JP6681316B2 - Method and apparatus for removing acid component at high temperature in gasification power generation system - Google Patents
Method and apparatus for removing acid component at high temperature in gasification power generation system Download PDFInfo
- Publication number
- JP6681316B2 JP6681316B2 JP2016224971A JP2016224971A JP6681316B2 JP 6681316 B2 JP6681316 B2 JP 6681316B2 JP 2016224971 A JP2016224971 A JP 2016224971A JP 2016224971 A JP2016224971 A JP 2016224971A JP 6681316 B2 JP6681316 B2 JP 6681316B2
- Authority
- JP
- Japan
- Prior art keywords
- gasification
- power generation
- cyclone
- gas
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/023—Reducing the tar content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
- C10K1/024—Dust removal by filtration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
- C10K1/026—Dust removal by centrifugal forces
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
- C10K1/12—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/20—Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/20—Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
- C10K1/26—Regeneration of the purifying material contains also apparatus for the regeneration of the purifying material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/20—Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
- C10K1/28—Controlling the gas flow through the purifiers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Industrial Gases (AREA)
Description
本発明は、廃棄物をガス化・改質して得られる可燃性ガスを利用してガスタービンやガスエンジンで発電を行うシステムにおいて、高温のガス化ガス中の酸成分除去を高い除去率で達成する方法および該方法を実施するために用いられる装置に関する。 INDUSTRIAL APPLICABILITY The present invention uses a combustible gas obtained by gasifying and reforming waste to generate electricity in a gas turbine or a gas engine, and removes acid components in a high-temperature gasified gas with a high removal rate. It relates to a method of achieving and an apparatus used to carry out the method.
近年、地球温暖化対応への対処が強く求められ、廃棄物を利用した発電においても、ごみ焼却発電(BTG発電)の蒸気温度高温化による発電効率向上や、廃棄物をガス化・改質した可燃性ガスを利用してガスタービンやガスエンジンで発電を行うシステムが研究されている。 In recent years, there has been a strong demand for countermeasures against global warming, and even in power generation using waste, power generation efficiency has been improved by raising the steam temperature of waste incineration power generation (BTG power generation), and waste has been gasified and reformed. A system for generating power by a gas turbine or a gas engine using combustible gas has been studied.
このような発電システムにおいて、不燃物や各種の金属類、特に金属アルミニウムを含む廃棄物のガス化は、一般的には700℃以下、通常は500〜650℃程度で行われる。ガス化されたガスは、改質炉において未燃のチャーやタール成分が水蒸気によって可燃性ガスに改質される。改質反応は、無触媒で行う場合には1000〜1200℃程度で、触媒を用いる場合は800〜1000℃程度で行われる。 In such a power generation system, gasification of incombustibles and various metals, particularly waste containing metal aluminum, is generally performed at 700 ° C or lower, usually at about 500 to 650 ° C. In the gasification gas, unburned char and tar components are reformed into combustible gas by steam in the reforming furnace. The reforming reaction is carried out at about 1000 to 1200 ° C. when it is carried out without a catalyst, and at about 800 to 1000 ° C. when a catalyst is used.
たとえば特許文献1には、ガス化炉、高温集塵設備、タール分解設備、精製設備等で構成されるガス化発電システムが記載されている。このガス化発電システムでは、ガス化炉で生成した800〜900℃のガスが、セラミックフィルタ等を備えた高温集塵設備で除塵された後、タール分などの分解触媒を備えたタール分解設備に送給される。 For example, Patent Document 1 describes a gasification power generation system including a gasification furnace, high-temperature dust collection equipment, tar decomposition equipment, refining equipment, and the like. In this gasification power generation system, after the gas at 800 to 900 ° C. generated in the gasification furnace is dedusted by the high temperature dust collector equipped with a ceramic filter or the like, the tar decomposition facility equipped with a decomposition catalyst for tar etc. Sent.
廃棄物をガス化したガス中には、未燃のチャーやタールの他にH2やCH4、CO等の可燃性ガス、CO2やダスト、廃棄物に含まれるハロゲンやSに由来するHClやSO2、SO3ガス等が含まれる。 In the gas obtained by gasifying waste, in addition to unburned char and tar, flammable gases such as H 2 , CH 4 , and CO, CO 2 and dust, HCl derived from halogen and S contained in waste, and HCl And SO 2 and SO 3 gas are included.
触媒を用いて改質反応を行う場合には、ニッケル系や貴金属系の改質触媒が用いられるが、ガス化したガス中に含まれるHClやSO2、SO3ガス等によって改質触媒が被毒される。このような、改質触媒の被毒を防止するためには、改質炉の上流において被毒性のガス成分を除去する必要がある。しかし、特許文献1に記載の高温集塵設備では除塵を行うだけで脱塩・脱硫は行われないため、タール分などの分解触媒の性能が低下するおそれがあった。 When a reforming reaction is carried out using a catalyst, a nickel-based or noble metal-based reforming catalyst is used, but the reforming catalyst is covered by HCl, SO 2 or SO 3 gas contained in the gasified gas. Be poisoned. In order to prevent such poisoning of the reforming catalyst, it is necessary to remove poisonous gas components upstream of the reforming furnace. However, in the high temperature dust collector described in Patent Document 1, only the dust is removed and desalting and desulfurization are not performed, so that the performance of the decomposition catalyst such as tar content may be deteriorated.
従来、乾式法を適用したごみ焼却システム等の脱塩・脱硫技術として、排ガス流に消石灰(Ca(OH)2)や重曹(NaHCO3)等の粉体薬剤を吹込み、固体状の反応生成物をバグフィルタで除去する技術が知られている。この技術は150〜200℃の排ガス温度域に適用され、温度が低いほど除去効率が良い。また、このような技術を適用して熱分解ガスを精製する技術が開示されている(特許文献2)。特許文献2に開示されている技術の一つは、熱分解ガスの精製を、ダスト除去用のバグフィルタと、脱塩用の第2バグフィルタにより行うものである。ダスト除去済熱分解ガスは第2バグフィルタの手前で消石灰や酸化カルシウム(CaO)、炭酸カルシウム、重曹、炭酸ナトリウム(Na2CO3)などのアルカリ剤と混合されて、HClが第2バグフィルタで固体の反応生成物として除去されるもので、熱分解温度域に近い300〜600℃で適用される。しかし、この温度域ではHClが炭酸ガスと競争することになり、高いHCl除去率を得るためには多くの薬剤を必要とする。また、ダスト除去用のバグフィルタでは脱塩・脱硫が行われないため、熱分解ガスの精製が不十分となるおそれがあった。 Conventionally, as a desalination / desulfurization technology for a waste incineration system using a dry method, a powdery chemical such as slaked lime (Ca (OH) 2 ) or baking soda (NaHCO 3 ) is blown into the exhaust gas flow to generate a solid reaction. A technique of removing an object with a bag filter is known. This technique is applied to the exhaust gas temperature range of 150 to 200 ° C., and the lower the temperature, the better the removal efficiency. In addition, a technique for purifying a pyrolysis gas by applying such a technique is disclosed (Patent Document 2). One of the techniques disclosed in Patent Document 2 is that the pyrolysis gas is purified by a dust removing bag filter and a desalting second bag filter. Dust-removed pyrolysis gas is mixed with alkaline agents such as slaked lime, calcium oxide (CaO), calcium carbonate, baking soda, and sodium carbonate (Na 2 CO 3 ) before the second bag filter, and HCl is added to the second bag filter. It is removed as a solid reaction product at 300 to 600 ° C., which is close to the thermal decomposition temperature range. However, HCl competes with carbon dioxide in this temperature range, and many chemicals are required to obtain a high HCl removal rate. Further, since the bag filter for removing dust does not perform desalting and desulfurization, there is a possibility that purification of the pyrolysis gas may be insufficient.
また、炭酸ナトリウムとアルミナゾルの混合物を乾燥した後、粉砕・焼成して製造するアルミン酸ナトリウム(NaA1O2)系のハロゲン化物吸収剤が開示されている(特許文献3)。 このハロゲン化物吸収剤の粒径は250〜500μmで、特許文献3では固定床流通式反応装置を用いて400℃でハロゲン化物除去性能の評価を行っている。しかし、 500℃未満の温度域で、廃棄物の熱分解ガス煙道に固定床流通式反応装置を設置して乾式脱塩・脱硫を行うと、ダストやチャーにタール分が付着してこれが固定床流通式反応装置内のハロゲン化吸収剤に固着し、目詰りによる圧力損失の上昇により安定な運転ができない。例えば、油成分(タール成分)としてポリスチレンを用いた濾過試験では、ポリスチレンがフィルターに付着すること、フィルターに付着したポリスチレンは500℃以上の温度で加熱処理すると油分が除去されて圧力損失が元に戻ることが報告されている(非特許文献1)。 Further, there is disclosed a sodium aluminate (NaA1O 2 ) -based halide absorbent produced by pulverizing and firing a mixture of sodium carbonate and alumina sol after drying (Patent Document 3). The particle size of this halide absorbent is 250 to 500 μm, and in Patent Document 3, the halide removal performance is evaluated at 400 ° C. using a fixed bed flow reactor. However, if a fixed bed flow reactor is installed in the pyrolysis gas flue of waste in a temperature range of less than 500 ° C and dry desalination / desulfurization is performed, tar is attached to dust and char and is fixed. It adheres to the halogenated absorbent in the bed flow reactor, and pressure loss increases due to clogging, making stable operation impossible. For example, in a filtration test using polystyrene as an oil component (tar component), the polystyrene adheres to the filter, and when the polystyrene attached to the filter is heat-treated at a temperature of 500 ° C. or higher, the oil is removed and the pressure loss is reduced. It has been reported to return (Non-Patent Document 1).
本発明は、上述した従来技術の問題を解消すべく、高温域において高い脱塩・脱硫性能を達成することができ、また、ダストやチャーにタール分が付着して装置の目詰りによる圧力損失の上昇を来すことがない、ガス化発電システムにおける高温での酸成分除去方法およびその装置を提供することを目的とする。 The present invention can achieve high desalination / desulfurization performance in a high temperature range in order to solve the above-mentioned problems of the prior art, and the pressure loss due to clogging of the device due to tar deposits on dust or char. It is an object of the present invention to provide a method and an apparatus for removing an acid component at high temperature in a gasification power generation system, which does not cause a rise in temperature.
本発明は、上記目的を達成すべくなされたものであって、下記の態様を含む。 The present invention has been made to achieve the above object and includes the following aspects.
(1) ガス化材料を部分燃焼ガス化するガス化工程と、前記ガス化工程から出るガス化ガスを粗粉体捕集処理するサイクロン処理工程と、前記サイクロン処理工程から出る粗粉体除去済みガス化ガスを除塵処理するバグフィルタ処理工程と、前記バグフィルタ処理工程から出る除塵済みガス化ガスをCO2吸収・改質処理するCO2吸収・改質工程と、前記CO2吸収・改質工程から出る改質ガスを利用して発電を行う発電工程とを含むガス化発電システムにおいて、
前記ガス化工程の後かつ前記サイクロン処理工程の前で、脱塩・脱硫機能を有するサイクロン上流側添加剤を、前記発電工程から出るガスを熱回収後に添加剤キャリアガスとして用いて、ガス化ガスに供給すること、および、
前記CO2吸収・改質工程で用いるCO2吸収剤をガス温度域450〜700℃、好ましくは540〜640℃の温度域でCO2吸収させ、CO2吸収量が飽和に達した時、改質触媒層昇温用の酸素または空気の流れをCO2吸収剤充填層の直上流へ切り替え、同吸収剤充填層を800〜950℃、好ましくは850〜900℃の温度域に昇温して同吸収剤からCO2を離脱させることを特徴とする、
ガス化発電方法における高温での酸成分除去方法。
(1) A gasification step of partially combusting a gasification material, a cyclone treatment step of collecting coarse gas from the gasification gas discharged from the gasification step, and a removal of coarse powder from the cyclone treatment step a bag filter processing step of dust removal processing gasification gas, the bag filter exits the process dust already gasification gas and CO 2 absorption reforming step of treating the CO 2 absorbing reforming, the CO 2 absorption and modification In a gasification power generation system including a power generation process for generating power using reformed gas from the process,
After the gasification step and before the cyclone treatment step, a cyclone upstream additive having a desalination / desulfurization function is used as an additive carrier gas after the heat recovery of the gas generated from the power generation step to produce a gasification gas. Supply to, and
When the CO 2 absorber used in the CO 2 absorbing and reforming process gas temperature range 450-700 ° C., preferably of is CO 2 absorption in a temperature range of five hundred and forty to six hundred and forty ° C., CO 2 absorption amount reaches saturation, Kai The flow of oxygen or air for raising the quality catalyst layer is switched to immediately upstream of the CO 2 absorbent packed bed, and the absorbent packed bed is heated to a temperature range of 800 to 950 ° C, preferably 850 to 900 ° C. CO 2 is released from the absorbent,
A method for removing an acid component at high temperature in a gasification power generation method.
(2) 前記サイクロン上流側添加剤がCO2吸収・除去機能をも有する、前記(1)に記載のガス化発電方法における高温での酸成分除去方法。 (2) The acid component removal method at high temperature in the gasification power generation method according to (1), wherein the cyclone upstream additive also has a CO 2 absorption / removal function.
(3) 前記サイクロン上流側添加剤の平均粒径が100〜1000μmであることを特徴とする、前記(1)または(2)に記載のガス化発電方法における高温での酸成分除去方法。 (3) The method for removing an acid component at high temperature in the gasification power generation method according to (1) or (2), wherein the cyclone upstream additive has an average particle size of 100 to 1000 μm.
(4) 前記サイクロン上流側添加剤が、焼成ドロマイト、消石灰、アルミン酸ソーダおよび重曹からなる群から選ばれることを特徴とする、前記(1)〜(3)のいずれか1に記載のガス化発電方法における高温での酸成分除去方法。 (4) The gasification according to any one of (1) to (3), wherein the cyclone upstream additive is selected from the group consisting of calcined dolomite, slaked lime, sodium aluminate and baking soda. A method for removing an acid component at high temperature in a power generation method.
(5) 前記サイクロン処理工程の後かつ前記バグフィルタ処理工程の前で、脱塩・脱硫機能を有しかつ前記サイクロン上流側添加剤と同一であっても異なっていてもよいサイクロン下流側添加剤であって、焼成ドロマイト、消石灰、アルミン酸ソーダおよび重曹からなる群から選ばれる添加剤を、前記発電工程から出るガスを熱回収後に添加剤キャリアガスとして用いて、粗粉体除去済みガス化ガスに供給することを特徴とする、(1)〜(4)のいずれか1に記載のガス化発電方法における高温での酸成分除去方法。 (5) After the cyclone treatment step and before the bag filter treatment step, a cyclone downstream additive having a desalination / desulfurization function and may be the same as or different from the cyclone upstream additive. However, an additive selected from the group consisting of calcined dolomite, slaked lime, sodium aluminate and baking soda is used as an additive carrier gas after heat recovery of the gas from the power generation step, and the coarse powder removed gasification gas. The method for removing an acid component at high temperature in the gasification power generation method according to any one of (1) to (4), characterized in that
(6) 前記サイクロン処理工程において前記添加剤を含む粗粉体を捕集して、該捕集粗粉体を前記ガス化材料と共に前記ガス化工程に供給することを特徴とする、(1)〜(5)のいずれか1に記載のガス化発電方法における高温での酸成分除去方法。 (6) In the cyclone treatment step, the coarse powder containing the additive is collected, and the collected coarse powder is supplied to the gasification step together with the gasification material, (1) ~ A method for removing an acid component at high temperature in the gasification power generation method according to any one of (5).
(7) 前記CO2吸収・改質工程で用いるCO2吸収剤がCaO、Ca(OH)2および焼成ドロマイトからなる群から選ばれることを特徴とする、(1)〜(6)のいずれか1に記載のガス化発電方法における高温での酸成分除去方法。 (7) the CO 2 absorbing agent used in the CO 2 absorption and the reforming step, characterized in that the member selected from the group consisting of CaO, Ca (OH) 2 and burnt dolomite, either (1) to (6) A method for removing an acid component at high temperature in the gasification power generation method according to 1.
(8) 前記改質ガスを熱回収処理後にNaOH水溶液によってCO2吸収処理し、生じたNa2CO3を回収・除去することを特徴とする、(1)〜(7)のいずれか1に記載のガス化発電方法における高温での酸成分除去方法。 (8) In any one of (1) to (7), the reformed gas is subjected to CO 2 absorption treatment with an aqueous NaOH solution after heat recovery treatment to collect and remove generated Na 2 CO 3. A method for removing an acid component at high temperature in the gasification power generation method as described.
(9) ガス化材料を部分燃焼ガス化するガス化炉と、前記ガス化炉の下流に設置されて同炉から出るガス化ガスを粗粉体捕集処理するサイクロンと、前記サイクロンの下流に設置されてここから出る粗粉体除去済みガス化ガスを除塵処理するバグフィルタと、前記バグフィルタの下流に設置されてここから出る除塵済みガス化ガスをCO2吸収・改質処理するCO2吸収・改質炉と、前記CO2吸収・改質炉の下流に設置されて同炉から出る改質ガスを利用して発電を行う発電設備とを含むガス化発電システムにおいて、
前記ガス化炉から前記サイクロンへの流路に、脱塩・脱硫機能を有する添加剤を供給するサイクロン上流側添加剤供給ラインが設けられ、同供給ラインに前記発電設備から来るキャリアガスラインが接続され、前記CO2吸収・改質炉のCO2吸収剤充填層の直上流にCO2吸収量が飽和に達した時に改質炉昇温用の酸素または空気をCO2吸収剤充填層へ切り替える酸素または空気供給ラインが接続されていることを特徴とする、
ガス化発電システムにおける高温での酸成分除去装置。
(9) A gasification furnace that partially gasifies the gasification material, a cyclone that is installed downstream of the gasification furnace and that collects the gasification gas from the furnace that collects coarse powder, and a cyclone that is downstream of the cyclone. a bag filter installed to dust removal processing exiting crude powder-removed gasification gas from here, the installed downstream of the bag filter dust removal has been gasified gas from here to process the CO 2 absorbing reforming CO 2 In a gasification power generation system including an absorption / reformation furnace and a power generation facility installed downstream of the CO 2 absorption / reformation furnace to generate electric power using a reformed gas discharged from the furnace,
A cyclone upstream additive supply line for supplying an additive having a desalination / desulfurization function is provided in the flow path from the gasification furnace to the cyclone, and the carrier gas line coming from the power generation facility is connected to the supply line. It is, switching the oxygen or air for the reforming RoNoboru temperature to CO 2 absorbent filler layer when CO 2 absorption immediately upstream of the CO 2 absorption and reformer CO 2 absorbent filler layer reaches saturation Characterized in that an oxygen or air supply line is connected,
High temperature acid component removal device in gasification power generation system.
(10) 前記サイクロンから前記バグフィルタへの流路に、脱塩・脱硫機能を有する添加剤を供給するサイクロン下流側添加剤供給ラインが設けられ、同供給ラインに前記発電設備から来るキャリアガスラインが接続されていることを特徴とする、
前記(9)に記載のガス化発電システムにおける高温での酸成分除去装置。
(10) A cyclone downstream additive supply line for supplying an additive having a desalination / desulfurization function is provided in the flow path from the cyclone to the bag filter, and the carrier gas line coming from the power generation facility is provided in the supply line. Is connected,
An acid component removing device at high temperature in the gasification power generation system according to (9).
粒子の平均粒径は、レーザー回折式粒度分布測定装置によって測定した値である。 The average particle size of the particles is a value measured by a laser diffraction type particle size distribution measuring device.
本明細書および特許請求の範囲全体を通して、ガス化材料を部分燃焼ガス化することで得られたガスを[ガス化ガス]という。 Throughout the specification and claims, the gas obtained by partial combustion gasification of a gasification material is referred to as [gasification gas].
本発明によれば、サイクロン処理工程の前で、脱塩・脱硫機能を有するサイクロン上流側添加剤をガス化ガスに供給することによって、さらにはバグフィルタ処理工程の前で、脱塩・脱硫機能を有するサイクロン下流側添加剤をガス化ガスに供給することによって、450〜700℃といった高温度域のガス化ガスに対し、高い脱塩・脱硫性能を達成することができ、改質触媒の被毒を防止することができる。 According to the present invention, by supplying the cyclone upstream additive having a desalination / desulfurization function to the gasification gas before the cyclone treatment step, and further before the bag filter treatment step, the desalination / desulfurization function is provided. By supplying the cyclone downstream-side additive having a gasification gas to the gasification gas, high desalination / desulfurization performance can be achieved for the gasification gas in a high temperature range of 450 to 700 ° C. Poison can be prevented.
また、上記のような添加剤を用いることによってダストやチャーにタール分が付着して装置の目詰りによる圧力損失の上昇を来すという問題を防ぐことができる。 Further, by using the additive as described above, it is possible to prevent the problem that the tar content is attached to dust or char and the pressure loss increases due to clogging of the device.
さらに、CO2吸収・改質工程で用いるCO2吸収剤をガス温度域450〜700℃でCO2吸収させ、CO2吸収量が飽和に達した時、改質触媒層昇温用の酸素または空気の流れをCO2吸収剤充填層の直上流へ切り替え、同吸収剤充填層を800〜900℃の温度域に昇温して同吸収剤からCO2を離脱させることによって、ガス化ガス中のCO2を効率的にかつ永続的に除去することができる。 Furthermore, the CO 2 absorbing agent used in the CO 2 absorption and reforming process is CO 2 absorption at gas temperature range 450-700 ° C., when the CO 2 absorption amount reaches saturation, oxygen or for the reforming catalyst SoNoboru temperature In the gasification gas, by switching the flow of air to immediately upstream of the CO 2 absorbent packed bed and raising the temperature of the absorbent packed bed to a temperature range of 800 to 900 ° C. to separate CO 2 from the absorbent. CO 2 can be efficiently and permanently removed.
添付の図面に基づいて本発明の実施例を示す。ただしこれは本発明を限定するものではない。 An embodiment of the present invention will be described with reference to the accompanying drawings. However, this does not limit the present invention.
初めに、ガス化発電システムについて図1に従って説明をする。 First, the gasification power generation system will be described with reference to FIG.
ガス化発電システムは、ガス化材料を部分燃焼ガス化するガス化炉1と、ガス化炉1の下流に設置されて同炉から出るガス化ガスを除塵するバグフィルタ3と、バグフィルタ3の下流に設置されて除塵済みのガスを改質処理するCO2吸収・改質炉4と、CO2吸収・改質炉4の下流に設置されて同炉から出る改質ガスを利用して発電を行う発電設備5とを含む。 The gasification power generation system includes a gasification furnace 1 for partial combustion gasification of a gasification material, a bag filter 3 installed downstream of the gasification furnace 1 for removing gasification gas from the furnace, and a bag filter 3. Power is generated using a CO 2 absorption / reformation furnace 4 that is installed downstream to reform the dust-removed gas and a reformed gas that is installed downstream from the CO 2 absorption / reformation furnace 4 And a power generation facility 5 for performing.
ガス化炉1からバグフィルタ3への流路には、サイクロン2が設置され、サイクロン2の上流側流路に、脱塩・脱硫機能を有し好ましくはさらに脱CO2機能をも有する添加剤を添加剤容器8から供給するサイクロン上流側添加剤供給ライン6が接続されている。また、サイクロン2からバグフィルタ3への流路に、脱塩・脱硫機能を有し好ましくはさらに脱CO2機能をも有する添加剤を添加剤容器10から供給するサイクロン下流側添加剤供給ライン7が設けられている。 A cyclone 2 is installed in a flow path from the gasification furnace 1 to the bag filter 3, and an additive having a desalination / desulfurization function and preferably a CO 2 removal function is provided in an upstream side flow path of the cyclone 2. A cyclone upstream side additive supply line 6 for supplying the additive from the additive container 8 is connected. Further, a cyclone downstream side additive supply line 7 for supplying an additive having a desalination / desulfurization function and preferably a CO 2 removal function from the additive container 10 in the flow path from the cyclone 2 to the bag filter 3. Is provided.
サイクロン上流側添加剤供給ライン6およびサイクロン下流側添加剤供給ライン7の各始端部には、発電設備5から低温ボイラー13、除湿器14、昇圧機15およびタンク16を介してキャリアガスライン9が接続されている。 At the starting ends of the cyclone upstream side additive supply line 6 and the cyclone downstream side additive supply line 7, a carrier gas line 9 is provided from the power generation facility 5 via the low temperature boiler 13, the dehumidifier 14, the booster 15 and the tank 16. It is connected.
前記CO2吸収・改質炉4のCO2吸収剤充填層の直上流に、CO2吸収量が飽和に達した時に改質炉昇温用の酸素または空気の流れをCO2吸収剤充填層へ切り替える酸素または空気供給ライン19が接続されている。同ライン19は通常はCO2吸収・改質炉4の触媒充填層の直上流に昇温用の酸素または空気を供給する。 Immediately upstream of the CO 2 absorbent filler layer of the CO 2 absorption and reformer 4, CO 2 absorbent filler layer flow of oxygen or air for reforming RoNoboru temperature when the CO 2 absorbing amount reaches the saturated An oxygen or air supply line 19 for switching to is connected. The line 19 normally supplies oxygen or air for temperature raising just upstream of the catalyst packed bed of the CO 2 absorption / reforming furnace 4.
つぎに、図1のフロー図に従って本発明による、ガス化発電方法における高温での酸成分除去方法を工程ごとに具体的に説明する。
ガス化工程
廃棄物、RDF、木質チップなどのガス化材料をガス化炉1において部分燃焼ガス化する。ガス化炉1には炉底から酸素および水蒸気が供給される。
Next, the method for removing an acid component at high temperature in the gasification power generation method according to the present invention will be specifically described for each step according to the flowchart of FIG.
Gasification process Gasification materials such as waste, RDF, and wood chips are partially combusted and gasified in the gasification furnace 1. Oxygen and water vapor are supplied to the gasification furnace 1 from the bottom of the furnace.
サイクロン処理工程
ガス炉1の炉頂から出るガス化ガスはサイクロン2へ送られ、ガス化ガス中の粒子は平均粒径100μm以上の粗粉体と平均粒径100μm未満の微粉体とに分けられる。サイクロン2に入るガスの温度は700℃以下、好ましくは550〜650℃であり、サイクロン2を出るガスの温度は550〜650℃である。
Cyclone treatment step The gasification gas discharged from the top of the gas furnace 1 is sent to the cyclone 2, and the particles in the gasification gas are divided into coarse powder having an average particle size of 100 μm or more and fine powder having an average particle size of less than 100 μm. . The temperature of the gas entering the cyclone 2 is 700 ° C or lower, preferably 550 to 650 ° C, and the temperature of the gas exiting the cyclone 2 is 550 to 650 ° C.
サイクロン2の上流側流路にサイクロン上流側添加剤供給ライン6から脱塩・脱硫機能を有する添加剤が吹き込まれる。この添加剤は、好ましくは脱塩・脱硫機能に加えてCO2吸収・除去機能をも有する。これは700℃以下において塩化物や硫酸塩に変換され得るものであって、好ましくは焼成ドロマイト、消石灰、アルミン酸ソーダおよび重曹からなる群から選ばれる。前記添加剤の平均粒径は、好ましくは100〜1000μm、より好ましくは300〜600μmである。コスト面では焼成ドロマイトが好ましく、脱塩・脱硫率の面ではアルミン酸ソーダが好ましい。この実施例では、数百μmの平均粒径を有する焼成ドロマイトを添加剤容器8からライン6によってサイクロン上流へ供給した。 An additive having a desalination / desulfurization function is blown into the upstream channel of the cyclone 2 through the cyclone upstream additive supply line 6. This additive preferably also has a CO 2 absorption / removal function in addition to a desalination / desulfurization function. It can be converted to chloride or sulfate at 700 ° C. or lower, and is preferably selected from the group consisting of calcined dolomite, slaked lime, sodium aluminate and baking soda. The average particle size of the additive is preferably 100 to 1000 μm, more preferably 300 to 600 μm. Calcined dolomite is preferable in terms of cost, and sodium aluminate is preferable in terms of desalination / desulfurization rate. In this example, calcined dolomite having an average particle size of several hundred μm was fed from additive container 8 via line 6 upstream of the cyclone.
サイクロン2の上流側流路に脱塩・脱硫機能を有し、好ましくはCO2吸収・除去機能をも有する添加剤を吹き込むことによって、ガス化ガスを脱塩・脱硫処理し、好ましくは脱炭酸処理することができると共に、サイクロン2内に付着したダストやタールの自浄作用を行うことができ、下流のバグフィルタにおける圧力損失を抑え、その運転を支障なく行うことができる。前記サイクロンによって平均粒径100〜1000μmの粗粉体添加剤の一部または全部、ダスト、タールを底部で回収し、この回収物を前記ガス化材料と共に前記ガス化炉1に供給する。これにより下流のCO吸収・改質炉4におけるタールの改質を補完することができる。 By blowing an additive having a desalination / desulfurization function, preferably a CO 2 absorption / removal function, into the upstream channel of the cyclone 2, the gasification gas is desalted / desulfurized, preferably decarbonated. In addition to being able to process, the dust and tar adhering in the cyclone 2 can be self-cleaned, the pressure loss in the downstream bag filter can be suppressed, and the operation can be performed without any trouble. Part or all of the coarse powder additive having an average particle size of 100 to 1000 μm, dust, and tar are recovered at the bottom by the cyclone, and the recovered product is supplied to the gasification furnace 1 together with the gasification material. Thereby, the reforming of tar in the CO absorption / reforming furnace 4 located downstream can be complemented.
バグフィルタ処理工程
ついでサイクロン6から出る粗粉体除去済みガス化ガスは、同ガスを除塵処理するバグフィルタ3へ送られる。該粗粉体除去済みガス化ガスは平均粒径100μm未満の粒子を含む。
Bag filter treatment step The coarse powder-removed gasified gas from the cyclone 6 is then sent to the bag filter 3 that removes dust from the gas. The gasification gas from which the coarse powder has been removed contains particles having an average particle size of less than 100 μm.
サイクロン2からバグフィルタ3への流路に、サイクロン下流側添加剤供給ライン7によって、脱塩・脱硫機能を有する添加剤が吹き込まれる。この添加剤は、好ましくは脱塩・脱硫機能脱に加えてCO2吸収・除去機能をも有する。この添加剤は、700℃以下において塩化物や硫酸塩に変換され得るものであって、好ましくは焼成ドロマイト、消石灰、アルミン酸ソーダおよび重曹からなる群から選ばれる。前記添加剤の平均粒径は、好ましくは20μm以下、より好ましくは15μm以下である。コスト面では焼成ドロマイトが好ましく、脱塩・脱硫率の面ではアルミン酸ソーダが好ましい。サイクロン下流側添加剤はサイクロン上流側添加剤と同種でも異種でもよい。この実施例では、20μm以下の平均粒径を有する焼成ドロマイトを添加剤タンク10からサイクロン下流側添加剤供給ライン7によってサイクロン下流側へ供給した。 An additive having a desalination / desulfurization function is blown into the flow path from the cyclone 2 to the bag filter 3 by the cyclone downstream side additive supply line 7. This additive preferably has a CO 2 absorption / removal function in addition to the desalination / desulfurization function. This additive can be converted into chloride or sulfate at 700 ° C. or lower, and is preferably selected from the group consisting of calcined dolomite, slaked lime, sodium aluminate and baking soda. The average particle size of the additive is preferably 20 μm or less, more preferably 15 μm or less. Calcined dolomite is preferable in terms of cost, and sodium aluminate is preferable in terms of desalination / desulfurization rate. The cyclone downstream additive may be the same as or different from the cyclone upstream additive. In this example, calcined dolomite having an average particle size of 20 μm or less was supplied from the additive tank 10 to the cyclone downstream side by the cyclone downstream side additive supply line 7.
サイクロン2の下流側流路に脱塩・脱硫機能を有し、好ましくはCO2吸収・除去機能をも有する添加剤を吹き込むことによって、粗粉体除去済みガス化ガスを脱塩・脱硫処理し、好ましくは脱炭酸処理することができる。特に脱塩・脱硫処理によって、下流のCO2吸収・改質炉4において汎用されるNi系改質触媒の寿命を延ばすことができる。 By blowing an additive having a desalination / desulfurization function, preferably a CO 2 absorption / removal function, into the downstream channel of the cyclone 2, the gasification gas from which the coarse powder has been removed is desalted / desulfurized. Preferably, decarboxylation treatment can be performed. In particular, the desalination / desulfurization treatment can extend the life of the Ni-based reforming catalyst generally used in the downstream CO 2 absorption / reforming furnace 4.
該添加剤の平均粒径は、脱塩、脱硫の効果を高めるために、好ましくは20μm以下である。サイクロン下流側添加剤に公知の濾過助剤を併用することもできる。 The average particle size of the additive is preferably 20 μm or less in order to enhance the effects of desalination and desulfurization. A known filter aid may be used in combination with the cyclone downstream additive.
粒子の平均粒径は、レーザー回折式粒度分布測定装置によって測定した値である。 The average particle size of the particles is a value measured by a laser diffraction type particle size distribution measuring device.
この実施例では、バグフィルタ3として、タール分を含むダストの濾布への付着を防止し、濾布表面のケーキ層の剥離性をよくするためにプレコートバグフィルタを用いる。プレコートバグフィルタに入るガスの温度は550〜650℃であり、同バグフィルタを出るガスの温度は、放熱などにより540〜640℃程度に下がる。プレコートバグフィルタにおいて圧力損失が大きくなったとき、濾布表面のケーキ層をパルス・ジェット方式によって払い落とし、その後、サイクロン下流側添加剤、あるいは同添加剤に濾過助剤を併用したものを短時間で、濾布表面にプレコートする。プレコート時の圧力損失は0.5〜0.6kPaを目処とする。濾布表面のケーキ層の払い落としは、圧力損失が好ましくは1.5〜1.8kPa(153.0〜183.5mmH2O)の範囲にあるときに行う。 In this embodiment, as the bag filter 3, a pre-coated bag filter is used to prevent dust containing tar content from adhering to the filter cloth and to improve the peelability of the cake layer on the surface of the filter cloth. The temperature of the gas entering the precoat bag filter is 550 to 650 ° C, and the temperature of the gas exiting the bag filter falls to about 540 to 640 ° C due to heat radiation or the like. When the pressure loss in the pre-coated bag filter becomes large, the cake layer on the surface of the filter cloth is wiped off by the pulse jet method, and then the cyclone downstream side additive or a combination of the additive and the filter aid is used for a short time. Then, pre-coat on the surface of the filter cloth. The pressure loss during precoating is set to 0.5 to 0.6 kPa. The cake layer on the surface of the filter cloth is wiped off when the pressure loss is preferably in the range of 1.5 to 1.8 kPa (153.0 to 183.5 mmH 2 O).
プレコートの量は、ガス中のHCl+SO2の3当量を約20分間程度で吹き込む。プレコートに要する時間と定常運転時間との総和で約3.5時間を1サイクルとするのが目安である。パルス・ジェットによる払い落としは、好ましくはバグの圧力損失制御によって行われる。 As for the amount of precoat, 3 equivalents of HCl + SO 2 in gas are blown in for about 20 minutes. As a guideline, the total of the time required for precoating and the steady operation time is about 3.5 hours as one cycle. Discharge by pulse jet is preferably done by pressure loss control of the bag.
CO2吸収・改質工程
ガス化ガスは、バグフィルタ3で除塵された後、CO2吸収・改質炉4へ送られる。CO2吸収・改質炉4の上部にはCO2吸収剤が充填され、下部には改質触媒が充填されている。CO2吸収剤としては、450〜700℃、好ましくは540〜640℃の温度域でCO2吸収による炭酸塩化が進み、800〜950℃、好ましくは850〜900℃の温度域で脱炭酸すなわちCO2脱離が起こる化合物が用いられる。CO2吸収剤の例としては、CaO、Ca(OH)2、焼成ドロマイト(CaO・MgO)などが挙げられ、この実施例ではCO2吸収剤としてCaOを用いた。
CO 2 Absorption / Reforming Step The gasified gas is sent to the CO 2 absorption / reforming furnace 4 after being dedusted by the bag filter 3. The upper part of the CO 2 absorption / reforming furnace 4 is filled with a CO 2 absorbent, and the lower part is filled with a reforming catalyst. As a CO 2 absorbent, carbonation by CO 2 absorption proceeds in the temperature range of 450 to 700 ° C., preferably 540 to 640 ° C., and decarboxylation, ie, CO in the temperature range of 800 to 950 ° C., preferably 850 to 900 ° C. 2 A compound that causes elimination is used. Examples of the CO 2 absorbent include CaO, Ca (OH) 2 and calcined dolomite (CaO.MgO). In this example, CaO was used as the CO 2 absorbent.
酸素または空気供給ライン19の流路切替えによるCO2吸収剤からのCO2脱離について説明をする。
1)通常のCO2吸収運転時にはガス化ガスの温度域は450〜700℃、好ましくは540〜640℃であり、CO2吸収剤の温度もこの温度域に保持されている。CO2吸収剤としてCaOを用いる場合、
CaO+CO2 → CaCO3
の反応に従ってCO2が吸収剤により吸収除去される。このようにガス化ガス中のCO2を除去することによって下記のシフト反応が右側へ進みやすくなる。
The described CO 2 desorption from CO 2 absorbent by switching the oxygen or the flow path of the air supply line 19.
1) During normal CO 2 absorption operation, the temperature range of the gasification gas is 450 to 700 ° C., preferably 540 to 640 ° C., and the temperature of the CO 2 absorbent is also kept in this temperature range. When CaO is used as the CO 2 absorbent,
CaO + CO 2 → CaCO 3
CO 2 is absorbed and removed by the absorbent according to the reaction of 1. By removing CO 2 in the gasification gas in this way, the following shift reaction easily proceeds to the right.
CO+H2O → CO2+H2
この状態では昇温用酸素または空気は酸素または空気供給ライン19の通常流路によって改質触媒層の直上流へ供給されている。
2)CO2吸収量が飽和に達した時、通常運転時に触媒充填層の昇温に用いていた酸素または空気を、酸素または空気供給ライン19の流路切替えによって、CO2吸収剤充填層の直上流へ供給し、同吸収剤を800〜950℃、好ましくは850〜900℃の温度域に昇温する。この温度域ではCO2吸収剤の炭酸化物が熱分解してCO2が同吸収剤から脱離する。
CO + H 2 O → CO 2 + H 2
In this state, the temperature raising oxygen or air is supplied to the upstream side of the reforming catalyst layer by the normal flow path of the oxygen or air supply line 19.
2) When the CO 2 absorption amount reaches saturation, the oxygen or air used for raising the temperature of the catalyst packed bed during normal operation is switched to the oxygen or air supply line 19 to change the flow path of the CO 2 absorbent packed bed. Directly upstream, the absorbent is heated to a temperature range of 800 to 950 ° C, preferably 850 to 900 ° C. In this temperature range, the carbonate of the CO 2 absorbent is thermally decomposed and CO 2 is desorbed from the same absorbent.
CO2吸収・改質炉4において酸素または空気の注入による昇温は、タール成分やH2、CO、CH4の酸化反応熱によって生じる。 In the CO 2 absorption / reformation furnace 4, the temperature rise due to the injection of oxygen or air is caused by the heat of oxidation reaction of tar components, H 2 , CO, and CH 4 .
CO2吸収剤のCO2吸収量が飽和に達すると、高温ボイラー11の下流に設けられてガス化ガス中のCO2濃度を示す下流側CO2分析計18の値が上昇し始めるので、上述のように昇温用酸素または空気をCO2吸収剤充填層の直上流へ供給する。同吸収剤が800〜950℃、好ましくは850〜900℃の温度域に昇温すると、CaCO3が分解をし始め、生じたCO2が下流側へ流れる。この時はガス化ガス中のCO2の濃度が一時的に上昇するので、シフト反応は促進されない。CO2吸収・改質炉4の上流に設けられてガス化ガス中のCO2濃度を示す上流側CO2分析計17と前記下流側CO2分析計18とによってそれぞれ示されるCO2濃度が接近すると、昇温用酸素または空気の流れを改質触媒層の直上流へ戻して、同触媒充填層の温度を450〜700℃、好ましくは540〜640℃の範囲に下げる。 When CO 2 absorption amount of CO 2 absorbent has reached the saturation, the value of the downstream CO 2 analyzer 18 indicating the CO 2 concentration of the gasification gas provided downstream of the high-temperature boiler 11 starts to rise, above As described above, the temperature-raising oxygen or air is supplied immediately upstream of the CO 2 absorbent packed bed. When the absorbent is heated to a temperature range of 800 to 950 ° C., preferably 850 to 900 ° C., CaCO 3 begins to decompose, and the generated CO 2 flows downstream. At this time, the shift reaction is not promoted because the concentration of CO 2 in the gasification gas temporarily rises. Approaching the CO 2 concentration indicated respectively by provided upstream of CO 2 absorption and reformer 4 and upstream CO 2 analyzer 17 indicating the CO 2 concentration in the gasification gas and the downstream CO 2 analyzer 18 Then, the flow of temperature-raising oxygen or air is returned to immediately upstream of the reforming catalyst layer, and the temperature of the catalyst packed bed is lowered to 450 to 700 ° C, preferably 540 to 640 ° C.
その後は上記1)と2)の運転が繰り返される。 After that, the above operations 1) and 2) are repeated.
CO2吸収剤充填層によってCO2を除去することで、改質触媒充填層における下記シフト反応を促進させることができる。 By removing CO 2 by the CO 2 absorbent packed bed, the following shift reaction in the reforming catalyst packed bed can be promoted.
タールの代表例としてトルエンを想定すると、CO2吸収・改質炉4において起こる主な反応は下記のとおりである。 Assuming toluene as a typical example of tar, the main reactions that occur in the CO 2 absorption / reforming furnace 4 are as follows.
i) C7H8+9O2 → 7CO2+4H2O ・・ 酸化反応
ii) C7H8+7H2O → 7CO+11H2 ・ 改質反応
iii) CO+H2O → CO2+H2 ・・ ・・ シフト反応
iv) その他、酸素が過剰に存在する場合には、H2、CO、CH4等の酸化反応も起こる。
i) C 7 H 8 + 9O 2 → 7CO 2 + 4H 2 O ... Oxidation reaction
ii) C 7 H 8 + 7H 2 O → 7CO + 11H 2・ Reforming reaction
iii) CO + H 2 O → CO 2 + H 2 ···· Shift reaction
iv) In addition, when oxygen is excessively present, an oxidation reaction of H 2 , CO, CH 4, etc. also occurs.
冷却塔処理
CO2吸収・改質炉4の底部から出る850〜900℃の高温ガスは、高温ボイラー11へ送られてここで熱回収処理された後、温度170〜180℃で冷却塔12へ送られる。冷却塔12内にはNaOH水溶液が循環されており、これによってガス化ガス中のCO2が吸収され、生じたNa2CO3塩が回収・除去される。したがって、温暖化効果ガスは排出されない。
Cooling Tower Treatment The high temperature gas of 850 to 900 ° C. that emerges from the bottom of the CO 2 absorption / reforming furnace 4 is sent to the high temperature boiler 11 where it is subjected to heat recovery treatment, and then to the cooling tower 12 at a temperature of 170 to 180 ° C. Sent. Aqueous NaOH solution is circulated in the cooling tower 12, whereby CO 2 in the gasification gas is absorbed and the generated Na 2 CO 3 salt is recovered and removed. Therefore, greenhouse gas is not emitted.
発電工程
冷却塔12を出た温度55〜60℃の低温ガスは、ガスタービンやガスエンジンを備えた発電設備5へ送られ、ここで発電に利用される。
Power Generation Step The low temperature gas having a temperature of 55 to 60 ° C. that has exited the cooling tower 12 is sent to the power generation facility 5 equipped with a gas turbine and a gas engine, and used there for power generation.
キャリアガス
発電設備5から排出される温度400℃のガスは次いで低温ボイラー13によって熱回収処理された後、一部は170〜180℃で大気に放出され、残部はキャリアガスライン9によって除湿器14、昇圧機15およびタンク16を介してサイクロン上流側添加剤供給ライン6およびサイクロン下流側添加剤供給ライン7の各始端部へ送られ、サイクロン上流側添加剤およびサイクロン下流側添加剤のキャリアガス(ガス温度50℃)として利用される。このガス中の酸素濃度は1〜2容量%程度であり、ガス化炉の出口ガスへの該キャリアガスの注入割合は1/15〜1/30であるので、可燃ガスの燃焼による低位発熱量(LHV)の低下を来すことはない。
Carrier gas The gas discharged from the power generation facility 5 at a temperature of 400 ° C. is then subjected to heat recovery treatment by the low temperature boiler 13, and then part of it is released to the atmosphere at 170 to 180 ° C., and the rest is dehumidified by the carrier gas line 9 in the dehumidifier 14 , The cyclone upstream side additive supply line 6 and the cyclone downstream side additive supply line 7 via the booster 15 and the tank 16 and are sent to respective starting ends of the cyclone upstream side additive supply line 7 and the carrier gas of the cyclone upstream side additive and the cyclone downstream side additive ( It is used as a gas temperature of 50 ° C. The oxygen concentration in this gas is about 1 to 2% by volume, and the injection ratio of the carrier gas to the outlet gas of the gasification furnace is 1/15 to 1/30. (LHV) does not decrease.
実験例
つぎに本発明の実験例を示す。
Experimental Example Next, an experimental example of the present invention will be shown.
廃棄物をガス化・改質して得られる可燃性ガスを利用して発電を行う、図1に示すシステムにおいて、各条件を変化させて実験を行った。ガス化炉1の出口ガスの組成の1例を表1に、ガス化炉1およびCO2吸収・改質炉4の温度および各出口ガスに対する空気比を表2に、脱塩・脱硫剤と脱塩・脱硫性能の関係を図2に、発電設備5の出口ガスに対する空気比を表3に、各所脱塩・脱硫剤と脱塩・脱硫性能の関係を表4および図3に、炭酸カルシウムの生成・分解(CaO+CO2⇔CaCO3)に関する熱力学平衡計算の結果を表5に、それぞれ示す。 An experiment was conducted by changing each condition in the system shown in FIG. 1 in which power is generated using a combustible gas obtained by gasifying and reforming waste. An example of the composition of the outlet gas of the gasification furnace 1 is shown in Table 1, the temperature of the gasification furnace 1 and the CO 2 absorption / reforming furnace 4 and the air ratio to each outlet gas are shown in Table 2, and the desalination / desulfurization agent and The relationship between the desalination / desulfurization performance is shown in FIG. 2, the air ratio to the outlet gas of the power generation equipment 5 is shown in Table 3, the relationship between the desalination / desulfurization agent and the desalination / desulfurization performance is shown in Table 4 and FIG. Table 5 shows the results of thermodynamic equilibrium calculation regarding the generation and decomposition of (CaO + CO 2 ⇔ CaCO 3 ).
表5によれば、CO2吸収塔では、入口CO2が8.1%で、600℃では平衡計算上96.98%のCO2が吸収除去されることになる(650℃では89.37%)。また、吸収塔の温度を850℃に昇温すると、出口CO2濃度が38.59%になるまで分解することになる(900℃では79.48%になるまで分解)。 According to Table 5, in the CO 2 absorption tower, the inlet CO 2 is 8.1%, and at 600 ° C., 96.98% of CO 2 is absorbed and removed by equilibrium calculation (at 650 ° C., 89.37). %). Further, when the temperature of the absorption tower is raised to 850 ° C., it will decompose until the outlet CO 2 concentration becomes 38.59% (at 900 ° C., it will decompose to 79.48%).
Claims (10)
前記ガス化工程の後かつ前記サイクロン処理工程の前で、脱塩・脱硫機能を有するサイクロン上流側添加剤を、前記発電工程から出るガスを熱回収後に添加剤キャリアガスとして用いて、ガス化ガスに供給すること、および、
前記CO2吸収・改質工程で用いるCO2吸収剤をガス温度域450〜700℃の温度域でCO2吸収させ、CO2吸収量が飽和に達した時、改質触媒層昇温用の酸素または空気の流れを改質触媒層の直上流からCO2吸収剤充填層の直上流へ切り替え、同吸収剤充填層を800〜950℃の温度域に昇温して同吸収剤からCO2を離脱させることを特徴とする、
ガス化発電方法における高温での酸成分除去方法。 A gasification process for partial combustion gasification of a gasification material, a cyclone treatment process for collecting coarse powder of gasification gas emitted from the gasification process, and a coarse powder-removed gasification gas produced from the cyclone treatment process From the CO 2 absorption / reformation step, and a CO 2 absorption / reformation step of CO 2 absorption / reformation processing of the dust-removed gasified gas discharged from the bag filter treatment step. In a gasification power generation system including a power generation process for generating power using reformed gas,
After the gasification step and before the cyclone treatment step, a cyclone upstream additive having a desalination / desulfurization function is used as an additive carrier gas after the heat recovery of the gas generated from the power generation step to produce a gasification gas. Supply to, and
The CO 2 absorbing agent used in the CO 2 absorbing and reforming process is CO 2 absorbed in the temperature range of the gas temperature range 450-700 ° C., when the CO 2 absorption amount reaches saturation, the reforming catalyst SoNoboru temperature The flow of oxygen or air is switched from immediately upstream of the reforming catalyst layer to immediately upstream of the CO 2 absorbent packed bed, and the absorbent packed bed is heated to a temperature range of 800 to 950 ° C. to remove CO 2 from the absorbent. Characterized by releasing the
A method for removing an acid component at high temperature in a gasification power generation method.
前記ガス化炉から前記サイクロンへの流路に、脱塩・脱硫機能を有する添加剤を供給するサイクロン上流側添加剤供給ラインが設けられ、同供給ラインに前記発電設備から来るキャリアガスラインが接続され、前記CO2吸収・改質炉のCO2吸収剤充填層の直上流にCO2吸収量が飽和に達した時に改質炉昇温用の酸素または空気を改質触媒層の直上流からCO2吸収剤充填層の直上流へ切り替える酸素または空気供給ラインが接続されていることを特徴とする、
ガス化発電システムにおける高温での酸成分除去装置。
A gasification furnace for partial combustion gasification of the gasification material, a cyclone installed downstream of the gasification furnace for collecting coarse powder of the gasification gas emitted from the furnace, and installed downstream of the cyclone. a bag filter for dust removal processing exiting crude powder-removed gasification gas from here, the installed downstream of the bag filter dust removal has been gasified gas from here to process the CO 2 absorbing reforming CO 2 absorption and Kai A gasification power generation system including a quality furnace and a power generation facility installed downstream of the CO 2 absorption / reformation furnace to generate electric power using a reformed gas discharged from the furnace,
A cyclone upstream additive supply line for supplying an additive having a desalination / desulfurization function is provided in the flow path from the gasification furnace to the cyclone, and the carrier gas line coming from the power generation facility is connected to the supply line. It is, from immediately upstream of the reforming catalyst layer to oxygen or air for reforming RoNoboru temperature when CO 2 absorption immediately upstream of the CO 2 absorption and reformer CO 2 absorbent filler layer reaches saturation An oxygen or air supply line for switching immediately upstream of the CO 2 absorbent packed bed is connected,
High temperature acid component removal device in gasification power generation system.
請求項9に記載のガス化発電システムにおける高温での酸成分除去装置。
In the flow path from the cyclone to the bag filter, a cyclone downstream side additive supply line for supplying an additive having a desalination / desulfurization function is provided, and a carrier gas line coming from the power generation facility is connected to the supply line. Is characterized by
An acid component removing device at high temperature in the gasification power generation system according to claim 9.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016224971A JP6681316B2 (en) | 2016-11-18 | 2016-11-18 | Method and apparatus for removing acid component at high temperature in gasification power generation system |
PCT/JP2017/032202 WO2018092391A1 (en) | 2016-11-18 | 2017-09-07 | Method for removing acid components at high temperature in gasification power generation system, and device therefor |
CN201780070958.XA CN109983102A (en) | 2016-11-18 | 2017-09-07 | The minimizing technology and its device of sour component at a high temperature of in gasification power generation system |
EP17872759.0A EP3543318A4 (en) | 2016-11-18 | 2017-09-07 | METHOD FOR HIGH TEMPERATURE REMOVAL OF ACID COMPONENTS IN A GASIFICATION ENERGY GENERATION SYSTEM, AND ASSOCIATED DEVICE |
PH12019501091A PH12019501091A1 (en) | 2016-11-18 | 2019-05-16 | Method for removing acid components at high temperature in gasification power generation system, and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016224971A JP6681316B2 (en) | 2016-11-18 | 2016-11-18 | Method and apparatus for removing acid component at high temperature in gasification power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018080299A JP2018080299A (en) | 2018-05-24 |
JP6681316B2 true JP6681316B2 (en) | 2020-04-15 |
Family
ID=62146420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016224971A Active JP6681316B2 (en) | 2016-11-18 | 2016-11-18 | Method and apparatus for removing acid component at high temperature in gasification power generation system |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3543318A4 (en) |
JP (1) | JP6681316B2 (en) |
CN (1) | CN109983102A (en) |
PH (1) | PH12019501091A1 (en) |
WO (1) | WO2018092391A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110938472B (en) * | 2019-12-04 | 2021-09-24 | 新奥科技发展有限公司 | Gasification furnace and coal gasification method |
CN112391210B (en) * | 2020-11-17 | 2021-06-18 | 滨州中科催化技术有限公司 | Coke oven gas purification system |
CN114921268B (en) * | 2022-05-23 | 2025-04-01 | 西安西矿环保科技有限公司 | A device and method for purifying high-temperature dusty oil and gas from pulverized coal pyrolysis and recovering semi-coke |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS553761A (en) | 1978-06-21 | 1980-01-11 | Yamazaki Koki Kk | Manufacturing of shaped fish paste |
JPH086101B2 (en) * | 1986-11-27 | 1996-01-24 | バブコツク日立株式会社 | Coal gasification desulfurization method |
EP1136542A4 (en) * | 1998-11-05 | 2004-11-24 | Ebara Corp | Power generation system based on gasification of combustible material |
JP2002130628A (en) | 2000-10-27 | 2002-05-09 | Takuma Co Ltd | Thermal gas decomposition gas rectifying apparatus for thermal decomposition/melting combustion apparatus |
JP2006037012A (en) | 2004-07-29 | 2006-02-09 | Takuma Co Ltd | Gasification power generation system and gasification power generation method |
CA2713391A1 (en) * | 2008-01-14 | 2009-07-23 | Boson Energy Sa | A biomass gasification method and apparatus for production of syngas with a rich hydrogen content |
CN101525118B (en) * | 2008-03-07 | 2010-12-22 | 周开根 | Gasification process for producing synthesis gas from garbage and biomass raw materials |
JP2009242714A (en) * | 2008-03-31 | 2009-10-22 | Mitsui Eng & Shipbuild Co Ltd | Waste gasification disposal system |
JP2011202119A (en) * | 2010-03-26 | 2011-10-13 | Mitsui Eng & Shipbuild Co Ltd | Gasification system |
JP5594370B2 (en) * | 2010-12-24 | 2014-09-24 | 株式会社Ihi | Product gas reforming method and apparatus |
JP2013241923A (en) * | 2012-05-23 | 2013-12-05 | Babcock Hitachi Kk | Gasification power generation system of carbon-based fuel |
WO2014015243A1 (en) * | 2012-07-19 | 2014-01-23 | Research Triangle Institute | Regenerable sorbent for carbon dioxide removal |
KR101398191B1 (en) * | 2013-02-27 | 2014-05-27 | (주)대우건설 | High temperature purification system for simultaneously removing desulphurization and desalination in synthetic gas using fixed bed single reactor |
CN103242922A (en) * | 2013-05-31 | 2013-08-14 | 青岛新奥胶城燃气有限公司 | Method for preparing fuel gas by burning biomass |
CN103820183B (en) * | 2014-02-26 | 2016-08-31 | 山西华兆煤化工有限责任公司 | A kind of oven gas directly mends the method for carbon dioxide synthetic natural gas |
-
2016
- 2016-11-18 JP JP2016224971A patent/JP6681316B2/en active Active
-
2017
- 2017-09-07 CN CN201780070958.XA patent/CN109983102A/en active Pending
- 2017-09-07 WO PCT/JP2017/032202 patent/WO2018092391A1/en unknown
- 2017-09-07 EP EP17872759.0A patent/EP3543318A4/en not_active Withdrawn
-
2019
- 2019-05-16 PH PH12019501091A patent/PH12019501091A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
PH12019501091A1 (en) | 2019-12-11 |
JP2018080299A (en) | 2018-05-24 |
CN109983102A (en) | 2019-07-05 |
EP3543318A4 (en) | 2020-06-03 |
EP3543318A1 (en) | 2019-09-25 |
WO2018092391A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009308404B2 (en) | Process for decontaminating syngas | |
US20130255153A1 (en) | Method of Gas Purification, Coal Gasification Plant, and Shift Catalyst | |
JP6681316B2 (en) | Method and apparatus for removing acid component at high temperature in gasification power generation system | |
US20170239618A1 (en) | A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur removal and a plant for carrying out the process | |
JP2005028216A (en) | Gas cleaning apparatus and flue gas desulfurization system | |
TW533265B (en) | Using shifted syngas to regenerate SCR type catalyst | |
JP2007238670A (en) | Gas purifying equipment and process, gasification system, and gasification/power generation system | |
EP0933516B1 (en) | Gasification power generation process and equipment | |
JP4775858B2 (en) | Method for regenerating copper-based absorbent and method for removing mercury from source gas | |
JP2008045017A (en) | Apparatus and method for gas cleaning, gasification system and gasification power generation system | |
JP2009173717A (en) | Fuel gas purification facility and method of operating fuel gas purification facility | |
JP4723922B2 (en) | Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus | |
JP2006193563A (en) | Fuel gas purification equipment | |
JP4594239B2 (en) | Gas purification system and gas purification method | |
JPH1119468A (en) | Gas purification | |
JP5688748B2 (en) | Dry gas refining equipment and coal gasification combined power generation equipment | |
JP2011026479A (en) | Fuel gas purifier and method for operating the same | |
JP2007002061A (en) | Gas cleaning apparatus, gasification system, gasification power generation system | |
KIANI et al. | Process: Sulfur and Tar Cl, F | |
JP2009056415A (en) | Halide remover | |
RAHIMPOUR | Syngas Conditioning (Catalyst, Process: Sulfur and Tar Cl, F) | |
JP2012219225A (en) | Dry gas purification facility and coal gasification-combined power generation facility | |
JP4098425B2 (en) | Gas purification method and apparatus for black liquor gasification power generation system | |
Pinto et al. | Gasification technology and its contribution to deal with global warming | |
JP2002205045A (en) | Waste treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6681316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |