開閉バルブが第1流路と第2流路の終端との接続箇所に設けられているため、開閉バルブから接続箇所までの流路を極小化することができる。これにより、第1流路を流れるガスの圧力が、第2流路を流れるガスの圧力よりも大きい場合であっても、第2ガスが開閉バルブと接続箇所との間の流路を満たすまでに時間がかかることを回避することができる。さらに、第2ガスを排気する排気機構が第2流路のうちコントロールバルブとオリフィスとの間の流路に接続されているため、例えば、開閉バルブを閉とし、排気機構を作動させることにより、チャンバへの供給を停止した状態でコントロールバルブとオリフィスとの間の流路を所定の目標圧力のガスで満たすことができる。このため、開閉バルブを開としてからコントロールバルブとオリフィスとの間の流路を所定の目標圧力のガスで満たすまでの時間を省略することができるので、応答性に優れている。
一実施形態において、開閉バルブは、閉制御のときにオリフィスの出口を封止するようにオリフィスに押し当てられ、開制御のときにオリフィスから離間させられる封止部材を有してもよい。このように構成することで、オリフィスの出口を開閉することができる。
一実施形態において、開閉バルブは、封止部材を固定支持するシリンダと、オリフィスに封止部材が押し当てられる方向にシリンダを弾性的に付勢する付勢部材と、押し当てられる方向と逆方向にシリンダを移動させる駆動部と、を有してもよい。このように構成した場合、駆動部は、付勢部材によってシリンダを介してオリフィスに押し当てられた封止部材を、押し当てられる方向と逆方向に移動させ、オリフィスの出口を開とすることができる。
一実施形態において、オリフィス及び開閉バルブは、チャンバに設けられたインレットブロックよりも下流側に配置されてもよい。インレットブロックより下流側、つまりインレットブロックよりチャンバ側にオリフィス及び開閉バルブが位置することで、インレットブロックより上流側に位置する場合と比べて、チャンバにより近い位置でガスの制御を行うことができる。よって、チャンバへ供給するガスの応答性を向上させることができる。
一実施形態において、オリフィス及び開閉バルブは、チャンバに設けられたインレットブロックよりも上流側に配置されていてもよい。このように構成した場合、コントロールバルブから開閉バルブまでに位置する構成要素をユニット化することができるので、各構成要素の取り扱いが容易となる。
一実施形態において、排気機構は、第2流路に接続され、第1排気量となる小排気流路と、第2流路に接続され、第1排気量よりも大きい第2排気量となる大排気流路と、大排気流路に設けられ、排気タイミングを制御する第1排気バルブと、を有してもよい。このように構成した場合、排気流路ごとに排気タイミングを制御することができるので、コントロールバルブとオリフィスとの間の流路において、きめ細やかに圧力調整することができる。
一実施形態において、排気機構は、小排気流路に設けられ、排気タイミングを制御する第2排気バルブをさらに有してもよい。このように構成した場合、排気流路ごとに排気タイミングを制御することができるので、コントロールバルブとオリフィスとの間の流路において、よりきめ細やかに圧力調整することができる。
一実施形態において、排気機構は、コントロールバルブとオリフィスとの間の流路においてオリフィス側に接続されてもよい。このように構成した場合、排気機構がコントロールバルブとオリフィスとの間の流路においてコントロールバルブ側に接続される場合と比べて、圧力調整の誤差を低減することができる。
一実施形態において、ガス供給システムは、第2流路のうちコントロールバルブとオリフィスとの間の流路における第2ガスの圧力を検出する圧力検出器をさらに備え、圧力検出器は、コントロールバルブとオリフィスとの間の流路においてオリフィス側に位置し、コントロールバルブは、圧力検出器の検出結果に基づいて第2ガスの流量を制御してもよい。このように構成した場合、圧力検出器がコントロールバルブとオリフィスとの間の流路においてコントロールバルブ側に位置する場合と比べて、流量調整の誤差を低減することができる。
一実施形態において、ガス供給システムは、第2流路のうちコントロールバルブとオリフィスとの間の流路における第2ガスの温度を検出する温度検出器をさらに備え、温度検出器は、コントロールバルブとオリフィスとの間の流路においてオリフィス側に位置し、コントロールバルブは、温度検出器の検出結果に基づいて第2ガスの流量を制御してもよい。このように構成した場合、温度検出器がコントロールバルブとオリフィスとの間の流路においてコントロールバルブ側に位置する場合と比べて、流量調整の誤差を低減することができる。
一実施形態において、コントローラは、第1流路に目標流量の第2ガスを目標供給タイミングで供給する場合、目標供給タイミングとなるまでの所定期間において、開閉バルブを閉としつつ排気機構を動作させた状態で、コントロールバルブを制御して目標流量の第2ガスを流通させ、目標供給タイミングとなったときに開閉バルブを開としてもよい。このように構成することで、開閉バルブを開としてからコントロールバルブとオリフィスとの間の流路を所定の目標圧力のガスで満たすまでの時間を省略することができるので、応答性に優れている。
一実施形態において、ガス供給システムは、コントロールバルブの制御値を取得する制御部を更に備え、コントロールバルブは、弁体と、弁座と、制御電圧に応じて伸張し、弁体と弁座とを接近又は離間させることでコントロールバルブの開閉を行う圧電素子と、を有し、制御部は、圧電素子の制御電圧に基づいて開閉バルブの開閉を判定してもよい。ガスの供給動作は、制御圧力値で確認することができるが、常時一定の流量出力をした場合にはガス供給の正常動作判断が困難である。開閉バルブのアクチュエータに磁気近接センサなどを設けて開閉バルブの開閉を判定する手法も考えられるが部品点数が増加し、構成が複雑化する。このガス供給システムにおいては、コントロールバルブの圧電素子が開閉バルブの開閉に追従するように動作する。このため、コントロールバルブの圧電素子の制御電圧を用いることで、バルブの開閉を簡易に判定することができる。
一実施形態において、制御部は、取得された制御電圧と、予め定められた制御電圧の基準値とを比較し、比較結果に応じて警報を出力してもよい。このように構成することで、開閉バルブが予め定められた動作をしていないときに警報を出力することができる。
本発明の他の側面に係る基板処理システムは、上述したガス供給システムを備え、上述したガス供給システムを用いて基板を処理することができる。
本発明の他の側面に係るガス供給方法は、第1ガスの第1ガスソースとチャンバとを接続する第1流路と、第2ガスの第2ガスソースと第1流路とを接続する第2流路と、第2流路に設けられ、第2ガスの流量を所定量に制御するコントロールバルブと、コントロールバルブの下流であって第2流路の終端に設けられたオリフィスと、第1流路と第2流路の終端との接続箇所に設けられ、オリフィスの出口から第1流路へ供給される第2ガスの供給タイミングを制御する開閉バルブと、第2流路のうちコントロールバルブとオリフィスとの間の流路に接続され、第2ガスを排気する排気機構と、コントロールバルブ、開閉バルブ及び排気機構を動作させるコントローラと、を備えたガス供給システムを用いて基板処理装置のチャンバへガスを供給するガス供給方法であって、開閉バルブを閉としつつ排気機構を動作させた状態で、コントロールバルブを制御して目標流量の第2ガスを流通させる準備ステップと、準備ステップを継続中において目標供給タイミングとなったときに、開閉バルブを開とし、目標流量の第2ガスを第1流路へ供給する供給ステップとを備える。
本発明の他の側面に係るガス供給方法によれば、上述したガス供給システムと同一の効果を奏する。
本発明の種々の側面及び実施形態によれば、複数のガスを制御してプロセスを実行するために改善されたガス供給システムを提供することができる。
第1実施形態に係るガス供給システムの概要図である。 開閉バルブを概略的に示す断面図である。 開閉バルブの下部構造を概略的に示す図である。 第1実施形態に係る基板処理システムを概略的に示す断面図である。 第1ガス用の二次バルブ及び第2ガス用の開閉バルブの開閉タイミングを示す図である。 第2ガス用のコントロールバルブ、開閉バルブ及び排気バルブを通過する第2ガスの流量を示す図である。 第2実施形態に係るガス供給システムの概要図である。 第2ガス用のコントロールバルブ、開閉バルブ及び排気バルブを通過する第2ガスの流量を示す図である。 第3実施形態に係るガス供給システムの概要図である。 複数の開閉バルブの開閉タイミングの一例を示す図である。 複数の開閉バルブの開閉タイミングの他の例を示す図である。 レシピとレシピに対応する制御回路への入力を説明する図である。 入力に対するバルブの開閉制御の一例を説明する図である。 入力に対するバルブの開閉制御の他の例を説明する図である。 入力に対するバルブの開閉制御の他の例を説明する図である。 第4実施形態に係るガス供給システムの概要図である。 コントロールバルブの構成の一例を示す図である。 開閉バルブの開閉確認を説明する図である。 圧力検出器の検出位置が流量制御に与える影響を評価したときのシステム概要図である。 図19のシステム構成において評価した評価結果である。 圧力検出器の検出位置が流量制御に与える影響を評価したときのシステム概要図である。 図21のシステム構成において評価した評価結果である。 温度検出器の検出位置が流量制御に与える影響を評価したときのシステム概要図である。 図23のシステム構成において評価した評価結果である。 図24の25℃のデータを基準として図24のグラフを変換した結果である。 流量制御に与える影響を評価した構成要素を示す概要図である。 図26に示す各構成要素の評価結果である。 従来のガス供給システムの概要図である。 従来のガス供給システムの概要図である。
以下、図面を参照して種々の実施形態について詳細に説明する。各図面において同一又は相当の部分に対しては同一の符号を附す。
[第1実施形態]
図1は、第1実施形態に係るガス供給システム1の概要図である。図1に示されるガス供給システム1は、基板処理装置のチャンバ12へガスを供給するシステムである。ガス供給システム1は、第1流路L1及び第2流路L2を備える。第1流路L1は、第1ガスの第1ガスソースGS1とチャンバ12とを接続する。第2流路は、第2ガスの第2ガスソースGS2と第1流路L1とを接続する。第2流路L2は、接続箇所PP1で第1流路L1に合流する。第1流路L1及び第2流路L2は、例えば配管で形成される。第1ガスは第2ガスより大流量でチャンバ12へ供給され得る。第1ガス及び第2ガスは任意である。第1ガスは、一例として、キャリアガスであってもよい。キャリアガスは、例えばArガス、Nガス等である。
