[go: up one dir, main page]

JP6695066B2 - フレームがコンデンサと直列に少なくとも1個のビアを備えるようなチップ用のポリマーフレーム - Google Patents

フレームがコンデンサと直列に少なくとも1個のビアを備えるようなチップ用のポリマーフレーム Download PDF

Info

Publication number
JP6695066B2
JP6695066B2 JP2015037224A JP2015037224A JP6695066B2 JP 6695066 B2 JP6695066 B2 JP 6695066B2 JP 2015037224 A JP2015037224 A JP 2015037224A JP 2015037224 A JP2015037224 A JP 2015037224A JP 6695066 B2 JP6695066 B2 JP 6695066B2
Authority
JP
Japan
Prior art keywords
capacitor
layer
copper
chip
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015037224A
Other languages
English (en)
Other versions
JP2016103623A (ja
Inventor
フルヴィッツ,ドロール
ファン,アレックス
Original Assignee
ツーハイ アクセス セミコンダクター カンパニー リミテッド
ツーハイ アクセス セミコンダクター カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/555,633 external-priority patent/US10446335B2/en
Application filed by ツーハイ アクセス セミコンダクター カンパニー リミテッド, ツーハイ アクセス セミコンダクター カンパニー リミテッド filed Critical ツーハイ アクセス セミコンダクター カンパニー リミテッド
Publication of JP2016103623A publication Critical patent/JP2016103623A/ja
Application granted granted Critical
Publication of JP6695066B2 publication Critical patent/JP6695066B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49589Capacitor integral with or on the leadframe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、改良されたチップパッケージングを、ならびにとりわけコンデンサおよびフィルタのような受動素子がチップパッケージ内に組み込まれる埋め込みチップを目的とする。
ますます複雑な電子構成部品の小型化に対するますますより大きな需要によって駆り立てられて、コンピュータおよび遠隔通信装置のような民生用電子機器が、より集積化されるようになっている。これは、誘電材料によって互いに電気的に絶縁される高密度の多数の導電層およびビアを有するIC基板およびICインターポーザのような支持構造体に対する要求を作り出した。
この種の支持構造体に対する一般的な要件は、信頼性および適切な電気性能、薄さ、堅さ、平面性、良い熱放散および競争的な単価である。
これらの要件を達成するための種々のアプローチのうち、層の間に相互接続ビアを作り出す1つの広く実現された製造技法が、メッキ技法によってその中に堆積される金属、通常銅によるその後の充填のために、その後置かれた誘電体基板中に前に堆積された金属層まで通して穴開けするためにレーザーを使用する。ビアを作り出すこのアプローチは時には『ドリルアンドフィル』と称され、それによって作り出されるビアは、『ドリルアンドフィルビア』と称されることができる。
複数の欠点が、ドリルアンドフィルビアアプローチにはある。各ビアが別々に穴開けされる必要があるので、処理率が限定され、精巧な多ビアIC基板およびインターポーザを製作するコストがひどく高くなる。大きな配列では、ドリルアンドフィル方法論によって互いに極めて近傍に異なるサイズおよび形状を有する高密度の高品質ビアを生成することは、困難である。さらに、レーザー穴開けされたビアは誘電材料の厚さを通して内部に粗い側壁およびテーパーを有する。このテーパリングは、ビアの有効径を減少させる。それはまた、特に超小型ビア径で前の導電性金属層に対する電気接触に悪影響を与え、それによって信頼性問題を引き起こすかもしれない。その上、側壁は穴をあけられる誘電体がポリマーマトリクス内にガラスまたはセラミックファイバを備える複合材料であるところでとりわけ粗く、および、この粗さは追加的な迷いインダクタンスを作り出すかもしれない。
穴開けされたビアホールの充填プロセスは、通常銅の電気メッキによって達成される。電気メッキ堆積技法は陥凹形成に結びつく可能性があり、ここで、小さなクレータがビアの終端に生ずる。あるいは、ビアチャネルが、それが保持することができるより多くの銅で充填されるところでオーバフィルが起こる場合があり、および、周囲の材料の上に突き出る半球形の上面が作り出される。高密度基板およびインターポーザを製作する時必要に応じて、その後ビアを順に重ねてスタックする時、陥凹形成およびオーバフィルの両方が困難を作り出す傾向がある。さらに、理解されるであろうことは、特にそれらがインターポーザまたはIC基板設計の同じ相互接続層内でより小型のビアに近接している時、大きなビアチャネルは均一に充填するのが困難であることである。
受け入れられるサイズおよび信頼性の範囲が時間とともに向上しているとはいえ、上記の欠点はドリルアンドフィル技術に固有であり、可能なビアサイズの範囲を限定すると予測される。レーザー穴開けが丸いビアチャネルを作り出すために最良であることが更に注意される。スロット形状のビアチャネルが理論的にレーザーミリングによって製作されることができるとはいえ、実際、製作されることができる幾何学形状の範囲はいくぶん限定され、および、与えられた支持構造体のビアは一般的に円柱形で実質的に同一である。
ドリルアンドフィルによるビアの製作は高価であり、および相対的に費用効果的な電気メッキプロセスを使用してそれによって銅によって作り出されるビアチャネルを均一に一貫して充填することは困難である。
複合誘電材料内にレーザー穴開けされたビアは、実用的に60×10−6m(60ミクロン)の直径に限定され、かつそれでも、必要とされる除去プロセスの結果、穴開けされる複合材料の性質に起因する有意なテーパリング形状および粗い側壁に苦しむ。
前述のレーザー穴開けの他の限定に加えて、異なるサイズのビアチャネルが穴開けされて、そして次に、異なるサイズのビアを製作するために金属で充填される時、ビアチャネルが異なる速度で埋まるという理由から、同じ層内に異なる直径のビアを作り出すことが困難であるという点で、ドリルアンドフィル技術の付加的限定事項がある。
従って、異なるサイズのビアに対して堆積技法を同時に最適化することは不可能であるので、ドリルアンドフィル技術を特徴づける陥凹形成またはオーバフィルの典型的問題は悪化する。
ドリルアンドフィルアプローチの欠点の多くを克服する一代替案は、別名『パターンメッキ』技術を使用して、フォトレジスト内に作り出されるパターンに銅または他の金属を堆積することによってビアを製作することである。
パターンメッキでは、シード層が最初に堆積される。次いで、フォトレジストの層がその上に堆積され、その後露光されてパターンを作り出し、かつシード層を露出させる溝を作るために選択的に除去される。ビア柱が、銅をフォトレジスト溝に堆積することによって作り出される。残りのフォトレジストが次いで除去されて直立ビア柱を残し、シード層がエッチング除去され、一般的にポリマー含浸されたガラスファイバマットである誘電材料が、ビア柱をおおうためにその上におよびその周りに積層される。種々の技法およびプロセスが、次いで誘電材料を平坦化するために使用され、それの一部を除去してビア柱の端部を露出し、そこで次の金属層を構築するためにそれによって接地に対する導電接続を可能にすることができる。所望の多層構造体を構築するためにこのプロセスを繰り返すことによって、金属導体およびビア柱の以降の層がその上に堆積されることができる。
以下に『パネルメッキ』として知られる、代わりの、しかし密接に関連づけられた技術において、金属または合金の連続層が基板上へ堆積される。フォトレジストの層が基板の端部に堆積され、および、パターンがその中に現像される。現像されたフォトレジストのパターンが剥離され、その下に金属を選択的に露出し、それが次いでエッチング除去されることができる。未現像のフォトレジストが下層金属をエッチング除去されることから保護して、直立したフィーチャおよびビアのパターンを残す。
未現像のフォトレジストを剥離した後に、ポリマー含浸されたガラスファイバマットのような誘電材料が、直立した銅フィーチャおよび/またはビア柱周辺におよびその上に積層されることができる。平坦化の後、所望の多層構造体を構築するためにこのプロセスを繰り返すことによって、金属導体およびビア柱の以降の層がその上に堆積されることができる。
上記したパターンメッキまたはパネルメッキ方法論によって作り出されるビア層は、一般的に銅由来の『ビア柱』およびフィーチャ層として公知である。
理解されるであろうことは、マイクロエレクトロニクスの進化の全般的な推進力が高い信頼性を有するますますより小さい、より薄い、より軽いおよびより強力な製品を製作する方へ向けられるということである。厚い、コアを持つ相互接続部の使用は極薄の製品が到達可能であることを妨げる。相互接続IC基板または『インターポーザ』内にますますより高い密度の構造体を作り出すために、ますますより小さい接続部のますますより多くの層が必要とされる。実際に、時には、互いの端部上に構成要素をスタックすることが、望ましい。
メッキした積層構造体が銅または他の適切な犠牲基板上に堆積されるならば、基板がエッチング除去され、自立コアレス層状構造体を残すことができる。更なる層が、犠牲基板に以前に接着された側面上に堆積され、それによって両面ビルドアップを可能にすることができ、それが反りを最小化して平面性を達成するのを補助する。
高密度相互接続部を製作するための1つの柔軟な技術が、誘電マトリクス内の金属ビアまたはフィーチャからなるパターンまたはパネルメッキした多層構造体を構築することである。金属は銅であることができ、誘電体はファイバ強化ポリマーであることができる。一般的に、例えばポリイミドのような、高ガラス転移温度(Tg)を備えたポリマーが使用される。これらの相互接続部は、コアを持つかまたはコアレスであることができ、かつ構成要素をスタックするためのキャビティを含むことができる。それらは、奇数または偶数の層を有することができる。可能にする技術は、Amitec−Advanced Multilayer Interconnect Technologies社に付与された以前の特許内に記載されている。
例えば、Hurwitz他に付与された(特許文献1)が、上位の電子支持構造体の構成における前駆体としての用途のために、誘電体内にビア配列を含む自立膜を製作する一方法を記載する。この方法は、犠牲キャリア上の誘電体周囲内に導電性ビアの膜を製作するステップと、自立積層配列を形成するために膜を犠牲キャリアから分離するステップとを含む。この種の自立膜に基づく電子基板は、積層配列を薄くして平坦化し、その後ビアを終端することによって形成されることができる。この刊行物は、全体として本願明細書に引用したものとする。
Hurwitz他に付与された(特許文献2)が、第2のICダイと直列に接続される第1のICダイを支持するためのIC支持体を製作するための一方法であって、このIC支持体が絶縁周囲内の銅フィーチャおよびビアの交互層のスタックを備え、第1のICダイがIC支持体上へボンディング可能であり、および第2のICダイがIC支持体内部でキャビティ内にボンディング可能であり、キャビティが、銅ベースをエッチング除去し、かつビルトアップ銅を選択的にエッチング除去することによって形成される方法を記載する。この刊行物は、全体として本願明細書に引用したものとする。
Hurwitz他に付与された(特許文献3)が、以下のステップ、すなわち、(A)第1のベース層を選択するステップと、(B)第1のベース層上へ第1の耐エッチング液バリア層を堆積するステップと、(C)交互の導電層および絶縁層の第1のハーフスタックを構築するステップであって、導電層が絶縁層を通してビアによって相互接続されるステップと、(D)第1のハーフスタック上へ第2のベース層を塗布するステップと、(E)第2のベース層にフォトレジストの保護コーティングを塗布するステップと、(F)第1のベース層をエッチング除去するステップと、(G)フォトレジストの保護コーティングを除去するステップと、(H)第1の耐エッチング液バリア層を除去するステップと、(I)交互の導電層および絶縁層の第2のハーフスタックを構築するステップであって、導電層が絶縁層を通してビアによって相互接続され、第2のハーフスタックが、第1のハーフスタックに実質的に対称のレイアップを有するステップと、(J)交互の導電層および絶縁層の第2のハーフスタック上へ絶縁層を塗布するステップと、(K)第2のベース層を除去するステップと、(L)スタックの外面上にビアの端部を露出することによって基板を終端し、かつそれに終端部を付加するステップと、を含む電子基板を製作する一方法を記載する。この刊行物は、全体として本願明細書に引用したものとする。
時間とともに、ドリルアンドフィル技術およびビア柱堆積の両方が更なる小型化ならびにより高密度のビアおよびフィーチャを伴う基板の製作を可能にすることが予測される。それにもかかわらず、おそらくビア柱技術の開発が競争力を維持するように見える。
基板は、チップが他の構成要素とインタフェースすることを可能にする。チップと基板との間の電子通信を可能にするために信頼性が高い電子接続をもたらすアセンブリプロセスを通して、チップが基板にボンディングされなければならない。
外界に対してインターポーザ内にチップを埋め込むことは、チップパッケージを縮小し、外界に対する接続部を短縮することを可能にし、基板アセンブリプロセスに対してダイを除去し、かつ向上した信頼性を潜在的に有するより簡単な製造によってコスト削減を提供する。
基本的に、アナログ、デジタルおよびMEMSチップのような能動素子を埋め込む概念はチップ周辺にビアを有するチップ支持構造体または基板の構成を必要とする。
埋め込みチップを達成する一方法は、支持構造体の回路がダイユニットサイズより大きいウエハ上のチップ配列上へチップ支持構造体を製作することである。これは、ファンアウトウエハ層パッケージング(FOWLP)として公知である。シリコンウェハのサイズが大きくなっているとはいえ、高価な材料セットおよび製造プロセスが依然としてウエハ直径サイズを12インチに限定しており、それによってウエハ上に配置することができるFOWLPユニットの数を限定する。18インチのウエハが考慮中であるにもかかわらず、必要とされる投資、材料セットおよび機器は依然として不明である。限定された数の一度に処理されることが出来るチップ支持構造体はFOWLPの単価を増加させ、かつ無線通信、家電機器および自動車市場のような高度に競争的な価格設定を必要とする市場に対してそれをあまりに高価にする。
ファンアウトまたはファンイン回路としてシリコンウェハの上に配置される金属フィーチャが数ミクロンまでの厚さに限定されるので、FOWLPはさらに性能制約を代表する。これは、電気抵抗の難題を作り出す。
代替製作ルートは、チップを切り離すためにウエハを切断してかつ銅相互接続部を備えた誘電層からなるパネル内にチップを埋め込むことを含む。パネルが単一プロセスで埋め込まれる非常にさらに多くのチップによって、とてもより大きくなることができることが、この代替ルートの1つの利点である。例えば、12インチウエハが例えば5mmx5mmの寸法を有する2,500個のFOWLPチップが1度に処理されることを可能にするのに対して、出願人Zhuhai Accessで用いられる現在のパネルは25インチx21インチであり、10,000個のチップが1度に処理されることを可能にする。この種のパネルを処理する価格がウエハ加工より有意に安価であるので、かつパネルあたりのスループットがウエハのスループットより4倍高いので、単価が有意に低下し、それによって新規の市場を開くことができる。
両方の技術において、業界で用いられるトラックの線間隔および幅は時間とともに縮小しており、パネル上の標準が15ミクロンから10ミクロンまで下がり、およびウエハで5ミクロンから2ミクロンまで下がっている。
埋め込みの利点は多い。ワイヤボンディング、フリップチップまたはSMD(面実装部品)半田付けのような、第1レベルアセンブリコストが解消される。ダイおよび基板が単一製品内で継ぎ目なく接続されるので、電気性能が向上する。パッケージ化されたダイはより薄型であり、改良されたフォームファクタを与え、および埋め込みダイパッケージの上側表面が、スタックされたダイおよびPoP(パッケージ上パッケージ)技術を用いるもののような更なる空間節減構成を含む他の用途に対して解放される。
FOWLPおよびパネルベースの埋め込みダイ技術の両方で、チップは、(ウエハまたはパネル上の)配列としてパッケージ化され、かつ一旦製作されたならば、ダイシングによって切り離される。
