JP6719261B2 - Lighting device and vehicle headlight - Google Patents
Lighting device and vehicle headlight Download PDFInfo
- Publication number
- JP6719261B2 JP6719261B2 JP2016082435A JP2016082435A JP6719261B2 JP 6719261 B2 JP6719261 B2 JP 6719261B2 JP 2016082435 A JP2016082435 A JP 2016082435A JP 2016082435 A JP2016082435 A JP 2016082435A JP 6719261 B2 JP6719261 B2 JP 6719261B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- emitting unit
- unit
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Optical Filters (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Led Device Packages (AREA)
- Semiconductor Lasers (AREA)
Description
励起光源から出射された励起光を受けて蛍光を発光する発光部と、上記発光部から放出される光を投光する投光部とを備えた照明装置および車両用前照灯に関する。 The present invention relates to a lighting device and a vehicle headlamp including a light emitting unit that emits fluorescence upon receiving excitation light emitted from an excitation light source, and a light projecting unit that emits light emitted from the light emitting unit.
励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から生じた励起光を、蛍光体を含む発光部に照射することによって、発光部から放出される光を、投光部を介して投光する照明装置が従来から知られている。例えば、特許文献1には、所定の波長の光を発光する固定光源と、蛍光体部と、レンズ系からなる投光部と、蛍光体部への励起光の範囲および/または強度分布を変化させる光制御手段とを備えている光源装置について記載されている。特許文献1に記載の光源装置は、光制御手段により光源装置からの出射光を投光部に導く。 A semiconductor light emitting element such as a light emitting diode (LED) or a semiconductor laser (LD) is used as an excitation light source, and the excitation light generated from these excitation light sources is applied to a light emitting unit including a phosphor. A lighting device that emits light emitted from a light emitting unit via a light projecting unit is conventionally known. For example, in Patent Document 1, a fixed light source that emits light of a predetermined wavelength, a phosphor unit, a light projecting unit including a lens system, and a range and/or intensity distribution of excitation light to the phosphor unit are changed. A light source device including a light control unit for controlling the light source is described. The light source device described in Patent Document 1 guides the light emitted from the light source device to the light projecting section by the light control means.
しかしながら、上述のような従来技術は、レーザ固有の課題として、固定光源などからの迷光や蛍光体部で正反射した光等が含まれた光が、投光部を通し外部へ投光される可能性がある。迷光や蛍光体部で正反射した光が投光される光に含まれると、例えば、固定光源の光の色が強くでてしまい、投光される光に色むらが出てしまうという問題点がある。 However, in the conventional technique as described above, as a problem peculiar to the laser, light including stray light from a fixed light source or light specularly reflected by the phosphor portion is emitted to the outside through the light emitting portion. there is a possibility. If stray light or light specularly reflected by the phosphor part is included in the projected light, for example, the color of the light of the fixed light source becomes strong, and the projected light has uneven color. There is.
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、投光される光に含まれる、迷光および発光部において正反射された励起光源からの励起光を低減させ、投光される光の色むらを抑える照明装置を実現することにある。 The present invention has been made in view of the above problems, and an object thereof is to reduce stray light and excitation light from an excitation light source that is specularly reflected in a light emitting unit, which is included in light to be emitted. It is to realize an illuminating device that suppresses uneven color of emitted light.
上記の課題を解決するために、本発明の一態様に係る照明装置は、励起光を出射する励起光源と、前記励起光源から出射された励起光を受けて蛍光を放出する発光部と、前記発光部から放出される光を投光する投光部と、前記発光部と前記投光部との間に設けられている遮光部と、を備え、前記遮光部は、前記投光部の端部を覆う筒状の中空部材であり、前記遮光部の前記発光部側の端部は、前記投光部の端部と前記発光部の中心とを結ぶ直線上にあり、前記投光部の端部と前記発光部の中心とを結ぶ直線と、前記発光部の中心を通る前記発光部の垂線とのなす角は、前記励起光の前記発光部への入射角度以下であることを特徴とする。 In order to solve the above problems, the illumination device according to an aspect of the present invention is an excitation light source that emits excitation light, a light emitting unit that emits fluorescence by receiving excitation light emitted from the excitation light source, The light emitting unit includes a light projecting unit that projects light emitted from the light emitting unit, and a light shielding unit that is provided between the light emitting unit and the light projecting unit. Is a cylindrical hollow member that covers the light emitting portion, the end portion of the light shielding portion on the light emitting portion side is on a straight line connecting the end portion of the light emitting portion and the center of the light emitting portion, An angle formed by a straight line connecting an end portion and the center of the light emitting portion and a perpendicular line of the light emitting portion passing through the center of the light emitting portion is equal to or less than an incident angle of the excitation light to the light emitting portion. To do.
本発明の一態様によれば、投光される光に含まれる、迷光および発光部において正反射された励起光源からの励起光を低減させ、投光される光の色むらを抑える効果を奏する。 According to one embodiment of the present invention, stray light and excitation light from the excitation light source that is specularly reflected in the light emitting portion, which are included in the emitted light, are reduced, and an effect of suppressing color unevenness of the emitted light is exerted. ..
以下、本発明の実施形態について、詳細に説明する。なお、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付記し、適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. For convenience of explanation, members having the same functions as those shown in the embodiments will be designated by the same reference numerals, and the description thereof will be omitted as appropriate.
〔実施形態1〕
本発明の実施形態1について、図1〜図4を参照して説明する。
[Embodiment 1]
The first embodiment of the present invention will be described with reference to FIGS.
(照明装置の構成)
図1に基づいて、本実施形態の照明装置100の構成について説明する。図1の(a)は本発明の実施形態1に係る照明装置100の概略構成を示す模式図であり、図1の(b)は照明装置100の遮光部130を投光レンズ140側から見た平面図である。
(Structure of lighting device)
The configuration of the illumination device 100 of this embodiment will be described based on FIG. 1. FIG. 1A is a schematic diagram showing a schematic configuration of a lighting device 100 according to the first embodiment of the present invention, and FIG. 1B is a view showing a light shielding unit 130 of the lighting device 100 from a light projecting lens 140 side. FIG.
照明装置100は、図1の(a)に示すように、レーザ素子110、発光部120、遮光部130、および投光レンズ140を備えている。照明装置100は、投光レンズ140から対象物に投光することが可能な装置であり、例えば、車両用前照灯等に用いられる。 As shown in FIG. 1A, the lighting device 100 includes a laser element 110, a light emitting section 120, a light blocking section 130, and a light projecting lens 140. The illumination device 100 is a device that can project an object from the light projecting lens 140, and is used, for example, as a vehicle headlight.
レーザ素子110(励起光源)は、レーザ光R(励起光)を出射する。レーザ光Rは発光部120に入射角度θで入射される。レーザ素子110は、1つでもよく、複数設けられていてもよい。レーザ素子110が複数設けられている場合、複数のレーザ素子110それぞれからレーザ光Rとしてのレーザ光が出射される。レーザ素子110を複数用いることにより、高出力のレーザ光Rを容易に得ることができる。 The laser element 110 (excitation light source) emits laser light R (excitation light). The laser light R is incident on the light emitting unit 120 at an incident angle θ. The number of laser elements 110 may be one or more. When the plurality of laser elements 110 are provided, the laser light as the laser light R is emitted from each of the plurality of laser elements 110. By using a plurality of laser elements 110, it is possible to easily obtain high-power laser light R.
レーザ素子110は、1チップに1つの発光点を有するものであってもよく、1チップに複数の発光点を有するものであってもよい。レーザ光Rの波長は、例えば、405nm(青紫色)または450nm(青色)とすることができる。レーザ光の波長は、上記に限定されず、発光部120に含まれる蛍光体の種類に応じて適宜選択されればよい。レーザ素子110は、例えば、半導体レーザを用いることができる。また、励起光源として、レーザ素子110の代わりに、発光ダイオード(LED)を用いることも可能である。 The laser element 110 may have one light emitting point on one chip, or may have a plurality of light emitting points on one chip. The wavelength of the laser light R can be, for example, 405 nm (blue violet) or 450 nm (blue). The wavelength of the laser light is not limited to the above, and may be appropriately selected according to the type of phosphor contained in the light emitting unit 120. As the laser element 110, for example, a semiconductor laser can be used. A light emitting diode (LED) may be used as the excitation light source instead of the laser element 110.