第1流路L1における第1ガスソースGS1の下流側であって、第2流路L2との接続箇所の上流側には、圧力式流量制御装置FC1が配置されてもよい。圧力式流量制御装置FC1の上流側には、図示しない一次バルブが設けられ、圧力式流量制御装置FC1の下流側には、図示しない二次バルブが設けられる。圧力式流量制御装置FC1は、コントロールバルブ、圧力検出器、温度検出器、及び、オリフィス等を有している。コントロールバルブは、一次バルブの下流に設けられる。オリフィスはコントロールバルブの下流且つ二次バルブの上流に設けられる。また、圧力検出器及び温度検出器は、コントロールバルブとオリフィスとの間の流路における圧力及び温度を計測するように構成される。圧力式流量制御装置FC1は、圧力検出器及び温度検出器によって計測された圧力及び温度に応じてコントロールバルブを制御することにより、オリフィスの上流の流路の圧力を調整する。オリフィスの上流側圧力Pと下流側圧力Pとの間にP/P≧約2の所謂臨界膨張条件が保持されている場合には、オリフィスを流通するガス流量QがQ=KP(但しKは定数)となり、また、臨界膨張条件が満たされていない場合には、オリフィスを流通するガス流量QがQ=KP (P−P(但しK、m、nは定数)となる。従って、上流側圧力Pを制御することによりガス流量Qを高精度で制御することができ、しかも、コントロールバルブの上流側ガスの圧力が大きく変化しても、制御流量値が殆ど変化しないという優れた特性を発揮することができる。第1ガスソースGS1の第1ガスは、圧力式流量制御装置FC1により流量が調整され、第2流路L2との接続箇所PP1を通過してチャンバ12へ供給される。
第2流路L2における第2ガスソースGS2の下流側には、コントロールバルブVL1と、オリフィスOL1と、開閉バルブVL2とが順に配置されている。
コントロールバルブVL1は、第2流路L2に設けられ、第2ガスの流量を所定量に制御する。コントロールバルブVL1は、圧力式流量制御装置FC1に備わるコントロールバルブと同一の機能を有する。コントロールバルブVL1とオリフィスOL1との間の流路の圧力及び温度は、圧力検出器PM及び温度検出器TMによって検出され得る。
圧力検出器PMは、第2流路L2のうちコントロールバルブVL1とオリフィスOL1との間の流路における第2ガスの圧力を検出する。圧力検出器PMは、コントロールバルブVL1とオリフィスOL1との間の流路においてオリフィスOL1側に位置してもよい。つまり、コントロールバルブVL1と圧力検出器PMとの間の流路の長さよりも、圧力検出器PMとオリフィスOL1との間の流路の長さの方が短くてもよい。コントロールバルブVL1とオリフィスOL1との間の流路において、圧力検出器PMがオリフィスOL1側に位置することにより、コントロールバルブ側に位置する場合と比べて、流量調整の誤差を低減することができる。
温度検出器TMは、第2流路L2のうちコントロールバルブVL1とオリフィスOL1との間の流路における第2ガスの温度を検出する。温度検出器TMは、コントロールバルブVL1とオリフィスOL1との間の流路においてオリフィスOL1側に位置してもよい。つまり、コントロールバルブVL1と温度検出器TMとの間の流路の長さよりも、温度検出器TMとオリフィスOL1との間の流路の長さの方が短くてもよい。コントロールバルブVL1とオリフィスOL1との間の流路において、温度検出器TMがオリフィスOL1側に位置することにより、コントロールバルブ側に位置する場合と比べて、流量調整の誤差を低減することができる。
コントロールバルブVL1は、圧力検出器PM及び温度検出器TMの検出結果に基づいて第2ガスの流量を制御する。より具体的な一例としては、制御回路C2がコントロールバルブVL1の動作を決定する。制御回路C2は、圧力検出器PM及び温度検出器TMによって検出された圧力及び温度を入力し、検出された圧力の温度補正と流量演算とを行う。そして、制御回路C2は、設定された目標流量と算出した流量とを比較し、差分が小さくなるようにコントロールバルブVL1の動作を決定する。なお、第2ガスソースGS2とコントロールバルブVL1との間に一次バルブが設けられていてもよい。
オリフィスOL1は、コントロールバルブVL1の下流であって第2流路L2の終端L21に設けられる。オリフィスOL1は、圧力式流量制御装置FC1に備わるオリフィスと同一の機能を有する。開閉バルブVL2は、第1流路L1と第2流路L2の終端L21との接続箇所PP1に設けられ、オリフィスOL1の出口から第1流路L1へ供給される第2ガスの供給タイミングを制御する。開閉バルブVL2は、第1ガスを通過させつつ、第2ガスの供給タイミングを制御する機能を有する。開閉バルブVL2の構成の詳細については後述する。第2ガスソースGS2の第2ガスは、コントロールバルブVL1及びオリフィスOL1により流量が調整され、第1流路L1との接続箇所PP1で開閉バルブVL2の開動作により第1流路L1に供給され、第1流路L1を通過してチャンバ12へ供給される。
ガス供給システム1は、第2流路L2のうちコントロールバルブVL1とオリフィスOL1との間の流路に接続された、第2ガスを排気する排気機構Eを備えている。排気機構Eは、排気流路ELを介して第2流路L2と接続する。排気流路ELは、第2流路L2のうちコントロールバルブVL1とオリフィスOL1との間の接続箇所PP2に接続される。排気機構Eは、コントロールバルブVL1とオリフィスOL1との間の流路においてオリフィスOL1側に接続されてもよい。つまり、コントロールバルブVL1と接続箇所PP2との間の流路の長さよりも、接続箇所PP2とオリフィスOL1との間の流路の長さの方が短くてもよい。コントロールバルブVL1とオリフィスOL1との間の流路において、排気機構EがオリフィスOL1側に接続されることにより、コントロールバルブVL1側に接続される場合と比べて、圧力調整の誤差を低減することができる。
排気機構Eは、オリフィスOL2及び排気バルブVL3(第2排気バルブの一例)を備え得る。オリフィスOL2は、圧力式流量制御装置FC1に備わるオリフィスと同一の機能を有する。なお、オリフィスOL2を備えた排気流路ELを小排気流路ともいう。排気流路ELは、チャンバ12を排気する排気装置51に接続されている。なお、排気流路ELは、他の排気装置に接続されてもよい。排気バルブVL3は、排気流路ELに設けられ、排気タイミングを制御し得る。排気バルブVL3が開とされた場合、コントロールバルブVL1とオリフィスOL1との間の流路に存在する第2ガスのうちオリフィスOL2で流量制御された第2ガスが排気流路ELから排気される。
ガス供給システム1は、コントロールバルブVL1、開閉バルブVL2及び排気機構Eを動作させるコントローラC1を備えている。コントローラC1は、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータである。コントローラC1は、記憶部に記憶されたレシピを入力し、コントロールバルブVL1を動作させる制御回路C2へ信号を出力する。また、コントローラC1は、記憶部に記憶されたレシピを入力し、開閉バルブVL2の開閉動作を制御する。また、コントローラC1は、記憶部に記憶されたレシピを入力し、排気機構Eを制御する。例えば、コントローラC1は、制御回路C2を介して排気バルブVL3を動作し得る。
オリフィスOL1及び開閉バルブVL2は、チャンバ12に設けられたインレットブロック55よりも下流側に配置され得る。例えば、インレットブロック55は、第1流路L1における圧力式流量制御装置FC1の下流側であって、第2流路L2との接続箇所PP1の上流側に配置される。同様に、インレットブロック55は、コントロールバルブVL1とオリフィスOL1との間に配置される。インレットブロック55は、その内部に流路が形成されており、インレットブロック55の上流側の配管とインレットブロック55の下流側の配管又はチャンバ12とを接続する。インレットブロック55は、チャンバ12を大気開放する際に切り離され、接続された配管を分割したりチャンバ12と配管とを分離したりする。なお、インレットブロック55より下流側(チャンバ12側)は、大気以下に排気されていてもよい。また、第1流路のインレットブロック55は、第2流路のインレットブロック55と同一部材であってもよいし、異なる部材でもよい。インレットブロック55より下流側、つまりインレットブロック55よりチャンバ12側にオリフィスOL1及び開閉バルブVL2が位置することで、インレットブロック55より上流側に位置する場合と比べて、チャンバ12により近い位置でガスの制御を行うことができる。よって、チャンバ12へ供給するガスの応答性を向上させることができる。
インレットブロック55を基準として第2ガスソースGS2側に設けられたコントロールバルブVL1及び制御回路C2は、ユニット化されてもよい(図中のユニットU1)。インレットブロック55を基準としてチャンバ12側に設けられたオリフィスOL1及び開閉バルブVL2は、ユニット化されてもよい(図中のユニットU2)。ユニット化とは1つの構成要素として一体化されることである。なお、ユニットU2は、圧力検出器PM及び温度検出器TMを含んでもよい。また、ユニットU2は、後述する排気流路の一部を含んでもよい。
次に、開閉バルブVL2の構成の詳細を説明する。図2は、開閉バルブVL2を概略的に示す断面図である。開閉バルブVL2は、第1流路L1上に配置される。図2に示されるように、開閉バルブVL2は、下部本体部71及び上部本体部72を備える。下部本体部71と上部本体部72との間には、弁機能を発揮する封止部材74が配置される。下部本体部71は、その内部に気体を流通させる流路を画成する。上部本体部72は、封止部材74を動作させる構成要素を備える。封止部材74は、可撓性を有する部材で構成され得る。封止部材74は、例えば、弾性部材、ダイヤフラム、ベローズ等であってもよい。
下部本体部71は、その内部に第1流路L1の一部となる流路を画成している。具体的な一例として、下部本体部71は、入口71a及び出口71bを有し、入口71aから出口71bまで延びる内部流路71cを有している。下部本体部71は、その内部に第2流路L2の終端L21を有している。つまり、終端L21に設けられたオリフィスOL1は、下部本体部71の内部に収容されている。下部本体部71の内部において、第1流路L1と第2流路L2とが合流する。開閉バルブVL2は、第2流路L2の終端L21を封止部材74で開閉することにより、第2ガスが第1流路へ合流するタイミングを制御する。
具体的な一例として、内部流路71c内には、オリフィスOL1を支持するためのオリフィス支持部71dが形成されている。オリフィス支持部71dは、内部流路71cの内壁から内部流路71cの上部本体部72側(封止部材74側)に向けて突出している。オリフィス支持部71dは、入口71e及び出口71fを有し、入口71eから出口71fまで延びる内部流路71gを有している。内部流路71gは、第2流路L2の一部を構成する。第2流路L2の終端L21であるオリフィス支持部71dの出口71fには、オリフィスOL1が設けられている。オリフィスOL1の周囲には、オリフィスOL1よりも上部本体部72側(封止部材74側)に突出したシール部75が設けられている。
上部本体部72は、封止部材74とオリフィスOL1との距離を制御する構成要素を有している。具体的な一例として、上部本体部72は、シリンダ76、付勢部材78及び駆動部81を有する。
シリンダ76は、封止部材74を固定支持し、上部本体部72の内部に収容される。例えば、シリンダ76は、その下端に封止部材74を固定する。シリンダ76は、外側に向けて拡径された突出部76aを有する。シリンダ76は、その内部に流路76bを有する。突出部76aの側面と上部本体部72の内壁との間、及び、突出部76aよりも下方のシリンダ76の側面と上部本体部72の内壁との間には、シール部材79が設けられている。上部本体部72の内壁、シリンダ76の側壁、突出部76aの下面、及びシール部材79によって空間82が画成される。シリンダ76の流路76bは、空間82に連通している。