Wifi、ブルートゥースなどのような、RF(無線周波数)技術は、携帯電話および自動車を含む種々のデバイス内に広く実現されている。
基底帯域処理およびメモリチップに加えて、RFデバイスは特に種々の種類のコンデンサ、インダクタおよびフィルタのような受動素子を必要とする。この種の受動素子は表面実装されることができるが、ますますより強力な小型化およびコスト削減を可能にするために、この種のデバイスは基板内に埋め込まれることができる。
Hurwitzに付与された(特許文献4)が、金属電極およびセラミックまたは金属酸化物誘電層からなるコンデンサであって、ポリマーベースの封入材料内に埋め込まれ、かつ前記コンデンサの上に立つビア柱によって回路に接続されることができるコンデンサを備える基板を記述する。
(特許文献5)が、少なくとも1つのフィーチャ層および少なくとも1つの隣接するビア層を備え;これらの層がXY平面内に延在して高さzを有し、この構造体が少なくとも1個のフィルタをもたらすように少なくとも1個のインダクタと直列にまたは並列に連結される少なくとも1個のコンデンサを備え;少なくとも1個のビアが少なくとも1個のコンデンサの上に立つように、少なくとも1個のコンデンサが少なくとも1つのフィーチャ層と前記少なくとも隣接するビア層内の少なくとも1個のビアとの間にはさまれ、ならびに、第1のフィーチャ層および隣接するビア層の少なくとも1つがXY平面内に延在する少なくとも1個のインダクタを含むことを特徴とする複合電子構造体を記述する。
Hurwitzに付与された(特許文献6)が、有機マトリクスフレームワークを通してソケットを取り囲む有機マトリクスフレームワークによって規定され、かつ有機マトリクスフレームワークを通して金属ビアのグリッドを更に備えるチップソケットの配列を教示する。チップがソケット内に配置され、そして次に、ポリマーベースの誘電体によって適所に保持され、それによってフレーム内にチップを埋め込むことができる。
米国特許第7,682,972号明細書、名称「先端多層コアレス支持構造体およびそれらの製作のための方法」 米国特許第7,669,320号明細書、名称「チップパッケージング用のコアレスキャビティ基板およびそれらの製作」 米国特許第7,635,641号明細書、名称「集積回路支持構造体およびそれらの製作」 米国特許出願第13/962,075号明細書、名称「ポリマー誘電体に埋め込まれた薄膜コンデンサ」、2013年8月8日出願 米国特許出願第13/962,316号明細書、名称「多層構造および埋め込みフィーチャ」、2013年8月8日出願 米国特許出願第14/269,884号明細書、名称「ポリマーマトリクスを備えたインターポーザフレームおよび製作の方法」、2014年5月5日出願 米国特許出願第13/912,652号明細書 米国特許出願第13/482,099号明細書 米国特許出願第13/483,185号明細書 米国特許出願第13/483,234号明細書
本発明は、(特許文献4);(特許文献5)および(特許文献6)に対する優先権を主張する。
第1の態様が、有機マトリクスフレームワークによって規定されるチップソケットであって、この有機マトリクスフレームワークが、ソケットのまわりのフレームワークを通して少なくとも1個のビアが下側電極、誘電層およびビア柱と接触する上側電極を備える少なくとも1個のコンデンサを含む少なくとも1つのビア柱層を備えるチップソケットを目的とする。
一般的に、コンデンサの誘電体が、Ta、TiO、BaSr1−xTiO、BaTiOおよびAlからなる群の少なくとも1つを備える。
一般的に、コンデンサの下側電極が、貴金属を備える。
任意選択で、下側電極が金、プラチナおよびタンタルからなる群から選ばれる金属を備える。
実施態様によっては、上側電極が金、プラチナおよびタンタルからなる群から選ばれる金属を備える。
一般的に、少なくとも1個のビアが、少なくとも1個のコンデンサの上に立っている。
任意選択で、上側電極がビア柱を備える。
好ましくは、コンデンサがコンデンサの容量を調整するために慎重に制御されるビア柱の断面積によって規定される断面積を有する。
実施態様によっては少なくとも1個のコンデンサが1.5pFと300pFとの間の容量を有する。
好ましい実施態様では、少なくとも1個のコンデンサが、5pFと15pFとの間の容量を有する。
任意選択で、フレームワークが少なくとも1つのフィーチャ層を更に備える。
任意選択で、少なくとも1個の電子構成部品がソケット内に埋め込まれてかつ少なくとも1個のビアに電気的に結合される。
任意選択で、少なくとも1個の電子構成部品が第2のコンデンサを備える。
実施態様によっては、第2のコンデンサが少なくとも1つの端部上に金属終端部を有する個別構成要素である。
実施態様によっては、第2のコンデンサが金属−絶縁体−金属(MIM)コンデンサである。
実施態様によっては、金属−絶縁体−金属(MIM)コンデンサがTa、TiO、BaSr1−xTiO、BaTiOおよびAlからなる群の少なくとも1つからなる誘電層を備える。
実施態様によっては、金属−絶縁体−金属(MIM)コンデンサの下側電極が貴金属を備える。
実施態様によっては、下側電極が金、プラチナおよびタンタルからなる群から選ばれる金属を備える。
実施態様によっては、金属−絶縁物−金属(MIM)の上側電極が、金、プラチナおよびタンタルからなる群から選ばれる金属を備える。
任意選択で、金属−絶縁物−金属(MIM)コンデンサが絶縁物キャリアに取り付けられる。
実施態様によっては、絶縁物キャリアがシリコン(Si)、SiO(シリカ)、ガラス、AlN、アルミナおよびc−面サファイヤAl(0001)からなる群の少なくとも1つを備える。
実施態様によっては、金属−絶縁物−金属(MIM)コンデンサのプレートがフィーチャ層によってビアに連結される。
一般的に、ソケット内に埋め込まれる構成要素が、埋め込みコンデンサを有する少なくとも1個のビアに少なくとも1つのフィーチャ層によって連結される。
任意選択で、このシステムがフレームの片側上のフィーチャ層を更に備え、および埋め込み構成要素がインダクタを備える。
任意選択で、フレーム内の埋め込み構成要素、ソケット内の埋め込み構成要素およびフィーチャ層内の少なくとも1個のフィーチャが、フィルタとして機能する回路をもたらす。
任意選択で、このフィルタが、基本的LC低域フィルタ、LC高域フィルタ、LC直列帯域フィルタ、LC並列帯域フィルタおよび低域並列チェビシェフフィルタからなる群から選択される。
任意選択で、ソケットに実装されるチップが、フレーム内にビア柱を備えるファラデーケージによって電磁放射から保護され、それによって電磁干渉を最小化する。
実施態様によっては、ファラデーケージがフレーム内にフィーチャ層を更に備える。
更なる態様が、複数のチップを受け入れるための複数のソケットを備えるフレームワークであって、各ソケットがフレームを備え、およびフレームワークが銅ビア柱のグリッドワークおよび少なくとも1個のコンデンサを備えるフレームワークを目的とする。
任意選択で、プロセッサチップが1個のソケット内に埋め込まれ、および少なくとも1個のコンデンサを備える受動チップが第2のソケット内に埋め込まれる。
更なる一態様が、各チップソケットがフレームによって取り囲まれる、配列として配置される複数のチップソケットを備えるフレームワークを目的とする。
任意選択で、少なくとも1個のプロセッサチップが少なくとも1個のソケット内に埋め込まれる。
更なる一態様が、ソケットを取り囲むフレームの有機マトリクスフレームワークによって規定され、かつ少なくとも1個の金属ビア柱が少なくとも1個のコンデンサと直列に連結される有機マトリクスフレームワークを通して金属ビア柱のグリッドを更に備えるチップソケットの配列を目的とする。
任意選択で、コンデンサが下側電極および誘電層を備え、かつ少なくとも1個のビア柱が少なくとも1個のコンデンサの上に立つように少なくとも1個のビア柱のベースに組み込まれる。
任意選択で、少なくとも1個のビア柱が少なくとも1個のコンデンサの上側電極を備える。
任意選択で、フレームが少なくとも1個のインダクタが少なくとも1つのフィーチャ層内に形成される少なくとも1つのフィーチャ層を備える。
一般的に、有機マトリクスフレームワークがガラスファイババンドルを更に備える。
一般的に、各ビアが広さ25ミクロンから500ミクロンの範囲である。
一般的に、各ビアが円柱形でかつ25ミクロンから500ミクロンまでの範囲の直径を有する。
一般的に、少なくとも1個のソケットのまわりのフレームが、交互になっているビア柱およびフィーチャ層を備え、かつ少なくとも1つのビア柱層および1つのフィーチャ層を備える。
一般的に、有機マトリクスフレームワークが複数の層を備え、およびグリッドワークが複数のビア柱層を備え、連続的なビア柱層の各対が、フィーチャ層によって隔てられる。
実施態様によっては、少なくとも1個のソケットのまわりのフレームが、少なくとも1つのビア柱層および1つのフィーチャ層にまたがる交互になるビア柱およびフィーチャの連続的コイルを備える。
任意選択で、少なくとも1個のビア柱が細長いビア柱を備える。
任意選択で、細長いビア柱の連続的コイルが複数のビア柱層にまたがる。
任意選択で、この配列が異なる寸法の隣接するチップソケットを備える。
任意選択で、この配列が異なるサイズの隣接するチップソケットを備える。
任意選択で、この配列が異なる形状の隣接するチップソケットを備える。
任意選択で、このフレームワークが少なくとも1つのフィーチャ層および少なくとも1つの隣接するビア層を備え、前記層がXY平面内に延在して高さzを有し、この複合電子構造体が、少なくとも1個のインダクタと連結される少なくとも1個のコンデンサを備え、この少なくとも1個のコンデンサが下側電極および誘電層を備え、かつ、この少なくとも1個のビアがこの少なくとも1個のコンデンサの上に立ち、かつ任意選択で上側電極を形成するように、この少なくとも1つのフィーチャ層とビア柱との間にはさまれるビア層のベースに組み込まれ、このビア層がポリマーマトリクス内に埋め込まれ、そしてこの少なくとも1個のインダクタが第1のフィーチャ層および隣接するビア層の少なくとも1つ内に形成される。
任意選択で、少なくとも1個のコンデンサおよび少なくとも1個のインダクタが直列に連結される。
任意選択で、このフレームがビア層の上の少なくとも第2のフィーチャ層を備え、ならびにこの少なくとも1個のコンデンサおよびこの少なくとも1個のインダクタがフィーチャ層経由で並列に連結される。
任意選択で、この少なくとも1個のインダクタがフィーチャ層内に製作される。
任意選択で、この少なくとも1個のインダクタが螺旋状に巻きつけられる。
任意選択で、このインダクタのインダクタンスが少なくとも0.1nHである。
任意選択で、このインダクタのインダクタンスが50nH未満である。
任意選択で、更なるインダクタがビア層内に製作される。
任意選択で、この更なるインダクタのインダクタンスが少なくとも0.1nHである。
任意選択で、少なくとも1個のインダクタおよび前記少なくとも1個のコンデンサが、基本的LC低域フィルタ、LC高域フィルタ、LC直列帯域フィルタ、LC並列帯域フィルタおよび低域並列チェビシェフフィルタからなる群から選択されるフィルタをもたらす。
任意選択で、少なくとも1個のソケットがポリマーマトリクス内の少なくとも1個のコンデンサを備えるチップを含有し、ならびに、フレームワークおよびチップがビアの端部を露出させるために薄くされ、ならびに接続部および終端部が薄くされたポリマーマトリクスの各側面上にフォトレジストを置くことによってかつフォトレジストのパターンに銅パッドを堆積することによって塗布され、フォトレジストが次いで剥離され、半田マスクが銅パッドの間に置かれ、保護コーティングが塗布される。
更なる一態様が、各々有機マトリクスフレームワークを通して銅ビア柱のグリッドを備える有機マトリクスフレームワークによって取り囲まれてかつ規定される、チップソケットの配列を備えるパネルであって、前記パネルが、1つのタイプのチップを収容するための第1のセットの寸法を備えたソケットを有する少なくとも1つの領域、および第2のタイプのチップを収容するための第2のセットの寸法を備えたソケットを有する、かつ少なくとも1個のビア柱が薄フィルムコンデンサを含む第2の領域を備えるパネルを目的とする。
任意選択で、パネルによって、少なくとも1個のビア柱が薄フィルムコンデンサの上に立っている。
任意選択で、少なくとも1個のビア柱が薄フィルムコンデンサの上側電極を備える。
任意選択で、パネルが極めて近傍に2つの異なるソケットタイプを備えた領域を備える。
チップソケットのまわりに内蔵コンデンサを有するフレームの組合せが、例えば、携帯電話および自動車に広く使われているWi−Fi、ブルートゥースなどのようなRF(無線周波数)技術に、より高度な小型化、製造経済性および高められた信頼性をもたらす。
保護コーティングは、ENEPIGおよび有機ニスから選ばれることができる。
用語ミクロンまたはμmは、マイクロメートルまたは10−6mを指す。
本発明のより良い理解のためにおよびそれがどのように実行に移されることができるかを示すために、単に例証として添付の図面に、参照がここでなされる。
ここで詳細に図面に対する特定の参照によって、示される詳細が例として、かつ、本発明の好適な実施態様に関する例証となる議論のためだけにあり、ならびに、本発明の原理および概念上の態様の最も役立って容易に理解される説明であると信じられることを提供するために提示される、と強調される。この点に関しては、本発明の基本理解のために必要であるより、より詳細に本発明の構造細部を示すために何の試みもなされず、図面と共になされる記述は、本発明のいくつかの形態が実際問題としてどのように具体化されることができるかを当業者にとって明らかにする。添付の図面において:
ソケットを規定するポリマーベースの誘電体フレームの一部を切り取った前面を備えた概略等角投影図であり、フレームは、それの少なくとも1個が薄フィルムコンデンサを含む埋め込みビア柱を有する。 ソケットを規定するポリマーベースの誘電体フレームの概略切欠等角投影図であり、フレームは、それの少なくとも1個が薄フィルムコンデンサ含む埋め込みビア柱を有し、および、ソケットが埋め込み構成要素を含み、それがこの場合は追加的なコンデンサを備え、かつそこでフレーム内の埋め込みコンデンサを備えたビア柱が、インダクタを含むフィーチャ層によってソケット内の埋め込みコンデンサに連結される。 フィーチャ層内のインダクタおよびインダクタと直列に連結されるコンデンサの上に立つビア柱層内の隣接するビア柱の概略投影図である。ビアおよびフィーチャは明確にするため周囲の誘電体なしで示される。 ビア柱のベースでコンデンサと直列に連結されるビア層内のインダクタビアの概略投影図である。ビアおよびフィーチャは明確にするため周囲の誘電体なしで示される。 互いに直列にかつビアインダクタのビア層内のビア柱のベースでコンデンサに連結される、フィーチャ層内の1つおよびビア層内の1つの一対のインダクタの概略投影図である。ビアおよびフィーチャは明確にするため周囲の誘電体なしで示される。 コンデンサと並列に連結されるフィーチャ層内のインダクタの概略投影図であり、コンデンサおよびインダクタが、ビア柱および第2の上部フィーチャ層内のまたは多層構造の外側上のトレースによって共に連結されている。ビアおよびフィーチャは明確にするため周囲の誘電体なしで示される。 誘導ビアと直列にかつコンデンサと並列に連結されるフィーチャ層内のインダクタの概略投影図であり、コンデンサおよびインダクタビアが、第2の上部フィーチャ層内のまたは多層構造の外側上のトレースによって共に連結されている。ビアおよびフィーチャは明確にするため周囲の誘電体なしで示される。 フィーチャ層の間で連結されるビア柱の層を通しての概略断面図であり、示される1個のビア柱が一体化されたコンデンサを有する。 コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する流れ図である; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する流れ図である; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する流れ図である; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; コンデンサおよびインダクタからなる埋め込みフィルタを備えた基板を製作するためのプロセスを例示する一連の概略断面例証であり、各例証が図9の対応するステップにマッチしている; 図8のフィルタを終端するためのプロセスを例示する流れ図である; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 埋め込みフィルタを備えた基板を終端するためのプロセスを例示する一連の概略断面例証であり、各例証が図10の対応するステップにマッチしている; 細長いビアからなる、かつ埋め込みコンデンサを含むその中に埋め込まれる3層コイルを備えたフレームの概略図であり、製造法の柔軟性および、それが埋め込みフィルタなどを製作するためにどのように用いられることができるかを示す; 基本的LC低域フィルタの概略3次元図である; 図12aの基本的LC低域フィルタがLCフィルタ回路としてどのように表すことができるかを示す; 図12aの基本的LC低域フィルタの概略断面である; コンデンサの実効容量を規定するコンデンサがその上のビア柱に寸法を規定される図12aの基本的LC低域フィルタの概略断面である; 頂部電極がその上のビア柱である図12aの基本的LC低域フィルタの概略断面である; 基本的LC高域フィルタの概略3次元図である; 図13aの基本的LC高域フィルタがLCフィルタ回路構成要素としてどのように表すことができるかを示す; 基本的LC帯域直列フィルタの概略3次元図である; 図14aの基本的LC帯域直列フィルタがLCフィルタ回路構成要素としてどのように表すことができるかを示す; コンデンサおよびインダクタを備える基本的LC帯域並列フィルタの概略3次元図である; 図15aの基本的LC帯域並列フィルタがLCフィルタ回路構成要素としてどのように表すことができるかを示す; 低域並列チェビシェフフィルタの概略3次元図、および 低域並列チェビシェフフィルタがLCフィルタとしてどのように表すことができるかを示す。 チップに対してその中にソケットを有していて、更にソケットのまわりにスルービアを有するポリマーまたは複合グリッドの一部の概略例証である; 周囲のスルービアを備えた埋め込みチップを製作するために用いられるパネルの概略例証であり、パネルIT ISの一部がどのように異なるタイプのチップに対するソケットを有することができるかを示す; ポリマーまたは例えばモールドコンパウンドのような複合材料によって適所に保持される各ソケット内のチップを備えた、図17のポリマーまたは複合フレームワークの一部の概略例証である; ポリマー材料によって各ソケット内に保持される埋め込みチップを示し、更にパネルの両面上のスルービアおよびパッドを示すフレームワークの一部を通しての断面の概略例証である; 埋め込みチップを含有するダイを通しての断面の概略例証である; 隣接するソケット内に一対の異なるダイを含有するパッケージを通しての断面の概略例証である; 図21内に示されるそれのようなパッケージの概略底面図である; スルービアの配列を含むポリマーまたは複合パネルを製作するための製造プロセスを示す流れ図である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である; ドリルフィル技術が、打ち出されたソケットによってめっきしたスルーホールを作り出すためにどのように用いられることができるかを示す流れ図である; 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である。 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である。 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である。 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である。 流れ図24の各ステップの後で得られる中間下部構造体の概略例証である。 チップに対するソケットと一緒に埋め込まれるフィルタを備えたフレームの平面図である。
図が概略例証だけであって、かつ一定の比率でないことが理解されよう。非常に薄い層が、厚く見えるかもしれない。フィーチャの幅は、それらの長さなどと釣合いを欠いているように見えるかもしれない。
特に、注意されるであろうことは、ますますより強度の小型化に向けた要求に起因して、等価構造体が非常に異なる空間配置を有するように配置されることができ、したがっていくぶん異なるように見えるかもしれないことである。
以下の記述では、チップを埋め込むためのソケット構造体が考慮される。ソケット構造体は、誘電マトリクス内の金属ビア、特に、ガラスファイバによって強化された、ポリイミド、エポキシまたはBT(ビスマレイミド/トリアジン)またはそれらの混和物のような、ポリマーマトリクス内の銅ビア柱からなる。
以下に記載するソケット構造体は、ソケットのフレームに組み込まれるコンデンサを更に備える。この種のコンデンサは、一般的に金、タンタルまたはタンタルであることができる下側金属電極および、例えば、Ta、TiO、BaSr1−xTiO、BaTiOまたはAlであることができる無機誘電層を備える金属絶縁物金属(M−I−M)コンデンサである。コンデンサは一般的に金、タンタルまたはタンタルである専用の上側電極を備えるか、またはビア、一般的に銅が上側電極としてその上に堆積されることができる。
平行板コンデンサが一般的に非常に高い誘電率を備えた材料である電極の間にはさまれる誘電材料を備えるので、封入のために用いられる誘電材料は、それをコンデンサの誘電体と区別するために封入誘電体として以下に称される。
図は例証となり、かつスケールを示す何の試みもなされない。さらに、少数のビアならびに個々のコンデンサおよびフィルタが示され、一方、ソケットフレームがいくつかのコンデンサおよびフィルタならびに多数のビアを含むことができる。実際に、一般的に、大きな配列のソケットフレームが共に製作される。
ビアがドリルアンドフィル技術によって製作される所で、それらが誘電体内にレーザー穴を最初に穴開けすることによって製作されるので、ビアは一般に実質的に円形断面を有する。封入誘電体が異質で異方性であり、ならびに無機フィラーを備えたポリマーマトリックスおよびガラスファイバ強化材から成るので、ビアの円形の断面は一般的に粗くふちどられ、かつ真円形状から僅かにゆがめられるかもしれない。さらに、一般的にドリルアンドフィルビアはいくぶんテーパーがつく傾向があり、円柱状の代わりに逆円錐台形である。
『ドリルアンドフィルビア』アプローチを使用して非円形ビアを製作することは、断面制御および形状における困難に起因して禁止的になる。レーザー穴あけの限界に起因する約50−60ミクロン直径の最小ビアサイズもまた、ある。これらの困難は、先に背景節で詳細に記載されたものであり、かつ、なかでも、銅ビアフィル電気メッキプロセスに起因する陥凹形成および/または半球形の成型、レーザー穴あけプロセスに起因するビアテーパリング形状および側壁粗さ、およびポリマー/ガラス誘電体内に溝を生成する『ルーティング』モードでスロットをミリングするための高価なレーザー穴あけ機を使用することに起因するより高いコスト、に関連する。
前述のレーザー穴開けの他の限定に加えて、異なるサイズのビアチャネルが穴開けされて、そして次に、異なるサイズのビアを同時に製作するために金属で同時に充填される時、ビアチャネルが異なる速度で埋まるという理由から、同じ層内に異なる直径のビアを作り出すことが困難であるという点で、ドリルアンドフィル技術の付加的限定事項がある。従って、異なるサイズのビアに対して堆積技法を同時に最適化することは不可能であるので、ドリルアンドフィル技術を特徴づける陥凹形成またはオーバフィル(半球形成)の典型的問題は悪化する。したがって、実用的用途において、基板の異質な性質に起因して、時々いくぶんゆがめられるが、ドリルアンドフィルビアは実質的に円形の断面を有し、および全てのビアが実質的に同様の断面を有する。
さらに、ポリイミド/ガラスもしくはエポキシ/ガラスもしくはBT(ビスマレイミド/トリアジン)/ガラスまたはセラミックおよび/または他のフィラー粒子とのそれらの混和物のような複合誘電材料内のレーザー穴開けされたビアが実用的に約60×10−6mの直径に限定されることが注意され、かつそれでも、必要とされる除去プロセスの結果、穴開けされる複合材料の性質に起因する有意なテーパリング形状、同じく粗い側壁に苦しむ。
ここにて組み込まれる、Hurwitz他に付与された(特許文献1)、(特許文献2)および(特許文献3)に記載されるように、フィーチャの面内方向寸法に何の実効上限もないということが、Accessのフォトレジストおよびパターンまたはパネルメッキおよび積層技術の特徴である。
代わりの、ドリルアンドフィルより正確でより柔軟な製造技法が、フォトレジスト内に現像されるパターン内で銅ビア層およびフィーチャ層の両方をメッキすること(パターンメッキ)、または銅の層をパネルメッキし、次いで余分な材料を選択的にエッチング除去することからなる。これらのルートの両方が、直立ビア柱および直立フィーチャを残す。これらの直立した要素は、一般的に直立したフィーチャおよびビア柱の上に誘電プリプレグの層を置いてかつその後プリプレグの樹脂を硬化させることによって、その上に誘電体を積層することによってその後封入されることができる。
パターン化されたフォトレジストへの電気メッキ、次に積層(またはパネルメッキ、選択エッチングおよび積層)を備えるボトムアップアプローチの柔軟性を用いて、広範囲にわたるビア形状およびサイズが、費用対効果が高い状態で製作されることができる。さらに、異なるビア形状およびサイズが同じ層内に製作されることができる。金属シード層を最初に堆積し、そして次に、フォトレジスト材料を堆積し、かつその中に円滑な、まっすぐな、テーパーがつかない溝を現像させ、それが、露出されたシード層上へのパターンメッキによってこれらの溝に銅を堆積することによってその後埋められることができることによって、銅パターンメッキアプローチが使用される時、これは特に容易になる。ドリルアンドフィルビアアプローチとは対照的に、ビアポスト技術は陥凹なしで半球なしの銅コネクタを得るようにフォトレジスト層内の溝が充填されることを可能にする。銅の堆積の後、フォトレジストがその後剥離されて、金属シード層が除去され、および、永続的な、ポリマーガラス複合封入材料がその上におよびその周りに塗布される。このように作り出される『ビア導体』構造体は、Hurwitz他に付与された(特許文献1)、(特許文献2)および(特許文献3)内に記載されるプロセスフローを使用することができる。
フォトレジストを用いて電気メッキによって製作されるビアがドリルアンドフィルによって作り出されるビアより狭くなることができることはボトムアップ電気メッキ技術の更なる特徴である。現在、最も狭いドリルアンドフィルビアは、約60ミクロンである。フォトレジストを用いた電気メッキによって、50ミクロンより良い分解能またはさらに25ミクロンの分解能さえ達成可能である。ICをこの種の基板に連結することは難しい。フリップチップ連結のための1つのアプローチが、誘電体の表面と同一平面上である銅パッドを設けることである。この種のアプローチは、本発明の発明者に付与された(特許文献7)内に記述される。
ビア導体およびフィーチャに加えて、コンデンサおよびフィルタを作り出すための電気メッキ、PVDおよび封入成形技術を用いてビア柱技術を含む構造体内に、コンデンサおよびフィルタのような受動素子を製作することが可能であると見いだされた。
図1を参照して、ソケット2を規定するポリマーベースの誘電体フレーム1が、一部を切り取ったフレーム1の前面を備えた概略等角投影図で示される。フレーム1は、埋め込みビア柱5、6、7を有し、ビア柱5の少なくとも1個が、薄フィルムコンデンサ6を含む。電気メッキによって製作されるビア柱は円形である必要はなく、1つの平面方向に延在することができる。示される1個のビア柱は、XY平面内に延在してインダクタとして機能することができる細長いビア柱7である。
図2は、図1のソケット2を規定するポリマーベースの誘電体フレーム1の概略切欠等角投影図であるが、ソケット2が1個以上の埋め込み構成要素、この場合には追加的なコンデンサ8、9を含み、およびそこでフレーム1内の埋め込み金属絶縁物金属(MIM)コンデンサ6を備えたビア柱5が、フィーチャ層のフィーチャ11、12によってソケット2内の埋め込みコンデンサ8、9に連結される。埋め込みコンデンサ9が、シリコン(Si)、シリカ(SiO)、ガラス、AlN、α−アルミナまたはc−面アルミナ(サファイヤ)のような絶縁基板14上に製作されることができる。さらに、インダクタ13を含む充填されたソケット2の上に、第2のフィーチャ層が堆積される。図1内に示される追加的な通常のビア柱4は、図2内に、または少なくとも図1内に示すところに含まれない。しかしながら本発明のフレーム1が、通常のビア柱4、コンデンサ6の上に立つビア柱5および誘導ビア柱7の1個以上を含むことができることが理解されよう。
フレーム1内のビア5内のMIMコンデンサおよびソケット内に埋め込まれるMIMコンデンサ8、9の両方が、金、タンタルまたはタンタルであることができる下側金属電極および、例えば、Ta、TiO、BaSr1−xTiO、BaTiOまたはAlであることができる無機誘電層を備える。
コンデンサは一般的に金、タンタルまたはタンタルである専用の上側電極を備えることができるか、または、ビア5、一般的に銅が誘電体6の上に堆積されることができてかつそれ自体で上側電極として機能することができる。同様に、フレームに埋め込まれる埋め込みコンデンサ8、9は、金、タンタルまたはタンタル電極およびTa、TiO、BaSr1−xTiO、BaTiOまたはAlであることができる無機誘電層を備えることができる。この種の埋め込みコンデンサ8、9は、例えばc−面Al(サファイヤ)のような無機基板上に製作されることができる。
コンデンサおよびインダクタの組合せは、チップを揺らぎ電流およびノイズから保護するフィルタとして機能することができる。フィルタはWIFI、ブルートゥース、などのようなRF遠隔通信に関して特に重要である。フィルタは、混信を防止するために、回路の一部を他の要素から隔離するために役に立つことができる。
図3を参照して、フィーチャ層内のインダクタ40および、インダクタ40と直列に連結されるコンデンサ44の上に立つビア柱層の隣接するビア柱42の概略投影図が示される。明確にするため、周囲の封入誘電材料は示されない。金属構造体およびコンデンサだけが示される。図3の構造体は銅で製作されることができ、コンデンサ44はTa、TiO、BaSr1−xTiO、BaTiOまたはAlのような誘電材料を備え、かつ一般的にタンタルまたは別の貴金属の電極を有する。一般的に、ビア柱42はフィラーを含むことができるポリマー誘電体内に封入され、かつ編ファイバプリプレグを用いて製作されることができる。インダクタ40を含むフィーチャ層が、コンデンサ44およびその上に構築されるビア柱42を最初に堆積されることができる。ポリマーフィルムまたは編ファイバプリプレグであることができるポリマーベースの誘電材料が、フィーチャ40およびビア柱42の上に積層されることができる。代わりとして、ビア柱42およびコンデンサ44が製作されることができてかつポリマー誘電体で積層されることができ、次いでフィーチャ層内のインダクタ40がその上に堆積されることができるか、または示されるようにその下に、かつ図2のインダクタ13のような表面トレースとして積層されないままに残されるか、またはおそらく示されない追加的なビア層と共にその後積層されることができる。したがって、インダクタ40はフレーム(1、図1)の一部であるフィーチャ層内に、または、図2の部分13のような、フレーム(1、図1)の上のもしくは下の表面層内に含まれることができる。さらに、かつ図2を参照し続けて、フレーム1に対して外側にかつ、キャビティ2内のモールドコンパウンドまたはプリプレグのようなポリマー誘電体10内に構成要素8および9を埋め込んだ後に塗布されるならば、インダクタ40(13)が充填されたキャビティの上に部分的に堆積されることができる。
フィーチャ層が非常に薄い、一般的に約10ミクロンであることが理解されよう。ビア層は、しかしながらむしろより厚くなることができる。図4は、ビア柱52のベースでコンデンサ54と直列に連結されるビア層内に延在するインダクタビア56の概略投影図である。コンデンサ54は、zフィーチャ層内にまたはフレームの表面上に、この場合底面上に堆積されるトレース58によって、インダクタビア56に連結される。インダクタビア56は、約30ミクロンの厚さを有することができてかつ図3のフィーチャ層インダクタ40とは異なる特性を有する。一般的に、インダクタビア40は約0.1nHから約10nHにわたるインダクタンスを有する高Qインダクタである。示すように、ビアインダクタ56は適正にタイトなコイルであることができる。しかしながら理解されるであろうことは、それがフレーム1内に形成されることができてかつフレーム1のソケット2のまわりに完全に巻回されることができるか、またはそれがソケットと一緒にフレームの片側内に埋め込まれることができることである。
図5を参照して、理解されるであろうことは、一対のインダクタ;フィーチャ層内の第1のインダクタ60およびビア柱層内の第2のインダクタ66を含むフィルタが製作されることができることである。図1および2へ戻って参照すると、第1のインダクタ60はフレーム1の上に、もしくは図2のインダクタ13のようにポリマー10で充填されるキャビティ2の上に充填されたフレーム上へ表面実装されることができるか、または、それはフィーチャ11および12を含む層内に、もしくは実際に以降の層内に、充填されたキャビティの下に堆積されることができる。図5内に示されるフィルタは、通常のビア柱を更に備えるビア層内に第2のインダクタ66を含む。第2のインダクタ66は、キャビティ2のまわりのフレームワーク1内に完全に製作されることができる。インダクタ60、66は、互いに直列にかつビアインダクタ66のビア層内のビア柱62のベースでコンデンサ64に連結されることができる。
理解されるであろうことは、いくつかのフィルタリング目的のために、構成要素を並列に連結することが必要とされることである。
例えば、図6は、ビア柱71のベースでコンデンサ74と並列に連結されるフィーチャ層内のインダクタ70の概略投影図である。コンデンサ74およびインダクタ70は、ビア柱71、72および第2の、上部フィーチャ層内のまたは多層構造の外側上のトレース78によって共に連結される。戻って図2を参照して、ビア柱71、72はフレーム1内に配置される。フレームが多層である場合、インダクタ70およびコネクタ78の1個以上がフレームのフィーチャ層内に堆積されることができるか、または、キャビティ2の充填材10の上に(もしくは下に)できる限りまたがる、図2の充填されたフレーム1の外側上のフォトレジストに電気メッキすることによって堆積されることができる。
図7は、図1および2のビア7のように誘導ビア86と直列に、かつコンデンサ84と並列に連結される、(フレーム1の)フィーチャ層または(フレーム1上へ、かつおそらく図2のインダクタ13のような充填されたキャビティ2上へ堆積される)下側表面層内のインダクタ88の概略投影図である。コンデンサ84および誘導ビア86は、フレームの第2の(描画されるように上側)フィーチャ層内のまたはおそらく、キャビティ2にまたがるフレーム1の外側上のトレース88によって共に連結される。
図8に関して、銅フィーチャ層24と銅柱26との間にはさまれる誘電体物質層22からなる1層平行板コンデンサ20を含む(図1であればフレーム1のような)基板21を通しての断面図が、示される。任意選択で、誘電層22が銅フィーチャ層24の上に堆積され、銅柱26が次いで誘電層22の上に成長される。誘電材料は、例えばTa、TiO、BaSr1−xTiO、BaTiOまたはAlであることができ、かつ例えばスパッタリングのような物理蒸着プロセスによって、または化学蒸着プロセスによって堆積されることができる。
高品質コンデンサを得るために、誘電体は物理蒸気プロセスによって堆積されることができるTa、TiO、BaSr1−xTiO、BaTiOまたはAlを含むことができ、かつ、おそらく誘電セラミックと一緒にスパッタリングによって、以前にまたはその後堆積されるアルミニウム金属の層を更に備えることができる。任意選択のアルミニウム堆積の後、構造体が炉もしくはオーブン内で、または赤外線に曝露することによってのどちらかで、酸素の存在下で加熱されることができる。アルミニウムは、それによって現位置で酸化アルミニウム(アルミナAl)に変換される。Alがアルミニウムより密度が高くないので、それは広がって欠陥をセラミック層内に封止し、高い誘電率を確実にしてリークを防止する。
銅柱26、28、30、32は、封入誘電材料34内に封入される。銅柱26、28、30、32がフォトレジストへの電気メッキによって(またはパネルメッキおよびエッチングによって)ビア柱として製作されてその後積層されるところで、封入誘電材料34が銅柱26、28、30、32の上に積層されるガラスファイバ強化ポリマー樹脂プリプレグとして塗布されることができる。
ボトムアップパターンまたはパネルメッキを用いて、銅柱28、32の1個以上が、図1および2の誘導ビア柱7のような広範囲の誘導ビア柱であることができる。
銅フィーチャ層24は約+−5ミクロンの許容誤差で、約15ミクロンの厚さを有することができる。各ビア柱層は、一般的に広さ約40ミクロンであるが、しかし、例えば、20ミクロンから80ミクロンまでのどこかであることができる。終端パッドであることができる外側フィーチャ層24、38は、再び一般的に約15ミクロンであるが、しかし、例えば、10ミクロンから25ミクロンまでのどこかであることができる。
公知であるように、コンデンサの容量は、(誘電層の誘電率)×(コンデンサの表面積)〔:ビア柱26の接触面積÷(誘電層22の厚み)で定義される
図8の単純な1層コンデンサを使用して、誘電材料22の厚みおよびそれの堆積プロセスを最適化することが可能である。容量は誘電材料22のおよび金属電極の領域の誘電率の特性であり、それは、この場合、銅柱26の断面積である。
典型的実施態様において、概してタンタルから製作される、しかし、任意選択で金またはプラチナから製作される貴金属電極が、誘電層のいずれかの側面に塗布される。コンデンサは、したがって、ビア柱のベースでビア層内に組み込まれる。誘電層定数の厚みおよび性質を保って、ビア柱が上側電極を規定するところで;それは、容量を規定してかつ微調整するために用いることができる。
以下により詳細に述べるように、タンタル電極が使われる所でさえ、慎重に寸法を規定されたビア柱の堆積が、コンデンサの電極および誘電層のプラズマエッチング除去を可能にし、タンタルおよびタンタル酸化物を除去するが、銅を害しない、例えばフッ化水素および酸素エッチングのような、選択性エッチングだけによってコンデンササンドイッチを残す。さらに、ビア柱が電気メッキによって形成されることができるので、それは円柱形である必要がなく、矩形または別の断面形状を有することができる。
図9および図9(i)から9(xxxi)を参照して、ポリマー誘電体内に埋め込まれる、ビア柱の下に薄フィルムコンデンサを製作する一方法が更に詳細に示される。理解されるであろうことは、例示される方法は、フレームワーク内に薄フィルムコンデンサを含むビア柱の配列を共に堆積するために用いられることができることである。通常の実質的に円柱形のビア柱(例えば図1のビア柱4)および誘導ビア柱(例えば図1の誘導ビア柱7)が、同じビア層内に堆積されることができる。しかしながら、図を単純に保つために、追加的なビア柱は示されず、また以下の記述において関連づけられない。
図9(xx)内に示されるコンデンサ248は、異なる材料、一般的に金、プラチナまたはタンタルのような貴金属の専用の電極を有する。それが金またはプラチナより安価なので一般にタンタルが用いられる。しかしながら、代替構成では、上側電極がその上に電気メッキされるビア柱232であることができる。
第1に、キャリア210が調達される−ステップ9(i)。キャリア210は、一般的に犠牲銅基板である。実施態様によっては、それはそれに追加される銅の急速解放薄フィルムを備えた銅キャリアであることができる。
バリア層212が、銅キャリア210上へ堆積される−ステップ9(ii)。バリアメタル層212は、ニッケル、金、スズ、鉛、パラジウム、銀およびそれの組合せで製作されることができる。実施態様によっては、バリアメタル層は1ミクロンから10ミクロンまでの範囲内の厚さを有する。一般的に、バリア層212はニッケルを備える。ニッケルの薄いバリア層212が物理蒸着プロセスによってまたは化学堆積プロセスによって堆積されることができ、一般的に、それは銅キャリア210上へスパッタリングされるかまたは電気メッキされる。高速な処理のために、バリア層212は電気メッキされることができる。平面性および円滑な表面を確実にするために、それは次いで、例えば化学機械研摩(CMP)によって平坦化されることができる−ステップ9(iii)(図9(iii)は図9(ii)と同一である)。
銅の薄層214が、次にバリア層212上へ堆積される−ステップ9(iv)。銅層214の厚さは、一般的に数ミクロンであってかつスパッタリングによってまたは電気メッキによって製作されることができる。
第1電極216が、次に堆積される−ステップ9(v)。例証として、第1電極216はスパッタリングによってタンタルで製作されることができる。
誘電層218が、次に堆積される−ステップ9(vi)。高性能コンデンサのために、誘電層218は、電荷リークを可能にする故障のリスクを冒さずに、できるかぎり薄く保持されなければならない。用いられることができる種々の候補材料が、ある。これらはTa、BaOSrTiおよびTiOを含み、例えば、それはスパッタリングによって堆積されることができる。一般的に、誘電層218の厚さは0.1から0.3ミクロンまでの範囲内にある。
第2電極220が、次に堆積されることができるーステップ9(vii)。例証として、第2電極220がスパッタリングによってタンタルで製作されることができる。
変形プロセスでは、第2貴電極220は塗布されない。むしろ、銅ビアが誘電体上へ直接堆積され、そのフットプリントがコンデンサの上側電極およびしたがって、有効面積および容量を規定する。
さらに、電荷リークに結びつくかもしれない欠陥のないTa、BaOSrTiまたはTiOの薄い誘電層を製作することは、困難である。この問題を克服するために、いくつかの実施態様においてアルミニウム層(図示せず)が、Ta、TiO、BaSr1−xTiO、BaTiO層を堆積する前か後に堆積され(任意選択のステップ9(v)bまたは任意選択のステップ9(vi)b−図9を参照)、および酸素環境で熱に曝すことによって、アルミニウム層が、高誘電セラミックアルミナ(Al)に酸化される。アルミナは、アルミニウムより密度が高くなく、隣接するボイドに拡大する。このように、欠陥を硬化させ、かつ、連続的薄型誘電体が電極を分離することを確実にすることが可能である。
主プロセスにおいて、銅の更なる層222が第2電極220の上に堆積される−ステップ9(viii)。例えば、銅の更なる層222がスパッタリングによってまたは電気メッキによって堆積されることができる。更なる銅層222が、パターンメッキによってパターン化されたフォトレジストに堆積されることができ、例えば、パッド、導体およびインダクタを設けるために印刷およびエッチングによって製作されることができる。フォトレジスト層208が銅キャリア210の下に塗布されることができ、および、第2のフォトレジスト層224が銅の更なる層222の上に塗布されてかつパターンに現像される−ステップ9(ix)。
パターン化されたフォトレジスト224によって保護されない銅の更なる層222の領域が、エッチング除去される−ステップ9(x)。ウエットエッチングが、用いられることができる。例証として、パターン化されたフォトレジスト224によって保護されない銅の更なる層222の領域をエッチング除去する一方法は、高い温度で水酸化アンモニウムの溶液に犠牲基板をさらすことから成る。代わりとして、塩化銅またはウエット塩化鉄エッチングが用いられることができる。
露出された電極層216、220および誘電層218が、プラズマエッチングプロセスを用いてドライエッチングによって除去されることができる−ステップ9(xi)。例えば、フッ化水素および酸素プラズマエッチングがTiOまたはTaをエッチングし、ならびにフッ化水素およびアルゴンプラズマエッチングがBaOSrTi(BST)をエッチングするために用いられることができる。CF:Oに対する典型的濃度比率は、50:50から95:5の間の範囲内にあり、ここで95はCFの濃度である。CF:Arに対する典型的濃度比率が、50:50から5:95の間の任意の比率であることができ、ここで95はArの濃度である。
変形方法では、前述のように、何の上側電極220も堆積されない。むしろ、銅ビアが誘電材料上へ直接製作される。ステンシルによってまたはレーザーによって、フォトレジストをパターン化することが、ビアの断面サイズおよび形状の正確な制御を可能にし、それは、上側電極として機能してかつ容量がビア電極の実効面積に比例するので、コンデンサの容量を規定する。
主プロセスにおいて、パターン化されたフォトレジスト224、同じく通常、第2のフォトレジスト層208が、次に剥離される−ステップ9(xii)。しかしながら、フォトレジストの第2層208がフォトレジスト228の類似した層によってまもなく置換されるので−それが代わりとして保持されることができる。
銅のシード層226が、コンデンサおよび露出された銅層214の上におよびそのまわりにステップ9(xiii)で堆積される。接着を助けるために、チタンの第1のシード層が最初に堆積されることができる。
次に前方へ図9(xiv)に対して異なるスケールへ移ると、更なるフォトレジスト層228が、(図9(xi)に示される層208が除去されたと想定して)銅基板を保護するために塗布され、および、厚いフォトレジスト層230がシード層226の上に堆積されてかつパターン化される(ステップ9(xiv))。銅相互接続232が、フォトレジスト230によって作り出されるパターンに電気メッキされる−ステップ9(xv)。
フォトレジスト228(208)、230が、次に剥離され−ステップ9(xvi)、それによってシード層226および銅ビア柱232相互接続によって短絡されるコンデンサ248を露出させる。
シード層226が、銅層214およびビア232に対する損傷を最小化するが、しかし、銅層214および銅ビア232がコンデンサ248によって互いに絶縁されることを確実にする急速エッチングによってエッチング除去される−ステップ9(xvii)。
プロセスは、多くの変形が可能である。例えば図9(xviii)を参照して、銅基板およびビアの上にポリマーベースの誘電材料234を積層する前に、構造体が、銅は耐性があるがタンタルおよび酸化チタンがエッチングされやすい、フッ化水素および酸素の混合物のようなプラズマエッチングによってプラズマエッチングされることができる−ステップ9(xviii)。これは、ビア柱232のそれにまでコンデンサの寸法を減少させる。ビア柱232がフォトレジストを電気メッキすることによって製作されるので、これが、高精度で実質的に任意のサイズおよび形状に製作する可能性を提供し、かつ、高い実装密度を可能にするために、円形の代わりに正方形または矩形にすることができる。余剰コンデンサ材料を除去することは、構成要素の間の高い実装密度を可能にする。
コンデンサ348またはコンデンサ248が次いで、ポリマーベースの誘電材料234の層を銅基板およびビアの上に積層することによってポリマーベースの誘電材料234内に埋め込まれる−ステップ9(xix)。ポリマーベースの誘電材料234は一般的にポリイミド、エポキシまたはBT(ビスマレイミド/トリアジン)またはそれらの混和物であってかつガラスファイバによって強化されることができる。実施態様によっては、ポリマー樹脂の編ファイバマットからなるプリプレグが、用いられることができる。ポリマーマトリクスが、0.5ミクロンと30ミクロンの間の平均粒子径を一般的に有する無機粒状フィラーを含むことができ、および、ポリマーは一般的に15重量%と30重量%の間の微粒子を含む。
時には誘電体と呼ばれるとはいえ、ポリマーベースの誘電材料234は、一般的に例えばTaまたはBaOSrTiまたはTiOのようなよりエキゾチックな材料であるコンデンサ248の誘電層218のそれと比べて、有意により低い誘電率を有する。
硬化後のポリマーベースの誘電材料234が、次いで薄くされて−ステップ9(xx)、例えば化学機械研摩(CMP)によって平坦化され、それによって銅ビア232の端部を露出する。銅の更なるシード層236が、次いでポリマーベースの誘電材料234および銅ビア232の端部の上に堆積される−ステップ9(xxi)。フォトレジスト層238がシード層236の上に塗布され、および、フォトレジスト層238がパターン化される−ステップ9(xxii)。銅のフィーチャ層240が、パターンに次いで電気メッキされる−ステップ9(xxiii)。
フォトレジスト238が、次に剥離されることができる−ステップ9(xxiv)。
この段階で、下部銅層214が、銅の相互接続部232内に埋め込まれるコンデンサ248経由で、上部銅層240に銅相互接続部232によって連結される。
更なるフォトレジスト層242が、堆積されてパターン化されることができ−ステップ9(xxv)、および、銅ビア244がパターンに電気メッキされることができる−ステップ9(xxvi)。
フォトレジスト242が剥離されることができ、直立した銅ビア244を残し−ステップ9(xxvii)、および、銅シード層236が次いでエッチング除去される−ステップ9(xviii)。銅シード層は、ドライプラズマエッチングによってまたは例えば塩化銅によるもしくは塩化アンモニウム溶液による短期エッチングによって除去されることができる。
図9(xxix)を参照して、誘電材料234が直立したビア244の上に積層されることができる。
銅キャリア210がここで、そのようにするために塩化銅または塩化アンモニウム溶液を一般的に用いて、エッチング除去されることができ−ステップ9(xxx)、(一般的にニッケル)バリア層212がエッチストップ層として機能する。
バリア層212は次いで、プラズマエッチングのような適切なエッチング技法によってまたは特定の化学エッチング液によって除去されることができる−ステップ9(xxxi)。例えば、銅を除去することなくニッケルをエッチング除去するために、硝酸過酸化水素の混合物が用いられることができる。使用されることが出来るニッケルを溶解する他の代替物は、塩化水素酸+過酸化水素、熱濃硫酸および塩化水素酸で酸性化される鉄(III)塩化物を含む。
ポリマー層246が、次いで薄くされて平坦化され−ステップ9(xxxii)、銅ビア244の端部を露出する。研削、研磨または組み合わせられた化学機械研摩(CMP)が、用いられることができる。
ここまで、高度な、高性能コンデンサ248が薄フィルムコンデンサ248の上に立つ銅ビア232を含む銅ビア層を備える複合構造体250にどのように埋め込まれることができるかが示されたが、しかし、図1に示されるそれらのように、さらに誘導ビア7および通常のビア柱4を含むことができる。
フレーム1が単一ビア層を備える所で、段階9(xx)の後、キャビティ2(図1)がフレームに打ち抜かれ、および構成要素(例えば8および9、図2)がフレーム1内に配置されてかつファイバ強化ポリマーフィラーであることができるポリマーベースの誘電材料10を用いて埋め込まれるかまたは編ファイバプリプレグとして塗布される。
そのような場合、フィーチャ層240および上部ビア層244が、CMPを用いて円滑に研磨されてかつ更なるビルドアップのための基板として処理される充填されたフレームの上に堆積されることができる。
代わりとして、フレームはフィーチャ層240および、おそらく、第2のビア層244、およびポリマーベースの誘電マトリクス234、246内に埋め込まれる追加的な層をさえ備えることができる。キャビティが、次いで多層フレームから打ち抜かれるかまたは切り抜かれることができる。
コンデンサプレートおよび誘電体の平面方向形状がフォトレジストをパターン化することによって決定されるので、理解されるであろうことは、コンデンサは実質的に任意の形状で製作されることができることである。一般的にコンデンサは正方形または矩形であるが、円形であるかまたは実際に事実上任意の他の形状を有することができる。コンデンサは、1、2、3またはより多くの層を有することができる。誘電体の厚さが慎重に制御されることができるので、大きな範囲にわたって実質的に任意の容量を有するようにこのプロセスによって製作されるコンデンサを調整することが可能であり、および、容量を正確に制御し、特定の動作周波数に対してそれを最適化することが可能である。
また、注意されることは、ビア244はそれがドリルアンドフィル技術によって製作されないので、単純な円柱形のビア柱であることに制限されないことである。フォトレジスト242内でパターンに電気メッキを用いて製作することによって、ビア244はまた、実質的に任意の形状およびサイズを有することができる。ビア244がビア層内の広範囲のワイヤであることができるので、ビア244はインダクタであることができてかつ約0.1nHから約10nHまでにわたるインダクタンスを有する高Qインダクタであることができる。
コンデンサ248およびインダクタ244の組合せは、RFフィルタの提供を可能にすることが認識されよう。
ステップ10(xxxiii)からステップ10(xL)および対応する図10(xxxiii)から図10(xL)を参照して、フィルタのポートを製作するための技術が、次に記述される。
この種のポートがフレーム1上へ堆積されることができるが、しかし一般的に埋め込み構成要素8、9によって充填されたキャビティ2および両方の側面上の一般的に追加的な層のまわりにフレーム1を含む構造体上へ堆積されることが理解されよう。
ステップ10(xxxiii)を参照して、チタンシード層252が次にマトリクス246および銅(インダクタ)ビア244の露出端の上にスパッタリングされる。ステップ10(xxxiv)を参照して、銅層254が、次にチタン層252の上にスパッタリングされる。
ステップ10(xxxv)を参照して、フォトレジスト256、258の層が複合構造体250の各側面に置かれてパターン化される。ステップ10(xxxvi)を参照して、銅260、262が、ポートを作り出すためにパターン化されたフォトレジスト256、258に電気メッキされる。
ステップ10(xxxvii)を参照して、フォトレジスト256、258の層が次に剥離され、直立した銅ポート260、262を残す。ステップ10(xxxviii)を参照して、チタン252および銅254層がエッチング除去される。(銅パッド260、262は、このプロセスでわずかに損傷を受ける。)
このように形成されるくぼみは、ソルダーマスク264で充填されることができ−ステップ10(xxxix)、および銅がENEPIG 266または他の適切な終端技術で保護される−ステップ10(xL)。
前述のように、好ましいビア柱技術を用いて、フォトレジストに堆積されてかつその後積層される電気メッキされたビアは、広範囲にわたる形状およびサイズを有することができる。さらに、フレームはパッドによって隔てられる2つ以上のビア層を含むことができる。
図11を参照して、この柔軟性は一般的にビア柱を備える銅のコイル1200が、キャビティ1204のまわりの誘電フレーム1202内に埋められることを可能にする。例えば、示されるコイル1200は3層の延在するビア柱1206、1207、1208、おそらく、フィーチャ層上に堆積されるビア柱を有する。層1206、1207、1208は、垂直要素1209、1210によって共に連結される。垂直要素1209、1210は、ビア柱またはフィーチャ層、またはフィーチャ層上のビア柱であることができる。
コンデンサ1250がインダクタの下にまたは中に、一般的にビア柱1209のベースに製作されることができる。コンデンサを製作するための技法が、図8および9を参照して上に記述される。実際問題として、銅ビア柱のコイル1200は概ねフィーチャ層によって共に連結される細長いビア柱、またはビア柱によって連結される細長いフィーチャ層を備える。一般に、ビア柱層はフィーチャ層と交互になり、およびコイルは層ごとに構築されなければならない。
コンデンサおよびインダクタを組み合わせることによって、フィルタがもたらされることができる。フィルタの例は、図12−16内に示される。これらのフィルタのいずれかまたは類似物がチップソケットのフレーム内に製作されることができ、かつチップおよびフィルタの両方を含む埋め込み回路をもたらすために埋め込みチップと組み合わせられることができることが理解されよう。基板は2個以上のチップに対して、例えばプロセッサチップおよびメモリチップに対して、2個以上のソケットを含むことができる。さらに、若干の層が埋め込みチップの上に製作されることができ、例えばフィーチャ層内のコンデンサまたはインダクタが、チップの上に堆積されることができる。
図10(xL)の構造体を示す3次元表現である図12a、等価回路図である図12b、および図10(xL)の構造体の平坦な概略図である図12cを参照して、理解されるであろうことは、このように作り出される構造体は、基本的に4つのポート、P1、P2、P3、P4、コンデンサCおよびインダクタLからなる基本的LC低域フィルタ300であることである。
図12dを参照して、図9(xviii)内に示されるプラズマエッチングステップを用いる変形製造技法において、ビアV2のフットプリントがコンデンサC2の容量およびサイズを規定し、そこで余剰材料がプラズマエッチングによってエッチング除去される。したがって、12dは、ビア柱V2が図3から7の構造体のコンデンサの電極および誘電層のサイズを規定する図12aに等しい基本的LC低域フィルタの概略断面である。
図12eは、図12aのさらにもう一つの基本的LC低域フィルタの概略断面であり、コンデンサC3の頂部電極が、貴金属の上側電極を最初に堆積することのないビア柱V3である。この種の構造体の製作では誘電体から銅シード層の全てを除去するために注意がなされなければならない。
理解されるであろうことは、図9および図9(i)から図9(xxxii)および図10(xxxiii)から図10(xL)内に詳述される技術が、異なる特性を備えた非常に広い範囲のフィルタ回路を作り出すために用いられることができることである。図2に示すように、これらの多くは、またはキャビティ2内に埋め込まれる能動素子を保護するために、キャビティ2内に埋め込まれるコンデンサ8、9を含むことができる。
例えば、図13aおよび13bを参照して、基本的LC高域フィルタが製作されることができる。図14aおよび14bを参照して、基本的LC直列帯域フィルタが製作されることができ、同様に図15aおよび15bを参照して、基本的LC並列帯域フィルタが製作されることができる。図16aおよび16bを参照して、適切な変形と共に必要な変更を加えて、低域並列チェビシェフフィルタが製作されることができる。
単一フィルタが例示されたとはいえ、理解されるであろうことは、実際問題として、次いで分断されることができる大きなプレート内に、この種のフィルタの巨大な配列が共に製作されることである。他の構成要素が、フィルタと共に製作されることができる。フィルタ260は、基板に表面実装されるかまたはその周りに更なるフィーチャおよびビア層を堆積することによって基板に埋められることができる。
後述するように、実施態様によっては上記の通りのフィルタが、基板内に埋め込まれることができ、およびソケットが、例えば、プロセッサおよびフィルタを含むことができる完全に埋め込まれたRF回路の製作を可能にするために、プロセッサチップまたはメモリチップのような、チップを収容するために基板を通して打ち抜かれることができる。
一般に、集積度を向上させる埋め込みの明らかな利点にもかかわらず、理解されるであろうことは、何かが誤る場合、それが埋め込まれる構成要素および構造体が廃棄されなければならないという点で、埋め込み構成要素による固有の欠点があることである。時には、問題の根本的原因を診断することは、構成要素が分離されずかつ個々にテストされることができないところで困難である場合がある。しかしながら、基板の表面上の高価な(面積)に対する要求および小型化に向けての一般的なトレンドに起因して、フィルタおよび他の受動素子、更に、プロセッサおよびメモリのような能動素子を埋め込むことに有意な利点がある。
それはフィルタおよび他の受動素子が表面実装のためのスタンドアローン製品として製作されることができる本発明の特徴である。しかしながら、一旦最適化されると、処理はこの種の構成要素を埋め込むために基板の製作処理に一体化されることができる。
コンデンサの容量は、電極板面積、誘電体の厚さおよびその誘電率に依存することは理解されよう。一般的に、RFフィルタ用のコンデンサは約5と約15pFの間の容量を有する。ここで記述される技術を用いて、例えば9と12pFの間の、さらに10と11pFの間の狭い範囲に容量を制御することが可能である。
本発明のインダクタは、ナノヘンリーの範囲内のインダクタンスを有することができる。例えば0.2nHから300nH、しかし、一般的に1nHから約10nH。
これらのインダクタのインダクタンスを、約4nHから約8nHの範囲まで有するような狭い範囲に、または、必要とされるところでは、例えば約5nHと約6nHの間の1ナノヘンリー未満の範囲にさえ、制御することが可能である。
前述のように、基板は埋め込み受動素子で製作されることができる。チップのような能動素子が、この種の基板上に表面実装されるか、または以下により完全に記述される技術を用いてこの種の基板内のソケット内に埋め込まれることができる。本発明の実施態様は、メモリチップまたはプロセッサチップのようなチップがその時埋め込まれることができるソケットのまわりにフレーム内に埋め込み受動素子を製作しようと提案する。
この種のフレームは、ソケットの配列のまわりの大きなフレームワーク内にレイアウトされることができる。配列の各ソケットは、同一のチップを収容するために同一であることができる。代わりとして、配列はその周りに一部または全てのフレーム内に異なる埋め込み受動素子を備えた異なるソケットから成ることができる。例えば、配列はメモリおよび処理チップに対して交互になっているソケットを含むことができる。ソケットは、さらにコンデンサまたはフィルタのような受動素子を備えるチップを収容することができる。受動および能動構成要素の両方が、ソケットに埋め込まれることができる。例えば、マルチソケットフレームが受動素子用の1個以上のソケットおよびメモリチップまたはプロセッサチップのような能動素子用の1個以上のソケットを含むことができる。製作を容易にするために、この種のチップがソケット内にロボットによって堆積されることができて、そして次に、そこにファイバ強化材を含むことができるポリマー誘電体をまわりに注入することによって適所に保持されることができる。場合によっては、チップはその上にポリマーフィルムを積層することによって適所に保持されることができる。
チップをインターポーザに取り付けるための全ての方法が、高価である。ワイヤボンディングおよびフリップチップ技術は高価であり、および壊れた接続部は故障に帰着する。表面実装よりむしろチップを埋め込むことは、製造費用を減少させることができてかつ信頼性および歩留りを向上することができる。
ソケットを製作するためのかつこの種のソケットにチップを埋め込むための技術が、次に記述される。
図17を参照して、ポリマーマトリクス1016を備えるフレームワークおよびポリマーマトリクスフレームワーク1016を通しての金属ビア1014の配列によって規定されるチップソケット1012の配列1010の一部が、示される。
配列1010は、各々、ポリマーマトリクスフレームワーク1018のポリマー1016を通して銅ビア1014のグリッドを備えるポリマーマトリクスフレームワーク1018によって取り囲まれて規定される、チップソケット1012の配列を備えるパネルの一部であることができる。ポリマーマトリクス1016は、一般的にガラスファイバ強化材を含み、かつ最も一般的に樹脂含浸編ファイバプリプレグで製作される。
各チップソケット1012はしたがって、ソケット1012‘のまわりに配置されるフレーム1018を通して複数の銅スルービアを備えたポリマーマトリクス1016のフレーム1018によって取り囲まれる。
フレーム1018はポリマーシートとして塗布されるポリマーで製作されることができるか、またはプリプレグとして塗布されるガラスファイバ強化ポリマーであることができる。より詳細は図22および23を参照して製作の方法が検討される下記に見いだされることができる。
図18を参照して、出願人Zhuhai Accessのパネル1020は一般的に水平バー1025、垂直バー1026および外側フレーム1027からなる主フレームによって、互いに隔てられるブロック1021、1022、1023、1024の2x2配列に分割される。ブロックは、チップソケット1012の配列−図17を備える。5mmx5mmチップソケットおよびAccessの21インチx25インチパネルを想定して、この製造法は各パネル上に10,000チップがパッケージ化されることを可能にする。対照的に注意されることは、現在業界で用いられる最も大きなウエハである12インチウエハ上にチップパッケージを製作することが1度にわずか2,500チップが処理されることを可能にするので、Zhuhai Accessの技術を用いて大きなパネルで製作する際の規模の経済性が理解されるであろうということである。
この技術に適切なパネルは、しかしながら、いくぶんサイズが変化する。一般的に、パネルは約12インチx12インチと約24インチx30インチとの間にある。現在の使用でのいくつかの標準サイズは、20インチx16インチ、20.3インチx16.5インチおよび24.7インチx20.5インチである。
パネル1020の全てのブロックが、その中に同じサイズのチップソケット1012を有する必要はない。例えば、図18の概略例証では、最上部右のブロック1022のチップソケット1028は他のブロック1021、1023、1024のチップソケット1029より大きい。さらに、1つ以上のブロック1022が、異なる寸法のチップを収容するために異なる寸法のソケットに用いられることができるだけでなく、しかし任意のサイズの任意のサブ配列が任意の特定のダイパッケージを製作するために用いられることができ、それで大きなスループットにもかかわらず、少数のダイパッケージの小さいランが製作されることができ、異なるダイパッケージが特定の顧客のために同時に処理されるか、または異なるパッケージが異なる顧客のために製作されることを可能にする。したがって、パネル1020は1つのタイプのチップを収容するための第1のセットの寸法を備えたソケット1028を有する少なくとも1つの領域1022および第2のタイプのチップを収容するための第2のセットの寸法を備えたソケット1029を有する第2の領域1021を備えることができる。
前述のように図17を参照して、各チップソケット1012(1028、1029 図18)がポリマーフレーム1018によって取り囲まれ、各ブロック(1021、1022、1023、1024−図18)内にソケット1028(1029)の配列が配置される。
図19を参照して、チップ1035が各ソケット1012内に配置されることができ、および、チップ1035のまわりの空間は、ポリマー1036またはフレーム1016を製作するために用いられるそれと同じポリマーであるかもしくは同じでないかもしれないポリマーベースの複合物によって充填されることができる。それは、例えばモールドコンパウンドであることができる。実施態様によっては、フィラーポリマー1036のマトリクスおよびフレーム1016のそれが類似したポリマーであるが異なる補強ファイバを備えたものを用いることができる。例えば、フレームは補強ファイバを含むことができるが、一方、ソケット内に充填するために用いられるポリマー1036は、ファイバなしであることができる。
典型的ダイサイズは、離間距離で意図されたダイを収容するためにわずかにより大きなソケットと共に約1.5mmx1.5mmから約31mmx31mmまでのいずれでもあることができる。インターポーザフレームの厚さは、少なくともダイの深さでなければならず、かつ好ましくは10ミクロンから100ミクロンである。一般的に、フレームの深さはダイの厚さ+更に20ミクロンである。
ソケット1012へのチップ1035の埋め込みの結果として、個々のチップが、各ダイの縁部のまわりに配置される、それを通してビア1014を有するフレーム1038によって取り囲まれる。
Accessのビア柱技術を用いて、パターンメッキによってまたは選択エッチングが後に続くパネルメッキによって、ビア1014がビア柱として製作されることができ、ポリマーフィルムまたは、追加された安定性のためにポリマーマトリクス内の編ガラスファイババンドルからなるプリプレグを用いて誘電材料によってその後積層されることができる。一実施態様において、誘電材料はHitachi 705Gである。もう1つの実施態様では、MGC 832 NXA NSFLCAが用いられる。第3の実施態様では、Sumitomo GT−Kが用いられることができる。もう1つの実施態様では、Sumitomo LAZ−4785シリーズフィルムが用いられる。もう1つの実施態様では、Sumitomo LAZ−6785シリーズが用いられる。例えば、代替材料はTaiyo HBIおよびZaristo−125を含む。
代わりとして、ビアはドリルフィル技術として周知のものを用いて製作されることができる。最初に、ポリマーまたはファイバ強化ポリマーマトリクスが製作され、次に、硬化の後、それが機械的穴あけまたはレーザー穴あけのどちらかによって穴をあけられる。ドリル穴は次いで、電気メッキによって銅で充填されることができる。
しかしながら、ドリルフィル技術よりむしろビア柱を用いてビアを製作する際に多くの利点がある。ビア柱技術では、全てのビアが同時に製作されることができるので、ビア柱技術はドリルアンドフィルより高速である一方、穴は個々にあけられる。さらに、穴をあけられたビアは基本的に円柱形である一方、ビア柱は任意の形状を有することができる。実際問題として、全てのドリルフィルビアが(許容誤差の範囲内で)同じ直径を有する一方、ビア柱は異なる形状およびサイズを有することができる。さらに、高められた剛性のために、好ましくはポリマーマトリクスが一般的にガラスファイバの編バンドルによって強化されるファイバである。ポリマープリプレグ内のファイバが直立したビア柱の上に置かれて硬化されるところで、柱は円滑な垂直側面によって特徴づけられる。しかしながら、ドリルフィルビアは一般的にいくぶんテーパーをつけ、かつ複合物が穴をあけられるところで;ビアは、一般的にノイズを引き起こす迷いインダクタンスに帰着するざらつきを有する。
概ね、ビア1014は広さ40ミクロンから500ミクロンの範囲である。ドリルフィルに必要とされるような、かつ例えばビア柱に対してよくあることだが、円柱形の場合、各ビアは25ミクロンから500ミクロンまでの範囲の直径を有することができる。
図19を更に参照して、埋め込みビアを備えたポリマーマトリクスフレームワーク1016を製作した後に、ソケット1012がCNCまたは打抜きによって製作されることができる。代わりとしてパネルメッキまたはパターンメッキのどちらかを用いて、犠牲的銅ブロックが堆積されることができる。例えばフォトレジストを用いて、銅ビア柱1014が選択的にシールドされる場合、この種の犠牲的銅ブロックがソケット1012を作り出すためにエッチング除去されることができる。
各ソケット1012のまわりのフレーム1038内にビア1014を備えたソケット配列1038のポリマーフレームワークが、個々のチップパッケージならびに多チップパッケージおよびパッケージ上のパッケージ「PoP」配列のようなビルトアップ多層チップパッケージを含む多数のチップパッケージを作り出すために用いられることができる。
一旦チップ1035がソケット1012内に配置されると、それらはモールドコンパウンド、乾燥フィルムまたはプリプレグのようなポリマー1036を用いて所定の場所に固定されることができる。
図20を参照して、銅ルーティング層1042、1043が、チップ1035を埋め込まれるフレームワーク1040の片面または両面上に製作されることができる。一般的に、チップ1035はフリップチップであってかつチップ1035の縁部を越えて扇形に広がるパッド1043に連結される。スルービア1014のおかげで、上側表面上のパッド1042が、PoPパッケージングなどに対してチップの更なる層を連結することを可能にする。基本的に、上下のパッド1042、1043がより複雑な構造体を作り出すために更なるビア柱およびルーティング層を構築することを可能にすることが理解されよう。
ダイシングツール1045が、示されている。パネル1040内にパッケージ化されたチップ1035の配列が図21に示すように個々のチップ1048に容易にダイシングされることができることが理解されよう。
図22を参照して、実施態様によっては、隣接するチップソケットが異なるサイズおよび/または異なる形状を含む異なる寸法を有することができる。例えば、プロセッサチップ1035が1個のソケット内に配置されることができてかつ隣接するソケット内に配置されるメモリチップ1055に連結されることができる。配列がダイシングされる時、隣接するソケットは共に保持されることができる。したがって、パッケージは複数のチップを含むことができてかつ、おそらく受動フィルタチップを含む異なるチップを含むことができるが、しかし、コンデンサおよびフィルタを製作するために上記した技術を用いて、フレームワークの一部として共に製作されることができることが、注意されよう。
パッド1042、1043は、ボールグリッド配列BGAまたはランドグリッド配列LGA経由でチップに連結することができる。現在の最高水準の技術で、ビア柱は長さ約130ミクロンであることができる。チップ1035、1055が約130ミクロンより厚いところで、1個のビアを別のビアの上にスタックする必要があるかもしれない。ビアをスタックするための技術は公知であり、かつなかでも、Hurwitz他に付与された同時継続の(特許文献8)および(特許文献9)内で検討されている。
図23を参照して、ポリマーフレーム1016内にダイ1055を備えるダイパッケージ1048が下から示され、それでダイ1055がフレーム1016によって取り囲まれ、およびスルービア1014がダイ1055の周辺部のまわりにフレーム1016を通して設けられる。ダイが、ソケット内に配置されてかつ第2のポリマー1036によって適所に保持される。フレーム1016は、一般的に安定性のためにファイバ強化プリプレグで製作される。第2のポリマー1036もまたプリプレグであることができるが、しかしポリマーフィルムまたはモールドコンパウンドであることができる。一般的に、示すようにスルービア1014は単純円柱形ビアであるが、それらは異なる形状およびサイズを有することができる。チップ1055上の半田球1057のボールグリッド配列の一部が、ファンアウト構成でパッド1043によってスルービア1014に接続される。示すように、チップの下で直接基板に連結される追加的な半田球があることができる。実施態様によっては通信およびデータ処理のために、スルービアの少なくとも1個が同軸ビアである。他の実施態様では、少なくとも1個のビアが伝送線である。例えば、同軸ビアを製造するための技術は、同時係属の(特許文献9)に与えられている。伝送線を製作するための技術は、例えば(特許文献10)内に示される。
チップスタッキングのための接点を設けることに加えて、チップを取り囲むスルービア1014が、チップをその周囲から隔離してかつファラデーシールドをもたらすために用いられることができる。この種のシールドビアは、チップの上のシールドビアを相互接続してかつそれに対してシールドをもたらすパッドに連結されることができる。
チップを取り囲む複数行のスルービアがあることができ、内側行が信号のために、かつ外側行がシールドのために用いられることができる。外側行は、チップによって生成される熱を放散させるためにそれによってヒートシンクとして機能することができる、チップの上に製作される固体銅ブロックに連結されることができる。異なるダイが、このようにパッケージ化されることができる。とりわけ注意されることは、1個以上のビアが広範囲のインダクタであることができ、ならびにコンデンサが共に製作されることができ、ならびにインダクタおよびコンデンサがフィルタを共にもたらすようにフレーム内に埋め込まれることができることである。
ここで記述されるスルービアを有するフレームによる埋め込みチップ技術は、接点が短く、チップあたりの接点の数が相対的に少ないので、アナログ処理に特に適している。
理解されるであろうことは、ここで記述される技術は、ICチップをパッケージ化することに限定されないことである。実施態様によっては、ダイはフューズ、コンデンサ、インダクタおよびフィルタからなる群から選ばれる構成要素を備える。インダクタおよびフィルタを製作するための技術は、Hurwitz他に付与された同時継続の(特許文献5)内に記述される。
図24および図24(a)から24(l)を参照して、有機マトリクスフレームワークによって取り囲まれるチップソケットの配列を製作する方法が以下のステップを含む:
犠牲的キャリア1080を得る―24(a)。
任意選択で、銅のシード層1082が銅キャリア1080上へ塗布される−24(b)。耐エッチング層1084が、シード層1082の上に塗布され−24(c)、一般的にニッケルからなる、かつ一般的にスパッタリングのような物理蒸気プロセスによって堆積される。例えば、それは電気メッキまたは無電解メッキによって代わりとして堆積されることができる。他の候補材料は、その全てがスパッタリングされることができる、タンタル、タングステン、チタン、チタン−タングステン合金、スズ、鉛、スズ−鉛合金を含み、ならびにスズおよび鉛はさらに電気メッキされるかまたは無電解メッキされることができ、バリアメタル層は一般的に厚さ0.1から1ミクロンである。(各候補バリア層材料は、適切な溶媒またはプラズマエッチング条件によって後で除去される)。バリア層の塗布の後、更なる銅シード層1086が塗布される−24(d)。銅シード層は、一般的に厚さ約0.2ミクロンから5ミクロンである。
ステップ24(b)から24(d)が、基板へのバリア層の良い接着、ビアの良い接着および成長を確実にするために、かつビアに損傷を与えることなくエッチングによって基板の以降の除去を可能にするために好ましい。最高の結果がこれらのステップを含むとはいえ、それらはしかしながら任意選択であり、1つ以上が用いられないかもしれない。
フォトレジストの層1088が、次に塗布され−ステップ24(e)、図24(e)、かつ銅ビアのパターンによってパターン化される−24(f)。次に銅1090が、パターンにメッキされ−24(g)、およびフォトレジスト1088が剥離除去される−24(h)。直立した銅ビア1090が、ファイバ強化ポリマーマトリクスプリプレグであることができるポリマー誘電体1092を積層される−24(i)。積層ビア配列が薄くされてかつ銅ビアの端部を露出させるために平坦化される−24(j)。キャリアが、次いで除去される。
任意選択でかつ好ましくは、銅ビアの露出端部を備えた平坦化されたポリマー誘電体が、銅キャリア1080が除去される−24(l)前に、フォトレジストまたは誘電フィルムのような耐エッチング材料1094を塗布することによって保護される−24(k)。一般的に、キャリアは銅を溶解することによって除去される銅キャリア1080である。アンモニウム−水酸化物または塩化銅が、銅を溶解するために用いられることができる。
バリア層が次いでエッチング除去されることができ−24(m)、かつ、エッチング保護層1094が除去されることができる−ステップ24(n)。
ここで記述されないとはいえ、理解されるであろうことは、直立した銅ビアがパネルメッキによって製作され、かつビアを残すために余分な銅を選択的にエッチング除去することができることである。実際に、ビアをシールドするのに対して、銅パネルの一部を選択的にエッチング除去することによってソケットが代わりとして製作されることができる。
1個以上のビア1090がその中にコンデンサ6を含む図1の修正されたビア5であることができることが前述のように理解されよう。さらに、1個以上のビアが図1のインダクタビア7であることができる。
単純ビア1090だけが必要とされ、かつその中にコンデンサ6または図1のインダクタビア7を含む図1の修正されたビア5でなく、しかし単純円柱形ビアだけが必要とされるビア柱技術が好まれるとはいえ、ドリルアンドフィル技術もまた用いられることができる。
図25および図25(a)から25(e)を参照して、別の変形方法において、銅張り積層板(CCL)1100からなるキャリアが得られる−25(a)。CCLは、数10から数百ミクロンの厚さを有する。典型的厚さは、150ミクロンである。穴1102が、CCLを通してあけられる−25(b)。穴1102は、数10から数百ミクロンの直径を有することができる。一般的に、穴の直径は150ミクロンである。
スルーホールが、次にメッキをされたスルーホール1104を作り出すためにメッキされる−25(c)。
銅張り積層板1100が次いで表面銅層1106、1108を除去するために研磨されるかまたはエッチングされ、メッキされたスルーホール(Pth)銅ビア1104を備えたラミネート1110を残す−25(d)。
次に、CNCまたは打抜きを使用して、ソケット1112がチップを収容するためにラミネートを通して製作される−25(e)。
図26を参照して、その中に埋め込みフィルタ2002を備えたフレーム2000の平面図が示され、および、種々のルーティングビア2004がプロセッサチップまたはメモリチップのようなチップを収容するためのソケット2006を含有することができる。この種のフレーム2000は、例えば図17−19内に示されるもののような大きな配列の一部として製作されることができる。示すようなフレーム2000は、シングルチップを収容するための1個のソケット2006を含む。しかしながら、フレームが2個以上のチップを収容するための2個以上のソケットを含むことができることが理解されよう。この種のソケット2006は、プロセッサチップ、メモリチップまたはその中に埋め込まれるフィルタなどを備えた受動チップを埋め込むために用いられることができる。
この明細書では、インダクタおよびコンデンサが、有機基板内の埋め込み受動素子としてどのように製作されることができるかについてかなり詳細に記述した。この種のコンデンサおよびインダクタの組合せが、フィルタをもたらすことができる。明細書は、次いで埋め込みビアを備えたポリマーフレームがどのように製作されることができるかおよびこれらが埋め込み能動素子のためのソケットとしてどのように用いられることができるか説明するために続く。これらの技術の組合せは、能動および受動構成要素の両方を含む非常に小さい高度に統合化されたRF構成要素のための1個以上の埋め込みチップおよび埋め込みフィルタを備えるパッケージの製作を可能にする。
上記の記述は、説明だけとして提供される。理解されるであろうことは、本発明は多くの変形が可能であることである。
本発明のいくつかの実施態様が、記述された。それにもかかわらず、種々の変更が本発明の主旨と範囲から逸脱することなく、なされることができることが理解される。したがって、他の実施態様は以下の請求項の範囲内である。
したがって当業者は、本発明が上に特に図と共に記載されたものに限定されないということを認識する。むしろ本発明の範囲は、添付の請求の範囲によって規定され、かつ上記のさまざまな特徴の組合せおよび副組合せ、同じく、前述の記述を読み込むと即座に当業者に思いつくであろう、その変形例および変更の両方を含む。
請求項において、語「備える(comprise)」、および「備える(comprises)」、「備えた(comprising)」、等のようなその変形は、記載される構成要素が含まれるが、しかし、一般に他の構成要素の除外ではないことを示す。
1 フレーム
2 ソケット キャビティ
4 ビア柱
5 ビア柱
6 ビア柱 コンデンサ 誘電体
7 ビア柱
8、9 コンデンサ
10 ポリマー誘電体 充填材
11、12 フィーチャ
13 インダクタ
14 基板
20 コンデンサ
21 基板
22 誘電層
24 フィーチャ層
26、28、30、32 銅柱
34 封入誘電材料
38 フィーチャ層
40 インダクタ
42 ビア柱
44 コンデンサ
52 ビア柱
54 コンデンサ
56 インダクタビア
58 トレース
60 第1のインダクタ
62 ビア柱
64 コンデンサ
66 第2のインダクタ
70 インダクタ
71、72 ビア柱
74 コンデンサ
78 トレース コネクタ
84 コンデンサ
86 誘導ビア
88 インダクタ トレース
208 フォトレジスト層
210 キャリア
212 バリアメタル層
214 銅層
216 第1電極
218 誘電層
220 第2電極
222 銅層
224 フォトレジスト層
226 シード層
228 フォトレジスト層
230 フォトレジスト層
232 ビア柱 相互接続
234 誘電材料
236 シード層
238 フォトレジスト層
240 フィーチャ層 銅層
242 フォトレジスト層
244 銅ビア
246 ポリマー層
248 コンデンサ
250 複合構造体
252 チタンシード層
254 銅層
256、258 フォトレジスト
260 銅 フィルタ
262 銅
264 ソルダーマスク
300 基本的LC低域フィルタ
348 コンデンサ
1010 配列
1012 チップソケット
1012‘ ソケット
1014 金属ビア
1016 ポリマーマトリクス フレーム
1018 ポリマーマトリクスフレームワーク
1020 パネル
1021、1022、1023、1024 ブロック
1025 水平バー
1026 垂直バー
1027 外側フレーム
1028 チップソケット
1029 チップソケット
1035 チップ
1036 ポリマー
1038 フレーム ソケット配列
1040 フレームワーク パネル
1042 ルーティング層 パッド
1043 ルーティング層 パッド
1045 ダイシングツール
1048 チップ ダイパッケージ
1055 メモリチップ
1057 半田球
1080 キャリア
1082 シード層
1084 耐エッチング層
1086 シード層
1088 フォトレジストの層
1090 銅ビア
1092 ポリマー誘電体
1094 耐エッチング材料
1100 CCL
1102 穴
1104 スルーホール
1106、1108 銅層
1110 ラミネート
1112 ソケット
1200 コイル
1202 誘電フレーム
1204 キャビティ
1206、1207、1208 ビア柱
1209、1210 垂直要素
1250 コンデンサ
2000 フレーム
2002 埋め込みフィルタ
2004 ルーティングビア
2006 ソケット

Claims (12)

  1. 有機マトリクスフレームによって画定される埋め込みチップ用のチップソケットであって、前記有機マトリクスフレームが少なくとも1つのビア層を備え、前記ビア層内において、前記チップソケットのまわりのフレームを通る少なくとも1つのビア柱が、下側電極、誘電層および上側電極を備える少なくとも1つのコンデンサと連結され、
    前記ビア柱が前記上側電極を含んで、前記チップソケット周りの有機マトリクスフレームに組み込まれ、
    前記コンデンサが、下側電極および誘電層を備え、前記少なくとも1つのビア柱が、前記誘電層の上に立って前記コンデンサの上側電極として機能し、
    前記コンデンサが、コンデンサの容量を調整するために制御される、前記ビア柱の断面積によって規定される断面積を有し、
    (前記誘電層と接触する前記ビア柱の接触面積)×(前記誘電層の誘電率)÷(前記誘電層の厚み)=(前記コンデンサの容量)、であることを特徴とするチップソケット。
  2. 前記コンデンサの誘電体が、Ta、TiO、BaxSr1−xTiO、BaTiO、BaOSrTiおよびAlからなる群の少なくとも1つを備えることを特徴とする請求項1に記載のチップソケット。
  3. 前記コンデンサの下側電極が、貴金属を備えることを特徴とする請求項1に記載のチップソケット。
  4. 前記コンデンサの下側電極が、金、プラチナおよびタンタルからなる群から選ばれる金属を備えることを特徴とする請求項1に記載のチップソケット。
  5. 前記コンデンサの上側電極が、金、プラチナおよびタンタルからなる群から選ばれる金属を備えることを特徴とする請求項1に記載のチップソケット。
  6. 前記コンデンサが、下側電極、誘電層、及び上側電極を備え、前記少なくとも1つのビア柱が、前記コンデンサの上に立っていることを特徴とする請求項1に記載のチップソケット。
  7. 前記少なくとも1つのコンデンサが、1.5pFと300pFとの間の容量を有することを特徴とする請求項1に記載のチップソケット。
  8. 前記少なくとも1つのコンデンサが、5pFと45pFとの間の容量を有することを特徴とする請求項1に記載のチップソケット。
  9. 前記有機マトリクスフレームが、少なくとも1つのフィーチャ層を更に備えることを特徴とする請求項1に記載のチップソケット。
  10. 少なくとも1つの電子構成部品が、前記ソケット内に埋め込まれて、前記少なくとも1つのビア柱に電気的に連結されることを特徴とする請求項1に記載のチップソケット。
  11. 前記少なくとも1つの電子構成部品が、第2のコンデンサを備えることを特徴とする請求項1に記載のチップソケット。
  12. 前記第2のコンデンサが、少なくとも1つの端部上に金属終端部を有する個別構成要素であることを特徴とする請求項11に記載のチップソケット。
JP2015037224A 2014-11-27 2015-02-26 フレームがコンデンサと直列に少なくとも1個のビアを備えるようなチップ用のポリマーフレーム Active JP6695066B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/555,633 US10446335B2 (en) 2013-08-08 2014-11-27 Polymer frame for a chip, such that the frame comprises at least one via in series with a capacitor
US14/555,633 2014-11-27

Publications (2)

Publication Number Publication Date
JP2016103623A JP2016103623A (ja) 2016-06-02
JP6695066B2 true JP6695066B2 (ja) 2020-05-20

Family

ID=56089679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037224A Active JP6695066B2 (ja) 2014-11-27 2015-02-26 フレームがコンデンサと直列に少なくとも1個のビアを備えるようなチップ用のポリマーフレーム

Country Status (3)

Country Link
JP (1) JP6695066B2 (ja)
CN (1) CN105655316A (ja)
TW (1) TWI689954B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158835B (zh) * 2016-07-08 2018-09-28 西安理工大学 一种基于硅通孔技术的低通滤波器
US10141908B2 (en) * 2016-08-18 2018-11-27 Qualcomm Incorporated Multi-density MIM capacitor for improved passive on glass (POG) multiplexer performance
JP6838328B2 (ja) * 2016-09-15 2021-03-03 大日本印刷株式会社 インダクタおよびインダクタの製造方法
US9953931B1 (en) * 2016-10-25 2018-04-24 Advanced Semiconductor Engineering, Inc Semiconductor device package and a method of manufacturing the same
CN108231747A (zh) * 2016-12-21 2018-06-29 中芯国际集成电路制造(上海)有限公司 半导体器件及其制作方法、电子装置
KR102099310B1 (ko) * 2018-03-23 2020-04-09 주식회사 아모텍 콤보 안테나 모듈
CN109119236A (zh) * 2018-07-25 2019-01-01 天津工业大学 一种非对称性电磁集成式耦合器
CN109981068B (zh) * 2019-05-08 2024-03-01 合肥博元电子科技有限公司 一种新型滤波器及其隔离结构
CN111696879B (zh) * 2020-06-15 2021-08-31 西安微电子技术研究所 一种基于转接基板的裸芯片kgd筛选方法
CN111769096B (zh) * 2020-06-18 2023-01-06 复旦大学 一种基于三维电容电感的通用基板及制备方法
CN111769095B (zh) 2020-06-18 2022-06-21 复旦大学 基于高功能密度硅通孔结构的三维电容电感及制备方法
CN111968972B (zh) * 2020-07-13 2024-03-26 深圳市汇芯通信技术有限公司 一种集成芯片及其制作方法和集成电路
US20240162138A1 (en) * 2021-06-25 2024-05-16 Boe Technology Group Co., Ltd. Method for forming conductive via, conductive via and passive device
US20240321724A1 (en) * 2023-03-23 2024-09-26 Qualcomm Incorporated Metal-insulator-metal (mim) capacitor interconnect for high-quality (q) inductor-capacitor (lc) filter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291958A (ja) * 2000-04-07 2001-10-19 Denso Corp 積層配線基板
US6876021B2 (en) * 2002-11-25 2005-04-05 Texas Instruments Incorporated Use of amorphous aluminum oxide on a capacitor sidewall for use as a hydrogen barrier
EP1636842B1 (en) * 2003-06-03 2011-08-17 Casio Computer Co., Ltd. Stackable semiconductor device and method of manufacturing the same
JP4899645B2 (ja) * 2006-06-02 2012-03-21 株式会社村田製作所 モジュール部品及びその製造方法
US20080099910A1 (en) * 2006-08-31 2008-05-01 Ati Technologies Inc. Flip-Chip Semiconductor Package with Encapsulant Retaining Structure and Strip
US7936567B2 (en) * 2007-05-07 2011-05-03 Ngk Spark Plug Co., Ltd. Wiring board with built-in component and method for manufacturing the same
JP5358928B2 (ja) * 2007-11-14 2013-12-04 パナソニック株式会社 立体プリント配線板
JP5286988B2 (ja) * 2007-07-09 2013-09-11 パナソニック株式会社 リジッドフレキシブルプリント配線板とその製造方法
JP2009055019A (ja) * 2007-07-30 2009-03-12 Renesas Technology Corp 多層基板、半導体集積回路用パッケージ基板及び半導体集積回路実装用プリント配線板
JP4752825B2 (ja) * 2007-08-24 2011-08-17 カシオ計算機株式会社 半導体装置の製造方法
JP4974009B2 (ja) * 2008-02-14 2012-07-11 日立金属株式会社 電子部品
JP5659592B2 (ja) * 2009-11-13 2015-01-28 ソニー株式会社 印刷回路基板の製造方法
US10014843B2 (en) * 2013-08-08 2018-07-03 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structures with embedded filters

Also Published As

Publication number Publication date
CN105655316A (zh) 2016-06-08
JP2016103623A (ja) 2016-06-02
TW201630008A (zh) 2016-08-16
TWI689954B (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6695066B2 (ja) フレームがコンデンサと直列に少なくとも1個のビアを備えるようなチップ用のポリマーフレーム
US10446335B2 (en) Polymer frame for a chip, such that the frame comprises at least one via in series with a capacitor
US10236854B2 (en) Multilayer electronic structures with embedded filters
JP6090295B2 (ja) 埋め込みチップを作製する方法
TWI658542B (zh) 具有矩形空腔陣列的聚合物框架的製造方法
KR101680593B1 (ko) 내장형 칩 패키지 구조물
JP6296331B2 (ja) ポリマー誘電体内に埋め込まれる薄フィルムコンデンサ、及び、コンデンサの制作方法
US9949373B2 (en) Interposer frame with polymer matrix and methods of fabrication
KR101770148B1 (ko) 폴리머 매트릭스를 가진 인터포저 프레임
KR20150126767A (ko) 폴리머 프레임이 커패시터와 직렬인 적어도 하나의 비아를 구비하도록 하는, 칩용 폴리머 프레임

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6695066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250