発光部120は、レーザ素子110から出射されたレーザ光Rを受けて蛍光を発光し光を放出する。発光部120は、レーザ光Rを受けると励起されて蛍光を発光する蛍光体(蛍光物質)を含んでいる。発光部120は、レーザ素子110からレーザ光Rが入射されると、入射されたレーザ光Rの一部を蛍光に変換する。発光部120は、蛍光と蛍光に変換されなかったレーザ光Rとを拡散し、周囲に放出する。 The light emitting unit 120 receives the laser light R emitted from the laser element 110, emits fluorescence, and emits light. The light emitting section 120 includes a fluorescent substance (fluorescent substance) that emits fluorescence when excited by the laser light R. When the laser light R is incident from the laser element 110, the light emitting unit 120 converts a part of the incident laser light R into fluorescence. The light emitting unit 120 diffuses the fluorescent light and the laser light R that has not been converted into the fluorescent light and emits the diffused light to the surroundings.
発光部120は、例えば、封止材の内部に蛍光体の粒子が分散されているもの、蛍光体の粒子を固めたもの、または、熱伝導率の高い材質からなる基板上に蛍光体の粒子を堆積させたもの等を用いることができる。発光部120は、レーザ光Rを蛍光に変換するため、波長変換素子であると言える。 The light emitting unit 120 may be, for example, one in which phosphor particles are dispersed inside a sealing material, one in which phosphor particles are solidified, or phosphor particles on a substrate made of a material having high thermal conductivity. It is possible to use a material obtained by depositing Since the light emitting section 120 converts the laser light R into fluorescence, it can be said that the light emitting section 120 is a wavelength conversion element.
投光レンズ140(投光部)は、発光部120が放出した光を投光する。具体的には、投光レンズ140は、発光部120と対向するように配置されている。投光レンズ140は、発光部120により蛍光と蛍光に変換されなかったレーザ光Rとが拡散され放出された光を透過し、照明装置100の外部に向けて投光する。 The light projecting lens 140 (light projecting unit) projects the light emitted by the light emitting unit 120. Specifically, the light projecting lens 140 is arranged so as to face the light emitting unit 120. The light projecting lens 140 transmits the light emitted by diffusing the fluorescent light and the laser light R not converted into fluorescent light by the light emitting unit 120, and projects the light toward the outside of the lighting apparatus 100.
本実施形態では、投光レンズ140は円形の凸レンズを用いており、投光レンズ140の中心線は発光部120の中心Cを通る垂線Pと一致する。発光部120の中心Cとは、発光部120の投光レンズ140側の面の中心Cを意味する。したがって、投光レンズ140の端部140aおよび発光部120の中心Cを結ぶ直線Lと垂線Pとの成す角度は、一定となる。投光レンズ140は、例えばガラスまたは樹脂によって構成されている。 In this embodiment, the light projecting lens 140 is a circular convex lens, and the center line of the light projecting lens 140 coincides with the perpendicular line P passing through the center C of the light emitting unit 120. The center C of the light emitting unit 120 means the center C of the surface of the light emitting unit 120 on the light projecting lens 140 side. Therefore, the angle formed by the straight line L connecting the end 140a of the light projecting lens 140 and the center C of the light emitting unit 120 and the perpendicular P is constant. The light projecting lens 140 is made of, for example, glass or resin.
また、図示にはないが、照明装置100は、さらに遮光部130を覆うカバーを備えている。上記カバーは、例えば、図9に示すカバー160のように設けられていてもよい。 Although not shown, the lighting device 100 further includes a cover that covers the light shielding unit 130. The cover may be provided, for example, like the cover 160 shown in FIG. 9.
(遮光部)
遮光部130は、発光部120と投光レンズ140との間に設けられ、外側面130dにおいて光を遮光する筒状部材である。遮光部130は投光レンズ140の端部140aを覆い、遮光部130の発光部120側の端部(下端部130b)は投光レンズ140の端部140aと発光部120の中心Cとを結ぶ直線L上にあり、発光部120の中心Cを通る発光部120の垂線Pと直線Lとのなす角(光取込角度φ)は、レーザ光Rの発光部120への入射角度θ以下である。具体的に以下に説明する。
(Shading part)
The light blocking unit 130 is a tubular member that is provided between the light emitting unit 120 and the light projecting lens 140 and blocks light on the outer surface 130d. The light blocking portion 130 covers the end portion 140a of the light projecting lens 140, and the end portion (lower end portion 130b) of the light blocking portion 130 on the light emitting portion 120 side connects the end portion 140a of the light projecting lens 140 and the center C of the light emitting portion 120. The angle formed by the straight line L and the perpendicular P of the light emitting portion 120 which is on the straight line L and passes through the center C of the light emitting portion 120 is equal to or smaller than the incident angle θ of the laser light R to the light emitting portion 120. is there. This will be specifically described below.
図1の(a)および図1の(b)に示すように、遮光部130は筒状の中空部材であり、投光レンズ140側から発光部120側まで貫通している。また、遮光部130は投光レンズ140の端部140aを覆う。言い換えると、遮光部130の投光レンズ140側の上端部130aは投光レンズ140の端部140aを覆う。遮光部130が端部140aを覆うとは、例えば、(1)上端部130aの外径が端部140aの外径以上であること、(2)上端部130aが端部140aに接続されていること、または(3)遮光部130の一部に端部140aが入りこんでいること、等を意味する。本実施形態では、上端部130aが端部140aに接続されている。 As shown in FIGS. 1A and 1B, the light shielding portion 130 is a hollow cylindrical member and penetrates from the light projecting lens 140 side to the light emitting portion 120 side. Further, the light blocking portion 130 covers the end portion 140 a of the light projecting lens 140. In other words, the upper end 130a of the light shield 130 on the light projecting lens 140 side covers the end 140a of the light projecting lens 140. The light shielding portion 130 covering the end portion 140a means, for example, (1) that the outer diameter of the upper end portion 130a is equal to or larger than the outer diameter of the end portion 140a, and (2) the upper end portion 130a is connected to the end portion 140a. Or (3) that the end 140a is embedded in a part of the light shield 130. In this embodiment, the upper end 130a is connected to the end 140a.
また、遮光部130の発光部120側の端部である下端部130bは、直線L上にある。そのため、遮光部130と垂線Pとが成す角度は、直線Lと垂線Pとが成す角度(投光レンズ140の光取込角度φ)と一致する。 Further, the lower end portion 130b, which is the end portion of the light shielding portion 130 on the light emitting portion 120 side, is on the straight line L. Therefore, the angle formed by the light shielding portion 130 and the perpendicular P coincides with the angle formed by the straight line L and the perpendicular P (light receiving angle φ of the light projecting lens 140).
遮光部130の外形は逆円錐台、またはほぼ逆円錐台であり、下端部130bにおいて光取込口130cを有する。遮光部130は、発光部120により放出された光を光取込口130cから取りこみ、投光レンズ140まで導く。 The outer shape of the light shielding portion 130 is an inverted truncated cone or a substantially inverted truncated cone, and the lower end portion 130b has a light inlet 130c. The light blocking unit 130 takes in the light emitted by the light emitting unit 120 from the light receiving port 130c and guides it to the light projecting lens 140.
レーザ素子110から発光部120へのレーザ光Rの入射角度θは、投光レンズ140の光取込角度φと同じか、または、光取込角度φよりも大きい方がより望ましい。言い換えると、照明装置100を構成する各部は、光取込角度φが入射角度θ以下となるように構成されることが望ましい。 The incident angle θ of the laser light R from the laser element 110 to the light emitting section 120 is more preferably the same as the light taking-in angle φ of the light projecting lens 140 or larger than the light taking-in angle φ. In other words, it is desirable that each part of the illuminating device 100 be configured such that the light capturing angle φ is equal to or smaller than the incident angle θ.
遮光部130の少なくとも外側面130dは、光を遮光する。遮光部130は、レーザ光Rの波長に対する吸収率が高く、レーザ損傷閾値が高い材料であることが望ましい。遮光部130の内側面は、上記に限らず、例えば、反射性を有するものであってもよい。 At least the outer surface 130d of the light blocking portion 130 blocks light. It is desirable that the light shielding portion 130 is made of a material having a high absorption rate for the wavelength of the laser light R and a high laser damage threshold value. The inner side surface of the light shielding unit 130 is not limited to the above, and may have reflectivity, for example.
(効果)
図2から図4に基づき、照明装置100の効果について説明する。図2は、照明装置100の効果の一例を説明する図である。図3は、照明装置100の効果の他の例を説明する図である。図4の(a)および図4の(b)は、照明装置100による色むらの軽減を説明する図である。
(effect)
The effects of the lighting device 100 will be described with reference to FIGS. 2 to 4. FIG. 2 is a diagram illustrating an example of effects of the lighting device 100. FIG. 3 is a diagram illustrating another example of the effect of the lighting device 100. FIG. 4A and FIG. 4B are diagrams illustrating reduction of color unevenness by the lighting device 100.
