[go: up one dir, main page]

JP6718701B2 - Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability - Google Patents

Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability Download PDF

Info

Publication number
JP6718701B2
JP6718701B2 JP2016048850A JP2016048850A JP6718701B2 JP 6718701 B2 JP6718701 B2 JP 6718701B2 JP 2016048850 A JP2016048850 A JP 2016048850A JP 2016048850 A JP2016048850 A JP 2016048850A JP 6718701 B2 JP6718701 B2 JP 6718701B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
anisotropy
rolling
bottle
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016048850A
Other languages
Japanese (ja)
Other versions
JP2017160521A (en
Inventor
齊藤 充
充 齊藤
黒木 俊博
俊博 黒木
原田 俊宏
俊宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016048850A priority Critical patent/JP6718701B2/en
Publication of JP2017160521A publication Critical patent/JP2017160521A/en
Application granted granted Critical
Publication of JP6718701B2 publication Critical patent/JP6718701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、異方性とネック成形性に優れた飲料缶ボディ用、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法に関する。 The present invention relates to a method for producing an aluminum alloy sheet for a beverage can body having excellent anisotropy and neck formability, and for a bottle can body having excellent anisotropy and bottle neck formability.

飲料用アルミニウム缶の缶ボディには、JIS3004(AA3004)またはJIS3104合金などの、Al−Mn−Mg系合金硬質板が用いられている。同合金硬質板には、容器として使用するために必要な強度や耐食性、美麗な外観、優れた成形性などが要求される。
前記合金硬質板は、一般的なアルミニウム合金板と同様に、溶解・鋳造・均質化・熱間圧延・冷間圧延等の工程を経て製造される。そして通常、缶ボディ各部の強度や成形性のバランスが最適な3/4硬質〜特硬質に調質されている。即ち、アルミニウム合金板を圧延途中に一旦再結晶させ、軟質状態とした後、圧下率50〜90%程度の冷間圧延を行い、主として加工硬化により適度な強度としている。
An aluminum-Mn-Mg-based alloy hard plate such as JIS3004 (AA3004) or JIS3104 alloy is used for a can body of an aluminum can for beverage. The alloy hard plate is required to have strength, corrosion resistance, a beautiful appearance, and excellent formability required for use as a container.
The alloy hard plate is manufactured through the steps of melting, casting, homogenizing, hot rolling, cold rolling, and the like, like a general aluminum alloy plate. And, generally, the strength and the moldability of each part of the can body are adjusted to 3/4 hard to extra hard with the optimum balance. That is, the aluminum alloy sheet is once recrystallized during rolling to be in a soft state, and then cold rolled at a rolling reduction of about 50 to 90% to obtain an appropriate strength mainly by work hardening.

最近の工業的な冷間圧延機を用いてアルミニウム合金板を圧延した場合、圧延による発熱で材料温度が高くなるため、圧延のままでも十分な延性が得られる。従って、通常、アルミニウム合金板は圧延のままの調質(H16〜H19)で用いられる。アルミニウム合金板の圧延速度が遅い場合など十分な延性が得られない場合には、安定化焼鈍を施して、H3X調質でアルミニウム合金板を用いることも考えられる。
しかし、アルミニウム合金の圧延板の機械的性質に異方性があると、缶ボディを成形する際の成形性を阻害したり、成形後の缶ボディの対称性が低下したり、材料の使用歩留まりが低下するなどの問題がある。圧延板の異方性は、結晶粒の方位分布(集合組織)に依存する。そこで、冷間圧延による集合組織の変化を考慮し、冷間圧延前の再結晶で生じる集合組織を制御することにより、アルミニウム合金圧延板の異方性を低減することが可能になると考えられる。
When an aluminum alloy sheet is rolled using a recent industrial cold rolling mill, the material temperature rises due to the heat generated by rolling, and therefore sufficient ductility can be obtained even without rolling. Therefore, the aluminum alloy sheet is usually used in the as-rolled condition (H16 to H19). When sufficient ductility cannot be obtained, such as when the aluminum alloy sheet is rolled at a slow rolling speed, stabilizing annealing may be performed to use the H3X tempered aluminum alloy sheet.
However, if the mechanical properties of the rolled aluminum alloy plate are anisotropic, it may impair the formability of the can body, reduce the symmetry of the can body after forming, and increase the yield of materials used. There is a problem such as lowering. The anisotropy of the rolled plate depends on the orientation distribution (texture) of the crystal grains. Therefore, it is considered possible to reduce the anisotropy of the rolled aluminum alloy sheet by controlling the texture generated by recrystallization before cold rolling in consideration of the change in texture caused by cold rolling.

上述の観点から、アルミニウム合金圧延板の異方性を制御するために、冷間圧延前の再結晶をどのように制御するかが重要であり、この観点から、アルミニウムの缶ボディ材の製造方法は、以下の3種に分類することができる。
(1)熱間圧延→再結晶→最終冷延
第1の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、熱間圧延後、コイルに巻取った状態でそのまま再結晶させ、あるいは、人工的に焼鈍を施して再結晶させた後、冷間圧延を行う方法である。
(2)熱間圧延→低圧下冷延→再結晶→最終冷延
第2の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、その後比較的低圧下の、例えば以下の特許文献1に記載のように、アルミニウム合金板材に6〜15%の冷間圧延を行った後、焼鈍を施し、最後に圧下率90%程度の最終冷間圧延を実施する方法である。
(3)熱間圧延→冷間圧延→連続焼鈍炉を用いた再結晶→比較的低圧下の最終冷延
第3の方法は、アルミニウム合金板材の熱間圧延後、第一冷間圧延を行い、その後、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する焼鈍を行い、最後に比較的低圧下率の例えば60%程度の冷間圧延を行う方法である。
From the above viewpoint, it is important to control the recrystallization before cold rolling in order to control the anisotropy of the rolled aluminum alloy plate, and from this viewpoint, the method for manufacturing an aluminum can body material. Can be classified into the following three types.
(1) Hot rolling→recrystallization→final cold rolling The first method is to hot-roll a relatively thin-walled aluminum alloy sheet material having a thickness of, for example, 3 mm or less, and after hot rolling, wind it into a coil. This is a method in which the material is recrystallized as it is, or artificially annealed to recrystallize it, and then cold rolling is performed.
(2) Hot rolling→Cold rolling under low pressure→Recrystallization→Final cold rolling The second method is hot rolling to a relatively thin aluminum alloy sheet having a thickness of, for example, 3 mm or less, and then under relatively low pressure. For example, as described in Patent Document 1 below, a method of performing 6 to 15% cold rolling on an aluminum alloy sheet, annealing, and finally performing final cold rolling with a reduction rate of about 90% is used. is there.
(3) Hot rolling→Cold rolling→Recrystallization using a continuous annealing furnace→Final cold rolling under a relatively low pressure The third method is to perform the first cold rolling after the hot rolling of the aluminum alloy sheet material. Then, a continuous annealing furnace is used to perform rapid annealing at a relatively high temperature and then rapid cooling, and finally cold rolling at a relatively low pressure reduction rate of, for example, about 60%.

特許第3644819号公報Japanese Patent No. 3644819

ところで、アルミニウム缶に対する低価格化の要求は厳しく、このため材料使用量を出来るだけ低減する試みが、続けられている。しかし、素材板厚を薄くすると、成形性と異方性をバランスさせることが難しくなるので、成形性と異方性を良好にバランスさせるという要望が高くなっている。
例えば、アルミニウム合金板の異方性を制御するには、タンデム式の熱間仕上げ圧延機を用いることが有効であり、シングルミルリバース式の熱間仕上げ圧延機では十分な立方晶方位を得ることが容易ではなく、異方性の制御が難しいという問題がある。
By the way, demands for lower prices of aluminum cans are strict, and therefore, attempts are being made to reduce the amount of materials used as much as possible. However, since it becomes difficult to balance the formability and anisotropy when the material plate thickness is thin, there is an increasing demand for a good balance between the formability and anisotropy.
For example, in order to control the anisotropy of an aluminum alloy sheet, it is effective to use a tandem hot finishing mill, and a single mill reverse hot finishing mill can obtain a sufficient cubic crystal orientation. However, there is a problem that the anisotropy is difficult to control.

また、先に記載の(1)の方法と(2)の方法を比較すると、(2)に記載の方法では、(1)に記載の方法に比べて比較的低圧下の冷間圧延という処理が追加されるが、この冷間圧延処理により焼鈍時の立方体集合組織の発達を促進できる利点を有する。
本発明者らは、シングルミルリバース式の熱間仕上げ圧延機を用いて飲料用のアルミニウム缶を製造する条件について種々研究を重ねた結果、冷間圧延前に十分な立方体方位を形成することができ、飲料缶用アルミニウム合金板の異方性の制御を実現できる製造方法を見出し、本願発明に到達した。
Further, when the method (1) and the method (2) described above are compared, in the method described in (2), cold rolling under a relatively low pressure is performed as compared with the method described in (1). However, this cold rolling treatment has an advantage of promoting the development of cubic texture during annealing.
The present inventors have conducted various studies on conditions for producing aluminum cans for beverages using a single mill reverse type hot finish rolling machine, and as a result, can form a sufficient cubic orientation before cold rolling. The inventors have found a manufacturing method capable of controlling the anisotropy of an aluminum alloy plate for beverage cans, and arrived at the present invention.

本発明は、上述の問題を解決するためになされたものであり、異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の提供を目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing an aluminum alloy sheet for a beverage can body having excellent anisotropy and neck formability.

本発明の缶ボディ用アルミニウム合金板の製造方法は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て熱間粗圧延を行って25〜16mmの熱間粗圧延板とした後、続いて1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を20〜310℃とする、熱間仕上げ圧延を行った後、圧下率を10〜20%とする第1冷間圧延を行い、その後、連続焼鈍装置を用いて保持温度460〜540℃、保持時間5〜60秒の条件で第1中間焼鈍を行い、続いて圧下率80〜95%で第2冷間圧延を行って、板厚0.210〜0.47mm、焼付け後の耐力230〜320N/mm2のアルミニウム合金板を得ることを特徴とする。 The manufacturing method of the aluminum alloy plate for a can body of the present invention is, in mass %, Si: 0.35% or less, Fe: 0.35 to 0.55%, Cu: 0.15 to 0.48%, Mn: An ingot obtained by smelting an aluminum alloy containing 0.8 to 1.15%, Mg: 0.60 to 1.60% and the balance being Al and inevitable impurities and semi-continuously casting After performing a hot rough rolling through a homogenization treatment and a soaking treatment to obtain a hot rough rolled plate of 25 to 16 mm, the temperature of the first pass leading side is 380° C. or less, and the temperature of the second pass leading side is 340° C. hereinafter, 3 pass Medellin side finishing temperature and 2 4 0-310 ° C., after hot finish rolling, performing a first cold rolling to a reduction ratio between 10% to 20%, then, a continuous annealing apparatus The first intermediate annealing is performed under the conditions of a holding temperature of 460 to 540° C. and a holding time of 5 to 60 seconds, followed by a second cold rolling at a reduction rate of 80 to 95%, and a sheet thickness of 0.210. It is characterized by obtaining an aluminum alloy plate having a 0.47 mm and a yield strength after baking of 230 to 320 N/mm 2.

本発明の缶ボディ用アルミニウム合金板の製造方法において、前記鋳塊に対して行なう均質化処理は、555〜605℃で4〜10時間の条件で行ない、続いて行なう均熱処理は500〜555℃で1時間以上加熱する条件で行うことが好ましい。
本発明の缶ボディ用アルミニウム合金板の製造方法において、前記熱間粗圧延の最終パス出側材料温度は400〜460℃であることが好ましい。
In the method for producing an aluminum alloy sheet for a can body of the present invention, the homogenization treatment performed on the ingot is performed at 555 to 605°C for 4 to 10 hours, and the subsequent soaking treatment is 500 to 555°C. It is preferable that the heating is performed for 1 hour or more.
In the method for producing an aluminum alloy plate for a can body of the present invention, it is preferable that the final pass outlet side material temperature of the hot rough rolling is 400 to 460°C.

本発明の缶ボディ用アルミニウム合金板の製造方法において、前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることができる。
本発明の缶ボディ用アルミニウム合金板の製造方法において、第2冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で最終安定化焼鈍を行うことが好ましい。
In the method for producing an aluminum alloy plate for a can body of the present invention, at least one of Cr: 0.05% or less, Zn: 0.25% or less, and Ti: 0.10% or less with respect to the above composition. Alternatively, an aluminum alloy containing two or more kinds can be used.
In the method for producing an aluminum alloy sheet for a can body of the present invention, it is preferable that after the second cold rolling, final stabilization annealing is performed under the conditions of a holding temperature of 120 to 140°C and a holding time of 2 to 4 hours.

本発明の缶ボディ用アルミニウム合金板の製造方法は、SiとFeとCuとMnとMgを特定範囲含有した組成のアルミニウム合金を溶製し、熱間粗圧延後、1〜3パスを規定の出側温度に制御する熱間仕上げ圧延を施し、圧下率10〜20%の冷間圧延を施し、特定条件の連続焼鈍を施し、圧下率80〜95%の最終冷間圧延を施すことにより、異方性とネック成形性の両方に優れた飲料缶ボディ用およびボトル缶ボディ用のアルミニウム合金板を提供することができる。
また、最終冷間圧延後に保持温度、保持時間を制御した安定化焼鈍を行うことにより、異方性とネック成形性に更に優れた飲料缶ボディ用およびボトル缶ボディ用のアルミニウム合金板を提供できる。
The method for producing an aluminum alloy sheet for a can body of the present invention is to produce an aluminum alloy having a composition containing Si, Fe, Cu, Mn, and Mg in a specific range, and after hot rough rolling, define 1 to 3 passes. By performing hot finish rolling controlled to the outlet temperature, performing cold rolling with a reduction rate of 10 to 20%, performing continuous annealing under specific conditions, and performing final cold rolling with a reduction rate of 80 to 95%, It is possible to provide an aluminum alloy plate for a beverage can body and a bottle can body, which is excellent in both anisotropy and neck formability.
Further, by carrying out a stabilizing annealing in which the holding temperature and the holding time are controlled after the final cold rolling, it is possible to provide an aluminum alloy plate for a beverage can body and a bottle can body that are further excellent in anisotropy and neck formability. ..

本発明に係る製造方法を実施する際に、熱間圧延工程において用いる装置と工程を示す説明図。Explanatory drawing which shows the apparatus and process used in a hot rolling process, when implementing the manufacturing method which concerns on this invention. 本発明に係る製造方法の実施に用いる連続焼鈍装置の一例を示す概略構成図。The schematic block diagram which shows an example of the continuous annealing apparatus used for implementation of the manufacturing method which concerns on this invention. DI缶の製造方法の一例を示す工程図。The process drawing which shows an example of the manufacturing method of a DI can. DI缶の一例を示す部分断面図。The partial cross section figure which shows an example of a DI can.

以下、本発明に係る異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の各実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
初めに、本実施形態で用いる缶ボディ用アルミニウム合金板の組成について説明する。
本実施形態の缶ボディ用アルミニウム合金板は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.80〜1.15%、Mg:0.60〜1.60%以下を含有し、残部が不可避的不純物を含むAlからなる組成のアルミニウム合金からなる。また、前記組成比のアルミニウム合金に、更に、Cr:0.05%以下、Zn:0.25%、Ti:0.10%以下のうち、1種または2種以上を含有するアルミニウム合金を用いても良い。
以下、本実施形態で使用するアルミニウム合金の組成限定理由について説明する。
なお、本明細書において記載する各元素の含有量は、特に限定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。例えば0.35〜0.55%とする表記は0.35%以上0.55%以下を意味する。
Hereinafter, each embodiment of the method for producing an aluminum alloy plate for a beverage can body having excellent anisotropy and neck formability according to the present invention will be described, but the present invention is not limited to the embodiments described below. Absent.
First, the composition of the aluminum alloy plate for a can body used in this embodiment will be described.
The aluminum alloy plate for a can body of this embodiment has a mass% of Si: 0.35% or less, Fe: 0.35 to 0.55%, Cu: 0.15 to 0.48%, Mn: 0. The aluminum alloy has a composition of 80 to 1.15%, Mg: 0.60 to 1.60% or less, and the balance of Al containing unavoidable impurities. Further, an aluminum alloy containing one or more of Cr: 0.05% or less, Zn: 0.25%, and Ti: 0.10% or less is used as the aluminum alloy having the above composition ratio. May be.
The reasons for limiting the composition of the aluminum alloy used in this embodiment will be described below.
The content of each element described in the present specification is% by mass unless otherwise specified, and includes the upper limit and the lower limit unless otherwise specified. For example, the notation of 0.35 to 0.55% means 0.35% or more and 0.55% or less.

「Si:0.35%以下」
Siは、同時に含有するMgと化合物を形成し易く、固溶硬化作用、分散硬化作用および析出硬化作用を有する他、Al、Mn、Feなどと化合物を形成し、成形時のダイスに対する焼付きを防止する効果がある。Siの含有量は、0.35質量%を越えると加工性が劣化して不都合である。
「Fe:0.35〜0.55%」
Feは、結晶の微細化および成形時のダイスに対する焼付きを防止する効果がある。Feの含有量は、0.35質量%未満では所望の効果が得られず、0.55質量%を越えると加工性を劣化させる。
"Si: 0.35% or less"
Si easily forms a compound with Mg contained at the same time and has a solid solution hardening action, a dispersion hardening action and a precipitation hardening action, and also forms a compound with Al, Mn, Fe, etc. to prevent seizure on the die at the time of forming. It has the effect of preventing. If the Si content exceeds 0.35 mass %, the workability deteriorates, which is inconvenient.
"Fe: 0.35-0.55%"
Fe has the effect of preventing crystal fineness and seizure on the die during molding. If the Fe content is less than 0.35 mass %, the desired effect cannot be obtained, and if it exceeds 0.55 mass %, the workability is deteriorated.

「Cu:0.15〜0.48%」
Cuは、Mgと化合物を形成し易く、固溶硬化、分散硬化および析出硬化に寄与する。
Cuの含有量は、0.15質量%未満では所望の効果が得られず、0.48質量%を越えると加工性を劣化させる。
「Mn:0.8〜1.15%」
Mnは、Fe、Si、Alなどと化合物を形成し易く、晶出相および分散相となって分散硬化作用を現すと共に成形時のダイスに対する焼付きを防止する効果がある。Mnの含有量は、0.8質量%未満では所望の硬化特性が得られず、1.15質量%を越えると加工性が劣化する。
「Mg:0.60〜1.60%」
Mgは、固溶体強化作用を有し、圧延による加工硬化性を高めるとともに、前記Siや前記Cuと共存することによって分散硬化と析出硬化作用を現す。Mgの含有量は、0.60質量%未満では所望の効果が得られず、1.60質量%を越えると加工性を劣化させるようになる。
"Cu: 0.15-0.48%"
Cu easily forms a compound with Mg and contributes to solid solution hardening, dispersion hardening and precipitation hardening.
If the Cu content is less than 0.15 mass %, the desired effect cannot be obtained, and if it exceeds 0.48 mass %, the workability is deteriorated.
"Mn: 0.8-1.15%"
Mn easily forms a compound with Fe, Si, Al, etc., and acts as a crystallized phase and a dispersed phase to exhibit a dispersion hardening action and at the same time has the effect of preventing seizure on the die during molding. If the content of Mn is less than 0.8% by mass, desired curing characteristics cannot be obtained, and if it exceeds 1.15% by mass, workability deteriorates.
"Mg: 0.60 to 1.60%"
Mg has a solid solution strengthening action, enhances work hardenability by rolling, and exhibits dispersion hardening and precipitation hardening effects by coexisting with the Si and Cu. If the content of Mg is less than 0.60 mass %, the desired effect cannot be obtained, and if it exceeds 1.60 mass %, the workability is deteriorated.

本実施形態で用いるアルミニウム合金において、前記Si、Fe、Cu、Mn、Mgの主要成分に加え、以下のCr、Zn、Tiのいずれか1種または2種以上を含有しても良い。
「Cr:0.05%以下」
Crは結晶の微細化と成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Crの含有量は、0.05質量%を越えると脆くなり加工性が劣化する。
The aluminum alloy used in this embodiment may contain one or more of the following Cr, Zn, and Ti in addition to the main components of Si, Fe, Cu, Mn, and Mg.
"Cr: 0.05% or less"
Cr exhibits the effect of preventing the seizure of the die during the miniaturization of the crystal and the molding process. If the content of Cr exceeds 0.05% by mass, it becomes brittle and the workability deteriorates.

「Zn:0.25%以下」
ZnはMg、Si、Cuの析出物を微細化する作用を有する。Znの含有量は、0.25質量%を越えると加工性と耐食性を劣化させる。
「Ti:0.10%以下」
Tiは、結晶粒を微細化して加工性を改善する効果がある。ただし、Tiの含有量は0.10質量%を越えると粗大な化合物を生成し、逆に加工性を劣化させる。
"Zn: 0.25% or less"
Zn has a function of refining precipitates of Mg, Si, and Cu. If the Zn content exceeds 0.25% by mass, workability and corrosion resistance deteriorate.
"Ti: 0.10% or less"
Ti has an effect of refining crystal grains to improve workability. However, if the content of Ti exceeds 0.10 mass %, a coarse compound is formed and conversely the workability is deteriorated.

<異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法>
次に、本実施形態に係る異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法の実施の形態について説明する。
本実施形態の飲料缶ボディ用アルミニウム合金板の製造方法においては、前記組成のアルミニウム合金を溶製し、鋳造して得た鋳塊に対して均質化処理、均熱処理を施した後、熱間粗圧延およびそれに続く熱間仕上げ圧延による熱間圧延を行い、圧下率の低い第1冷間圧延を施し、第1中間焼鈍を施し、さらに最終冷間圧延を行うことにより所望の板厚の缶ボディ用アルミニウム合金板を得る。
更に、前記の工程に加え、保持温度120〜140℃、保持時間2〜4時間の条件で安定化焼鈍を行うこともできる。
以下、本実施形態の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板の製造方法について工程順に説明する。
<Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability>
Next, an embodiment of a method for producing an aluminum alloy sheet for a beverage can body having excellent anisotropy and neck formability according to the present embodiment will be described.
In the method for producing an aluminum alloy plate for a beverage can body of the present embodiment, the aluminum alloy having the composition is melted, homogenized, and subjected to soaking to the ingot obtained by casting, and then hot working. Cans having a desired plate thickness are obtained by performing rough rolling and subsequent hot rolling by hot finish rolling, performing first cold rolling with a low reduction ratio, performing first intermediate annealing, and further performing final cold rolling. Obtain an aluminum alloy plate for a body.
Further, in addition to the above steps, the stabilization annealing can be performed under the conditions of a holding temperature of 120 to 140° C. and a holding time of 2 to 4 hours.
Hereinafter, the method for producing the aluminum alloy sheet for a beverage can body which is excellent in anisotropy and neck formability according to this embodiment will be described in the order of steps.

「鋳造」
前記組成のアルミニウム合金を溶解後、常法に従ってアルミニウム合金溶湯から鋳塊を鋳造するが、鋳造に先立ち、アルミニウム合金を溶製した際に、水素ガスや酸化物などの介在物を除去し、半連続鋳造法により鋳塊を得る。
このときの凝固速度は通常、5〜20℃/秒とされる。鋳造された鋳塊の厚さは、例えば500〜600mm程度とすることができる。
次に、面削を行い、鋳塊の表面を1〜25mm程度切削し、面削体を作製する。なお面削は後述する均質化処理の後に行っても良い。
"casting"
After melting the aluminum alloy having the above composition, a cast ingot is cast from the molten aluminum alloy according to a conventional method, but prior to casting, when the aluminum alloy is melted, inclusions such as hydrogen gas and oxides are removed, An ingot is obtained by a continuous casting method.
The solidification rate at this time is usually 5 to 20° C./sec. The thickness of the cast ingot can be, for example, about 500 to 600 mm.
Next, chamfering is performed, and the surface of the ingot is cut by about 1 to 25 mm to produce a chamfered body. The chamfering may be performed after the homogenization treatment described later.

「均質化処理」
次に、作製した面削体に均質化処理を施す。均質化処理は一般に、溶湯の凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、凝固によって形成された準安定相の平衡相への転移などのために行われる。
均質化処理においては、均質化温度を555〜605℃の範囲内とすることが重要である。均質化温度が555℃未満では後述の連続焼鈍の効果が得られず、後述の熱間圧延工程や第1冷間圧延工程においてクラックが発生し易く、最終板材の耳率が高くなる。また、均質化温度が605℃を超えると、鋳塊が溶融するおそれがある。
"Homogenization treatment"
Next, the produced chamfered body is subjected to homogenization treatment. The homogenization treatment is generally performed for homogenization of microsegregation generated by solidification of a molten metal, precipitation of a supersaturated solid solution element, transition of a metastable phase formed by solidification to an equilibrium phase, and the like.
In the homogenization treatment, it is important to set the homogenization temperature within the range of 555 to 605°C. If the homogenization temperature is less than 555° C., the effect of continuous annealing described below cannot be obtained, cracks are likely to occur in the hot rolling step and the first cold rolling step described below, and the ear rate of the final plate material increases. If the homogenizing temperature exceeds 605°C, the ingot may melt.

均質化処理において、面削体は100℃/時以下の加熱速度で均質化温度まで加熱することが好ましい。加熱速度が100℃/時を超えると、部分的に溶融を生じるおそれがある。
また、均質化処理において、均質化温度に保持する時間(均質化時間)は4時間以上10時間以下とすることが好ましい。均質化時間が4時間未満では、均質化が充分に進行しない場合がある。しかし、均質化時間が長すぎても効果はなく生産効率が低下する。以上の観点から、好ましい均質化時間は4〜10時間の範囲内である。この均質化処理は、均質化時間が比較的長いので、通常、バッチ方式の炉中に置くことで行われる。
本実施形態において、均質化処理の後さらに面削体を500〜555℃まで冷却し、所定時間保持する均熱処理後、熱間圧延を開始する。500〜555℃の温度範囲での保持時間(均熱時間)は、1時間以上行うことができる。
In the homogenization treatment, the chamfered body is preferably heated to a homogenization temperature at a heating rate of 100° C./hour or less. If the heating rate exceeds 100° C./hour, melting may occur partially.
Further, in the homogenization treatment, it is preferable that the time of maintaining at the homogenization temperature (homogenization time) is 4 hours or more and 10 hours or less. If the homogenization time is less than 4 hours, the homogenization may not proceed sufficiently. However, if the homogenization time is too long, there is no effect and the production efficiency decreases. From the above viewpoints, the preferable homogenization time is within the range of 4 to 10 hours. This homogenization treatment is usually performed by placing it in a batch-type furnace because the homogenization time is relatively long.
In the present embodiment, after the homogenization treatment, the chamfered body is further cooled to 500 to 555° C., soaking for holding for a predetermined time, and then hot rolling is started. The holding time (soaking time) in the temperature range of 500 to 555° C. can be 1 hour or more.

「熱間圧延」
熱間圧延は、熱間粗圧延およびそれに続く熱間仕上げ圧延からなり、本実施形態においては、シングルミルのリバース式熱間仕上圧延機を使用して熱間仕上げ圧延を行うことが好ましい。
熱間圧延工程においては、図1に示すように、熱間粗圧延機20を用いて板厚20mm程度まで熱間粗圧延した後、熱間仕上圧延機30を用いて板厚2〜7mmまで熱間圧延する。
"Hot rolling"
The hot rolling is composed of hot rough rolling and subsequent hot finish rolling, and in the present embodiment, it is preferable to perform hot finish rolling using a single-mill reverse hot finishing mill.
In the hot rolling step, as shown in FIG. 1, after hot rough rolling to a plate thickness of about 20 mm using a hot rough rolling mill 20, to a plate thickness of 2 to 7 mm using a hot finish rolling mill 30. Hot rolling.

図1に示す熱間粗圧延機20は、例えば上下のワークロール21、22、およびバックアップロール23、24と、複数の搬送ローラが配列された搬送路4、6を備え、搬送されてきたアルミニウム合金の板材5をワークロール21、22間を通過させて目的の厚さに圧延する装置である。
図1において、ワークロール21、22の左右両側の搬送路4、6から繰り返しアルミニウム合金の板材5をワークロール21、22に供給して順次粗圧延することにより、熱間粗圧延機20は板材5を必要な厚さまで圧延して板材7とすることができる。
The hot rough rolling mill 20 shown in FIG. 1 is provided with, for example, upper and lower work rolls 21 and 22, backup rolls 23 and 24, and transport paths 4 and 6 in which a plurality of transport rollers are arranged, and has been transported from aluminum. This is an apparatus for passing the alloy plate material 5 between the work rolls 21 and 22 and rolling it to a target thickness.
In FIG. 1, the hot rough rolling mill 20 is provided with a sheet material 5 by repeatedly supplying a sheet material 5 of an aluminum alloy to the work rolls 21 and 22 from the conveying paths 4 and 6 on the left and right sides of the work rolls 21 and 22 and sequentially performing rough rolling. 5 can be rolled to a required thickness to form a plate material 7.

図1に示す熱間仕上圧延機30は、シングルミルのリバース式熱間仕上圧延機であり、例えば上下のワークロール31、32およびバックアップロール33、34と、これらロールの入り側に設置されたリール型の送出巻取装置35と、出側に設置されたリール型の送出巻取装置36とを具備してなる。この熱間仕上圧延機30は、送出巻取装置35から送り出してワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置36で巻き取る操作と、送出巻取装置36から再度ワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置35で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール31、32間の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで熱間仕上圧延する装置である。 The hot finish rolling mill 30 shown in FIG. 1 is a single-mill reverse hot rolling mill, and is installed, for example, on the upper and lower work rolls 31, 32 and backup rolls 33, 34, and the entry side of these rolls. It comprises a reel-type delivery winding device 35 and a reel-type delivery winding device 36 installed on the delivery side. The hot finish rolling mill 30 has an operation of winding the sheet material sent out from the delivery winding device 35 and passed between the work rolls 31 and 32 to be hot-rolled by the delivery winding device 36, and from the delivery winding device 36. The operation of re-passing between the work rolls 31 and 32 and hot-rolling the plate material by the delivery winding device 35 is repeated a required number of times, and the interval between the work rolls 31 and 32 is gradually adjusted at each rolling operation. By doing so, it is an apparatus for hot finish rolling an aluminum alloy sheet material to a desired sheet thickness.

前記均熱処理後、均熱炉から取り出したスラブは通常直ちに熱間粗圧延を開始するが、スラブ温度が500℃未満にならなければ、熱間粗圧延開始を遅延してもよい。熱間粗圧延のパス数は、鋳塊(スラブ)厚さ、仕上げ厚さ、スラブ幅、合金組成などに依存するが、十数パス〜二十数パスの範囲が一般的である。
熱間粗圧延は、圧延材が厚い間は、通常圧延機の前後に搬送テーブルが設置された1スタンド式粗圧延機(図1に示す熱間粗圧延機20)を用いて圧延する。しかし、板が薄くなると、必要な搬送テーブル長が長くなり、板の自重によるたるみも大きくなり、板の冷却も生じ易くなる。
After the soaking treatment, the slab taken out of the soaking furnace usually starts hot rough rolling immediately, but the start of hot rough rolling may be delayed unless the slab temperature falls below 500°C. The number of passes of the hot rough rolling depends on the ingot (slab) thickness, the finished thickness, the slab width, the alloy composition, etc., but is generally in the range of 10 to 20 passes.
The hot rough rolling is performed by using a one-stand type rough rolling machine (a hot rough rolling machine 20 shown in FIG. 1) in which a transport table is usually installed before and after the rolling machine while the rolled material is thick. However, if the plate becomes thin, the required transport table length becomes long, the slack due to the weight of the plate becomes large, and the plate is easily cooled.

そのため、搬送テーブルで保持するには、板厚が十数mm以上必要である。したがって、粗圧延機から仕上圧延機に板を送る際の最低板厚は、コイル重量や板幅に依存するが、工業的に用いられている重量・幅の場合、16mm程度以上であることが好ましい。また、粗圧延機から仕上げ圧延機に送る際の板厚が厚すぎる場合には、仕上圧延機での圧延パス回数の増加を招き、生産性を低下させる。したがって、仕上げ圧延機に送る際の板厚の上限は40mm以下であることが好ましい。上述の厚さ上限から下限の範囲内までアルミニウム合金の板材が薄くなった場合に、図1に示す構成のシングルミルのリバース式熱間仕上圧延機で熱間仕上げ圧延を行う。 Therefore, in order to hold it on the transport table, the plate thickness needs to be ten and several millimeters or more. Therefore, the minimum plate thickness when the plate is sent from the rough rolling mill to the finishing rolling device depends on the coil weight and the plate width, but in the case of the weight and width industrially used, it is about 16 mm or more. preferable. Further, if the plate thickness when sending from the rough rolling mill to the finish rolling mill is too thick, the number of rolling passes in the finish rolling mill is increased and the productivity is reduced. Therefore, the upper limit of the plate thickness when sent to the finishing rolling mill is preferably 40 mm or less. When the aluminum alloy sheet material becomes thin from the upper limit to the lower limit of the above-mentioned thickness, hot finish rolling is performed by the single-mill reverse hot finishing mill having the configuration shown in FIG.

熱間仕上げ圧延は、シングルミルのリバース式熱間仕上圧延機を使用して行う。
圧延機の両側に巻取装置があるシングルミルのリバース式熱間仕上圧延機(図1に示す熱間仕上圧延機30)を使用することにより、熱間仕上板厚を小さくすることができる。
従って、以降の冷間圧延の圧下率を小さくできるので、冷間圧延のパス回数を削減でき、生産性を向上させることができる。これに対し、例えば、巻取装置が片方にだけ設置された熱間仕上圧延機を用いた場合、搬送テーブル上で保持できる板厚に最小値が存在するために、熱間圧延で圧延可能な最小板厚が増加することになる。このため、熱間圧延後の冷間圧下率が増加する。
Hot finish rolling is performed using a single-mill reverse hot finishing mill.
By using a single-mill reverse-type hot finishing mill (hot finishing mill 30 shown in FIG. 1) having winding devices on both sides of the rolling mill, the hot finishing sheet thickness can be reduced.
Therefore, the reduction ratio of the subsequent cold rolling can be reduced, so that the number of passes of cold rolling can be reduced and the productivity can be improved. On the other hand, for example, when a hot finish rolling mill in which the winding device is installed on only one side is used, there is a minimum value for the plate thickness that can be held on the transport table, and therefore hot rolling can be performed. The minimum plate thickness will increase. Therefore, the cold reduction rate after hot rolling increases.

前述の如く、熱間圧延の仕上り板厚の薄肉化は、冷間圧延パス回数の削減による生産性の向上に寄与する。そのため、本実施形態において、熱間仕上げ圧延の仕上げ板厚は、2〜7mmの範囲内とすることが好ましい。仕上げ板厚が2mm未満では第1冷間圧延の圧下率が不足し、低い耳率が得られない。仕上げ板厚が7mmを超えると第1冷間圧延のパス回数が増加して生産性が低下する。
熱間仕上げ圧延時の条件として、1パス目の出側温度を380℃以下に設定し、2パス目の出側温度を340℃以下に設定し、3パス目の出側温度(仕上げ温度)を20〜310℃の範囲とすることが好ましい。
また3パス目の圧下率について、55%以上65%以下とすることが好ましい。
As described above, thinning the finished sheet thickness of hot rolling contributes to the improvement of productivity by reducing the number of cold rolling passes. Therefore, in the present embodiment, the finished plate thickness of the hot finish rolling is preferably within the range of 2 to 7 mm. If the finished plate thickness is less than 2 mm, the reduction ratio of the first cold rolling is insufficient, and a low ear ratio cannot be obtained. If the finished plate thickness exceeds 7 mm, the number of passes of the first cold rolling increases and the productivity decreases.
As conditions for hot finish rolling, the exit temperature of the first pass is set to 380°C or less, the exit temperature of the second pass is set to 340°C or less, and the exit temperature of the third pass (finishing temperature). that is preferably in the range of 2 4 0 to 310 ° C..
Further, the rolling reduction in the third pass is preferably 55% or more and 65% or less.

1パス目の出側温度について380℃を超える温度に設定すると、圧延加工時の局部歪みが駆動力となって部分的に再結晶が進行し、機械的性質が劣化するとともに、ランダム方位の再結晶粒が多くなり異方性が悪化する恐れがある。
2パス目の出側温度について340℃を超える温度に設定すると、上記1パス目と同様の現象により同様の問題が生じる。
3パス目の出側温度について、310℃を超える温度では上記1パス目と同様の現象により同様の問題が生じる。20℃未満の温度では立方体方位の再結晶粒の核が生じにくく、後述の第1冷間圧延に続く第1中間焼鈍を行っても十分な立方体方位が成長せず、異方性が悪化する。
また3パス目の圧下率について、55%未満では上記の出側温度20℃未満の場合と同様の現象により同様の問題が生じる。65%を超える場合は圧延荷重が大きくなり過ぎ、安定した圧延を行うことが困難となる問題が生じる。
When the temperature on the exit side of the first pass is set to a temperature higher than 380°C, local strain during rolling acts as a driving force to partially recrystallize, mechanical properties are deteriorated, and random orientation There is a risk that the crystal grains will increase and the anisotropy will deteriorate.
When the temperature on the outlet side of the second pass is set to a temperature higher than 340° C., the same problem occurs due to the same phenomenon as the first pass.
Regarding the outlet temperature of the third pass, at a temperature of more than 310° C., the same phenomenon occurs as in the first pass, and the same problem occurs. 2 4 hardly occurs recrystallized grains nuclear cube orientation is 0 below ℃ temperature, not grow enough cubic orientation even if the first intermediate annealing following the first cold rolling to be described later, anisotropy Getting worse.
Regarding rolling reduction of the third pass, a similar problem in the same phenomenon as in the case of less than the above delivery temperature 2 4 0 ° C. occurs is less than 55%. If it exceeds 65%, the rolling load becomes too large, which causes a problem that it is difficult to perform stable rolling.

「第1冷間圧延」
第1冷間圧延工程においては、前記の熱間圧延を施した後に冷却した板材を、圧下率10〜20%の範囲となるように冷間圧延する。第1冷間圧延は、熱間圧延で形成させた立方体方位の核を、続く第1中間焼鈍において優先的に成長させるための駆動力を与えるために必要な工程である。第1冷間圧延の圧下率が20%を超えると歪みが過大となり、第1中間焼鈍において熱間圧延で形成された立方体方位の再結晶粒の成長が妨げられ、逆にランダム方位が成長して異方性を悪化させる。
一方、第1冷間圧延の圧下率が10%未満では、圧延の制御が困難になるとともに前記の第一中間焼鈍において立方体方位を優先的に成長させるための駆動力が不足するため、やはり異方性が悪化する。
"First cold rolling"
In the first cold rolling step, the plate material that has been cooled after the hot rolling is cold rolled to a rolling reduction of 10 to 20%. The first cold rolling is a step necessary to give a driving force for preferentially growing the cubic-oriented nuclei formed by hot rolling in the subsequent first intermediate annealing. If the reduction ratio of the first cold rolling exceeds 20%, the strain becomes excessive, and the growth of the recrystallized grains of the cubic orientation formed by the hot rolling in the first intermediate annealing is hindered, and conversely the random orientation grows. Aggravates the anisotropy.
On the other hand, if the reduction ratio of the first cold rolling is less than 10%, it becomes difficult to control the rolling and the driving force for preferentially growing the cubic orientation in the first intermediate annealing is insufficient, which is also different. Directionality deteriorates.

「第1中間焼鈍」
第1中間焼鈍工程は、前記第1冷間圧延後の板材に対し、図2に基本構成を示す連続焼鈍装置を用いて保持温度460〜540℃の範囲(460℃以上、540℃以下の範囲)に5〜60秒保持した後、冷却することで行う。
第1中間焼鈍工程において、加熱速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で加熱することが好ましく、冷却速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で冷却を行うことが好ましい。
この焼鈍工程は、アルミニウム合金板材を半軟化状態にもたらすものであって、焼鈍後の耐力;YS(Yield Strength)を好適な範囲とすることが好ましい。
焼鈍温度が460℃未満では軟化が不十分で、また十分な立方体方位粒の成長が得られず結果的に異方性が悪化する。焼鈍温度が540℃を越えるか、または、保持時間が60秒を越えると溶質元素の固溶度が過剰になり、最終製品の機械的性質が高くなったり、缶のネック成形性が悪化する。
"First intermediate annealing"
In the first intermediate annealing step, a holding temperature of 460 to 540° C. (range of 460° C. or more and 540° C. or less) is applied to the plate material after the first cold rolling by using a continuous annealing device having a basic configuration shown in FIG. ) Is held for 5 to 60 seconds and then cooled.
In the first intermediate annealing step, it is preferable to heat at a heating rate in the range of 10 to 200° C./sec (10° C./sec or more and 200° C./sec or less), and a cooling rate in the range of 10 to 200° C./sec ( It is preferable to perform cooling at a rate of 10° C./sec or more and 200° C./sec or less).
This annealing step brings the aluminum alloy sheet material into a semi-softened state, and it is preferable to set the yield strength after annealing; YS (Yield Strength) to a suitable range.
If the annealing temperature is lower than 460° C., the softening is insufficient and sufficient cubic oriented grains cannot be grown, resulting in deterioration of anisotropy. If the annealing temperature exceeds 540° C. or the holding time exceeds 60 seconds, the solid solubility of the solute element becomes excessive, the mechanical properties of the final product become high, and the neck formability of the can deteriorates.

図2に連続焼鈍装置(Continuous Annealing Line:略称CAL)の基本構成の一例を示すが、この例の連続焼鈍装置40は、供給ロール41から長尺のアルミニウム合金の板材42を引き出して緩衝装置43を介し数10m〜100m程度の長い炉本体44に供給し、この炉本体44内で移動中に前記の条件で焼鈍し、焼鈍後に炉本体44から引き出し、緩衝装置46を介し巻取ロール47に巻き取ることができる装置である。この連続焼鈍装置40によれば、炉本体44を通過するアルミニウム合金の板材42を連続単体処理できるために、バッチ式の焼鈍炉よりもより正確な加熱条件と冷却条件で焼鈍処理を行うことができる。 FIG. 2 shows an example of the basic configuration of a continuous annealing device (Continuous Annealing Line: CAL). The continuous annealing device 40 of this example draws a long aluminum alloy plate 42 from a supply roll 41 and a shock absorber 43. Is supplied to a long furnace main body 44 of about several tens of meters to 100 m, is annealed under the above conditions while moving in the furnace main body 44, is drawn out from the furnace main body 44 after annealing, and is taken up by a winding device 47 via a shock absorber 46. It is a device that can be wound up. According to the continuous annealing device 40, the aluminum alloy sheet material 42 passing through the furnace body 44 can be continuously treated as a single body, and therefore, the annealing treatment can be performed under more accurate heating and cooling conditions than in the batch type annealing furnace. it can.

そして、連続焼鈍装置40ならば、アルミニウム合金の板材42を供給ロール41に巻き付けた状態のコイルの幅や径が異なっても、換言するとアルミニウム合金の板材42の幅や厚さ、処理するべき長さが異なっていても、製造したい順番に焼鈍処理できるために、同一の大きさのコイルのみを焼鈍炉に搬入して焼鈍していたバッチ式の焼鈍炉の場合に比べて中間在庫の増加を抑えることができる。 In the continuous annealing device 40, even if the width and diameter of the coil of the aluminum alloy plate 42 wound around the supply roll 41 are different, in other words, the width and thickness of the aluminum alloy plate 42 and the length to be processed. Even if they are different in size, they can be annealed in the order in which they are to be manufactured.Therefore, an increase in intermediate inventory is required compared to the case of a batch-type annealing furnace in which only coils of the same size were brought into the annealing furnace and annealed. Can be suppressed.

「第2冷間圧延」
次に、第1中間焼鈍後の板材に対し、圧下率80〜95%の範囲内となるように冷間圧延を施す。第2冷間圧延の圧下率を80〜95%の範囲内とすることにより、缶ボディ用板材として求められる適度な機械的性質と、異方性・ネック成形性の両立を図ることができる。
第2冷間圧延の圧下率を80%未満にすると、加工率が不足し必要な強度が得られないとともに、加工硬化しやすく缶のネック成形性を低下させる問題を生じる。
第2冷間圧延の圧下率について95%を超えると、加工率が過剰となり場合によっては強度が過剰となり、また異方性悪化の原因ともなる。
第2冷間圧延により、板厚0.210〜0.47mmの飲料缶ボディ用アルミニウム合金板を得ることができる。また、このアルミニウム合金板は、塗装焼付け後の耐力が230〜320N/mmの範囲であることが好ましい。
"Second cold rolling"
Next, the plate material after the first intermediate annealing is cold-rolled so that the rolling reduction is within the range of 80 to 95%. By setting the reduction ratio of the second cold rolling within the range of 80 to 95%, it is possible to achieve both the appropriate mechanical properties required for the plate material for a can body and the anisotropy/neck formability.
If the reduction ratio of the second cold rolling is less than 80%, the workability becomes insufficient, the required strength cannot be obtained, and work hardening easily occurs, which causes a problem of reducing the neck formability of the can.
If the reduction ratio of the second cold rolling exceeds 95%, the working ratio becomes excessive, the strength becomes excessive in some cases, and the anisotropy deteriorates.
By the second cold rolling, an aluminum alloy plate for beverage can bodies having a plate thickness of 0.210 to 0.47 mm can be obtained. The aluminum alloy plate preferably has a proof stress after coating and baking in the range of 230 to 320 N/mm 2 .

「安定化焼鈍」
以上の製造方法によれば、異方性とネック成形性に優れた缶ボディ用アルミニウム合金板を得ることができるが、当該合金板のDI成形において、缶底部の形状および成形条件によっては、底部抜けなどの成形異常の問題を生じる場合がある。
このため、当該合金板に対し、保持温度120〜140℃、保持時間2時間〜6時間の条件で安定化焼鈍を行うことによって缶底部成形などの局部成形性を改善することができ、成形異常を有効に抑制することが可能である。
"Stabilized annealing"
According to the above manufacturing method, an aluminum alloy plate for a can body having excellent anisotropy and neck formability can be obtained. However, in DI forming of the alloy plate, the bottom part may be formed depending on the shape and forming conditions of the bottom part of the can. There may be a problem of molding abnormality such as omission.
For this reason, it is possible to improve local formability such as can bottom forming by performing stabilizing annealing on the alloy sheet under the conditions of a holding temperature of 120 to 140° C. and a holding time of 2 hours to 6 hours. Can be effectively suppressed.

保持温度を120℃未満にすると、上記の効果がほぼ認められなくなるという面で問題があり140℃を超える保持温度とすると、強度低下の問題が生じる。
保持時間を2時間未満にすると、コイル全体を安定的に加熱処理するのが困難となるため好ましくなく、4時間を超える保持時間とすると、生産性が低下するという問題がある。
安定化焼鈍処理を上述の条件で施すことにより、缶成形における異常や安定生産性の問題を生じることなく成形できる特徴がある。
If the holding temperature is lower than 120° C., there is a problem in that the above effect is hardly observed, and if the holding temperature is higher than 140° C., there is a problem of strength reduction.
If the holding time is less than 2 hours, it becomes difficult to stably heat-treat the entire coil, and if the holding time exceeds 4 hours, the productivity is lowered.
By performing the stabilizing annealing treatment under the above-mentioned conditions, there is a feature that molding can be performed without causing abnormalities in can molding and problems of stable productivity.

以下に、上述のアルミニウム合金板を用いてDI缶を製造する工程とDI缶の概要について説明する。
図3は、DI缶の製造方法の工程図を、図4はDI缶を示す部分断面図であり、これらの図において符号10は、DI缶を示している。
DI缶10は、アルミニウム合金製の有底筒状のDI缶であって、板厚が0.240mm以上0.270mm以下とされるアルミニウム合金の板材に、しごき率が54.2%以上64.8%以下とされる絞りしごき加工を施して成形されており、例えば、缶軸方向の大きさ、すなわち高さが約122.5mm、外径が65mm以上67mm以下とされている。胴部は、肉厚が0.095mm以上0.110mm以下とされるとともに引張り強さが、340MPa以上410MPa以下とされ、かつこの場合の缶体重量が11.6g以下とされる。
The process of producing a DI can using the above-mentioned aluminum alloy plate and the outline of the DI can are described below.
FIG. 3 is a process diagram of a method for manufacturing a DI can, and FIG. 4 is a partial cross-sectional view showing the DI can. In these figures, reference numeral 10 indicates the DI can.
The DI can 10 is a bottomed cylindrical DI can made of an aluminum alloy, and is an aluminum alloy plate material having a plate thickness of 0.240 mm or more and 0.270 mm or less and an ironing rate of 54.2% or more 64. It is formed by drawing and ironing at 8% or less, and has, for example, a size in the axial direction of the can, that is, a height of about 122.5 mm and an outer diameter of 65 mm or more and 67 mm or less. The body portion has a wall thickness of 0.095 mm or more and 0.110 mm or less, a tensile strength of 340 MPa or more and 410 MPa or less, and a can body weight in this case of 11.6 g or less.

また、底部12は、図4に示すように、胴部11の缶軸方向における内側に向けて凹むドーム部12aを備えるとともに、このドーム部12aの外周縁部が胴部11の缶軸方向における外側に向けて突出する環状凸部12cとされている。この環状凸部12cの缶軸方向における頂部が、DI缶10が正立姿勢となるように、このDI缶10を接地面L上に配置したときに接地面Lに接する接地部12bとされる。
また、DI缶10は、ポリエステル系塗料を使用して、文字情報等の印刷部分も含め、胴部11の外面を印刷、塗装し、この外面印刷及び外面塗装がされたDI缶10を180℃×30秒間加熱することにより50mg/dmの塗膜を形成させた後に、DI缶10の内面にエポキシ系塗料を使用して内面塗装し、200℃×60秒間加熱することにより40mg/dmの塗膜を形成させた外面印刷、外面塗装及び内面塗装がなされている。
Further, as shown in FIG. 4, the bottom portion 12 is provided with a dome portion 12a that is recessed inward in the can axis direction of the body portion 11, and the outer peripheral edge portion of this dome portion 12a is in the can axis direction of the body portion 11. It is an annular convex portion 12c protruding outward. The top of the annular convex portion 12c in the can axis direction is a grounding portion 12b that contacts the grounding surface L when the DI can 10 is placed on the grounding surface L so that the DI can 10 is in an upright posture. ..
Further, the DI can 10 is printed and painted on the outer surface of the body portion 11 including a printed portion of character information and the like by using a polyester-based paint, and the outer surface printed and outer surface-painted DI can 10 is subjected to 180° C. After forming a coating film of 50 mg/dm 2 by heating for 30 seconds, the inner surface of the DI can 10 is coated with an epoxy-based coating, and heated at 200° C. for 60 seconds to 40 mg/dm 2. The outer surface printing, the outer surface coating, and the inner surface coating with the coating film of are formed.

このDI缶は、例えば、以下の工程により製造される。
前述の工程で得られたアルミニウム合金板を打ち抜いて直径が約150mmとされた円板状の板材(ブランク)Wを成形する。
次に、この板材Wをカッピングプレスによって絞り加工することによりカップ状体W1に成形する。
次いで、DI加工装置によって、カップ状体W1に再絞りしごき加工を施して有底筒状体W2を形成する。この際の、しごき率は、例えば、60.4%で胴部11の最薄部における肉厚が0.100mmになるまで絞りしごき加工が施される。
This DI can is manufactured, for example, by the following steps.
The aluminum alloy plate obtained in the above process is punched out to form a disc-shaped plate material (blank) W having a diameter of about 150 mm.
Next, the plate material W is drawn by a cupping press to form a cup-shaped body W1.
Next, the cup-shaped body W1 is re-drawn and ironed by a DI processing device to form a bottomed cylindrical body W2. At this time, the ironing rate is, for example, 60.4%, and the drawing and ironing process is performed until the thinnest portion of the body portion 11 has a thickness of 0.100 mm.

再絞りしごき加工に用いるDI加工装置は、再絞り加工するための円形の貫通孔を有する一枚の再絞りダイと、この再絞りダイと同軸に配列される円形の貫通孔を有する複数枚(例えば、3枚)のアイアニング・ダイ(しごきダイ)と、アイアニング・ダイと同軸とされ、上記それぞれのアイアニング・ダイの各貫通孔の内部に嵌合可能とされ、軸方向に移動自在とされる円筒状のパンチスリーブと、このパンチスリーブの外側に嵌合された円筒状のカップホルダースリーブとを備えている。 A DI processing apparatus used for redrawing and ironing includes a single redrawing die having a circular through hole for redrawing and a plurality of circular throughholes arranged coaxially with the redrawing die ( For example, three ironing dies (ironing dies) are coaxial with the ironing dies, which can be fitted in the through holes of the respective ironing dies and can be moved in the axial direction. It is provided with a cylindrical punch sleeve and a cylindrical cup holder sleeve fitted on the outside of the punch sleeve.

DI加工装置による再絞り加工は、カップ状体W1をパンチスリーブと再絞りダイとの間に配置して、カップホルダースリーブ及びパンチスリーブを前進させてカップホルダースリーブが、再絞りダイの端面にカップ状体W1の底面を押し付けてカップ押し付け動作を行ないながら、パンチスリーブがカップ状体W1を再絞りダイの貫通孔内に押し込むことにより行われる。その結果、所定の内径を有する再絞り加工されたカップが成形される。引き続き、再絞り加工されたカップを複数のアイアニング・ダイを順次通過させて徐々にしごき加工をして、カップ状体の側壁をしごいて側壁を延伸させて側壁高さを高くするとともに壁厚を薄くして有底筒状体W2を形成する。 In the redrawing processing by the DI processing device, the cup- shaped body W1 is arranged between the punch sleeve and the redrawing die, the cup holder sleeve and the punch sleeve are advanced, and the cup holder sleeve is placed on the end surface of the redrawing die. The punch sleeve pushes the cup- shaped body W1 into the through hole of the redrawing die while pressing the bottom surface of the body W1 to perform the cup pressing operation. As a result, a redrawn cup having a predetermined inner diameter is formed. Successively, the re-drawn cup is passed through a plurality of ironing dies sequentially to gradually iron and squeeze the side wall of the cup-shaped body to extend the side wall to increase the side wall height and the wall thickness. Is thinned to form a bottomed tubular body W2.

しごき加工が終了した有底筒状体W2は、パンチスリーブがさらに前方に押し出して底部をボトム成形金型に押圧することにより、底部が、例えばドーム形状に形成される。
この有底筒状体W2は、側壁がしごかれることで冷間加工硬化されて強度が高くなる。
The bottomed cylindrical body W2 that has undergone the ironing process is formed in a dome shape, for example, by the punch sleeve pushing further forward and pressing the bottom portion against the bottom molding die.
The bottomed cylindrical body W2 is cold work-hardened due to the side wall being squeezed, so that the strength is increased.

次に、有底筒状体W2の開口端部W2aをトリミングする。
DI加工装置によって形成された有底筒状体W2の開口端部W2aは、その缶軸方向に波打つような凹凸形状とされ不均一であるため、有底筒状体W2の開口端部W2aを切断してトリミングすることにより缶軸方向における側壁の高さを全周に亙って均一にする。
このようにして、胴部11と底部12とを有する横断面円形のDI缶10を形成することができる。
Next, the open end W2a of the bottomed tubular body W2 is trimmed.
Since the open end W2a of the bottomed tubular body W2 formed by the DI processing device is uneven and has a wavy shape in the can axis direction, the open end W2a of the bottomed tubular body W2 is By cutting and trimming, the height of the side wall in the axial direction of the can is made uniform over the entire circumference.
In this way, a DI can 10 having a body 11 and a bottom 12 and having a circular cross section can be formed.

前述の製造方法により得られたアルミニウム合金板であるならば、上述のDI缶の製造方法においてしごき加工を受けた場合であってもネック成形性に優れさせることができ、傷や成形不良などの問題を生じないアルミニウム缶を得ることができる。 If the aluminum alloy plate obtained by the above-described manufacturing method is used, it is possible to improve the neck moldability even when it is subjected to the ironing process in the above-described DI can manufacturing method, and it is possible to prevent scratches and molding defects. It is possible to obtain an aluminum can that does not cause problems.

以下、実施例を示して、本発明に係る缶ボディ用アルミニウム合金板の製造方法について更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。
表1、表2に示す組成のアルミニウム合金を溶解し、脱ガスおよび溶湯ろ過後、半連続鋳造により厚さ600mm、幅1100mm、長さ4.5mのスラブに鋳造した。なお本実施例各スラブにおけるCr、Zn、Tiの含有量はほぼ同等で、それぞれCr=0.02〜0.03%、Zn=0.15〜0.17%、Ti=0.02〜0.03%であった。
Hereinafter, the method for producing an aluminum alloy plate for a can body according to the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
The aluminum alloys having the compositions shown in Tables 1 and 2 were melted, degassed, and the melt was filtered, and then cast into a slab having a thickness of 600 mm, a width of 1100 mm, and a length of 4.5 m by semi-continuous casting. Note that the contents of Cr, Zn, and Ti in each slab of this example are almost the same, and Cr = 0.02 to 0.03%, Zn = 0.15 to 0.17%, and Ti = 0.02 to 0, respectively. It was 0.03%.

次に、前記スラブを面削後、均質化・均熱兼用炉を用いて、保持温度565℃かつ保持時間8時間の均質化処理を施した後、保持温度545℃まで炉中で冷却し、当該保持温度にて保持時間1時間以上の均熱処理を施した。
続いて、図1に示す構成の熱間粗圧延機20を使用して板厚20mmまで熱間粗圧延した後、図1に示すシングルミルのリバース式熱間仕上圧延機30を使用して、熱間仕上げ圧延により種々の仕上板厚の板材を得た。
熱間粗圧延の出側温度は、表1、表2に示すように430℃とした。
熱間仕上げ圧延の1パス目の出側温度は、表1、表2に示すように375〜385℃に調節し、2パス目の出側温度は、330〜345℃に調節し、3パス目の出側温度は、225〜315℃に調節した。
Next, after the slab was faced, a homogenizing/soaking furnace was used to perform homogenizing treatment at a holding temperature of 565° C. and a holding time of 8 hours, and then cooled in the furnace to a holding temperature of 545° C. Soaking was performed at the holding temperature for a holding time of 1 hour or more.
Subsequently, after hot rough rolling to a plate thickness of 20 mm using the hot rough rolling mill 20 having the configuration shown in FIG. 1, using the single-mill reverse hot finishing mill 30 shown in FIG. Sheet materials with various finished thicknesses were obtained by hot finish rolling.
The outlet temperature of the hot rough rolling was 430° C. as shown in Tables 1 and 2.
The exit temperature of the first pass of hot finish rolling is adjusted to 375 to 385° C. as shown in Table 1 and Table 2, the exit temperature of the second pass is adjusted to 330 to 345° C., and three passes are applied. The outlet temperature of the eye was adjusted to 225 to 315°C.

次に、熱間圧延後の板材に表3、表4に示す圧下率(第1冷延率)で第1冷間圧延を施した後、連続焼鈍装置を用いて表3、表4記載の保持温度で、常温から保持温度までの平均加熱速度25℃/秒、保持した時間5〜60秒、最高到達温度から70℃までの平均冷却速度50℃/秒の条件で第1中間焼鈍(CAL)を行った。
次いで、第1中間焼鈍後の板材に表3、表4に示す圧下率(第2冷延率)で第2冷間圧延を施し、表3、表4に示す板厚(mm)の缶ボディ用アルミニウム合金板を得た。
また、得られた缶ボディ用アルミニウム合金板の一部について、更に、バッチ式焼鈍炉を用いて、表3、表4記載の保持温度で保持した時間、3時間の条件で安定化焼鈍を行った。
Next, after subjecting the sheet material after the hot rolling to the first cold rolling at the reduction rate (first cold rolling rate) shown in Tables 3 and 4, the continuous annealing device was used to set forth in Tables 3 and 4 At the holding temperature, the average heating rate from room temperature to the holding temperature is 25° C./sec, the holding time is 5 to 60 seconds, and the average cooling rate from the highest temperature to 70° C. is 50° C./sec. ) Went.
Next, the plate material after the first intermediate annealing was subjected to the second cold rolling at the rolling reductions (second cold rolling reductions) shown in Tables 3 and 4, and the can bodies having the plate thicknesses (mm) shown in Tables 3 and 4 were obtained. An aluminum alloy plate for use was obtained.
Further, a part of the obtained aluminum alloy sheet for a can body was further subjected to stabilization annealing under the conditions of holding time at the holding temperature shown in Tables 3 and 4 for 3 hours using a batch type annealing furnace. It was

得られた缶ボディ用アルミニウム合金板の素材強度(ASTS)をJISZ2241に準拠した引張試験により求め、更に210℃×10分の条件で塗装焼き付け相当の熱処理を行い、ベーキング後の耐力(ABYS、0.2%耐力)を測定した。
なお、上記物性値(ASTS)は、コイルの幅方向及び長手方向各3点以上の位置から採取したサンプルについて計測し、ASTSばらつき(最大値‐最小値)については、8MPa未満を許容範囲とした。
得られた缶ボディ用アルミニウム合金板のブランク材については、容量350ccの飲料缶に加工した。
The material strength (ASTS) of the obtained aluminum alloy sheet for a can body was obtained by a tensile test according to JIS Z2241, and further heat treatment equivalent to coating baking was performed under the condition of 210° C.×10 minutes to obtain a yield strength (ABYS, 0 after baking). .2% proof stress) was measured.
The physical property values (ASTS) were measured for samples taken from three or more positions in the width direction and the longitudinal direction of the coil, and the allowable range for the ASTS variation (maximum value-minimum value) was less than 8 MPa. ..
The blank material of the obtained aluminum alloy plate for a can body was processed into a beverage can having a capacity of 350 cc.

「耳率」
得られた缶ボディ用アルミニウム合金板の異方性評価として、カップ成形における耳率を測定した。
耳率は、素材をエリクセン試験機で深絞り加工したカップの側壁高さから計算した。加工条件はポンチ径;33mm(平頭ポンチ)、絞り比;1.75、しわ押さえ力;3kNとした。このカップの側壁高さをデジタルマイクロメーターで測定し、次式により耳率を算出した。
(山平均高さ−谷平均高さ)÷谷平均高さ×100=耳率(%)
なお、0°および180°の山の平均高さと45°、135°、225°、315°の山の平均高さをそれぞれ求め、いずれか高い方の山を上式の山平均高さとした。また、90°および270°の谷平均高さを求め、上式の谷平均高さとした。
耳率による異方性の評価としてはn=3の平均値で、1.5%未満を「◎」、1.5%以上2.5%未満を「○」、2.5%以上3.5%未満を「△」、3.5%以上を「×」とした。「◎」および「○」を合格レベルと判断した。
"Ear rating"
As anisotropy evaluation of the obtained aluminum alloy plate for a can body, the ear rate in cup molding was measured.
The ear ratio was calculated from the height of the side wall of the cup obtained by deep drawing the material with an Erichsen tester. The processing conditions were: punch diameter: 33 mm (flat head punch), drawing ratio: 1.75, wrinkle holding force: 3 kN. The side wall height of this cup was measured with a digital micrometer, and the ear rate was calculated by the following formula.
(Mountain average height-valley average height)/valley average height x 100 = ear ratio (%)
The average heights of the ridges of 0° and 180° and the average heights of the ridges of 45°, 135°, 225°, and 315° were obtained, and the higher one was defined as the average height of the ridges in the above formula. Further, the valley average heights of 90° and 270° were obtained and set as the valley average height in the above formula.
For the evaluation of anisotropy by ear rate, the average value of n=3 is “⊚” when less than 1.5%, “◯” when 1.5% or more and less than 2.5%, and 2.5% or more 3. Less than 5% was designated as "△" and 3.5% or more was designated as "x". “⊚” and “∘” were judged as passing levels.

ネック成形性の評価は、すべての試料について350cc飲料缶に成形して実施した。DI成形後の缶の口端部をトリムにより除去し、洗浄乾燥後、缶内外面に塗装印刷を施し、ダイネック成形およびスピンフロー成形を行い、内径およそ55mmの350cc飲料缶のネック形状とした。なお、DI成形の際に、ネック成形加工を受ける部位の肉厚を薄くすることにより、ネック成形加工においてカール部ネジ部を形成するべき部分に生じる割れを促進評価した。各試料24缶の製缶を行い、カール部及びネジ部形成相当部に割れが発生した缶数を目視にて計数し、ネック成形不良率を求めた。ネック成形不良が認められない場合を◎、ネック成形不良率が5%以下の場合を○、ネック成形不良率が5%〜10%を△、10%を超える場合を×とした。◎または○の場合を合格とし、△または×を不合格と判定した。
以上の結果を以下の表1〜表4に記載した。
The neck moldability was evaluated by molding all samples into 350 cc beverage cans. After the DI molding, the mouth end of the can was removed by trimming, and after washing and drying, the inner and outer surfaces of the can were painted and printed, die neck molding and spin flow molding were performed, and the neck shape of a 350 cc beverage can having an inner diameter of approximately 55 mm was obtained. Note that when the DI forming, by reducing the thickness of the portion receiving the neck molding promoted evaluated cracks occurring in portions to form a curled portion and a threaded portion have your neck molding. Twenty-four cans of each sample were manufactured, and the number of cans having cracks in the curl portion and the portion corresponding to the formation of the screw portion was visually counted to determine the neck molding defect rate. The case where no neck molding defect was observed was marked with ⊚, the neck molding defect rate of 5% or less was marked with ◯, and the neck molding defect rate of 5% to 10% was marked with Δ, and X exceeding 10%. The case of ⊚ or ○ was judged to be acceptable, and Δ or × was judged to be unacceptable.
The above results are shown in Tables 1 to 4 below.

Figure 0006718701
Figure 0006718701

Figure 0006718701
Figure 0006718701

Figure 0006718701
Figure 0006718701

Figure 0006718701
Figure 0006718701

表1、表3に示すようにNo.1〜16の実施例試料は、それぞれ望ましい合金成分、第1パス〜第3パスの出側温度、第1冷間圧延圧下率、第1中間焼鈍条件、第2冷間圧延圧下率を満たしているので、AB耐力に優れ、異方性がなく、ネック成形性にも優れたアルミニウム合金板であった。
これらの実施例試料に対し、No.17の比較例試料は熱間仕上圧延第1パスの出側温度を望ましい範囲の380℃以下より高い385℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.18の比較例試料は熱間仕上圧延第2パスの出側温度を望ましい範囲の340℃以下より高い345℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.19の比較例試料は熱間仕上圧延第3パスの出側温度を望ましい範囲の310℃以下より高い315℃に設定した試料であるが、異方性、ネック成形性共に悪化した。
As shown in Table 1 and Table 3, the sample samples of Nos. 1 to 16 are desirable alloy components, the exit temperature of the first pass to the third pass, the first cold rolling reduction, and the first intermediate annealing conditions. Since it satisfied the second cold rolling reduction, it was an aluminum alloy plate having excellent AB yield strength, no anisotropy, and excellent neck formability.
In contrast to these example samples, the comparative example sample of No. 17 is a sample in which the exit temperature of the first pass of hot finish rolling is set to 385° C., which is higher than the desired range of 380° C. or less, It deteriorated and caused a problem in neck moldability.
The comparative sample of No. 18 was a sample in which the exit temperature of the second pass of hot finish rolling was set to 345° C., which is higher than the desirable range of 340° C. or lower, but the anisotropy deteriorated and the neck formability was also deteriorated. Caused a problem.
The comparative example sample of No. 19 was a sample in which the exit temperature of the third pass of hot finish rolling was set to 315° C., which was higher than the desired range of 310° C. or less, but both the anisotropy and the neck formability deteriorated.

No.20の比較例試料は熱間仕上圧延第3パスの出側温度を望ましい範囲の240℃以上より低い225℃に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.21の比較例試料は第1冷間圧延の圧下率を望ましい範囲の10%以上より低い8%に設定した試料であるが、異方性が悪化し、ネック成形性にも問題を生じた。
No.22の比較例試料は第1冷間圧延の圧下率を望ましい範囲の20%以下より高い22%に設定した試料であるが、異方性、ネック成形性共に悪化した。
No.23の比較例試料は第1中間焼鈍処理を行わない試料であるが、異方性、ネック成形性共に悪化した。
No.24の比較例試料は第1中間焼鈍処理の温度を低くし過ぎた試料であるが、異方性、ネック成形性共に悪化した。
No.25の比較例試料は第1中間焼鈍処理の温度を高くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化した。


The comparative sample of No. 20 is a sample in which the outlet temperature of the third pass of hot finish rolling is set to 225° C., which is lower than the desirable range of 240 ° C. or higher, but the anisotropy deteriorates and the neck formability is also deteriorated. Caused a problem.
The sample of Comparative Example No. 21 is a sample in which the rolling reduction of the first cold rolling is set to 8%, which is lower than the desirable range of 10% or more, but the anisotropy deteriorates and a problem occurs in neck formability. It was
The comparative sample of No. 22 was a sample in which the rolling reduction of the first cold rolling was set to 22%, which was higher than the desirable range of 20% or less, but both the anisotropy and the neck formability deteriorated.
The comparative sample of No. 23 was a sample not subjected to the first intermediate annealing treatment, but both the anisotropy and the neck formability deteriorated.
The sample of Comparative Example No. 24 was a sample in which the temperature of the first intermediate annealing treatment was too low, but both the anisotropy and the neck formability deteriorated.
The comparative sample of No. 25 was a sample in which the temperature of the first intermediate annealing treatment was too high, but the anisotropy was good, but the neck formability deteriorated.


No.26の比較例試料はアルミニウム合金の成分においてSi含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化した。
No.27の比較例試料はアルミニウム合金の成分においてFe含有量を少なくし過ぎた試料、No.28の比較例試料はFe含有量を多くし過ぎた試料であるが、異方性は良好であるものの、ネック成形性が悪化し、Feが少ない場合はダイスに焼き付きを生じた。
No.29の比較例試料はアルミニウム合金の成分においてCu含有量を少なくし過ぎた試料、No.30の比較例試料はCu含有量を多くし過ぎた試料であるが、Cu過少の場合にAB耐力が低下し、異方性が悪化し、Cu過剰の場合にネック成形性が悪化した。
No.31の比較例試料はアルミニウム合金の成分においてMn含有量を少なくし過ぎた試料、No.32の比較例試料はMn含有量を多くし過ぎた試料であるが、Mn過少の場合に異方性、ネック成形性ともに悪化し、焼き付きが生じるとともに、Mn過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.33の比較例試料はアルミニウム合金の成分においてMg含有量を少なくし過ぎた試料、No.34の比較例試料はMg含有量を多くし過ぎた試料であるが、Mg過少の場合に異方性、ネック成形性ともに悪化し、Mg過剰の場合に異方性が悪化し、ネック成形性も悪化した。
No.35の比較例試料は安定化焼鈍の温度を高くし過ぎた試料であるが、異方性、ネック成形性は良好であるがAB耐力が低下した。
The sample of Comparative Example No. 26 was a sample in which the Si content in the aluminum alloy component was excessively large, but the anisotropy was good, but the neck formability was deteriorated.
The comparative example sample of No. 27 is a sample in which the Fe content is too low in the components of the aluminum alloy, and the comparative example sample of No. 28 is a sample in which the Fe content is too high, but the anisotropy is good. However, the neck moldability deteriorated, and when the amount of Fe was small, seizure occurred in the die.
Sample Comparative Sample of No.29 is that too small a Cu content in the components of the aluminum alloy, although Comparative Sample of No.30 is a sample too much Cu content, AB in the case of Cu under- The yield strength decreased, the anisotropy deteriorated, and the neck formability deteriorated when Cu was excessive.
The comparative example sample of No. 31 is a sample in which the Mn content is too low in the aluminum alloy component, and the comparative example sample of No. 32 is a sample in which the Mn content is too high. Both the directionality and the neck formability deteriorated, and seizure occurred, and when Mn was excessive, the anisotropy deteriorated and the neck formability deteriorated.
The comparative example sample of No. 33 is a sample in which the Mg content in the aluminum alloy component is too low, and the comparative example sample of No. 34 is a sample in which the Mg content is too high. Both the directionality and the neck formability deteriorated, and when Mg was excessive, the anisotropy deteriorated, and the neck formability also deteriorated.
The sample of the comparative example of No. 35 was a sample in which the temperature of the stabilizing annealing was made too high, but the anisotropy and the neck formability were good, but the AB proof stress decreased.

4、6…搬送路、5、7…板材、10…DI缶、11…胴部、12…底部12a…ドーム部、12b…接地部、12c…環状凸部、13…頸部、14…フランジ部(カール部及びネジ部形成相当部)、20…熱間粗圧延機、21、22…ワークロール、23、24…バックアップロール、30…熱間仕上圧延機、31、32…ワークロール、33、34…バックアップロール、35、36…送出巻取装置、40…連続焼鈍装置、41…供給ロール、42…アルミニウム合金板材、43、46…緩衝装置、44…炉体、47…巻取ロール、W…板材、W1…カップ状体、W2…有底筒状体、W2a…開口端部
4, 6... Conveyance path, 5, 7... Plate material, 10... DI can, 11... Body part, 12... Bottom part , 12a... Dome part, 12b... Grounding part, 12c... Annular convex part, 13... Neck part, 14... Flange portion (curl portion and screw portion forming equivalent portion) 20 ... Hot rough rolling mill, 21, 22... Work roll, 23, 24... Backup roll, 30... Hot finish rolling mill, 31, 32... Work roll , 33, 34... Backup rolls, 35, 36... Delivery winding device, 40... Continuous annealing device, 41... Supply roll, 42... Aluminum alloy plate material, 43, 46... Buffer device, 44... Furnace body, 47... Winding device Roll , W... Plate material, W1... Cup-shaped body, W2... Bottomed cylindrical body, W2a... Open end .

Claims (5)

質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て熱間粗圧延を行って25〜16mmの熱間粗圧延板とした後、続いて1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を20〜310℃とする、熱間仕上げ圧延を行った後、圧下率を10〜20%とする第1冷間圧延を行い、その後、連続焼鈍装置を用いて保持温度460〜540℃、保持時間5〜60秒の条件で第1中間焼鈍を行い、続いて圧下率80〜95%で第2冷間圧延を行って、板厚0.210〜0.47mm、焼付け後の耐力230〜320N/mm2のアルミニウム合金板を得ることを特徴とする異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 In mass %, Si: 0.35% or less, Fe: 0.35 to 0.55%, Cu: 0.15 to 0.48%, Mn: 0.8 to 1.15%, Mg: 0.60. ˜1.60%, the balance being Al and an unavoidable impurity, an aluminum alloy having a composition is melted, and the ingot obtained by semi-continuous casting is subjected to homogenization treatment and soaking treatment, and hot rough rolling is performed. 25 to 16 mm of a hot rough rolled plate, and then the first pass temperature on the first pass side is 380° C. or less, the second pass temperature on the second pass side is 340° C. or less, and the third pass temperature on the second finish side is 2 40 to 0. After the hot finish rolling at 310° C., the first cold rolling at a reduction rate of 10 to 20% is performed, and then the continuous annealing device is used to maintain a holding temperature of 460 to 540° C. and a holding time of 5 to 5. The first intermediate annealing is performed under the condition of 60 seconds, and then the second cold rolling is performed at a reduction rate of 80 to 95% to obtain a sheet thickness of 0.210 to 0.47 mm and a yield strength of 230 to 320 N/mm2 after baking. Aluminum alloy plate for beverage can body excellent in anisotropy and neck formability, characterized by obtaining aluminum alloy plate, and method for producing aluminum alloy plate for bottle can body excellent in anisotropy and bottle neck formability .. 前記鋳塊に対して行なう均質化処理は、555〜605℃で4〜10時間の条件で行ない、続いて行なう均熱処理は500〜555℃で1時間以上加熱する条件で行うことを特徴とする請求項1に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 The homogenization treatment performed on the ingot is performed at 555 to 605° C. for 4 to 10 hours, and the subsequent soaking treatment is performed at 500 to 555° C. for 1 hour or more. An aluminum alloy plate for a beverage can body excellent in anisotropy and neck formability according to claim 1, and a method for producing an aluminum alloy plate for a bottle can body excellent in anisotropy and bottle neck formability. 前記熱間粗圧延の最終パス出側材料温度は400〜460℃であることを特徴とする請求項1または請求項2に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 The final pass outlet material temperature of the hot rough rolling is 400 to 460° C. The aluminum alloy for a beverage can body excellent in anisotropy and neck formability according to claim 1 or 2, Plate and a method for producing an aluminum alloy plate for a bottle can body having excellent anisotropy and bottleneck formability. 前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることを特徴とする請求項1〜請求項3のいずれか一項に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 Use of an aluminum alloy further containing at least one or more of Cr: 0.05% or less, Zn: 0.25% or less, and Ti: 0.10% or less with respect to the above composition. An aluminum alloy plate for a beverage can body excellent in anisotropy and neck moldability according to any one of claims 1 to 3, and a bottle excellent in anisotropy and bottle neck moldability. Manufacturing method of aluminum alloy sheet for can body. 第2冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で最終安定化焼鈍を行うことを特徴とする請求項1〜請求項4のいずれか一項に記載の異方性とネック成形性に優れた飲料缶ボディ用アルミニウム合金板、および異方性とボトルネック成形性に優れたボトル缶ボディ用アルミニウム合金板の製造方法。 After the second cold rolling, final stabilization annealing is performed under the conditions of a holding temperature of 120 to 140° C. and a holding time of 2 to 4 hours, and the difference according to any one of claims 1 to 4. A method for producing an aluminum alloy plate for a beverage can body having excellent toughness and neck formability, and an aluminum alloy plate for a bottle can body having excellent anisotropy and bottle neck formability.
JP2016048850A 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability Active JP6718701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048850A JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048850A JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Publications (2)

Publication Number Publication Date
JP2017160521A JP2017160521A (en) 2017-09-14
JP6718701B2 true JP6718701B2 (en) 2020-07-08

Family

ID=59856659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048850A Active JP6718701B2 (en) 2016-03-11 2016-03-11 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability

Country Status (1)

Country Link
JP (1) JP6718701B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913964B (en) * 2018-07-13 2020-04-24 东北轻合金有限责任公司 Method for manufacturing large-size high-strength superhard hollow round ingot
CN109338131B (en) * 2018-12-11 2020-12-08 江苏鼎胜新能源材料股份有限公司 Preparation method of aluminum strip material for new energy power battery tab
CN109930038B (en) * 2019-03-29 2020-12-29 北京科技大学 A kind of deformation heat treatment method of Al-Mg-Zn alloy plate
CN111945043B (en) * 2020-07-31 2022-03-04 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644819B2 (en) * 1998-03-06 2005-05-11 古河スカイ株式会社 Method for producing aluminum alloy plate for can body
JP3871462B2 (en) * 1999-02-09 2007-01-24 古河スカイ株式会社 Method for producing aluminum alloy plate for can body
JP5715413B2 (en) * 2010-12-28 2015-05-07 三菱アルミニウム株式会社 Method for producing plate material for high-strength can body with good surface properties

Also Published As

Publication number Publication date
JP2017160521A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5818457B2 (en) Method for producing aluminum alloy plate for can body with low ear rate and method for producing aluminum alloy plate for bottle-type beverage can with low ear rate
JP6850635B2 (en) A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP2006265700A (en) Aluminum alloy sheet for bottle-shaped can superior in high-temperature property
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JPH11181558A (en) Manufacturing method of aluminum alloy sheet for low pressure positive pressure can body
JP2012140664A (en) Method for manufacturing high strength plate material for can body having satisfactory surface property
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP6611338B2 (en) Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy
JP3868839B2 (en) Method for producing aluminum alloy plate for bottle-type beverage can
JP2016020531A (en) Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio
JP4011293B2 (en) Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion
US20230083429A1 (en) Method and installation for producing aluminum can sheet
JP6678431B2 (en) Aluminum alloy plate for cap and its manufacturing method
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP5882034B2 (en) Aluminum alloy plate for cap and method for producing the same
RU2829769C1 (en) Method and apparatus for producing aluminum sheet for making cans
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP4078254B2 (en) Method for producing aluminum alloy plate for glittering wheel rim
JP2003306750A (en) Method for manufacturing aluminum alloy sheet for bottle-shaped beverage can
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JP2024085402A (en) Aluminum alloy sheet for aluminum bottle can body and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6718701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250