付勢部材78は、オリフィスOL1に封止部材74が押し当てられる方向にシリンダ76を弾性的に付勢する。例えば、シリンダ76を下部本体部71側(オリフィスOL1側)に付勢する。より具体的には、付勢部材78は、シリンダ76の突出部76aの上面に対して下方へ向けて付勢力を与える。付勢部材78により、封止部材74がオリフィスOL1の出口73を封止するようにオリフィスOL1に押し当てられる。このように、付勢部材78の作用により、第2流路は閉とされる(閉制御)。付勢部材78は、例えば弾性体で構成される。具体的な一例としては、付勢部材78はバネである。
駆動部81は、押し当てられる方向と逆方向にシリンダ76を移動させる。駆動部81は、シリンダ76の流路76bに空気を供給し、空間82に空気を充填する。空間82に充填された空気の圧力が付勢部材78の付勢力よりも大きくなった場合、シリンダ76は封止部材74とともに上昇する。つまり、駆動部81により、封止部材74がオリフィスOL1から離間する。このように、駆動部81により、第2流路は開とされる(開制御)。
下部本体部71の内部流路71cは、封止部材74の動作によっては閉塞されない構造を有する。つまり、第1流路L1は、封止部材74の動作によっては閉塞されず、常に連通した状態となる。図3は、開閉バルブVL2の下部構造を概略的に示す図である。図3に示されるように、内部流路71cは、オリフィス支持部71dの周囲を囲むように画成されている。第1ガスは、封止部材74がオリフィスOL1に押し当てられているときには、オリフィス支持部71dの側方を通過し、封止部材74がオリフィスOL1から離間しているときには、オリフィス支持部71dの側方及び上方を通過する。このように、封止部材74は、第1流路L1の流通に影響を与えること無く、第2流路L2の開閉を実現する。
以上、ガス供給システム1においては、オリフィスOL1がコントロールバルブVL1の下流であって第2流路L2の終端L21に設けられ、開閉バルブVL2が第1流路L1と第2流路L2の終端L21との接続箇所PP1に設けられる。つまり、第1流路L1と第2流路L2の終端L21との接続箇所PP1にオリフィスOL1及び開閉バルブVL2が配置されているため、オリフィスOL1から開閉バルブVL2までの流路を極小化することができる。これにより、開閉バルブVL2を開としたときに、オリフィスOL1から開閉バルブVL2までの流路に留まったガスが流量制御されていない状態でチャンバへ供給されることを回避することができる。
また、ガス供給システム1においては、開閉バルブVL2が第1流路L1と第2流路L2の終端L21との接続箇所PP1に設けられているため、開閉バルブVL2から接続箇所PP1までの流路を極小化することができる。これにより、第1流路L1を流れるガスの圧力が、第2流路L2を流れるガスの圧力よりも大きい場合であっても、第2ガスが開閉バルブVL2と接続箇所PP1との間の流路を満たすまでに時間がかかることを回避することができる。
さらに、ガス供給システム1においては、第2ガスを排気する排気機構Eが第2流路L2のうちコントロールバルブVL1とオリフィスOL1との間の流路に接続されているため、例えば、開閉バルブVL2を閉とし、排気機構Eを作動させることにより、チャンバ12への供給を停止した状態でコントロールバルブVL1とオリフィスOL1との間の流路を所定の目標圧力のガスで満たすことができる。このため、開閉バルブVL2を開としてからコントロールバルブVL1とオリフィスOL1との間の流路を所定の目標圧力のガスで満たすまでの時間を省略することができるので、応答性に優れている。
以下、ガス供給システム1を備える基板処理装置(基板処理システム)として、一実施形態のプラズマ処理装置について説明する。図4は、一実施形態に係るプラズマ処理装置を概略的に示す図である。図4に示すプラズマ処理装置10は、容量結合型プラズマ処理装置であり、プラズマ処理として、例えば、プラズマエッチングのために用いられる装置である。
プラズマ処理装置10は、チャンバ12を備えている。チャンバ12は、略円筒形状を有している。チャンバ12は、例えば、アルミニウムから構成されており、その内壁面には陽極酸化処理が施されている。このチャンバ12は保安接地されている。また、チャンバ12の側壁上端には、当該側壁から上方に延びるように、接地導体12aが搭載されている。接地導体12aは、略円筒形状を有している。また、チャンバ12の側壁には基板(以下、「ウエハW」という)の搬入出口12gが設けられており、この搬入出口12gはゲートバルブ54により開閉可能となっている。
チャンバ12の底部上には、略円筒状の支持部14が設けられている。支持部14は、例えば、絶縁材料から構成されている。支持部14は、チャンバ12内において、チャンバ12の底部から鉛直方向に延在している。また、チャンバ12内には、載置台PDが設けられている。載置台PDは、支持部14によって支持されている。
載置台PDは、その上面においてウエハWを保持する。載置台PDは、下部電極LE及び静電チャックESCを有している。下部電極LEは、第1プレート18a及び第2プレート18bを含んでいる。第1プレート18a及び第2プレート18bは、例えばアルミアルミニウムといった金属から構成されており、略円盤形状をなしている。第2プレート18bは、第1プレート18a上に設けられており、第1プレート18aに電気的に接続されている。
第2プレート18b上には、静電チャックESCが設けられている。静電チャックESCは、導電膜である電極を一対の絶縁層又は絶縁シート間に配置した構造を有している。静電チャックESCの電極には、直流電源22がスイッチ23を介して電気的に接続されている。この静電チャックESCは、直流電源22からの直流電圧により生じたクーロン力等の静電力によりウエハWを吸着する。これにより、静電チャックESCは、ウエハWを保持することができる。
第2プレート18bの周縁部上には、ウエハWのエッジ及び静電チャックESCを囲むようにフォーカスリングFRが配置されている。フォーカスリングFRは、プラズマ処理の均一性を向上させるために設けられている。フォーカスリングFRは、例えば、シリコン、石英、又はSiCといった材料から構成され得る。
第2プレート18bの内部には、冷媒流路24が設けられている。冷媒流路24は、温調機構を構成している。冷媒流路24には、チャンバ12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻される。このように、冷媒流路24には、冷媒が循環するよう、供給される。この冷媒の温度を制御することにより、静電チャックESCによって支持されたウエハWの温度が制御される。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャックESCの上面とウエハWの裏面との間に供給する。
また、プラズマ処理装置10には、加熱素子であるヒータHTが設けられている。ヒータHTは、例えば、第2プレート18b内に埋め込まれている。ヒータHTには、ヒータ電源HPが接続されている。ヒータ電源HPからヒータHTに電力が供給されることにより、載置台PDの温度が調整され、当該載置台PD上に載置されるウエハWの温度が調整されるようになっている。なお、ヒータHTは、静電チャックESCに内蔵されていてもよい。
また、プラズマ処理装置10は、上部電極30を備えている。上部電極30は、載置台PDの上方において、当該載置台PDと対向配置されている。下部電極LEと上部電極30とは、互いに略平行に設けられている。上部電極30と載置台PDとの間には、ウエハWにプラズマ処理を行うための処理空間Sが提供されている。
上部電極30は、絶縁性遮蔽部材32を介して、チャンバ12の上部に支持されている。一実施形態では、上部電極30は、載置台PDの上面、即ち、ウエハ載置面からの鉛直方向における距離が可変であるように構成され得る。上部電極30は、天板34及び支持体36を含み得る。天板34は処理空間Sに面しており、当該天板34には複数のガス吐出孔34aが設けられている。この天板34は、シリコン、酸化シリコンから構成され得る。或いは、天板34は、導電性(例えば、アルミニウム)の母材にセラミックスのコーティングを施すことによって形成され得る。
支持体36は、天板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この支持体36は、水冷構造を有し得る。支持体36の内部には、ガス拡散室36aが設けられている。ガス拡散室36aには、ガス供給システム1の合流管(第1流路L1)が接続している。
支持体36には、ガス拡散室36aと当該ガス拡散室36aの下方で延在する複数のガス吐出孔34aとを接続する複数の連通孔36bが形成されている。かかる構成の上部電極30は、シャワーヘッドSHを構成している。
また、プラズマ処理装置10では、チャンバ12の内壁に沿ってデポシールド46が着脱自在に設けられている。デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、チャンバ12にプラズマ処理の副生物(デポ)が付着することを防止するものであり、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。
チャンバ12の底部側、且つ、支持部14とチャンバ12の側壁との間には排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。排気プレート48には、多数の貫通孔が形成されている。この排気プレート48の下方、且つ、チャンバ12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50及び排気装置51が接続されている。一実施形態では、排気装置50は、ターボ分子ポンプであり、排気装置51はドライポンプである。排気装置50は、チャンバ12に対して、排気装置51よりも上流側に設けられている。これら排気装置50と排気装置51との間の配管には、ガス供給システム1の排気流路ELが接続している。排気装置50と排気装置51との間に排気流路ELが接続されることにより、排気流路ELからチャンバ12内へのガスの逆流が抑制される。
また、プラズマ処理装置10は、第1の高周波電源62及び第2の高周波電源64を更に備えている。第1の高周波電源62は、プラズマ生成用の第1の高周波を発生する電源であり、27〜100MHzの周波数、一例においては40MHzの高周波を発生する。第1の高周波電源62は、整合器66を介して下部電極LEに接続されている。整合器66は、第1の高周波電源62の出力インピーダンスと負荷側(下部電極LE側)の入力インピーダンスを整合させるための回路を有している。
第2の高周波電源64は、ウエハWにイオンを引き込むための第2の高周波、即ちバイアス用の高周波を発生する電源であり、400kHz〜13.56MHzの範囲内の周波数、一例においては3.2MHzの第2の高周波を発生する。第2の高周波電源64は、整合器68を介して下部電極LEに接続されている。整合器68は、第2の高周波電源64の出力インピーダンスと負荷側(下部電極LE側)の入力インピーダンスを整合させるための回路を有している。
また、一実施形態においては、図1に示されたコントローラC1は、プラズマ処理装置10にて実行されるプラズマ処理のために、当該プラズマ処理装置10の各部を制御する。
このプラズマ処理装置10では、チャンバ12内に供給されたガスを励起させて、プラズマを発生させることができる。そして、活性種によってウエハWを処理することができる。また、ガス供給システム1によって、例えば第1ガスを第1流量で供給しつつ、第2ガスを第1流量よりも少ない第2流量でチャンバ12内に間欠的かつ応答性良く供給することができる。したがって、異なるプラズマ処理をウエハWに対して交互に行うプロセスのスループットを高めることが可能である。
次に、ガス供給システム1によるガス供給方法を説明する。ガス供給方法は、コントローラC1によって構成要素が動作されることで実現し得る。図5は、第1ガス用の二次バルブ及び第2ガス用の開閉バルブVL2の開閉タイミングを示す図である。図5に示されるように、コントローラC1は、第1ガス用の二次バルブを開とする。次に、コントローラC1は、第1ガス用の二次バルブが開とされている状態で、開閉バルブVL2が開閉を繰り返す。このようなプロセスの一例として、第1ガスはキャリアガスであり、第2ガスはプラズマ処理に必要な処理ガスである。
ガス供給システム1は、開閉バルブVL2の開閉制御に合わせて、コントロールバルブVL1及び排気バルブVL3を開閉制御する。具体的には、コントローラC1は、第1流路L1に目標流量の第2ガスを目標供給タイミングで供給する場合、目標供給タイミングとなるまでの所定期間において、開閉バルブVL2を閉としつつ排気機構Eを動作させた状態で、コントロールバルブVL1を制御して目標流量の第2ガスを流通させ、目標供給タイミングとなったときに開閉バルブを開とする。
図6は、第2ガス用のコントロールバルブVL1、開閉バルブVL2及び排気バルブVL3を通過する第2ガスの流量を示す図である。図6においては、処理プロセスのステップを、破線を用いて表現しており、処理プロセス全体のステップは合計15である場合を示している。開閉バルブVL2が図5を用いて説明した開閉動作を行うことにより、図6に示されるように、第2ガスは開閉バルブVL2を間欠的に流通する。図6では、コントローラC1は、ステップ3,5,8及び12(目標供給タイミングの一例)において開閉バルブVL2を開とする。コントローラC1は、ステップ3の直前ステップであるステップ2(目標供給タイミングとなるまでの所定期間の一例)において、開閉バルブVL2を閉とした状態で、コントロールバルブVL1及び排気バルブVL3を開とし、排気機構Eを動作させる(準備ステップ)。つまり、ステップ2では、コントロールバルブVL1を通過した第2ガスは、第1流路L1に供給されず、排気流路ELを通過して排気される。このとき、第2流路内のガスの圧力及び流量は、コントロールバルブVL1により、設定された目標値に制御される。コントローラC1は、コントロールバルブVL1と排気バルブVL3とを任意の手法で同期させることができる。例えば、コントローラC1は、コントロールバルブVL1への入力流量が0より大きい場合、小排気流路EL1の排気バルブVL3を開とするように制御してもよい。コントローラC1は、コントロールバルブVL1への入力流量が0である場合、小排気流路EL1の排気バルブVL3を閉としてもよい。
コントローラC1は、準備ステップ継続中において、目標供給タイミングであるステップ3になったときに、開閉バルブVL2を開とし、目標流量の第2ガスを第1流路へ供給する(供給ステップ)。このように、開閉バルブVL2を閉とし、排気機構Eを作動させることにより、チャンバ12への供給を停止した状態でコントロールバルブVL1とオリフィスOL1との間の流路を所定の目標圧力のガスで満たすことができる。このため、開閉バルブVL2を開としてからコントロールバルブVL1とオリフィスOL1との間の流路を所定の目標圧力のガスで満たすまでの時間を省略することができるので、応答性に優れている。
[第2実施形態]
第2実施形態に係るガス供給システム1Aは第1実施形態に係るガス供給システム1と比較して、排気機構Eに替えて排気機構EAを備える点、及び、コントローラC1によるガス供給方法が相違する。第2実施形態では、第1実施形態との相違点を中心に説明し、重複する説明は省略する。
図7は、第2実施形態に係るガス供給システム1Aの概要図である。排気機構EAは、排気流路ELとして、小排気流路EL1及び大排気流路EL2を有する。小排気流路EL1及び大排気流路EL2は、第2流路のうちコントロールバルブVL1とオリフィスOL1との間の流路に接続される。小排気流路EL1は、大排気流路EL2よりも排気量が小さい。具体的には、小排気流路EL1には、オリフィスOL2が設けられており、排気量を第1排気量に制御する。小排気流路EL1には、排気タイミングを制御する排気バルブVL3(第2排気バルブの一例)が設けられてもよい。大排気流路EL2は、第1排気量よりも大きい第2排気量で排気する。大排気流路EL2には、流量制御する機器が設けられていない。大排気流路EL2には、排気タイミングを制御する排気バルブVL4(第1排気バルブの一例)が設けられてもよい。排気機構EAは、第1実施形態に係る排気機構Eと同様に、コントローラC1によって制御回路C2を介して制御され得る。ガス供給システム1Aのその他の構成は、ガス供給システム1と同一である。ガス供給システム1Aは、プラズマ処理装置10に適用することができる。
次に、ガス供給システム1Aによるガス供給方法を説明する。ガス供給方法は、コントローラC1によって構成要素が動作されることで実現し得る。第1ガス用の二次バルブ及び第2ガス用の開閉バルブVL2の開閉タイミングは、図5と同一である。ガス供給システム1Aは、開閉バルブVL2の開閉制御に合わせて、コントロールバルブVL1及び排気バルブVL3,VL4を開閉制御する。具体的には、コントローラC1は、第1流路L1に目標流量の第2ガスを目標供給タイミングで供給する場合、目標供給タイミングとなるまでの所定期間において、開閉バルブVL2を閉としつつ排気機構Eを動作させた状態で、コントロールバルブVL1を制御して目標流量の第2ガスを流通させ、目標供給タイミングとなったときに開閉バルブを開とする。
図8は、第2ガス用のコントロールバルブVL1、開閉バルブVL2及び排気バルブVL3,VL4を通過する第2ガスの流量を示す図である。なお、コントロールバルブVL1に関する流量のみ、コントロールバルブVL1への入力流量(IN)と出力流量(OUT)とを図示している。図8においては、処理プロセスのステップを、破線を用いて表現しており、処理プロセス全体のステップは合計15である場合を示している。開閉バルブVL2が図5を用いて説明した開閉動作を行うことにより、図8に示されるように、第2ガスは開閉バルブVL2を間欠的に流通する。図8では、コントローラC1は、ステップ3,5,8及び12(目標供給タイミングの一例)において開閉バルブVL2を開とする。コントローラC1は、第1実施形態のガス供給方法で説明された準備ステップ及び供給ステップを行う。
ここで、コントローラC1は、排気機構Eを以下のように制御する。コントローラC1は、コントロールバルブVL1への入力流量が0より大きい場合、小排気流路EL1の排気バルブVL3を開とする。コントローラC1は、コントロールバルブVL1への入力流量が0である場合、小排気流路EL1の排気バルブVL3を閉とする。コントローラC1は、コントロールバルブVL1への入力流量と出力流量との関係性を用いて、大排気流路EL2の排気バルブVL4の開閉制御を行う。具体的な一例として、コントローラC1は、入力流量が出力流量より所定量以下となった場合に大排気流路EL2の排気バルブVL4を開とし、それ以外の場合に閉とする。図8において、ステップ2及びステップ7では、入力流量が出力流量より所定量以下ではなく、ステップ10及びステップ14では、入力流量が出力流量より所定量以下である場合を示している。図8に示されるように、コントローラC1は、ステップ10及びステップ14において大排気流路EL2の排気バルブVL4を開とし、排気量を増大させる。このように、排気流路ごとに排気タイミングを制御することができるので、コントロールバルブVL1とオリフィスOL1との間の流路において、きめ細やかに圧力調整することができる。
[第3実施形態]
第3実施形態に係るガス供給システム1Bは第1実施形態に係るガス供給システム1と比較して、第3ガスを第1流路L1に合流させる構成をさらに備える点、及び、コントローラC1によるガス供給方法が相違する。第3実施形態では、第1実施形態との相違点を中心に説明し、重複する説明は省略する。
図9は、第3実施形態に係るガス供給システム1Bの概要図である。ガス供給システム1Bは、第3ガスの第3ガスソースGS3と第1流路L1とを接続する第3流路L3を備える。
第3流路L3における第3ガスソースGS3の下流側には、コントロールバルブVL41と、オリフィスOL3と、開閉バルブVL5とが順に配置されている。コントロールバルブVL41は、コントロールバルブVL1と同一の構成であり、制御回路C2と同一の構成の制御回路(不図示)によって制御される。オリフィスOL3は、オリフィスOL1と同一の構成である。開閉バルブVL5は、第1流路L1と第3流路L3との接続箇所PP3に設けられ、開閉バルブVL2と同一の構成である。第3ガスソースGS3の第3ガスは、コントロールバルブVL41及びオリフィスOL3により流量が調整され、第1流路L1との接続箇所PP3で開閉バルブVL5の開動作により第1流路L1に供給され、第1流路L1を通過してチャンバ12へ供給される。
ガス供給システム1Bは、第3流路L3のうちコントロールバルブVL41とオリフィスOL3との間の流路に接続された、第3ガスを排気する排気機構EBを備えている。排気機構EBは、排気流路EL3を介して第3流路L3と接続する。排気流路EL3は、第3流路L3のうちコントロールバルブVL41とオリフィスOL3との間の接続箇所PP4に接続される。排気機構EBは、排気機構Eと同一の構成である。排気流路EL3は、排気流路ELと接続箇所PP5で接続される。なお、排気流路EL3は、他の排気装置に接続されてもよい。
上述した第3ガスを第1流路L1に合流させる構成要素は、第1実施形態で説明したコントローラC1によって制御され得る。オリフィスOL3及び開閉バルブVL5は、チャンバ12に設けられたインレットブロック55よりも下流側に配置され得る。インレットブロック55を基準としてチャンバ12側に設けられたオリフィスOL3及び開閉バルブVL5は、ユニット化されてもよい(図中のユニットU3)。なお、ユニットU3は、圧力検出器PM及び温度検出器TMを含んでもよい。また、ユニットU3は、排気流路EL3の一部を含んでもよい。ガス供給システム1Bのその他の構成は、ガス供給システム1と同一である。ガス供給システム1Bは、プラズマ処理装置10に適用することができる。
次に、ガス供給システム1Bによるガス供給方法を説明する。ガス供給方法は、コントローラC1によって構成要素が動作されることで実現し得る。第1ガス用の二次バルブの開閉タイミングは、任意である。つまり、第1ガスについては導入してもよいし、しなくてもよい。図10は、開閉バルブVL2,VL5の開閉タイミングの一例を示す図である。図10に示されるように、コントローラC1は、第2ガス用の開閉バルブVL2と、第3ガス用の開閉バルブVL5と、を交互に開閉させる。つまり、コントローラC1は、開閉バルブVL2,VL5を周期的に開閉するとともに、開閉の周期をシフトさせる。このようなプロセスの一例として、第1ガスはキャリアガスであり、第2ガス及び第3ガスはプラズマ処理に必要な処理ガスである。別の例では、第1ガスは導入されず、第2ガス及び第3ガスはプラズマ処理に必要な処理ガスである。図11は、開閉バルブVL2,VL5の開閉タイミングの他の例を示す図である。図11に示されるように、コントローラC1は、第2ガス用の開閉バルブVL2と、第3ガス用の開閉バルブVL5と、を同期させて開閉させてもよい。
次に、コントローラC1が処理プロセスのレシピを読み込んで実行する具体的な一例を説明する。レシピは、コントローラC1の記憶部に予め格納されている。図12は、レシピとレシピに対応する制御回路への入力を説明する図である。図12の(A)に示されるように、レシピには、ステップ1〜ステップ8の処理プロセスにおけるArガス(第1ガスの一例)、Oガス(第2ガスの一例)及びCガス(第3ガスの一例)の流量が予め設定されている。このレシピでは、Arガスをキャリアガスとしてステップ1〜ステップ8で供給し、添加ガスとしてOガス及びCガスをステップ3及びステップ5で供給し、添加ガスとしてCガスをステップ8で供給する。コントローラC1は、図12の(A)に示されるレシピを記憶部から読み込むと、図12の(B)に示される処理プロセスが実行されるように、圧力式流量制御装置FC1の制御回路、及び、コントロールバルブVL1の制御回路へ信号を出力する。
図12の(B)に示される制御プロセスは、レシピに基づいて、添加ガスの供給ステップの直前のステップにおいて、当該供給ステップと同一流量の添加ガスを供給するように変更されている(図中の網掛け部分)。具体的には、コントローラC1は、第2ステップのOガスの流量を0[sccm]から6[sccm]へ変更し、第2ステップのCガスの流量を0[sccm]から7.5[sccm]へ変更する。また、コントローラC1は、第3ステップのOガスの流量を0[sccm]から6[sccm]へ変更し、第3ステップのCガスの流量を0[sccm]から7.5[sccm]へ変更する。さらに、コントローラC1は、第7ステップのCガスの流量を0[sccm]から5.5[sccm]へ変更する。
コントローラC1及び制御回路は、図12の(B)に示されたレシピに対応する制御回路への入力に基づいて、各バルブを制御する。第2ガス及び第3ガスに対するバルブの制御方法は共通であるため、以下では、第2ガスの制御方法を説明し、第3ガスの制御方法については省略する。また、第2ガスの制御方法は、代表的なステップのみを説明する。図13は、入力に対するバルブの開閉制御の一例を説明する図である。図13の(A)は、コントローラC1の処理を示している。図13の(A)に示されるように、ステップNにおいて第2ガスが流量α[sccm]で供給されるというレシピをコントローラC1が入力する。コントローラC1は、レシピに対応する制御回路への入力(目標設定)として、ステップN−1において第2ガスが流量α[sccm]で供給されると変更する。そして、コントローラC1は、各ステップのバルブの開閉状態を決定する。なお、コントローラC1は、開閉バルブVL2を直接的に制御し、コントロールバルブVL1及び排気バルブVL3については、コントロールバルブVL1の制御回路を介して間接的に制御する。
コントローラC1は、ステップN−2において、コントロールバルブVL1を閉、開閉バルブVL2を閉、開閉バルブVL2を閉と設定する。コントローラC1は、ステップN−1において、コントロールバルブVL1を開、開閉バルブVL2を閉、排気バルブVL3を開と設定する。コントローラC1は、ステップNにおいて、コントロールバルブVL1を開、開閉バルブVL2を開、排気バルブVL3を開と設定する。コントローラC1は、ステップN+1において、コントロールバルブVL1を閉、開閉バルブVL2を閉、排気バルブVL3を閉と設定する。
そして、コントローラC1は、各ステップにおいて、設定どおりの動作となるように、開閉バルブVL2を開閉させるとともに、制御回路へ信号を出力する。制御回路への信号は、目標設定した流量(入力)、コントロールバルブVL1及び排気バルブVL3の開閉状態が含まれる。制御回路は、コントローラC1から入力した信号に従い、コントロールバルブVL1及び排気バルブVL3の開閉を制御する。
図13の(B)は、信号を入力した制御回路の処理を示している。図13の(B)に示されるように、ステップN−2において、制御回路は、コントロールバルブVL1及び排気バルブVL3を閉とする。コントローラC1は、開閉バルブVL2を閉とする。ステップN−1において、制御回路は、コントロールバルブVL1及び排気バルブVL3を開とする。また、制御回路は、出力流量が流量α[sccm]となるようにコントロールバルブVL1を制御する(自己制御)。また、排気バルブVL3を開とすることにより、排気流量はオリフィスによって自動制御される(自己制御)。コントローラC1は、開閉バルブVL2を閉とする。このように、ステップN−1において、コントロールバルブVL1とオリフィスOL1との間の流路において、流量α[sccm]で第2ガスが流通する。
続いて、ステップNにおいて、制御回路は、コントロールバルブVL1及び排気バルブVL3を開とする。また、制御回路は、出力流量が流量α[sccm]となるようにコントロールバルブVL1を制御する(自己制御)。また、排気バルブVL3を開とすることにより、排気流量はオリフィスによって自動制御される(自己制御)。コントローラC1は、開閉バルブVL2を開とする。このように、ステップNにおいて、ステップN−1にて流量α[sccm]に調整された第2ガスが第1流路L1へ供給される。ステップN+1において、制御回路は、コントロールバルブVL1及び排気バルブVL3を閉とする。コントローラC1は、開閉バルブVL2を閉とする。これにより、第2ガスの第1流路L1への供給が停止される。このように、コントローラC1は、第1実施形態のガス供給方法で説明された準備ステップ及び供給ステップを行う。
図14は、入力に対するバルブの開閉制御の他の例を説明する図である。図14の(A)は、コントローラC1の処理を示している。図14の(A)に示されるように、ステップNにおいて第2ガスが流量α[sccm]で供給され、ステップN+1において第2ガスが流量βで供給されるというレシピをコントローラC1が入力する。コントローラC1は、レシピに対応する制御回路への入力(目標設定)として、ステップN−1において第2ガスが流量α[sccm]で供給されると変更する。なお、供給ステップであるステップN+1の直前のステップは、供給ステップであるステップNであるため、ステップNにおいて設定された流量を変更しない。つまり、供給ステップが連続する場合には、最初の供給ステップのみに準備ステップを設定し、以降の処理は準備ステップ無しで制御する。その他の処理は、図13で説明した内容と同一であり、図14の(A)に示された設定内容に従い、図14の(B)に示されるように処理が実行される。
図15は、入力に対するバルブの開閉制御の他の例を説明する図である。図15の(A)は、コントローラC1の処理を示している。図15の(A)に示されるように、ステップNにおいて第2ガスが流量α[sccm]で供給され、ステップN+2において第2ガスが流量βで供給されるというレシピをコントローラC1が入力する。コントローラC1は、レシピに対応する制御回路への入力(目標設定)として、ステップN−1において第2ガスが流量α[sccm]で供給され、ステップN+1において第2ガスが流量βで供給されると変更する。その他の処理は、図13で説明した内容と同一であり、図14の(A)に示された設定内容に従い、図14の(B)に示されるように処理が実行される。
以上、ガス供給システム1Bは、第1流路L1に複数のガスを合流させることができる。また、ガス供給システム1Bは、第2流路L2及び第3流路L3それぞれにおいて第1実施形態のガス供給方法で説明された準備ステップ及び供給ステップを行うことにより、応答性に優れたガス供給を行うことができる。
[第4実施形態]
第4実施形態に係るガス供給システム1Cは第1実施形態に係るガス供給システム1と比較して、オリフィスOL1及び開閉バルブVL2がインレットブロック55よりも上流側に位置する点が相違する。第4実施形態では、第1実施形態との相違点を中心に説明し、重複する説明は省略する。
図16は、第4実施形態に係るガス供給システム1Cの概要図である。図16に示されるように、ガス供給システム1Cにおいては、第1流路L1と第2流路L2との接続箇所PP1がインレットブロック55よりも上流側に位置している。ガス供給システム1Cのその他の構成は、ガス供給システム1と同一である。
インレットブロック55を基準として第2ガスソースGS2側に設けられたコントロールバルブVL1、制御回路C2、オリフィスOL1及び開閉バルブVL2は、ユニット化されてもよい(図中のユニットU4)。なお、ユニットU4は、圧力検出器PM及び温度検出器TMを含んでもよい。また、ユニットU4は、排気流路ELの一部を含んでもよい。以上、ガス供給システム1Cは、コントロールバルブVL1から開閉バルブVL2までに位置する構成要素をユニット化することができるので、各構成要素の取り扱いが容易となる。
以上、種々の実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、各実施形態を組み合わせてもよい。また、上述した基板処理装置は容量結合型のプラズマ処理装置であったが、基板処理装置は、誘導結合型のプラズマ処理装置、マイクロ波といった表面波を利用するプラズマ処理装置といった任意のプラズマ処理装置であってもよい。
また、ガス供給システム1A,1Bにおいて、オリフィス及び開閉バルブからなるユニットがインレットブロック55よりも上流側に位置してもよい。
また、上述したコントロールバルブVL1は、開閉バルブVL2の上流側に配置された圧力検出器PMの検出結果に基づいて動作していたが、これに限定されるものではない。例えば、さらに追加された圧力検出器の検出結果を用いてもよい。追加の圧力検出器は、例えば、開閉バルブVL2の下流側に配置され、第1流路L1の圧力を検出する。制御回路C2は、第2流路L2の圧力が第1流路L1の圧力の2倍以上である条件下では、圧力検出器PMの測定圧力値から求められる算出流量と設定流量との差を減少させるよう、コントロールバルブVL1を制御する。また、制御回路C2は、第2流路L2の圧力が第1流路L1の圧力の2倍よりも小さい条件下では、圧力検出器PMの測定圧力値と追加の圧力検出器の測定圧力値との間の差圧から求められる算出流量と設定流量との差を減少させるよう、コントロールバルブVL1を制御する。このように、上述したコントロールバルブVL1は、差圧制御によって動作してもよい。また、追加の圧力検出器は、図1のユニットU2に組み込まれてもよい。つまり、追加の圧力検出器は、オリフィスOL1及び開閉バルブVL2とともにユニット化されてもよい。あるいは、追加の圧力検出器は、図16のユニットU4に組み込まれてもよい。つまり、追加の圧力検出器は、コントロールバルブVL1、制御回路C2、オリフィスOL1及び開閉バルブVL2とともにユニット化されてもよい。
また、上述した実施形態において、上述したコントロールバルブVL1は、開閉バルブVL2の開閉確認に利用することができる。図17は、コントロールバルブVL1の構成の一例を示す図である。図17に示されるように、コントロールバルブVL1は、駆動部122を有している。この駆動部122は、制御回路124を有している。制御回路124には、上述した制御回路C2から出力流量と設定流量との流量差ΔFが入力されるようになっている。
また、駆動部122は、圧電素子126(ピエゾ素子)を含んでいる。圧電素子126は、コントロールバルブVL1の開閉動作において後述の弁体130を移動させるよう構成されている。圧電素子126は、印加電圧(制御電圧の一例)に応じて伸張し、後述の弁体130と弁座128dとを接近又は離間させることでコントロールバルブVL1の開閉を行う。例えば、制御回路124は、流量差ΔFが0になるように、圧電素子126に印加する電圧である印加電圧Vpを制御するようになっている。なお、制御回路124は、圧電素子に対する印加電圧Vpを特定する信号を制御回路C2へ入力するようになっている。つまり、制御回路C2は、圧電素子に対する印加電圧Vpを特定する信号(コントロールバルブVL1の制御値)を取得する制御部として機能する。
コントロールバルブVL1は、本体128、弁体130(ダイヤフラム)、皿バネ132、押さえ部材134、ベース部材136、球体138、及び支持部材140を更に有している。本体128は、流路128a、流路128b、及び弁室128cを提供している。流路128a及び流路128bは、上述した第2流路L2の一部を構成する。また、本体128は、弁座128dを更に提供している。
弁体130は、皿バネ132によって押さえ部材134を介して弁座128dに対して付勢されている。圧電素子126に対する印加電圧がゼロである場合には、弁体130は弁座128dに当接しており、コントロールバルブVL1は閉じられた状態となる。
圧電素子126の一端(図中では下端)は、ベース部材136によって支持されている。圧電素子126は、支持部材140に連結されている。支持部材140は、その一端(図中では下端)において、押さえ部材134と結合されている。この圧電素子126に電圧が印加されると、当該圧電素子126は伸張する。圧電素子126が伸張すると、支持部材140は弁座128dから離れる方向に移動し、これに伴い、押さえ部材134も弁座128dから離れる方向に移動する。これにより、弁体130が弁座128dから離間し、コントロールバルブVL1が開かれた状態となる。コントロールバルブVL1の開度、即ち、弁体130と弁座128dとの間の距離は、圧電素子126に印加される電圧によって制御される。
ここで、制御回路C2は、圧電素子126の印加電圧に基づいて開閉バルブVL2の開閉を判定することができる。図18は、開閉バルブの開閉確認を説明する図である。図18の(A)はガス供給のレシピであり、図18の(B)は開閉バルブVL2の開閉タイミングであり、図18の(C)は圧力検出器PMの検出値であり、図18の(D)コントロールバルブVL1の圧電素子の制御電圧である。図18の(A)に示されるようなレシピの場合、図18の(B)に示されるように、開閉バルブVL2の「開タイミング」がレシピの「ガスON」のタイミングと同一となる。そして、図18の(C)に示されるように、開閉バルブVL2の開閉に拘わらず圧力検出器PMの検出値は一定値となる。このような圧力一定の状況は、コントロールバルブVL1の開閉、つまり、圧電素子126の動作で実現されている。圧電素子126の制御電圧は、開閉バルブVL2が開となる時刻TP1で電圧値VP1から電圧値VP2へ変化し、開閉バルブVL2が閉となる時刻TP2で電圧値VP2から電圧値VP1へ変化する。同様に、圧電素子126の制御電圧は、開閉バルブVL2が開となる時刻TP3で電圧値VP1から電圧値VP2へ変化し、開閉バルブVL2が閉となる時刻TP4で電圧値VP2から電圧値VP1へ変化する。制御回路C2は、圧電素子126の制御電圧の変化を判定することで、開閉バルブVL2の開閉を判定することができる。よって、センサなどを追加することなく、開閉バルブVL2の開閉を簡易に判定することができる。
制御回路C2は、取得された制御電圧と、予め定められた制御電圧の基準値とを比較し、比較結果に応じて警報を出力してもよい。予め定められた制御電圧の基準値とは、例えば、レシピどおりに作成したときに動作した圧電素子126の制御電圧である。計測された制御電圧の基準値は、制御回路C2により参照可能な記憶部に予め記憶される。制御回路C2は、記憶部を参照することにより基準値を取得し、取得された制御電圧と比較する。比較結果とは、例えば、取得された制御電圧と予め定められた制御電圧の基準値との差分である。制御回路C2は、例えば、差分が予め定められた閾値以上である場合には、警報を出力する。制御回路C2は、例えば、ディスプレイやスピーカに警報信号を出力する。これにより、開閉バルブが予め定められた動作をしていないときに警報を出力することができる。
[実施例]
以下、上記効果を説明すべく本発明者が実施した実施例及び比較例について述べるが、本発明は以下の実施例に限定されるものではない。
(圧力検出器PMの検出位置の検証)
コントロールバルブとオリフィスとの間の流路における圧力を検出する圧力検出器PMの検出位置が流量制御に影響を与えるか否かを検証した。最初に、圧力検出器PMとオリフィスとの位置関係が流量制御に影響を与えるか否かを確認した。図19は、圧力検出器PMの検出位置が流量制御に与える影響を評価したときのシステム概要図である。図19の(A)に示されるように、評価システムは、流量基準器FC2、コントロールバルブVL7、圧力検出器PM、オリフィスOL5及び開閉バルブVL8を備えている。流量基準器FC2は、圧力式流量制御装置FC1と同一構成である。評価手法として、図19の(B)に示されるように、オリフィスOL5から圧力検出器PMまでの距離を離間距離LL1とし、離間距離LL1を0[m]〜3[m]の範囲で変更し、オリフィスOL5の出口側の流量と設定値との誤差を評価した。結果を図20に示す。
図20は、図19のシステム構成において評価した評価結果である。横軸が流量設定値[%]、縦軸が流量誤差[%]である。流量設定値は、オリフィスOL5が流すことができる流量の最大値に対する割合である。離間距離LL1が0[m]の場合、離間距離LL1が1[m]の場合、離間距離LL1が2[m]の場合、離間距離LL1が3mの場合について流量誤差を計測し、結果をプロットした。図中の破線は、オリフィスの標準スペック値である。図20に示されるように、離間距離LL1が長くなるにつれて、流量誤差の絶対値が大きくなることが確認された。これは、オリフィスOL5と圧力検出器PMとの間の配管の長さの差圧分だけ精度が落ちていると考えられる。
次に、圧力検出器PMとコントロールバルブとの位置関係が流量制御に影響を与えるか否かを確認した。図21は、圧力検出器PMの検出位置が流量制御に与える影響を評価したときのシステム概要図である。図21の(A)に示されるように、評価システムは、流量基準器FC2、コントロールバルブVL7、圧力検出器PM、オリフィスOL5及び開閉バルブVL8を備えている。流量基準器FC2は、圧力式流量制御装置FC1と同一構成である。評価手法として、図21の(B)に示されるように、圧力検出器PMからコントロールバルブVL7までの距離を離間距離LL2とし、離間距離LL2を0[m]〜3[m]の範囲で変更し、オリフィスOL5の出口側の流量と設定値との誤差を評価した。結果を図22に示す。
図22は、図21のシステム構成において評価した評価結果である。横軸が流量設定値[%]、縦軸が流量誤差[%]である。流量設定値は、オリフィスOL5が流すことができる流量の最大値に対する割合である。離間距離LL2が0[m]の場合、離間距離LL2が1[m]の場合、離間距離LL22[m]の場合、圧力検出器PMとコントロールバルブVL7との間が3[m]の場合について計測し、結果をプロットした。図中の破線は、流量基準器FC2の標準スペック値である。図22に示されるように、流量誤差は圧力検出器PMとコントロールバルブVL7との間の配管長さに依存しないことが確認された。図20及び図22の結果から、圧力検出器PMは、コントロールバルブとオリフィスとの間の流路においてオリフィス側に位置した方が流量制御を正確に行うことができることが確認された。また、流路誤差を0.1[%]以下にするためには、オリフィスOL5と圧力検出器PMとの間の配管の長さを1[m]以下にする必要があることが確認された。
(温度検出器TMの検出位置の検証)
コントロールバルブとオリフィスとの間の流路における温度を検出する温度検出器TMの検出位置が流量制御に影響を与えるか否かを検証した。図23は、圧力検出器PMの検出位置が流量制御に与える影響を評価したときのシステム概要図である。図19の(A)に示されるように、評価システムは、室温(25℃)の測定室RO1内に配置され、流量基準器FC2、コントロールバルブVL7、圧力検出器PM、温度検出器TM、オリフィスOL5及び開閉バルブVL8を備えている。流量基準器FC2は、圧力式流量制御装置FC1と同一構成である。温度検出器TMは、コントロールバルブVL1の側に配置し、コントロールバルブVL1の流量制御に用いた。オリフィスOL5及び開閉バルブVL8は、25℃〜50℃までの範囲で温度を制御可能な恒温槽RO2に配置した。恒温槽RO2で温度を変化させて、オリフィスOL5の出口側の流量と設定値との関係を評価した。圧力検出器PMとオリフィスOL5との離間距離LL3は、2[m]とした。結果を図24及び図25に示す。
図24は、図23のシステム構成において評価した評価結果である。横軸が流量設定値[%]、縦軸がオリフィスOL5の出口側の測定流量[sccm]である。流量設定値は、オリフィスOL5が流すことができる流量の最大値に対する割合である。恒温槽RO2の設定温度が25℃,30℃,40℃,50℃の場合それぞれについて、オリフィスOL5の出口側の流量と設定値とをプロットした。図25は、図24の25℃のデータを基準として図24のグラフを変換した結果である。横軸が流量設定値[%]、縦軸が25%の流量を基準とした値である。図25に示されるように、オリフィスOL5の温度と温度検出器TMの検出温度(25℃)との差が大きくなるほど、流量誤差の絶対値が大きくなることが確認された。このように、オリフィスの温度を正確に測定することが重要であることが確認された。図24及び図25の結果から、温度検出器TMは、コントロールバルブとオリフィスとの間の流路においてオリフィス側に位置した方が流量制御を正確に行うことができることが確認された。
(半導体製造システムの各構成要素が流量制御に与える影響の検証)
ガス供給システムを含む半導体製造システムの構成要素が流量制御に与える影響を評価した。図26は、流量制御に与える影響を評価した構成要素を示す概要図である。流量制御機器については省略している。図26に示されるシステムは、第1ガスソースGS1、第2ガスソースGS2及びチャンバ12を備えている。第1ガスソースGS1は第1流路L1を介してチャンバ12に接続されている。第2ガスソースGS2は、第2流路L2に接続されている。第2流路L2は、接続箇所PP1で第1流路L1に合流する。
評価手法は以下の通りとした。第1ガスをArガスとし、750[sccm]で連続的にチャンバ12へ供給した。また、第2ガスをOガスとし、5[sccm]で間欠的にチャンバ12へ供給した。そして、チャンバ12内でプラズマを生成し、プラズマの発光強度を測定した。測定発光強度は、最大発光強度を基準に規格化した。ガスを供給して測定発光強度が0%から90%となるまでの時間(立ち上がり時の評価)と、ガスの供給を停止して測定発光強度が100%から20%となるまでの時間(立ち下がり時の評価)とを計測し、応答性を確認した。
評価部位は、以下のとおりとした。部位Aは、流量制御機器である。流量制御機器は、オリフィスOL1及び開閉バルブVL2を有する実施例と、図29に示すガス供給システム1の圧力式流量制御装置FC3とを評価対象とした。部位Bは、流量制御機器から接続箇所PP1までの長さ(Add Line長さ)である。Add Line長さは、オリフィスOL1及び開閉バルブVL2を有する実施例(Add Line長さが0[m])と、Add Line長さ0.15[m],1.00[m],3.00[m]の比較例とを評価対象とした。部位Cは、第1ガスソースGS1からチャンバ12までの長さ(Main Line長さ)であり、0.15[m],1.00[m],3.00[m]の場合を評価した。部位Dは、上部電極容量であり、100[cc],160[cc],340[cc]の場合を評価した。部位Eは、GAS穴数であり、53個,105個の場合を評価した。結果を図27に示す。
図27は、図26に示す各構成要素の評価結果である。破線で囲んだ部位A〜Cが、実施形態に係るガス供給システムが有する部位に相当する部分である。部位Aについては、立ち上がり時の評価において、実施例は比較例に比べて応答性に優れていることが確認された。つまり、オリフィスOL1及び開閉バルブVL2を有する実施例は、図29に示すガス供給システム1の圧力式流量制御装置FC3よりも応答性に優れていることが確認された。また、部位Bについては、立ち上がり時の評価及び立ち下がり時の評価の両方において、Add Line長さが0[m]の場合が最も応答性に優れていた。つまり、オリフィスOL1及び開閉バルブVL2を有する実施例の応答性が優れていることが確認された。また、部位C及び部位Eについては、応答性の部位依存性が小さいことが確認された。また、部位Dについては、上部電極容積が小さいほど応答性が優れていることが確認された。
そして、各部位の影響度合いを算出した。影響度合いは、全影響の大きさに対する各部位の影響の大きさの割合を示している。図27に示すように、部位A〜Eのうち部位Bが最も影響を与える部位であることが確認された。つまり、オリフィスOL1及び開閉バルブVL2を有する実施例の構成は、最も影響を与える部位のパラメータを制御することができるため、応答性の改善に非常に有効であることが確認された。
なお、上記測定は、Arガス供給時、つまり、キャリアガスが存在する場合の結果であり、例えば、図9に示すガス供給システム1Bのように、キャリアガスを供給しなくてもよい場合がある。このような場合、応答性のMain Line長さ依存性が大きくなる傾向にある。このため、レシピにキャリアガスを用いるステップがある場合、オリフィスOL1及び開閉バルブVL2を、インレットブロック55よりも上流側に配置させ、レシピにキャリアガスを用いるステップがない場合、オリフィスOL1及び開閉バルブVL2を、インレットブロック55よりも下流側に配置してもよい。つまり、オリフィスOL1及び開閉バルブVL2のインレットブロック55に対する位置をレシピに応じて決定してもよい。
1,1A,1B,1C…ガス供給システム、10…プラズマ処理装置(基板処理装置)、12…チャンバ、51…排気装置、C1…コントローラ、55…インレットブロック、U1…ユニット、U2…ユニット、74…封止部材、76…シリンダ、78…付勢部材、81…駆動部、126…圧電素子、128d…弁座、130…弁体、C2…制御回路(制御部)、E,EA,EB…排気機構、EL…排気流路、EL1…小排気流路、EL2…大排気流路、GS1…第1ガスソース、GS2…第2ガスソース、GS3…第3ガスソース、L1…第1流路、L2…第2流路、L3…第3流路、PP1,PP2,PP3,PP4,PP5…接続箇所、FC1,FC3…圧力式流量制御装置、OL1,OL2,OL3,OL5…オリフィス、VL2,VL5…開閉バルブ、PM…圧力検出器、TM…温度検出器、L21…終端、PP2…接続箇所、VL1,VL41,VL7…コントロールバルブ、VL3,VL4…排気バルブ。

Claims (15)

  1. 基板処理装置のチャンバへガスを供給するガス供給システムであって、
    第1ガスの第1ガスソースと前記チャンバとを接続する第1流路と、
    第2ガスの第2ガスソースと前記第1流路とを接続する第2流路と、
    前記第2流路に設けられ、前記第2ガスの流量を所定量に制御するコントロールバルブと、
    前記コントロールバルブの下流であって前記第2流路の終端に設けられたオリフィスと、
    前記第1流路と前記第2流路の終端との接続箇所に設けられ、前記オリフィスの出口から前記第1流路へ供給される前記第2ガスの供給タイミングを制御する開閉バルブと、
    前記第2流路のうち前記コントロールバルブと前記オリフィスとの間の流路に接続され、前記第2ガスを排気する排気機構と、
    前記コントロールバルブ、前記開閉バルブ及び前記排気機構を動作させるコントローラと、
    を備えたガス供給システム。
  2. 前記開閉バルブは、閉制御のときに前記オリフィスの出口を封止するように前記オリフィスに押し当てられ、開制御のときに前記オリフィスから離間させられる封止部材を有する請求項1に記載のガス供給システム。
  3. 前記開閉バルブは、前記封止部材を固定支持するシリンダと、前記オリフィスに前記封止部材が押し当てられる方向に前記シリンダを弾性的に付勢する付勢部材と、前記押し当てられる方向と逆方向にシリンダを移動させる駆動部と、を有する請求項2に記載のガス供給システム。
  4. 前記オリフィス及び前記開閉バルブは、前記チャンバに設けられたインレットブロックよりも下流側に配置される請求項1〜3のいずれか一項に記載のガス供給システム。
  5. 前記オリフィス及び前記開閉バルブは、前記チャンバに設けられたインレットブロックよりも上流側に配置される請求項1〜3のいずれか一項に記載のガス供給システム。
  6. 前記排気機構は、
    前記第2流路に接続され、第1排気量となる小排気流路と、
    前記第2流路に接続され、前記第1排気量よりも大きい第2排気量となる大排気流路と、
    前記大排気流路に設けられ、排気タイミングを制御する第1排気バルブと、
    を有する請求項1〜5のいずれか一項に記載のガス供給システム。
  7. 前記排気機構は、前記小排気流路に設けられ、排気タイミングを制御する第2排気バルブをさらに有する請求項6に記載のガス供給システム。
  8. 前記排気機構は、前記コントロールバルブと前記オリフィスとの間の流路において前記オリフィス側に接続される請求項1〜7のいずれか一項に記載のガス供給システム。
  9. 前記第2流路のうち前記コントロールバルブと前記オリフィスとの間の流路における前記第2ガスの圧力を検出する圧力検出器をさらに備え、
    前記圧力検出器は、前記コントロールバルブと前記オリフィスとの間の流路において前記オリフィス側に位置し、
    前記コントロールバルブは、前記圧力検出器の検出結果に基づいて前記第2ガスの流量を制御する請求項1〜8のいずれか一項に記載のガス供給システム。
  10. 前記第2流路のうち前記コントロールバルブと前記オリフィスとの間の流路における前記第2ガスの温度を検出する温度検出器をさらに備え、
    前記温度検出器は、前記コントロールバルブと前記オリフィスとの間の流路において前記オリフィス側に位置し、
    前記コントロールバルブは、前記温度検出器の検出結果に基づいて前記第2ガスの流量を制御する請求項1〜9のいずれか一項に記載のガス供給システム。
  11. 前記コントローラは、前記第1流路に目標流量の前記第2ガスを目標供給タイミングで供給する場合、前記目標供給タイミングとなるまでの所定期間において、前記開閉バルブを閉としつつ前記排気機構を動作させた状態で、前記コントロールバルブを制御して前記目標流量の前記第2ガスを流通させ、前記目標供給タイミングとなったときに前記開閉バルブを開とする、請求項1〜10のいずれか一項に記載のガス供給システム。
  12. 前記コントロールバルブの制御値を取得する制御部を更に備え、
    前記コントロールバルブは、弁体と、弁座と、制御電圧に応じて伸張し、前記弁体と前記弁座とを接近又は離間させることで前記コントロールバルブの開閉を行う圧電素子と、を有し、
    前記制御部は、前記圧電素子の制御電圧に基づいて前記開閉バルブの開閉を判定する、
    請求項1〜11のいずれか一項に記載のガス供給システム。
  13. 前記制御部は、取得された前記制御電圧と、予め定められた前記制御電圧の基準値とを比較し、比較結果に応じて警報を出力する、請求項12に記載のガス供給システム。
  14. 請求項1〜13のいずれか一項に記載のガス供給システムを備える基板処理システム。
  15. 第1ガスの第1ガスソースとチャンバとを接続する第1流路と、
    第2ガスの第2ガスソースと前記第1流路とを接続する第2流路と、
    前記第2流路に設けられ、前記第2ガスの流量を所定量に制御するコントロールバルブと、
    前記コントロールバルブの下流であって前記第2流路の終端に設けられたオリフィスと、
    前記第1流路と前記第2流路の終端との接続箇所に設けられ、前記オリフィスの出口から前記第1流路へ供給される前記第2ガスの供給タイミングを制御する開閉バルブと、
    前記第2流路のうち前記コントロールバルブと前記オリフィスとの間の流路に接続され、前記第2ガスを排気する排気機構と、
    前記コントロールバルブ、前記開閉バルブ及び前記排気機構を動作させるコントローラと、
    を備えたガス供給システムを用いて基板処理装置のチャンバへガスを供給するガス供給方法であって、
    前記開閉バルブを閉としつつ前記排気機構を動作させた状態で、前記コントロールバルブを制御して目標流量の前記第2ガスを流通させる準備ステップと、
    前記準備ステップを継続中において目標供給タイミングとなったときに、前記開閉バルブを開とし、前記目標流量の前記第2ガスを前記第1流路へ供給する供給ステップと、
    を備えるガス供給方法。
JP2017011378A 2016-07-11 2017-01-25 ガス供給システム、基板処理システム及びガス供給方法 Active JP6748586B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020170086320A KR102313423B1 (ko) 2016-07-11 2017-07-07 가스 공급 시스템, 기판 처리 시스템 및 가스 공급 방법
TW106122807A TWI737764B (zh) 2016-07-11 2017-07-07 氣體供給系統、基板處理系統及氣體供給方法
US15/645,521 US10665430B2 (en) 2016-07-11 2017-07-10 Gas supply system, substrate processing system and gas supply method
CN201710555971.6A CN107608396B (zh) 2016-07-11 2017-07-10 气体供给系统、基板处理系统及气体供给方法
CN202011142969.4A CN112286238B (zh) 2016-07-11 2017-07-10 气体供给系统、基板处理系统及气体供给方法
KR1020210134183A KR102358828B1 (ko) 2016-07-11 2021-10-08 가스 공급 시스템, 기판 처리 시스템 및 가스 공급 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136782 2016-07-11
JP2016136782 2016-07-11

Publications (2)

Publication Number Publication Date
JP2018014479A JP2018014479A (ja) 2018-01-25
JP6748586B2 true JP6748586B2 (ja) 2020-09-02

Family

ID=61019593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011378A Active JP6748586B2 (ja) 2016-07-11 2017-01-25 ガス供給システム、基板処理システム及びガス供給方法

Country Status (4)

Country Link
JP (1) JP6748586B2 (ja)
KR (2) KR102313423B1 (ja)
CN (2) CN107608396B (ja)
TW (1) TWI737764B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042134B2 (ja) * 2018-03-29 2022-03-25 東京エレクトロン株式会社 基板処理システム及びガスの流量を求める方法
JP7296699B2 (ja) * 2018-07-02 2023-06-23 東京エレクトロン株式会社 ガス供給システム、プラズマ処理装置およびガス供給システムの制御方法
JP6978985B2 (ja) * 2018-07-09 2021-12-08 Ckd株式会社 ガス流量検定ユニット
CN112640584B (zh) * 2018-08-28 2024-07-12 株式会社富士 气体供给判定方法和等离子体发生装置
KR102637152B1 (ko) * 2018-11-22 2024-02-16 주성엔지니어링(주) 기판처리장치, 및 기판처리장치용 밸브
TWI689680B (zh) * 2019-04-25 2020-04-01 華豐應用設備有限公司 氣體管線自動排淨裝置及方法
TWI861207B (zh) 2019-09-19 2024-11-11 美商應用材料股份有限公司 使用無滯留區閥的設備與方法
JP7226222B2 (ja) * 2019-09-24 2023-02-21 東京エレクトロン株式会社 ガス供給装置及びガス供給方法
US11789472B2 (en) * 2020-01-21 2023-10-17 Horiba Stec, Co., Ltd. Gas delivery system with electrical backplane
US20230377908A1 (en) * 2020-09-28 2023-11-23 Lam Research Corporation Compact modular gas distribution plumbing and heating system for multi-station deposition modules
KR20240039163A (ko) * 2021-08-06 2024-03-26 도쿄엘렉트론가부시키가이샤 가스 공급 시스템, 가스 제어 시스템, 플라스마 처리 장치 및 가스 제어 방법
CN115167574B (zh) * 2022-09-08 2023-02-28 拓荆科技(上海)有限公司 阀门温控装置及气相沉积设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602595B1 (en) * 1992-12-15 1997-07-23 Applied Materials, Inc. Vaporizing reactant liquids for CVD
JPH11156530A (ja) * 1997-11-26 1999-06-15 Asahi Tec Corp 差圧鋳造装置及びその差圧制御方法
JPH11212653A (ja) * 1998-01-21 1999-08-06 Fujikin Inc 流体供給装置
JP4137267B2 (ja) * 1999-01-28 2008-08-20 忠弘 大見 オリフィス内蔵弁
KR100649852B1 (ko) * 1999-09-09 2006-11-24 동경 엘렉트론 주식회사 기화기 및 이것을 이용한 반도체 제조 시스템
JP3969957B2 (ja) * 2001-01-22 2007-09-05 株式会社クボタ 耐震機能を有する推進管
JP3854555B2 (ja) * 2002-08-30 2006-12-06 東京エレクトロン株式会社 薄膜形成装置および薄膜形成方法
JP4399227B2 (ja) * 2003-10-06 2010-01-13 株式会社フジキン チャンバの内圧制御装置及び内圧被制御式チャンバ
CN100483286C (zh) * 2004-06-21 2009-04-29 日立金属株式会社 流量控制装置及其调整方法
JP4877748B2 (ja) * 2006-03-31 2012-02-15 東京エレクトロン株式会社 基板処理装置および処理ガス吐出機構
JP5383979B2 (ja) * 2007-02-01 2014-01-08 東京エレクトロン株式会社 処理システム
JP4553265B2 (ja) * 2007-03-23 2010-09-29 東京エレクトロン株式会社 熱処理装置及び熱処理方法
JP5372353B2 (ja) * 2007-09-25 2013-12-18 株式会社フジキン 半導体製造装置用ガス供給装置
JP2009224590A (ja) * 2008-03-17 2009-10-01 Tokyo Electron Ltd 基板処理装置
JP2009239082A (ja) * 2008-03-27 2009-10-15 Tokyo Electron Ltd ガス供給装置、処理装置及び処理方法
JP5456879B2 (ja) * 2010-02-22 2014-04-02 株式会社フジキン 混合ガス供給装置
JP2011187539A (ja) * 2010-03-05 2011-09-22 Sinfonia Technology Co Ltd ガス注入装置、ガス排出装置、ガス注入方法及びガス排出方法
JP5562712B2 (ja) * 2010-04-30 2014-07-30 東京エレクトロン株式会社 半導体製造装置用のガス供給装置
JP5538128B2 (ja) * 2010-08-09 2014-07-02 東京エレクトロン株式会社 排気方法およびガス処理装置
JP2012099723A (ja) * 2010-11-04 2012-05-24 Hitachi Kokusai Electric Inc 基板処理装置
JP2013076113A (ja) * 2011-09-29 2013-04-25 Tokyo Electron Ltd ガス供給装置及び成膜装置
JP5754853B2 (ja) * 2012-01-30 2015-07-29 株式会社フジキン 半導体製造装置のガス分流供給装置
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
US8800891B2 (en) * 2012-12-04 2014-08-12 Mengfeng Cheng Shower soap dispenser and cartridge
JP6216389B2 (ja) * 2013-10-31 2017-10-18 株式会社フジキン 圧力式流量制御装置
JP6321972B2 (ja) * 2014-01-21 2018-05-09 株式会社フジキン 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法
JP6446881B2 (ja) * 2014-07-17 2019-01-09 東京エレクトロン株式会社 ガス供給装置及びバルブ装置
CN105655272B (zh) * 2014-11-13 2018-09-18 北京北方华创微电子装备有限公司 反应腔室及半导体加工设备

Also Published As

Publication number Publication date
TWI737764B (zh) 2021-09-01
JP2018014479A (ja) 2018-01-25
TW201805556A (zh) 2018-02-16
KR102313423B1 (ko) 2021-10-18
CN112286238B (zh) 2024-06-25
KR102358828B1 (ko) 2022-02-08
CN112286238A (zh) 2021-01-29
KR20210125971A (ko) 2021-10-19
CN107608396B (zh) 2020-11-13
KR20180006856A (ko) 2018-01-19
CN107608396A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
JP6748586B2 (ja) ガス供給システム、基板処理システム及びガス供給方法
US11698648B2 (en) Gas supply system and gas supply method
US10665430B2 (en) Gas supply system, substrate processing system and gas supply method
US11264208B2 (en) Plasma processing apparatus and method for controlling radio-frequency power supply of plasma processing apparatus
US9396964B2 (en) Plasma processing apparatus, plasma processing method, and non-transitory computer-readable medium
KR101934936B1 (ko) 플라즈마 처리 장치 및 그 가스 공급 방법
US20180374726A1 (en) Method of inspecting gas supply system
CN107086178B (zh) 用于选择性蚀刻膜的系统和方法
WO2018212040A1 (ja) プラズマ処理装置、処理システム、及び、多孔質膜をエッチングする方法
US20190237305A1 (en) Method for applying dc voltage and plasma processing apparatus
TWI767655B (zh) 蝕刻裝置及蝕刻方法
KR20190079565A (ko) 에칭 방법
JP7394668B2 (ja) 温度制御方法およびプラズマ処理装置
CN112786426B (zh) 气体供给方法和基片处理装置
US11062882B2 (en) Plasma processing apparatus and plasma processing method
KR20250005333A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JP2023105636A (ja) ガス供給システム、プラズマ処理装置及びガス供給方法
KR20240065117A (ko) 플라스마 처리 장치 및 플라스마 처리 방법
CN115917703A (zh) 用于离子损坏减轻和蚀刻均匀度改善的脉冲化远程等离子体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191002

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6748586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250