図2に示すように、投光レンズ140と発光部120との間に遮光部130が設けられていることにより、投光レンズ140に取り込まれる迷光を低減することができる。言い換えると、遮光部130を設置することにより、光取込口130cから遮光部130の内側に取り込まれる光以外の迷光Mを除外できる。 As shown in FIG. 2, by providing the light shielding unit 130 between the light projecting lens 140 and the light emitting unit 120, it is possible to reduce stray light taken into the light projecting lens 140. In other words, by installing the light shielding unit 130, it is possible to exclude stray light M other than the light that is captured inside the light shielding unit 130 from the light inlet 130c.
具体的には、投光レンズ140の端部140aは筒状の遮光部130の上端部130aに接続され、遮光部130の下端部130bは、直線L上にある。つまり、光取込口130cから投光レンズ140の端部140aまでは、光を遮光する遮光部130に覆われている。これにより、光取込口130cより取り込まれた光以外は遮光部130の外側面に遮光されるので遮光部130の内側に入らない。そのため、投光レンズ140から投光される光に含まれる迷光Mを低減することができるので、投光レンズ140から投光される光の色むらを防ぐことができる。 Specifically, the end portion 140a of the light projecting lens 140 is connected to the upper end portion 130a of the cylindrical light shielding portion 130, and the lower end portion 130b of the light shielding portion 130 is on the straight line L. In other words, the area from the light inlet 130c to the end 140a of the light projecting lens 140 is covered with the light shield 130 that shields light. As a result, the light other than the light taken in through the light receiving port 130c is blocked by the outer side surface of the light blocking section 130 and does not enter the light blocking section 130. Therefore, the stray light M included in the light projected from the light projecting lens 140 can be reduced, so that the color unevenness of the light projected from the light projecting lens 140 can be prevented.
また、図3に示すように、光取込角度φをレーザ素子110の入射角度θ以下にすることにより、発光部120で反射するレーザ光Rのうち発光部120で正反射した強度が強い光を光取込口130cから遮光部130の内側に取り込まないでおくことができる。言い換えると、発光部120において正反射したレーザ素子110からのレーザ光Rは、投光レンズ140に取り込まれない。 Further, as shown in FIG. 3, by setting the light taking-in angle φ to be equal to or smaller than the incident angle θ of the laser element 110, among the laser light R reflected by the light emitting section 120, the light that is regularly reflected by the light emitting section 120 is strong. Can be prevented from being taken into the inside of the light shielding portion 130 from the light taking-in port 130c. In other words, the laser light R specularly reflected by the light emitting unit 120 from the laser element 110 is not captured by the light projecting lens 140.
具体的には、発光部120においてレーザ光Rは、入射角度θと同じ角度θで正反射する。したがって、光取込角度φをレーザ素子110の入射角度θ以下にすることにより、正反射したレーザ光Rは光取込口130cをこえる方向に進むため、正反射したレーザ光Rは遮光部130の内側に取り込まれない。そのため、発光部120において正反射したレーザ素子110からの光強度が強いレーザ光Rが投光レンズ140から投光される光に含まれないので、投光レンズ140から投光される光の色むらを防ぐことができる。 Specifically, the laser light R is specularly reflected by the light emitting section 120 at the same angle θ as the incident angle θ. Therefore, by setting the light taking-in angle φ to be equal to or smaller than the incident angle θ of the laser element 110, the specularly reflected laser light R advances in a direction beyond the light taking-in port 130c, so that the specularly reflected laser light R is shielded. Is not taken inside. Therefore, since the laser light R having a high light intensity from the laser element 110 that is specularly reflected by the light emitting unit 120 is not included in the light projected from the light projecting lens 140, the color of the light projected from the light projecting lens 140. The unevenness can be prevented.
また、特許文献1に記載されている光源装置には、衝撃等で固定光源から蛍光体部への光の入射角度が変わった場合、固定光源からの光が直接外部へ投光される可能性があるという問題があった。しかし、本実施形態に係る遮光部130では光取込口130c以外からの光は取りこまれないため、衝撃等でレーザ光Rの向きが変わった場合であっても、照明装置100では、向きが変更されたレーザ光Rが直接遮光部130の内側に取り込まれること防ぐことができる。そのため、衝撃等でレーザ光Rの向きが変わった場合の、投光レンズ140から投光される光の色むらを防ぐことができる。 In addition, in the light source device described in Patent Document 1, when the incident angle of light from the fixed light source to the phosphor portion changes due to impact or the like, the light from the fixed light source may be directly projected to the outside. There was a problem that there is. However, since the light-shielding portion 130 according to the present embodiment does not take in light from other than the light inlet 130c, even if the direction of the laser light R is changed due to a shock or the like, the direction of the illumination device 100 is changed. It is possible to prevent the laser light R having the changed value from being directly taken inside the light shielding unit 130. Therefore, it is possible to prevent color unevenness of the light projected from the light projecting lens 140 when the direction of the laser light R changes due to an impact or the like.
図4の(a)は、従来の照明装置によりスクリーンに投光したときのスクリーン上の配光写真である。図4の(b)は、本実施形態に係る照明装置100によりスクリーンに投光したときのスクリーン上の配光写真である。図4の(a)および図4の(b)に示すように、照明装置100によれば、従来の照明装置の配光図で見られていた青色成分光200が除去でき、投光レンズ140から投光される光の色むらが改善されていることが分かる。 FIG. 4A is a light distribution photograph on the screen when light is projected on the screen by a conventional lighting device. FIG. 4B is a light distribution photograph on the screen when the illumination device 100 according to the present embodiment projects light on the screen. As shown in FIGS. 4A and 4B, according to the lighting device 100, the blue component light 200 seen in the light distribution diagram of the conventional lighting device can be removed, and the light projecting lens 140 can be removed. It can be seen that the uneven color of the light emitted from is improved.
〔遮光部の変形例〕
発光部120から放出される光は理想的には発光部120の中心Cから投光レンズ140に入射されるが、実際の光放出は中心Cの一点からのみでなく、ビームスポットの大きさ分の面積から放出される。そのため、発光部120から遮光部130内側面に届く微小な光がある。また、遮光部130内側面に届いて反射した光は投光レンズ140に取り込まれ、投光されてしまうことがある。
[Modification of the light shielding part]
The light emitted from the light emitting unit 120 ideally enters the light projecting lens 140 from the center C of the light emitting unit 120. However, the actual light emission is not limited to one point of the center C but is equal to the size of the beam spot. Emitted from the area of. Therefore, there is a small amount of light that reaches the inner surface of the light shield 130 from the light emitting unit 120. Further, the light that reaches the inner side surface of the light shield 130 and is reflected may be captured by the light projecting lens 140 and projected.
このことを鑑み、遮光部130の特に内側面を変形させることで、投光レンズ140から投光される光の投光配光パターンを制御する。 In view of this, by deforming the inner surface of the light shielding unit 130 in particular, the light projection distribution pattern of the light projected from the light projection lens 140 is controlled.
本発明の実施形態1の遮光部130の変形例について図5の(a)から図5の(d)を参照して説明する。 A modified example of the light shielding unit 130 according to the first embodiment of the present invention will be described with reference to FIGS. 5A to 5D.
図5の(a)は遮光部130の基本形を示す。 FIG. 5A shows the basic shape of the light shielding unit 130.
図5の(b)で示す遮光部131は、遮光部130の変形例であり、遮光部131は外側に凸となる曲面131eを有している。遮光部131の内側面を反射性の高い部材とすると、遮光部131の内側面に届いた光は、内側面に反射されて投光レンズ140に入射されるので、投光レンズ140の投光の範囲がさらに絞られた配光が可能となる。また遮光部131の内側面を吸収性の高い部材としても、遮光部131の内側面に届いた光の大部分は吸収されるが、遮光部131の内側面に反射性の高い部材を用いた場合と同様に、投光の範囲が絞られた配光が可能となる。 The light blocking portion 131 shown in FIG. 5B is a modification of the light blocking portion 130, and the light blocking portion 131 has a curved surface 131e that is convex outward. If the inner side surface of the light blocking portion 131 is made of a highly reflective material, the light that reaches the inner side surface of the light blocking portion 131 is reflected by the inner side surface and is incident on the light projecting lens 140, so that the light projecting lens 140 projects light. It is possible to distribute light in a narrower range. Even if the inner side surface of the light shielding portion 131 is made of a highly absorbent material, most of the light reaching the inner side surface of the light shielding portion 131 is absorbed, but a highly reflective material is used as the inner side surface of the light shielding portion 131. As in the case, it is possible to perform light distribution with a narrowed range of light projection.
図5の(c)で示す遮光部132は、遮光部130の他の変形例であり、遮光部132は、投光レンズ140側の上端部132aから垂線Pに平行な方向に延在する筒状部132eと、垂線P方向に延在し発光部120側に向かって先細る円錐状先細り部132gが設けられている底部132fとを有している。遮光部132の内側面を吸収性の高い部材としたとき、遮光部132の内側面に届いた光の大部分は吸収され、吸収されず反射した光も投光レンズ140には入射されにくくなる。 The light-shielding portion 132 shown in FIG. 5C is another modification of the light-shielding portion 130, and the light-shielding portion 132 extends from the upper end portion 132a on the light projecting lens 140 side in a direction parallel to the perpendicular P. It has a shaped portion 132e and a bottom portion 132f that is provided with a conical tapered portion 132g that extends in the direction of the perpendicular P and tapers toward the light emitting portion 120 side. When the inner surface of the light blocking portion 132 is made of a highly absorbent member, most of the light reaching the inner surface of the light blocking portion 132 is absorbed, and the light that is not absorbed and reflected is less likely to enter the light projecting lens 140. ..
図5の(d)で示す遮光部133は、遮光部130のさらに他の変形例であり、遮光部133は、内側に凸となる曲面133eを有している。遮光部133の内側面を吸収性の高い部材としたとき、遮光部133の内側に凸となった部分により遮光部133内側面に届く光が多くカットされ、よりシャープな投光パターンが可能となる。 The light shielding portion 133 shown in FIG. 5D is still another modification of the light shielding portion 130, and the light shielding portion 133 has a curved surface 133e that is convex inward. When the inner side surface of the light shielding portion 133 is made of a highly absorbent material, a large amount of light reaching the inner side surface of the light shielding portion 133 is cut by the portion that is convex inside the light shielding portion 133, and a sharper projection pattern is possible. Become.
なお、図5の(b)、図5の(c)および図5の(d)に示す、遮光部131・132・133の投光レンズ140側の端部(上端部131a・132a・133a)は投光レンズ140の端部140aに接続され、遮光部131・132・133の発光部120側の端部(下端部131b・132b・133b)は投光レンズ140の端部140aと発光部120の中心Cとを結ぶ直線L上にある。 5B, FIG. 5C, and FIG. 5D, the light-shielding portions 131, 132, 133 have their end portions on the side of the light projecting lens 140 (upper end portions 131a, 132a, 133a). Is connected to the end portion 140a of the light projecting lens 140, and the end portions (lower end portions 131b, 132b, 133b) of the light shielding portions 131, 132, 133 on the light emitting portion 120 side are the end portion 140a of the light projecting lens 140 and the light emitting portion 120. It is on a straight line L connecting the center C of.
以上のように遮光部130の変形させることで、内側面反射成分を変化させることにより、任意で投光配光パターンを制御できる。 By deforming the light shielding portion 130 as described above, the light projection distribution pattern can be arbitrarily controlled by changing the inner surface reflection component.
〔実施形態2〕
本発明の実施形態2について図6を参照して説明する。図6は本発明の実施形態2に係る照明装置100Aの概略構成を示す模式図である。図7に示す照明装置100Aは、図1に示す照明装置100と比べて、発光部120、および遮光部130に代えて、発光部120A、反射ミラー150、および遮光部134が設けられている点が異なり、その他の構成は同様である。
[Embodiment 2]
Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a schematic diagram showing a schematic configuration of a lighting device 100A according to the second embodiment of the present invention. The illumination device 100A shown in FIG. 7 is different from the illumination device 100 shown in FIG. 1 in that a light emitting unit 120A, a reflection mirror 150, and a light shielding unit 134 are provided instead of the light emitting unit 120 and the light shielding unit 130. However, other configurations are the same.
発光部120Aは、レーザ素子110から出射されたレーザ光Rを受けて蛍光を発光し光を放出する。発光部120Aは、蛍光体部121および反射系基板122が備えている。 The light emitting unit 120A receives the laser light R emitted from the laser element 110, emits fluorescence and emits light. The light emitting section 120A includes a phosphor section 121 and a reflective substrate 122.
蛍光体部121は、発光部120と同様の構成を有する。蛍光体部121の蛍光体として、例えば、酸窒化物系蛍光体(例えば、サイアロン蛍光体)またはIII−V族化合物半導体ナノ粒子蛍光体(例えば、インジュウムリン:InP)を用いることができる。これらの蛍光体は、レーザ素子110から発せられた高い出力(および/または光密度)のレーザ光Rに対しての熱耐性が高く、レーザ照明光源に最適である。ただし、蛍光体部121の蛍光体は、上述のものに限定されず、窒化物蛍光体等、その他の蛍光体であってもよい。蛍光体部121は、反射系基板122の投光レンズ140側に積層されている。 The phosphor section 121 has the same configuration as the light emitting section 120. As the phosphor of the phosphor unit 121, for example, an oxynitride-based phosphor (for example, sialon phosphor) or a III-V group compound semiconductor nanoparticle phosphor (for example, indium phosphide:InP) can be used. These phosphors have high heat resistance to the high-power (and/or light-density) laser light R emitted from the laser element 110, and are suitable for a laser illumination light source. However, the phosphor of the phosphor unit 121 is not limited to the above-mentioned one, and may be another phosphor such as a nitride phosphor. The phosphor portion 121 is laminated on the light projecting lens 140 side of the reflective substrate 122.
反射系基板122は、蛍光体部121が放出した光およびレーザ光Rを、反射系基板122前面(投光レンズ140側)に反射させる。 The reflection system substrate 122 reflects the light emitted by the phosphor section 121 and the laser light R to the front surface of the reflection system substrate 122 (on the light projecting lens 140 side).
反射ミラー150は、レーザ素子110から出射されたレーザ光を反射させて発光部120Aに導く。反射ミラー150は、単純な凸面鏡もしくは凹面鏡を用いることができる。反射ミラー150を用いることで、レーザ素子110の向きを変化させることなく、反射ミラー150の向き(角度)を変えるだけで、レーザ光Rの発光部120Aへの入射角度θ1等をより精度良くかつ簡単に変化させることができる。なお、反射ミラー150は、複数設けられていてもよい。 The reflection mirror 150 reflects the laser light emitted from the laser element 110 and guides it to the light emitting unit 120A. The reflection mirror 150 can be a simple convex mirror or a concave mirror. By using the reflection mirror 150, only by changing the direction (angle) of the reflection mirror 150 without changing the direction of the laser element 110, the incident angle θ1 of the laser light R to the light emitting section 120A and the like can be made more accurate. It can be changed easily. A plurality of reflection mirrors 150 may be provided.
遮光部134は、遮光部130とほぼ同じ構成を有する。具体的には、遮光部134は、発光部120Aと投光レンズ140との間に設けられ、かつ外側面134dにおいて光を遮光する筒状である。遮光部134の投光レンズ140側の端部(上端部134a)は投光レンズ140の端部140aに接続されている。遮光部134の発光部120A側の端部(下端部134b)は投光レンズ140の端部140aと発光部120Aの中心C1とを結ぶ直線L1上にある。 The light blocking section 134 has substantially the same configuration as the light blocking section 130. Specifically, the light blocking section 134 is provided between the light emitting section 120A and the light projecting lens 140, and has a cylindrical shape that blocks light on the outer surface 134d. An end portion (upper end portion 134a) of the light shielding portion 134 on the light projecting lens 140 side is connected to an end portion 140a of the light projecting lens 140. An end portion (lower end portion 134b) of the light shielding portion 134 on the light emitting portion 120A side is on a straight line L1 connecting the end portion 140a of the light projecting lens 140 and the center C1 of the light emitting portion 120A.
また、発光部120Aの中心C1を通る発光部120Aの垂線P1と直線L1との成す角度(光取込角度φ1)は、レーザ光Rの発光部120Aへの入射角度θ1以下である。言い換えると、レーザ素子110の発光部120Aへの入射角度θ1は、光取込角度φ1と同じか、または、光取込角度φ1よりも大きい方がより望ましい。 Further, the angle formed by the perpendicular line P1 of the light emitting portion 120A passing through the center C1 of the light emitting portion 120A and the straight line L1 (light receiving angle φ1) is not more than the incident angle θ1 of the laser light R to the light emitting portion 120A. In other words, it is more preferable that the incident angle θ1 of the laser element 110 to the light emitting section 120A is the same as the light taking-in angle φ1 or larger than the light taking-in angle φ1.
照明装置100Aによれば、迷光や励起光成分(例えば、発光部120Aで正反射するレーザ光Rの成分)が、投光レンズ140を通し照明装置100Aの外部へ投光されることを防ぐことができる。また、衝撃等でレーザ光Rの向きが変わった場合、レーザ光Rが投光レンズ140を介してそのまま照明装置100Aの外部へ投光されることを防ぐことができる。 According to the lighting device 100A, it is possible to prevent stray light and excitation light components (for example, the component of the laser light R specularly reflected by the light emitting unit 120A) from being projected to the outside of the lighting device 100A through the light projecting lens 140. You can Further, when the direction of the laser light R is changed due to a shock or the like, it is possible to prevent the laser light R from being directly projected to the outside of the illumination device 100A via the light projecting lens 140.
〔実施形態3〕
本発明の実施形態3について、図7を参照して説明する。図7は本発明の実施形態3に係る照明装置100Bの概略構成を示す模式図である。図7に示す照明装置100Bは、図1に示す照明装置100と比べて、発光部120、および遮光部130に代えて、発光部120B、および遮光部135が設けられている点が異なり、その他の構成は同様である。
[Embodiment 3]
The third embodiment of the present invention will be described with reference to FIG. FIG. 7: is a schematic diagram which shows schematic structure of the illuminating device 100B which concerns on Embodiment 3 of this invention. The illumination device 100B shown in FIG. 7 is different from the illumination device 100 shown in FIG. 1 in that a light emitting unit 120B and a light shielding unit 135 are provided instead of the light emitting unit 120 and the light shielding unit 130, and the others. The configuration is the same.
発光部120Bは、レーザ素子110から出射されたレーザ光Rを受けて蛍光を発光し光を放出する。発光部120Bは、図6に示す発光部120Aと比べて、反射系基板122に代えて、透過系基板123が設けられている点が異なり、その他の構成は同様である。また、本実施形態では、レーザ素子110から出射されたレーザ光Rは、投光レンズ140が設置されている側とは反対側から発光部120Bに入射される。言い換えると、発光部120Bは一方の面から蛍光を放出し、上記蛍光を放出する面の反対側の面からレーザ光Rが発光部120Bに入射される。 The light emitting section 120B receives the laser light R emitted from the laser element 110, emits fluorescence and emits light. The light emitting unit 120B is different from the light emitting unit 120A shown in FIG. 6 in that a transmissive substrate 123 is provided instead of the reflective substrate 122, and the other configurations are the same. Further, in the present embodiment, the laser light R emitted from the laser element 110 is incident on the light emitting unit 120B from the side opposite to the side on which the light projecting lens 140 is installed. In other words, the light emitting unit 120B emits fluorescence from one surface, and the laser light R is incident on the light emitting unit 120B from the surface opposite to the surface emitting the fluorescence.
透過系基板123は、レーザ素子110より出射されたレーザ光Rを透過し、蛍光体部121が放出した光を、透過系基板123前面(投光レンズ140側)に反射させる。蛍光体部121は、透過系基板123の投光レンズ140側に積層されている。 The transmissive substrate 123 transmits the laser light R emitted from the laser element 110, and reflects the light emitted by the phosphor portion 121 to the front surface of the transmissive substrate 123 (on the light projecting lens 140 side). The phosphor portion 121 is stacked on the transmission substrate 123 on the light projecting lens 140 side.
遮光部135は、遮光部130とほぼ同じ構成を有する。具体的には、遮光部135は、発光部120Bと投光レンズ140との間に設けられ、かつ外側面135dにおいて光を遮光する筒状である。遮光部135の投光レンズ140側の端部(上端部135a)は投光レンズ140の端部140aに接続されている。遮光部135の発光部120B側の端部(下端部135b)は投光レンズ140の端部140aと発光部120Bの中心C2とを結ぶ直線L2上にある。 The light blocking portion 135 has substantially the same configuration as the light blocking portion 130. Specifically, the light blocking portion 135 is provided between the light emitting portion 120B and the light projecting lens 140, and has a cylindrical shape that blocks light on the outer surface 135d. An end portion (upper end portion 135a) of the light blocking portion 135 on the light projecting lens 140 side is connected to an end portion 140a of the light projecting lens 140. An end portion (lower end portion 135b) of the light shielding portion 135 on the light emitting portion 120B side is on a straight line L2 connecting the end portion 140a of the light projecting lens 140 and the center C2 of the light emitting portion 120B.
また、発光部120Bの中心C2を通る発光部120Bの垂線P2と直線L2との成す角度(光取込角度φ2)は、レーザ光Rの発光部120Bへの入射角度θ2以下である。言い換えると、レーザ素子110の発光部120Bへの入射角度θ2は、光取込角度φ2と同じか、または、光取込角度φ2よりも大きい方がより望ましい。 Further, the angle formed by the perpendicular line P2 of the light emitting portion 120B passing through the center C2 of the light emitting portion 120B and the straight line L2 (light receiving angle φ2) is not more than the incident angle θ2 of the laser light R on the light emitting portion 120B. In other words, it is more preferable that the incident angle θ2 of the laser element 110 on the light emitting portion 120B is the same as the light taking-in angle φ2 or larger than the light taking-in angle φ2.
(効果)
図8に基づき、照明装置100Bの効果について説明する。図8は、照明装置100Bの効果の一例を説明する図である。図8に示すように、光取込角度φ2をレーザ素子110の入射角度θ2以下にすることにより、発光部120Bを透過した光強度が強いレーザ光Rを光取込口135cから遮光部135の内側に取り込まないでおくことができる。
(effect)
Effects of the lighting device 100B will be described with reference to FIG. FIG. 8: is a figure explaining an example of the effect of the illuminating device 100B. As shown in FIG. 8, by setting the light taking-in angle φ2 to be equal to or smaller than the incident angle θ2 of the laser element 110, the laser light R having a high light intensity transmitted through the light emitting section 120B is emitted from the light taking-in port 135c to the light blocking section 135. It can be left unloaded inside.
具体的には、発光部120Bにおいてレーザ素子110からのレーザ光Rは、入射角度θで発光部120Bを透過する。したがって、光取込角度φ2をレーザ素子110の入射角度θ2以下にすることにより、透過したレーザ光Rは光取込口135cをこえる方向に進むため、透過したレーザ光Rは遮光部135の内側に取り込まれない。そのため、発光部120Bを透過したレーザ素子110からの光強度が強いレーザ光Rは、投光レンズ140から投光される光に含まれないので、投光レンズ140から投光される光の色むらを防ぐことができる。 Specifically, in the light emitting section 120B, the laser light R from the laser element 110 passes through the light emitting section 120B at an incident angle θ. Therefore, by setting the light taking-in angle φ2 to be equal to or smaller than the incident angle θ2 of the laser element 110, the transmitted laser light R advances in a direction exceeding the light taking-in port 135c, and thus the transmitted laser light R is inside the light shielding portion 135. Not taken into. Therefore, the laser light R having a high light intensity from the laser element 110 that has passed through the light emitting unit 120B is not included in the light projected from the light projecting lens 140, and thus the color of the light projected from the light projecting lens 140. The unevenness can be prevented.
〔実施形態4〕
本発明の実施形態4に係る照明装置100Cについて図9を参照して説明する。図9は本発明の実施形態4に係る照明装置100Cの概略構成を示す図である。図9に示す照明装置100Cは、図6に示す照明装置100Aに比べて、遮光部134に代えて、遮光部136、カバー160、および投光レンズ固定部161が設けられている点が異なり、その他の構成は同様である。なお、図9ではレーザ素子110の図示を省略している。
[Embodiment 4]
An illumination device 100C according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 9: is a figure which shows schematic structure of the illuminating device 100C which concerns on Embodiment 4 of this invention. The illuminating device 100C shown in FIG. 9 is different from the illuminating device 100A shown in FIG. 6 in that a light shielding part 136, a cover 160, and a light projecting lens fixing part 161 are provided instead of the light shielding part 134. Other configurations are the same. The laser element 110 is not shown in FIG.
カバー160は、遮光部136を覆う。カバー160は、略逆円錐形の部材であり、底面160aおよび側面160bを有する。底面160aは円形であり、中心部に発光部120Aが設置されている。側面160bは、底面160aから投光レンズ140側にむけて広がるテーパー形状を有している。遮光部136は、カバー160の凹部に設けられている。また、カバー160は、投光レンズ140の端部140aを覆う。カバー160が端部140aを覆うとは、例えば、(1)カバー160の投光レンズ140側の端部である上端部160cの外径が端部140aの外径以上であること、(2)上端部160cが端部140aに接続されていること、または(3)カバー160の一部に端部140aが入りこんでいること、等を意味する。本実施形態では、上端部160cが端部140aに接続されている。 The cover 160 covers the light blocking portion 136. The cover 160 is a member having a substantially inverted conical shape, and has a bottom surface 160a and a side surface 160b. The bottom surface 160a has a circular shape, and the light emitting unit 120A is installed in the center thereof. The side surface 160b has a tapered shape that spreads from the bottom surface 160a toward the light projecting lens 140 side. The light shield 136 is provided in the recess of the cover 160. Further, the cover 160 covers the end portion 140 a of the light projecting lens 140. The cover 160 covers the end portion 140a means, for example, (1) that the outer diameter of the upper end portion 160c which is the end portion of the cover 160 on the light projecting lens 140 side is equal to or larger than the outer diameter of the end portion 140a, (2) This means that the upper end portion 160c is connected to the end portion 140a, or (3) the end portion 140a is included in a part of the cover 160. In this embodiment, the upper end 160c is connected to the end 140a.
投光レンズ固定部161は、投光レンズ140を固定する。具体的には、投光レンズ140の有効投光範囲141の端部141aから投光レンズ140の外周側を固定する。言い換えると、投光レンズ固定部161で固定される範囲以外の投光レンズ140が有効投光範囲141となる。有効投光範囲141は投光レンズ140において実際に光を投光できる範囲である。 The light projection lens fixing portion 161 fixes the light projection lens 140. Specifically, the outer peripheral side of the light projecting lens 140 is fixed from the end portion 141a of the effective light projecting range 141 of the light projecting lens 140. In other words, the projection lens 140 outside the range fixed by the projection lens fixing portion 161 becomes the effective projection range 141. The effective light projecting range 141 is a range in which the light projecting lens 140 can actually project light.
遮光部136は、遮光部130とほぼ同じ構成を有する。具体的には、遮光部136は、発光部120Aと投光レンズ140との間に設けられ、かつ外側面136dにおいて光を遮光する筒状である。投光レンズ140において光を投光できる範囲である有効投光範囲141の端部141aと発光部120Aの中心C2とを結ぶ直線L3上に、遮光部136の発光部120A側の下端部136bがある。遮光部136の投光レンズ140側の端部(上端部136a)はカバー160の内周面160dに接している。 The light shield 136 has substantially the same configuration as the light shield 130. Specifically, the light blocking section 136 is provided between the light emitting section 120A and the light projecting lens 140, and has a cylindrical shape that blocks light on the outer side surface 136d. The lower end 136b of the light shielding unit 136 on the light emitting unit 120A side is located on the straight line L3 that connects the end 141a of the effective light emitting range 141, which is the range in which light can be emitted by the light projecting lens 140, and the center C2 of the light emitting unit 120A. is there. An end portion (upper end portion 136a) of the light blocking portion 136 on the light projecting lens 140 side is in contact with the inner peripheral surface 160d of the cover 160.
また、発光部120Aの中心C2を通る発光部の垂線P2とL3直線とのなす角(光取込角度φ3)は、レーザ光Rの発光部120Aへの入射角度θ3以下である。 Further, the angle formed by the perpendicular line P2 of the light emitting portion passing through the center C2 of the light emitting portion 120A and the straight line L3 (light receiving angle φ3) is equal to or smaller than the incident angle θ3 of the laser light R on the light emitting portion 120A.
照明装置100Cによれば、端部140aは遮光部136およびカバー160に覆われている。また、上端部136aはカバー160の内周面160dに接している。これにより、下端部136bより取り込まれた光以外は遮光部136の内側に入らない。そのため、投光レンズ140から投光される光に含まれる迷光を低減することができるので、投光される光の色むらを防ぐことができる。 According to the lighting device 100C, the end 140a is covered with the light shield 136 and the cover 160. The upper end 136a is in contact with the inner peripheral surface 160d of the cover 160. As a result, the light other than the light taken in from the lower end 136b does not enter the inside of the light shield 136. Therefore, stray light included in the light projected from the light projecting lens 140 can be reduced, and thus it is possible to prevent color unevenness of the projected light.
また、下端部136bは、直線L3上にあり、光取込角度φ3が入射角度θ3以下である。これにより、発光部120Aにおいて正反射したレーザ光Rは、遮光部136の内側に取り込まれない。そのため、発光部120Aにおいて正反射したレーザ素子110からの光強度が強いレーザ光Rが投光レンズ140から投光される光に含まれないので、投光される光の色むらを防ぐことができる。 Further, the lower end portion 136b is on the straight line L3, and the light receiving angle φ3 is equal to or smaller than the incident angle θ3. As a result, the laser light R specularly reflected by the light emitting section 120A is not taken inside the light shielding section 136. Therefore, since the laser light R having a high light intensity from the laser element 110 that is specularly reflected by the light emitting unit 120A is not included in the light projected from the light projecting lens 140, uneven color of the projected light can be prevented. it can.
なお、各実施形態において、投光レンズ140が円形であるとして説明したが、投光レンズ140の形は、光取込角度φが入射角度θよりも小さければよく、円形に限らない。投光レンズ140は楕円であってもよく、四角形であってもよい。 In each of the embodiments, the light projecting lens 140 is described as being circular, but the shape of the light projecting lens 140 is not limited to being circular as long as the light receiving angle φ is smaller than the incident angle θ. The light projecting lens 140 may be an ellipse or a quadrangle.
〔まとめ〕
本発明の態様1に係る照明装置(100・100A・100B・100C)は、励起光(レーザ光R)を出射する励起光源(レーザ素子110)と、前記励起光源から出射された励起光を受けて蛍光を放出する発光部(120・120A・120B)と、前記発光部から放出される光を投光する投光部(140)と、前記発光部と前記投光部との間に設けられている遮光部(130・131・132・133・134・135・136)と、を備え、前記投光部の端部と前記発光部の中心(C・C1・C2)とを結ぶ直線(L・L1・L2・L3)と、前記発光部の中心を通る前記発光部の垂線(P・P1・P2)とのなす角(光取込角度φ・φ1・φ2・φ3)は、前記励起光の前記発光部への入射角度(θ・θ1・θ2・θ3)以下である。
[Summary]
An illumination device (100/100A/100B/100C) according to aspect 1 of the present invention receives an excitation light source (laser element 110) that emits excitation light (laser light R) and an excitation light emitted from the excitation light source. Provided between the light emitting unit and the light emitting unit, and a light emitting unit (120, 120A, 120B) that emits fluorescent light, a light projecting unit (140) that projects the light emitted from the light emitting unit. And a light-shielding portion (130, 131, 132, 133, 134, 135, 136), which connects the end portion of the light projecting portion and the center (C, C1, C2) of the light emitting portion (L). .L1.L2.L3) and the normal line (P.P1.P2) of the light emitting part passing through the center of the light emitting part (light receiving angle .phi..phi.1 .phi.2 .phi.3) is the excitation light. Is less than or equal to the angle of incidence (θ·θ1·θ2·θ3) on the light emitting portion.
上記構成によれば、投光部と発光部との間に遮光部が設けられている。これにより、投光部に取り込まれる迷光を低減することができるので、投光される光の色むらを防ぐことができる。 According to the above configuration, the light shielding unit is provided between the light projecting unit and the light emitting unit. As a result, stray light captured by the light projecting unit can be reduced, and thus uneven color of the projected light can be prevented.
また、上記直線と発光部の中心を通る発光部の垂線とのなす角が励起光の発光部への入射角度以下である。これにより、発光部において正反射した励起光源からの励起光は、投光部に取り込まれない。そのため、発光部において正反射した励起光源からの光強度が強い励起光が投光部から投光される光に含まれないので、投光される光の色むらを防ぐことができる。 Further, an angle formed by the straight line and a perpendicular line of the light emitting portion passing through the center of the light emitting portion is equal to or smaller than an incident angle of the excitation light to the light emitting portion. Thereby, the excitation light from the excitation light source that is specularly reflected by the light emitting unit is not taken into the light projecting unit. Therefore, since the excitation light having a high light intensity from the excitation light source that is specularly reflected in the light emitting portion is not included in the light emitted from the light emitting portion, it is possible to prevent color unevenness of the emitted light.
本発明の態様2に係る照明装置100Aは、上記態様1において、前記励起光源(レーザ素子110)から出射された励起光(レーザ光R)を反射させて前記発光部(120A)に導く反射ミラー150を備えていることが好ましい。 The illumination device 100A according to Aspect 2 of the present invention is the reflection mirror according to Aspect 1, wherein the excitation light (laser light R) emitted from the excitation light source (laser element 110) is reflected and guided to the light emitting unit (120A). It is preferable to have 150.
上記構成によれば、反射型の照明装置にも対応できる。 According to the above configuration, a reflection type illumination device can be used.
本発明の態様3に係る照明装置100Bは、上記態様1において、前記発光部(120B)は一方の面から蛍光を放出し、前記蛍光を放出する面の反対側の面から励起光(レーザ光R)が前記発光部に入射されることが好ましい。 The illumination device 100B according to Aspect 3 of the present invention is the illumination device 100B according to Aspect 1, wherein the light emitting section (120B) emits fluorescence from one surface and excitation light (laser light) from the surface opposite to the surface emitting the fluorescence. R) is preferably incident on the light emitting unit.
上記構成によれば、透過型の照明装置にも対応できる。 According to the above configuration, a transmissive illumination device can be used.
本発明の態様4に係る照明装置(100)は、上記態様1から3のいずれかにおいて、前記遮光部(遮光部131)は、外側に凸となる曲面(131e)を有していることが好ましい。 The illumination device (100) according to aspect 4 of the present invention is the illumination device (100) according to any one of aspects 1 to 3, wherein the light-shielding portion (light-shielding portion 131) has a curved surface (131e) that is convex outward. preferable.
上記構成によれば、任意で投光配光パターンを制御することができる。 According to the above configuration, it is possible to arbitrarily control the projected light distribution pattern.
本発明の態様5に係る照明装置100は、上記態様1から3のいずれかにおいて、前記遮光部(遮光部132)は、前記投光部(140)側の端部(上端部132a)から前記垂線(P)に平行な方向に延在する筒状部(132e)と、前記発光部(120)側に向かって先細る円錐状先細り部(132g)とを有することが好ましい。 The illumination device 100 according to Aspect 5 of the present invention is the illumination device 100 according to any one of Aspects 1 to 3, wherein the light-shielding portion (light-shielding portion 132) is the end portion (upper end portion 132a) on the light-projecting portion (140) side. It is preferable to have a cylindrical portion (132e) extending in a direction parallel to the perpendicular (P) and a conical tapered portion (132g) that is tapered toward the light emitting portion (120) side.
上記構成によれば、任意で投光配光パターンを制御することができる。 According to the above configuration, it is possible to arbitrarily control the projected light distribution pattern.
本発明の態様6に係る照明装置100は、上記態様1から3のいずれかにおいて、前記遮光部(遮光部133)は、内側に側に凸となる曲面(133e)を有している。 The illumination device 100 according to aspect 6 of the present invention is the illumination device 100 according to any one of aspects 1 to 3, wherein the light-shielding portion (light-shielding portion 133) has a curved surface (133e) that is convex toward the inside.
上記構成によれば、任意で投光配光パターンを制御することができる。 According to the above configuration, it is possible to arbitrarily control the projected light distribution pattern.
本発明の態様7に係る照明装置100Cは、上記態様1から6のいずれかにおいて、前記遮光部(遮光部136)を覆うカバー(160)を備えていると共に、前記カバーは、前記投光部(140)の端部(140a)を覆い、前記投光部において光を投光できる範囲である有効投光範囲(141)の端部(141a)と前記発光部の中心とを結ぶ直線(L3)上に、前記遮光部(遮光部136)の前記発光部側の端部(下端部136b)があり、前記垂線(P3)と前記有効投光範囲の端部と前記発光部の中心とを結ぶ直線(L3)とのなす角(φ3)は、前記励起光(レーザ光R)の前記発光部(120)への入射角度(θ3)以下であり、前記遮光部(遮光部136)の前記投光部側の端部(上端部136a)は前記カバーの内周面(160d)に接している。 An illumination device 100C according to Aspect 7 of the present invention is the illumination device 100C according to any one of Aspects 1 to 6, further including a cover (160) that covers the light shielding portion (light shielding portion 136), and the cover includes the light projecting portion. A straight line (L3) that covers the end portion (140a) of (140) and connects the end portion (141a) of the effective light emitting range (141), which is the range in which light can be emitted by the light emitting unit, and the center of the light emitting unit. ) Above, there is an end portion (lower end portion 136b) on the light emitting portion side of the light shielding portion (light shielding portion 136), and the perpendicular line (P3), the end portion of the effective light emitting range, and the center of the light emitting portion. The angle (φ3) formed by the connecting straight line (L3) is equal to or smaller than the incident angle (θ3) of the excitation light (laser light R) to the light emitting section (120), and the angle of the light blocking section (light blocking section 136) is the same. The end portion (upper end portion 136a) on the light projecting portion side is in contact with the inner peripheral surface (160d) of the cover.
上記構成によれば、投光部の端部は遮光部およびカバーに覆われている。また、遮光部の投光部側の端部はカバーの内周面に接している。これにより、遮光部の発光部側の端部より取り込まれた光以外は遮光部の内側に入らない。そのため、遮光部の内側に取り込まれる迷光を低減することができるので、投光される光の色むらを防ぐことができる。 According to the above configuration, the end portion of the light projecting portion is covered with the light shielding portion and the cover. Further, the end portion of the light shielding portion on the light emitting portion side is in contact with the inner peripheral surface of the cover. As a result, the light other than the light taken in from the end on the light emitting portion side of the light shield does not enter the inside of the light shield. Therefore, it is possible to reduce stray light captured inside the light-shielding portion, so that it is possible to prevent color unevenness of the projected light.
また、遮光部の発光部側の端部は、投光部において蛍光を投光する範囲である有効投光範囲の端部と発光部の中心とを結ぶ直線上にあり、上記直線と発光部の中心を通る発光部の垂線とのなす角が励起光の発光部への入射角度以下である。これにより、発光部において正反射した励起光源からの励起光は、遮光部の内側に取り込まれない。そのため、発光部において正反射した励起光源からの光強度が強い励起光が投光部から投光される光に含まれないので、投光される光の色むらを防ぐことができる。 Further, the end of the light shield on the light emitting side is on a straight line connecting the end of the effective light emitting range, which is the range where the fluorescent light is projected in the light projecting part, and the center of the light emitting part. The angle formed by the vertical line of the light emitting portion passing through the center of is equal to or smaller than the incident angle of the excitation light to the light emitting portion. As a result, the excitation light from the excitation light source that is specularly reflected by the light emitting unit is not captured inside the light shielding unit. Therefore, since the excitation light having a high light intensity from the excitation light source that is specularly reflected in the light emitting portion is not included in the light emitted from the light emitting portion, it is possible to prevent color unevenness of the emitted light.
本発明の態様8に係る車両用前照灯は、態様1〜7のいずれかに記載の照明装置(100・100A・100B・100C)を備えていることが好ましい。 It is preferable that the vehicle headlamp according to the eighth aspect of the present invention includes the illumination device (100/100A/100B/100C) described in any one of the first to seventh aspects.
上記構成によれば、態様1と同様の効果を奏する。 According to the above configuration, the same effect as that of the first aspect is achieved.
本発明の態様9に係る照明装置(100・100A・100B・100C)は、励起光(レーザ光R)を出射する励起光源(レーザ素子110)と、前記励起光源から出射された励起光を受けて蛍光を発光し光を放出する発光部(120・120A・120B)と、前記発光部から放出される光を投光する投光部(140)と、前記発光部と前記投光部との間に設けられ、かつ外側面において光を遮光する筒状の遮光部(130・131・132・133・134・135・136)と、を備え、前記遮光部は前記投光部の端部140aを覆い、前記遮光部の前記発光部側の端部(下端部130b・131b・132b・133b・134b・135b・136b)は前記投光部の端部と前記発光部の中心(C・C1・C2)とを結ぶ直線(L・L1・L2・L3)上にあり、前記発光部の中心を通る前記発光部の垂線(P・P1・P2)と前記直線とのなす角(光取込角度φ・φ1・φ2・φ3)は、前記励起光の前記発光部への入射角度(θ・θ1・θ2・θ3)以下であることが好ましい。 An illumination device (100/100A/100B/100C) according to aspect 9 of the present invention receives an excitation light source (laser element 110) that emits excitation light (laser light R) and an excitation light emitted from the excitation light source. Of the light emitting section (120/120A/120B) that emits fluorescence and emits light, a light projecting section (140) that projects the light emitted from the light emitting section, and the light emitting section and the light projecting section. And a cylindrical light-shielding portion (130, 131, 132, 133, 134, 135, 136) provided between the light-shielding portion and the outer surface thereof, the light-shielding portion being an end portion 140a of the light-projecting portion. And an end portion (lower end portion 130b, 131b, 132b, 133b, 133b, 135b, 136b) of the light shielding portion on the side of the light emitting portion is located at the end of the light emitting portion and the center of the light emitting portion (C, C1,. C2) is on a straight line (L·L1, L2, L3) that connects with the perpendicular line (P·P1·P2) of the light emitting portion that passes through the center of the light emitting portion and the straight line (light receiving angle). It is preferable that φ·φ1·φ2·φ3) is equal to or less than the incident angle (θ·θ1·θ2·θ3) of the excitation light to the light emitting portion.
上記構成によれば、投光部の端部は、外側面において光を遮光する筒状の遮光部に覆われている。これにより、遮光部の発光部側の端部より取り込まれた光以外は遮光部の内側に入らない。そのため、遮光部の内側に取り込まれる迷光を低減することができるので、投光される光の色むらを防ぐことができる。 According to the above configuration, the end portion of the light projecting portion is covered with the cylindrical light shielding portion that shields light on the outer side surface. As a result, the light other than the light taken in from the end on the light emitting portion side of the light shield does not enter the inside of the light shield. Therefore, it is possible to reduce stray light captured inside the light-shielding portion, so that it is possible to prevent color unevenness of the projected light.
また、遮光部の発光部側の端部は、投光部の端部と発光部の中心とを結ぶ直線上にあり、上記直線と発光部の中心を通る発光部の垂線とのなす角が励起光の発光部への入射角度以下である。これにより、発光部において正反射した励起光源からの励起光は、遮光部の内側に取り込まれない。そのため、発光部において正反射した励起光源からの光強度が強い励起光が投光部から投光される光に含まれないので、投光される光の色むらを防ぐことができる。 Further, the end of the light shield on the light emitting side is on a straight line connecting the end of the light emitting part and the center of the light emitting part, and the angle formed by the straight line and the perpendicular of the light emitting part passing through the center of the light emitting part is It is not more than the angle of incidence of the excitation light on the light emitting portion. As a result, the excitation light from the excitation light source that is specularly reflected by the light emitting unit is not captured inside the light shielding unit. Therefore, since the excitation light having a high light intensity from the excitation light source that is specularly reflected in the light emitting portion is not included in the light emitted from the light emitting portion, it is possible to prevent color unevenness of the emitted light.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, but various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
100・100A・100B・100C 照明装置
110 レーザ素子(励起光源)
120・120A・120B 発光部
130・131・132・133・134・135・136 遮光部
130a・131a・132a・133a・134a・135a・136a 上端部(遮光部の投光部側の端部)
130b・131b・132b・133b・134b・135b・136b 下端部(遮光部の発光部側の端部)
131e・133e 曲面
132e 筒状部
132g 円錐状先細り部
140 投光レンズ(投光部)
140a 端部(投光部の端部)
141 有効投光範囲
141a 端部(有効投光範囲の端部)
150 反射ミラー
160 カバー
160d 内周面(カバーの内周面)
C・C1・C2 中心
L・L1・L2・L3 直線
P・P1・P2 垂線
R レーザ光(励起光)
θ・θ1・θ2・θ3 入射角度
φ・φ1・φ2・φ3 光取込角度(垂線と直線とのなす角)
100/100A/100B/100C Illumination device 110 Laser element (excitation light source)
120/120A/120B Light emitting part 130/131/132/133/134/135/136 Light shielding part 130a/131a/132a/133a/134a/135a/136a Upper end part (end part of light shielding part on light projecting part side)
130b/131b/132b/133b/134b/135b/136b Lower end part (end part on light emitting part side of light shielding part)
131e/133e Curved surface 132e Cylindrical part 132g Conical tapered part 140 Projection lens (projection part)
140a end (end of light emitting part)
141 Effective light emitting range 141a End (end of effective light emitting range)
150 Reflecting mirror 160 Cover 160d Inner surface (inner surface of cover)
C・C1・C2 Center L・L1・L2・L3 Straight line P・P1・P2 Perpendicular R Laser light (excitation light)
θ・θ1・θ2・θ3 Incident angle φ・φ1・φ2・φ3 Light capture angle (angle between perpendicular and straight line)
Claims (5)
前記励起光源から出射された励起光を受けて蛍光を放出する発光部と、
前記発光部から放出される光を投光する投光部と、
前記発光部と前記投光部との間に設けられている遮光部と、を備え、
前記遮光部は、前記投光部の端部を覆う筒状の中空部材であり、
前記遮光部の前記発光部側の端部は、前記投光部の端部と前記発光部の中心とを結ぶ直線上にあり、
前記投光部の端部と前記発光部の中心とを結ぶ直線と、前記発光部の中心を通る前記発光部の垂線とのなす角は、前記励起光の前記発光部への入射角度以下であることを特徴とする照明装置。 An excitation light source that emits excitation light,
A light emitting unit that emits fluorescence by receiving excitation light emitted from the excitation light source,
A light projecting unit for projecting light emitted from the light emitting unit;
A light shielding unit provided between the light emitting unit and the light projecting unit,
The light-shielding portion is a tubular hollow member that covers an end portion of the light projecting portion,
The end of the light shield on the side of the light emitting unit is on a straight line connecting the end of the light emitting unit and the center of the light emitting unit,
An angle formed by a straight line connecting the end portion of the light projecting portion and the center of the light emitting portion and a perpendicular line of the light emitting portion passing through the center of the light emitting portion is equal to or less than an incident angle of the excitation light to the light emitting portion. A lighting device characterized by being present.
前記カバーは、前記投光部の端部を覆い、
前記投光部において光を投光できる範囲である有効投光範囲の端部と前記発光部の中心とを結ぶ直線上に、前記遮光部の前記発光部側の端部があり、
前記垂線と前記有効投光範囲の端部と前記発光部の中心とを結ぶ直線とのなす角は、前記励起光の前記発光部への入射角度以下であり、
前記遮光部の前記投光部側の端部は前記カバーの内周面に接していることを特徴とする請求項1から3のいずれか1項に記載の照明装置。 With a cover for covering the light shielding part,
The cover covers an end portion of the light projecting portion,
On the straight line connecting the end of the effective light emitting range, which is the range in which light can be emitted in the light emitting unit, and the center of the light emitting unit, there is the end of the light shielding unit on the light emitting unit side,
The angle formed by the perpendicular and the straight line connecting the end of the effective light projection range and the center of the light emitting unit is equal to or less than the incident angle of the excitation light to the light emitting unit,
The lighting device according to any one of claims 1 to 3, wherein an end portion of the light blocking portion on the light projecting portion side is in contact with an inner peripheral surface of the cover.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016082435A JP6719261B2 (en) | 2016-04-15 | 2016-04-15 | Lighting device and vehicle headlight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016082435A JP6719261B2 (en) | 2016-04-15 | 2016-04-15 | Lighting device and vehicle headlight |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017191760A JP2017191760A (en) | 2017-10-19 |
JP6719261B2 true JP6719261B2 (en) | 2020-07-08 |
Family
ID=60085245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016082435A Active JP6719261B2 (en) | 2016-04-15 | 2016-04-15 | Lighting device and vehicle headlight |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6719261B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020179352A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社小糸製作所 | Vehicle lighting fixture |
JP7281363B2 (en) * | 2019-08-10 | 2023-05-25 | Hoya株式会社 | Light irradiation device |
JP7382242B2 (en) * | 2020-01-30 | 2023-11-16 | スタンレー電気株式会社 | Lighting equipment and vehicle lights |
JP7382241B2 (en) * | 2020-01-30 | 2023-11-16 | スタンレー電気株式会社 | Lighting equipment and vehicle lights |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5688990B2 (en) * | 2011-02-09 | 2015-03-25 | スタンレー電気株式会社 | Vehicle lighting |
JP5688989B2 (en) * | 2011-02-09 | 2015-03-25 | スタンレー電気株式会社 | Vehicle lighting |
JP5883623B2 (en) * | 2011-11-22 | 2016-03-15 | スタンレー電気株式会社 | Laser light source device |
JP2014175126A (en) * | 2013-03-07 | 2014-09-22 | Toshiba Lighting & Technology Corp | Spotlight |
-
2016
- 2016-04-15 JP JP2016082435A patent/JP6719261B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017191760A (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5883623B2 (en) | Laser light source device | |
KR102154645B1 (en) | Vehicle headlight | |
EP3457021B1 (en) | Light source device and lighting device | |
JP6719261B2 (en) | Lighting device and vehicle headlight | |
JP4757974B2 (en) | Light source for projection display | |
EP3037716B1 (en) | Vehicle lighting unit with a laser light source and wavelength conversion material | |
JP6643645B2 (en) | Vehicle lighting | |
CN103998857B (en) | Light-emitting device, vehicle lamp and vehicle | |
CN104838203B (en) | Lamps apparatus for vehicle | |
US20140369065A1 (en) | Illumination device and vehicle headlight | |
JP6045834B2 (en) | Vehicle headlamp | |
JP5254418B2 (en) | Lighting device and headlamp | |
JP2015005439A (en) | Vehicle headlamp and optical fiber bundle used for vehicle headlamp | |
JP5829478B2 (en) | Vehicle lighting | |
US20200049323A1 (en) | Wavelength converter, light source apparatus, and projector | |
US11002414B2 (en) | Light source device | |
JP2014010918A (en) | Luminaire and vehicle headlight | |
US10072812B2 (en) | Lens body and vehicle lighting fixture | |
WO2024164527A1 (en) | Light-emitting module, low-beam lighting apparatus, high-beam lighting apparatus, integrated high-beam and low-beam lighting apparatus and vehicle lamp | |
WO2012173085A1 (en) | Lighting device | |
JP4610478B2 (en) | Optical module and optical connector provided with the same | |
JP2018106825A (en) | Vehicular lighting fixture | |
CN113892022B (en) | Light source and biochemical analyzer | |
JP5891858B2 (en) | Light emitting device and vehicle lamp | |
US20150146302A1 (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200616 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6719261 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |