JP6678204B2 - 磁気テープ - Google Patents
磁気テープ Download PDFInfo
- Publication number
- JP6678204B2 JP6678204B2 JP2018131331A JP2018131331A JP6678204B2 JP 6678204 B2 JP6678204 B2 JP 6678204B2 JP 2018131331 A JP2018131331 A JP 2018131331A JP 2018131331 A JP2018131331 A JP 2018131331A JP 6678204 B2 JP6678204 B2 JP 6678204B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- magnetic tape
- magnetic layer
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Magnetic Record Carriers (AREA)
Description
非磁性支持体の一方の表面側に強磁性粉末、非磁性粉末および結合剤を含む磁性層を有し、他方の表面側に非磁性粉末および結合剤を含むバックコート層を有する磁気テープであって、
上記強磁性粉末は強磁性六方晶フェライト粉末であり、
上記磁性層の表面において測定される中心線平均表面粗さRa(以下、「磁性層表面粗さRa」とも記載する。)は、1.8nm以下であり、
In−Plane法を用いた上記磁性層のX線回折分析により求められる六方晶フェライト結晶構造の(114)面の回折ピークのピーク強度Int(114)に対する(110)面の回折ピークのピーク強度Int(110)の強度比(Int(110)/Int(114);以下、「XRD(X−ray diffraction)強度比」とも記載する。)は0.5以上4.0以下であり、
上記磁気テープの垂直方向角型比は、0.65以上1.00以下であり、かつ
上記バックコート層の表面において振り子粘弾性試験により求められる対数減衰率(以下、「バックコート層表面の対数減衰率」または「対数減衰率」とも記載する。)は、0.060以下である磁気テープ、
に関する。
磁性層表面粗さRaが1.8nm以下の磁気テープにおいてエッジダメージの発生が顕著となる理由は、磁性層の表面平滑性が高いことにより、巻き取り時に磁性層の表面とバックコート層の表面との接触状態が不安定になるからではないかと、本発明者らは考えている。これに対し、上記磁気テープでは、XRD強度比、垂直方向角型比およびバックコート層表面において測定される対数減衰率がそれぞれ上記範囲であることが、磁性層の表面とバックコート層の表面との接触状態の安定性を高めることに寄与し、その結果、巻き乱れに起因して生じるエッジダメージの発生を抑制できると本発明者らは考えている。この点について、より詳しくは後述する。
上記磁気テープの磁性層表面において測定される中心線平均表面粗さRa(磁性層表面粗さRa)は、1.8nm以下である。磁性層表面粗さRaが1.8nm以下であることは、電磁変換特性向上の観点から好ましい。ただし上記の通り、磁性層表面粗さRaが1.8nm以下になるほど磁性層の表面平滑性を高めた磁気テープでは、エッジダメージが顕著に発生してしまう。これに対し、上記磁気テープは、XRD強度比、垂直方向角型比およびバックコート層表面において測定される対数減衰率がそれぞれ上記範囲であることにより、エッジダメージの発生を抑制することができる。電磁変換特性向上の観点からは磁性層表面粗さRaが小さいことは好ましい。この点から、磁性層表面粗さRaは、1.7nm以下であることができ、1.6nm以下であることもできる。また、磁性層表面粗さRaは、例えば1.2nm以上または1.3nm以上であることができる。ただし電磁変換特性向上の観点からは磁性層表面粗さRaが小さいほど好ましいため、上記例示した値を下回ってもよい。
AFM(Veeco社製Nanoscope4)をタッピングモードで用いて磁気テープの磁性層の表面の面積40μm×40μmの領域を測定する。探針としてはBRUKER社製RTESP−300を使用し、スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとする。
次に、XRD強度比および垂直方向角型比について説明する。
上記磁気テープ装置の磁気テープは、磁性層に強磁性六方晶フェライト粉末および非磁性粉末を含む。磁性層において非磁性粉末は、詳細を後述するように、好ましくは研磨剤または突起形成剤として機能し得る。ただし、磁性層表面および/または磁性層表面近傍に存在する非磁性粉末の粒子(非磁性粒子)が、磁性層表面と磁気ヘッドとの摺動時に磁気ヘッドから力を受けて磁性層内部に適度に沈み込まないと、非磁性粉末の粒子との接触によって磁気ヘッドが削れてしまう(ヘッド削れ)と考えられる。他方、磁性層表面と磁気ヘッドとの摺動時、非磁性粉末の粒子が磁性層内部に沈み込み過ぎると、磁性層表面と磁気ヘッドとが接触(真実接触)する面積が大きくなり摺動時に磁気ヘッドから磁性層表面に加わる力が強くなり、磁性層表面がダメージを受けて磁性層表面が削れる原因になると考えられる。
以上のヘッド削れにより発生する削れ屑および磁性層表面の削れにより発生する削れ屑は、磁性層表面とバックコート層表面との間に介在して、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を低下させてしまうと、本発明者らは推察している。
この点に関して本発明者らは、磁性層に含まれる強磁性六方晶フェライト粉末を構成する粒子の中には、磁性層内部に押し込まれた非磁性粉末の粒子を支えて、その沈み込みの程度に影響を及ぼす粒子(以下、「前者の粒子」ともいう。)と、影響を及ぼさないか影響が少ないと考えられる粒子(以下、「後者の粒子」ともいう。)とが存在すると推察している。後者の粒子は、例えば磁性層形成用組成物の調製時に行われる分散処理により粒子が一部欠けること(チッピング(chipping))により発生した微細な粒子と考えられる。
そして本発明者らは、磁性層に含まれる強磁性六方晶フェライト粉末を構成する粒子(強磁性六方晶フェライト粒子)の中で、前者の粒子は、In−Plane法を用いたX線回折分析において回折ピークをもたらす粒子であり、後者の粒子は微細なため回折ピークをもたらさないか回折ピークへの影響は小さいと考えている。そのため、In−Plane法を用いた磁性層のX線回折分析によってもたらされる回折ピークの強度に基づけば、磁性層内部に押し込まれた非磁性粉末の粒子を支えて、その沈み込みの程度に影響を及ぼす強磁性六方晶フェライト粒子の磁性層における存在状態を制御することができ、その結果、非磁性粉末の粒子の沈み込みの程度を制御することが可能になると本発明者らは推察している。詳しくは、非磁性粉末の粒子は、XRD強度比の値が小さいほど沈み込み易く、その値が大きいほど沈み込み難いと推察している。XRD強度比が0.5以上4.0以下であることにより、非磁性粉末の粒子の沈み込みを、上記のヘッド削れおよび磁性層表面の削れを抑制し得る程度に適度に制御することができると、本発明者らは考えている。このことが、ヘッド削れにより発生する削れ屑および磁性層表面の削れにより発生する削れ屑が磁性層表面とバックコート層表面との間に介在して巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を低下させることを抑制することにつながると、本発明者らは推察している。
一方、垂直方向角型比とは、磁性層表面に対して垂直な方向で測定される飽和磁化に対する残留磁化の比であって、残留磁化が小さいほど値が小さくなる。上記の後者の粒子は微細であり磁化を保持し難いと考えられるため、磁性層において後者の粒子が多く含まれるほど、垂直方向角型比は小さくなる傾向があると推察される。そのため、垂直方向角型比は、磁性層における上記の後者の粒子(微細な粒子)の存在量の指標になり得ると本発明者らは考えている。更に本発明者らは、かかる微細な粒子が磁性層に多く含まれるほど、磁性層の強度が低下し磁気ヘッド等との接触によって磁性層表面が削れやすくなり、削れて発生した削れ屑が磁性層表面とバックコート層表面との間に介在して、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を低下させてしまうと推察している。これに対し、垂直方向角型比が0.65以上1.00以下の磁性層は、上記の後者の粒子(微細な粒子)の存在量が低減されているため磁性層表面が削れ難いことが、結果的に、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を高めることに寄与すると、本発明者らは考えている。
以上のように、XRD強度比が0.5以上4.0以下であることおよび垂直方向角型比が0.65以上1.00以下であることは、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を高めることにつながり、結果的に、エッジダメージの発生を抑制することに寄与すると、本発明者らは推察している。
ただし以上は推察であって、本発明を何ら限定するものではない。
XRD強度比は、強磁性六方晶フェライト粉末を含む磁性層をIn−Plane法を用いてX線回折分析することによって求められる。以下において、In−Plane法を用いて行われるX線回折分析を、「In−Plane XRD」とも記載する。In−Plane XRDは、薄膜X線回折装置を用いて、以下の条件で、磁性層表面にX線を照射して行うものとする。測定方向は、磁気テープの長手方向とする。
Cu線源使用(出力45kV、200mA)
Scan条件:20〜40degreeの範囲を0.05degree/step、0.1degree/min
使用光学系:平行光学系
測定方法::2θχスキャン(X線入射角0.25°)
上記条件は、薄膜X線回折装置における設定値である。薄膜X線回折装置としては、公知の装置を用いることができる。薄膜X線回折装置の一例としては、リガク社製SmartLabを挙げることができる。In−Plane XRDの分析に付す試料は、測定対象の磁気テープから切り出したテープ試料であって、後述する回折ピークが確認できればよく、その大きさおよび形状は限定されるものではない。
本発明者らは、In−Plane XRDによって求められるX線回折スペクトルにおいて、六方晶フェライト結晶構造の(114)面の回折ピークのピーク強度Int(114)に対する(110)面の回折ピークのピーク強度Int(110)の強度比(Int(110)/Int(114);XRD強度比)が大きいほど、磁化容易軸方向と直交する方向が磁性層表面に対してより平行に近い状態で存在する前者の粒子が磁性層に多く存在することを意味し、XRD強度比が小さいほど、そのような状態で存在する前者の粒子が磁性層に少ないことを意味すると推察している。そして、XRD強度比が0.5以上4.0以下である状態とは、前者の粒子が磁性層において適度に整列した状態にあることを意味すると考えられる。このことが、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を高めることにつながり、結果的に、エッジダメージの発生を抑制することに寄与すると本発明者らは推察している。その推察の詳細は、先に記載した通りである。
XRD強度比は、エッジダメージの発生をより一層抑制する観点から、3.5以下であることが好ましく、3.0以下であることがより好ましい。また、同様の観点から、XRD強度比は、0.7以上であることが好ましく、1.0以上であることがより好ましい。XRD強度比は、例えば、磁気テープの製造工程において行われる配向処理の処理条件によって制御することができる。配向処理としては、垂直配向処理を行うことが好ましい。垂直配向処理は、好ましくは、湿潤状態(未乾燥状態)の磁性層形成用組成物の塗布層の表面に対して垂直に磁場を印加することにより行うことができる。配向条件を強化するほど、XRD強度比の値は大きくなる傾向がある。配向処理の処理条件としては、配向処理における磁場強度等が挙げられる。配向処理の処理条件は特に限定されるものではない。0.5以上4.0以下のXRD強度比が実現できるように配向処理の処理条件を設定すればよい。一例として、垂直配向処理における磁場強度は、0.10〜0.80Tとすることができ、または0.10〜0.60Tとすることもできる。磁性層形成用組成物における強磁性六方晶フェライト粉末の分散性を高めるほど、垂直配向処理によりXRD強度比の値は大きくなる傾向がある。
垂直方向角型比とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向をいう。即ち磁気テープについて、垂直方向は、磁気テープの長手方向と直交する方向でもある。垂直方向角型比は、振動試料型磁束計を用いて測定される。詳しくは、本発明および本明細書における垂直方向角型比は、振動試料型磁束計において、23℃±1℃の測定温度において、磁気テープに外部磁場を最大外部磁場1194kA/m(15kOe)かつスキャン速度4.8kA/m/秒(60Oe/秒)の条件で掃引して求められる値であって、反磁界補正後の値とする。測定値は、振動試料型磁束計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。
エッジダメージの発生をより一層抑制する観点から、上記垂直方向角型比は0.68以上であることが好ましく、0.70以上であることがより好ましく、0.73以上であることが更に好ましく、0.75以上であることが一層好ましい。また、角型比は、原理上、最大で1.00である。したがって、上記磁気テープの垂直方向角型比は1.00以下である。上記垂直方向角型比は、例えば0.95以下、0.90以下、0.87以下または0.85以下であってもよい。上記垂直方向角型比の値が大きいほど、磁性層中に上記の微細な後者の粒子が少なくエッジダメージの発生をより一層抑制する観点から好ましいと考えられる。したがって、上記垂直方向角型比は、上記例示した値を上回ってもよい。
エッジダメージの発生を抑制することに関して、本発明者らは、巻き取り時のバックコート層表面の面内各部における磁性層表面との密着力の均一性を高めることも、巻き取り時の磁性層表面とバックコート層表面との接触状態の安定性を高めることに寄与すると考えている。そして、上記の密着力には、バックコート層表面から遊離する粘着性成分が影響を及ぼすと推察している。詳しくは、巻き取り時のバックコート層表面の面内各部における磁性層表面との密着力は、上記粘着性成分の量が多いほど不均一となり、上記粘着性成分の量が少ないほど均一性が高まると推察される。
以上の点に関し、後述の方法により測定される対数減衰率は、バックコート層表面から遊離する粘着性成分の量の指標になり得る値であると、本発明者らは考えている。詳しくは、対数減衰率の値は、上記粘着性成分の量が多いほど大きくなり、上記粘着性成分の量が少ないほど小さくなると考えられる。そして本発明者らは、上記磁気テープにおいて、バックコート層表面において測定される対数減衰率が0.060以下であることによって、巻き取り時のバックコート層表面の面内各部における磁性層表面との密着力の均一性を高めることができると考えている。
上記粘着性成分の詳細は明らかではない。ただし本発明者らは、結合剤として用いられる樹脂に由来する可能性があると推察している。詳しくは、次の通りである。
結合剤としては、詳細を後述するように各種樹脂を用いることができる。樹脂とは、2つ以上の重合性化合物の重合体(ホモポリマーおよびコポリマーを包含する。)であり、分子量が平均分子量を下回る成分(以下、「低分子量結合剤成分」と記載する。)も通常含まれる。このような低分子量結合剤成分が、バックコート層表面から多く遊離するほど、巻き取り時のバックコート層表面の面内各部における磁性層表面との密着力は不均一になってしまうと、本発明者らは考えている。上記の低分子量結合剤成分は粘着性を有すると考えられ、上記方法により求められる対数減衰率がバックコート層表面から遊離する粘着性成分の量の指標になるのではないかと、本発明者らは推察している。なお、一態様では、バックコート層は、非磁性粉末および結合剤に加えて、硬化剤を含むバックコート層形成用組成物を、非磁性支持体表面に塗布し、硬化処理を施し形成される。ここでの硬化処理により、結合剤と硬化剤とを硬化反応(架橋反応)させることができる。ただし、低分子量結合剤成分は、硬化反応の反応性に乏しいのではないかと本発明者らは考えている。その理由は明らかではない。硬化反応の反応性に乏しいため、低分子量結合剤成分はバックコート層に留まり難いことが、バックコート層表面から低分子量結合剤成分が遊離しやすい理由の1つではないかと、本発明者らは推察している。
図1〜図3は、対数減衰率の測定方法の説明図である。以下、これら図面を参照し対数減衰率の測定方法を説明する。ただし、図示された態様は例示であって、本発明を何ら限定するものではない。
振り子粘弾性試験機内の試料ステージ101において、測定対象の磁気テープの一部(測定用試料)100を、目視で確認できる明らかなしわが入っていない状態で、基板103上に測定面(バックコート層表面)を上方に向けて固定用テープ105等で固定された状態で載置する。
測定用試料100の測定面上に、振り子付丸棒型シリンダエッジ104を、シリンダエッジの長軸方向が測定用試料100の長手方向と平行になるように載せる。こうして測定用試料100の測定面に、振り子付丸棒型シリンダエッジ104を載せた状態(上方から見た状態)の一例を、図1に示す。図1に示す態様では、ホルダ兼温度センサー102が設置され、基板103の表面温度をモニタリングできる構成になっている。ただし、この構成は必須ではない。なお測定用試料100の長手方向とは、図1に示す態様では図中に矢印によって示した方向であり、測定用試料を切り出した磁気テープにおける長手方向をいう。また、本明細書に記載の「平行」等の角度に関する記載には、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。また、振り子107(図2参照)としては、金属、合金等のマグネットに吸着される性質を有する材料製の振り子を用いる。
測定用試料100を載置した基板103の表面温度を5℃/min以下の昇温速度(5℃/min以下であれば任意の昇温速度でよい。)で昇温して80℃として、振り子運動を、振り子107とマグネット106との吸着を解除することにより開始(初期振動を誘起)させる。振り子運動している振り子107の状態(横から見た状態)の一例が、図2である。図2に示す態様では、振り子粘弾性試験機内で、試料ステージ下方に配置されたマグネット(電磁石)106への通電を停止して(スイッチをオフにして)吸着を解除することにより振り子運動を開始し、電磁石への通電を再開して(スイッチをオンにして)振り子107をマグネット106に吸着させることにより振り子運動を停止させる。振り子運動中、図2に示すように、振り子107は振幅を繰り返す。振り子が振幅を繰り返している間、振り子の変位を変位センサー108によりモニタリングして得られる結果から、変位を縦軸に取り、経過時間を横軸に取った変位−時間曲線を得る。変位−時間曲線の一例を、図3に示す。図3では、振り子107の状態と変位−時間曲線との対応が模式的に示されている。一定の測定間隔で、静止(吸着)と振り子運動とを繰り返し、10分以上(10分以上であれば任意の時間でよい。)経過した後の測定間隔において得られた変位−時間曲線を用いて、対数減衰率Δ(無単位)を、下記式から求め、この値を磁気テープのバックコート層表面の対数減衰率とする。1回の吸着の吸着時間は1秒以上(1秒以上であれば任意の時間でよい。)とし、吸着終了から次の吸着開始までの間隔は6秒以上(6秒以上であれば任意の時間でよい。)とする。測定間隔とは、吸着開始から次の吸着開始までの時間の間隔である。また、振り子運動を行う環境の湿度は、相対湿度40〜70%の範囲であれば任意の相対湿度でよい。また、振り子運動を行う環境の雰囲気温度は、20〜30℃の範囲であれば任意の温度でよい。
(強磁性粉末)
上記磁気テープの磁性層は、強磁性粉末として強磁性六方晶フェライト粉末を含む。強磁性六方晶フェライト粉末に関して、六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。上記磁性層に含まれる強磁性六方晶フェライト粉末は、いずれの結晶構造を取るものであってもよい。また、六方晶フェライトの結晶構造には、構成原子として、鉄原子および二価金属原子が含まれる。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、バリウム原子、ストロンチウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。例えば、二価金属原子としてバリウム原子を含む六方晶フェライトは、バリウムフェライトであり、ストロンチウム原子を含む六方晶フェライトは、ストロンチウムフェライトである。また、六方晶フェライトは、二種以上の六方晶フェライトの混晶であってもよい。混晶の一例としては、バリウムフェライトとストロンチウムフェライトの混晶を挙げることができる。
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)]1/2}
[上記式中、Ku:異方性定数、Ms:飽和磁化、k:ボルツマン定数、T:絶対温度、V:活性化体積、A:スピン歳差周波数、t:磁界反転時間]
高密度記録化を達成するための方法としては、磁性層に含まれる強磁性粉末の粒子サイズを小さくし、磁性層の強磁性粉末の充填率を高める方法が挙げられる。この点から、強磁性六方晶フェライト粉末の活性化体積は、2500nm3以下であることが好ましく、2300nm3以下であることがより好ましく、2000nm3以下であることが更に好ましい。一方、磁化の安定性の観点からは、活性化体積は、例えば800nm3以上であることが好ましく、1000nm3以上であることがより好ましく、1200nm3以上であることが更に好ましい。
上記磁気テープは塗布型磁気テープであって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、バックコート層および/または後述する非磁性層においても結合剤として使用することができる。以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値をポリスチレン換算して求められる値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー社製)
カラム:TSK gel Multipore HXL−M(東ソー社製、7.8mmID(inner diameter(内径))×30.0cm)
溶離液:テトラヒドロフラン(THF)
磁性層に含まれる非磁性粉末としては、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(以下、「突起形成剤」と記載する。)、および研磨剤として機能することができる非磁性粉末(以下、「研磨剤」と記載する。)を挙げることができる。XRD強度比が0.5以上4.0以下である磁性層では、非磁性粉末の粒子の磁性層内部への沈み込みを適度に制御できることが、結果的にエッジダメージの発生を抑制することにつながると本発明者らは推察している。その推察の詳細は、先に記載した通りである。
磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、分散剤としては、カルボキシ基含有化合物、含窒素化合物等の公知の分散剤を挙げることもできる。例えば、含窒素化合物は、NH2Rで表される第一級アミン、NHR2で表される第二級アミン、NR3で表される第三級アミンのいずれであってもよい。上記において、Rは含窒素化合物を構成する任意の構造を示し、複数存在するRは同一であっても異なっていてもよい。含窒素化合物は、分子中に複数の繰り返し構造を有する化合物(ポリマー)であってもよい。含窒素化合物の含窒素部が強磁性六方晶フェライト粉末の粒子表面への吸着部として機能することが、含窒素化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物としては、例えばオレイン酸等の脂肪酸を挙げることができる。カルボキシ基含有化合物については、カルボキシ基が強磁性六方晶フェライト粉末の粒子表面への吸着部として機能することが、カルボキシ基含有化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物と含窒素化合物を併用することも、好ましい。
上記磁気テープは、非磁性支持体の磁性層を有する表面とは反対の表面側にバックコート層を有する。バックコート層の非磁性粉末としては、カーボンブラックと、カーボンブラック以外の非磁性粉末と、のいずれか一方または両方を使用することができる。カーボンブラック以外の非磁性粉末としては、非磁性無機粉末を挙げることができる。具体例としては、α−酸化鉄等の酸化鉄、二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO2、SiO2、Cr2O3、α−アルミナ、β−アルミナ、γ−アルミナ、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、二硫化モリブデン、酸化銅、MgCO3、CaCO3、BaCO3、SrCO3、BaSO4、炭化珪素、炭化チタン等の非磁性無機粉末を挙げることができる。好ましい非磁性無機粉末は、非磁性無機酸化物粉末であり、より好ましくはα−酸化鉄、酸化チタンであり、更に好ましくはα−酸化鉄である。
次に非磁性層について説明する。上記磁気テープは、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体表面上に非磁性粉末および結合剤を含む非磁性層を介して磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機粉末でも有機粉末でもよい。また、カーボンブラック等も使用できる。無機粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011−216149号公報の段落0146〜0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010−24113号公報の段落0040〜0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。
非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
非磁性支持体の厚みは、好ましくは3.00〜20.00μm、より好ましくは3.00〜10.00μm、更に好ましくは3.00〜6.00μmであり、特に好ましくは3.00〜4.50μmである。
(各層形成用組成物の調製)
磁性層、バックコート層または非磁性層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられるすべての原料は、どの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報および特開平1−79274号公報に記載されている。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01〜3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
なお本発明および本明細書におけるビーズ径は、先に記載した粉末の平均粒子サイズの測定方法と同様の方法で測定される値とする。
一方、第一の段階における第一の分散ビーズ量も、上記範囲とすることが好ましい。
一方、第一の分散ビーズとしては、密度が3.7g/cm3超の分散ビーズが好ましく、密度が3.8g/cm3以上の分散ビーズがより好ましく、4.0g/cm3以上の分散ビーズが更に好ましい。第一の分散ビーズの密度は、例えば7.0g/cm3以下であってもよく、7.0g/cm3超でもよい。第一の分散ビーズとしては、ジルコニアビーズ、アルミナビーズ等を用いることが好ましく、ジルコニアビーズを用いることがより好ましい。
磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次または同時に重層塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066を参照できる。
非磁性粉末、結合剤、硬化剤および溶媒を含むバックコート層形成用組成物を非磁性支持体表面上に塗布することにより塗布層を形成する塗布工程、
上記塗布層を加熱処理により乾燥させる加熱乾燥工程、ならびに、
上記塗布層に硬化処理を施す硬化工程、
を含み、
上記塗布工程と加熱乾燥工程との間に、上記塗布層を冷却する冷却工程を含み、かつ
上記加熱乾燥工程と硬化工程との間に、上記塗布層表面をバーニッシュするバーニッシュ処理工程を含む製造方法により、製造することができる。
塗布工程と加熱乾燥工程との間に塗布層を冷却する冷却工程を行うことは、バックコート層表面から遊離する粘着性成分を、上記塗布層の表面および/または表面近傍の表層部分に局在させることに寄与するのではないかと、本発明者らは推察している。これは、加熱乾燥工程前に上記塗布層を冷却することにより、加熱乾燥工程における溶媒揮発時に粘着性成分が上記塗布層の表面および/または表層部分に移行しやすくなるためではないかと考えられる。ただし、その理由は明らかではない。そして、粘着性成分が表面および/または表層部分に局在した塗布層の表面をバーニッシュ処理することにより、粘着性成分を除去することができると本発明者らは考えている。こうして粘着性成分を除去した後に硬化工程を行うことが、バックコート層の表面において測定される対数減衰率を0.060以下にすることにつながると、本発明者らは推察している。ただし、以上は推察に過ぎず、本発明を何ら限定するものではない。
[実施例1]
各層形成用組成物の処方を、下記に示す。
(磁性液)
板状強磁性六方晶フェライト粉末(M型バリウムフェライト):100.0部
(活性化体積:1500nm3)
オレイン酸:2.0部
塩化ビニル共重合体(日本ゼオン製MR−104):10.0部
SO3Na基含有ポリウレタン樹脂:4.0部
(重量平均分子量:70000、SO3Na基:0.07meq/g)
アミン系ポリマー(ビックケミー社製DISPERBYK−102):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α−アルミナ:6.0部
(BET比表面積:19m2/g、モース硬度:9)
SO3Na基含有ポリウレタン樹脂:0.6部
(重量平均分子量:70000、SO3Na基:0.1meq/g)
2,3−ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)
コロイダルシリカ:2.0部
(平均粒子サイズ:80nm)
メチルエチルケトン:8.0部
(潤滑剤および硬化剤液)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
非磁性無機粉末 α酸化鉄:100.0部
(平均粒子サイズ:10nm、BET比表面積:75m2/g)
カーボンブラック:25.0部
(平均粒子サイズ:20nm)
SO3Na基含有ポリウレタン樹脂:18.0部
(重量平均分子量:70000、SO3Na基含有量:0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
非磁性無機粉末 α酸化鉄:80.0部
(平均粒子サイズ:0.15μm、BET比表面積:52m2/g)
カーボンブラック:20.0部
(平均粒子サイズ:20nm)
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
磁性層形成用組成物を、以下の方法によって調製した。
上記磁性液の各種成分を、バッチ式縦型サンドミルによりビーズ径0.5mmのジルコニアビーズ(第一の分散ビーズ、密度6.0g/cm3)を使用して24時間分散し(第一の段階)、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより分散液Aを調製した。ジルコニアビーズは、強磁性六方晶バリウムフェライト粉末に対して、質量基準で10倍量用いた。
その後、分散液Aをバッチ式縦型サンドミルにより表1に示すビーズ径のダイヤモンドビーズ(第二の分散ビーズ、密度3.5g/cm3)を使用して1時間分散し(第二の段階)、遠心分離機を用いてダイヤモンドビーズを分離した分散液(分散液B)を調製した。下記磁性液は、こうして得られた分散液Bである。ダイヤモンドビーズは、強磁性六方晶バリウムフェライト粉末に対して、質量基準で10倍量用いた。
研磨剤液は、上記の研磨剤液の各種成分を混合してビーズ径0.3mmのジルコニアビーズとともに横型ビーズミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が80%になるように調整し、120分間ビーズミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。こうして研磨剤液を調製した。
調製した磁性液、研磨剤液、上記の突起形成剤液、ならびに潤滑剤および硬化剤液をディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
上記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
上記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パス滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
図4に示す具体的態様により磁気テープを作製した。詳しくは、次の通りとした。
厚み4.50μmのポリエチレンナフタレート製支持体を送り出し部から送り出し、一方の表面に、第一の塗布部において乾燥後の厚みが1.00μmになるように非磁性層形成用組成物を塗布し、第一の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させて塗布層を形成した。
その後、第二の塗布部において乾燥後の厚みが0.10μmになるように磁性層形成用組成物を非磁性層上に塗布し塗布層を形成した。形成した塗布層が湿潤状態にあるうちに配向ゾーンにおいて表1に示す強度の磁場を上記塗布層の表面に対し垂直方向に印加し垂直配向処理を施した。その後、上記塗布層を、第二の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させた。
その後、第三の塗布部において、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した表面とは反対の表面上に、乾燥後の厚みが0.50μmになるようにバックコート層形成用組成物を塗布して塗布層を形成し、形成した塗布層が湿潤状態にあるうちに雰囲気温度0℃に調整した冷却ゾーンに表1に示す滞在時間で通過させて冷却工程を行った。その後、第三の加熱処理ゾーン(雰囲気温度100℃)にて上記塗布層を乾燥させた。
こうして得られた磁気テープを1/2インチ(0.0127メートル)幅にスリットした後、バックコート層形成用組成物の塗布層表面のバーニッシュ処理およびワイピング処理を行った。バーニッシュ処理およびワイピング処理は、特開平6−52544号公報の図1に記載の構成の処理装置において、研磨テープとして市販の研磨テープ(富士フイルム社製商品名MA22000、研磨剤:ダイヤモンド/Cr2O3/ベンガラ)を使用し、研削用ブレードとして市販のサファイアブレード(京セラ社製、幅5mm、長さ35mm、先端角度60度)を使用し、ワイピング材として市販のワイピング材(クラレ社製商品名WRP736)を使用して行った。処理条件は、特開平6−52544号公報の実施例12における処理条件を採用した。
上記バーニッシュ処理およびワイピング処理後、金属ロールのみから構成されるカレンダロールで、速度80m/分かつ線圧300kg/cm(294kN/m)にて、表1に示す表面温度のカレンダロールを用いてカレンダ処理(表面平滑化処理)を行った。
その後、雰囲気温度70℃の環境で36時間硬化処理(加熱処理)を行い磁気テープを得て、得られた磁気テープの磁性層に市販のサーボライターによってサーボパターンを形成した。
以上により、実施例1の磁気テープを得た。
表1に示す各種項目を表1に示すように変更した点以外、実施例1と同様に磁気テープを作製した。
表1中、分散ビーズの欄および時間の欄に「なし」と記載されている比較例および参考例については、磁性液分散処理において第二の段階を実施せずに磁性層形成用組成物を調製した。
表1中、垂直配向処理磁場強度の欄に「なし」と記載されている比較例および参考例については、配向処理を行わずに磁性層を形成した。
表1中、バックコート層形成工程の冷却ゾーン滞在時間の欄および硬化処理前バーニッシュ処理の欄に「未実施」と記載されている比較例および参考例では、バックコート層形成工程に冷却ゾーンを含まず、かつバーニッシュ処理およびワイピング処理を行わない製造工程により磁気テープを作製した。
(1)XRD強度比
作製した磁気テープから、テープ試料を切り出した。
切り出したテープ試料について、薄膜X線回折装置(リガク社製SmartLab)を用いて磁性層表面にX線を入射させて、先に記載した方法によりIn−Plane XRDを行った。
In−Plane XRDにより得られたX線回折スペクトルから、六方晶フェライト結晶構造の(114)面の回折ピークのピーク強度Int(114)および(110)面の回折ピークのピーク強度Int(110)を求め、XRD強度比(Int(110)/Int(114))を算出した。
作製した磁気テープについて、振動試料型磁束計(東英工業社製)を用いて先に記載した方法により垂直方向角型比を求めた。
原子間力顕微鏡(AFM、Veeco社製Nanoscope4)をタッピングモードで用いて、磁気テープの磁性層表面において測定面積40μm×40μmの範囲を測定し、中心線平均表面粗さRaを求めた。探針としてはBRUKER社製RTESP−300を使用し、スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。
測定装置として、株式会社エー・アンド・デイ製剛体振り子型物性試験器RPT−3000W(振り子:株式会社エー・アンド・デイ製剛体振り子FRB−100、おもり:なし、丸棒型シリンダエッジ:株式会社エー・アンド・デイ製RBP−040、基板:ガラス基板、基板昇温速度5℃/min)を用いて、先に記載した方法により実施例、比較例および参考例の各磁気テープのバックコート層表面の対数減衰率を求めた。
ガラス基板としては、市販のスライドグラスを25mm(短辺)×50mm(長辺)のサイズにカットしたものを使用した。磁気テープの長手方向がガラス基板の短辺方向と平行になるように磁気テープをガラス基板の中央に載せた状態で、ガラス基板上の磁気テープの四隅を固定用テープ(東レ・デュポン製カプトンテープ)でガラス基板と固定した。その後、ガラス基板から食み出た部分の磁気テープをカットした。こうして、測定用試料が、ガラス基板上に図1に示すように4箇所で固定されて載置された。吸着時間を1秒間かつ測定間隔を7〜10秒とし、86回目の測定間隔について変位−時間曲線を作成し、この曲線を用いて対数減衰率を求めた。測定は、相対湿度約50%の環境下にて行った。
実施例、比較例および参考例の各磁気テープ(磁気テープ全長500m)を収容した磁気テープカートリッジを、IBM社製LTO−G7(Linear Tape−Open Generation 7)ドライブにセットし、磁気テープを、磁性層表面と磁気ヘッドとを接触させ摺動させながら、テンション0.6N、走行速度5m/秒で1500往復走行させた。
上記走行後の磁気テープカートリッジを、リファレンスドライブ(IBM社製LTO−G7ドライブ)にセットし、磁気テープを走行させて記録再生を行った。走行中の再生信号を外部AD(Analog/Digital)変換装置に取り込み、磁気テープの一方のエッジに最も近いトラックおよび他方のエッジに最も近いトラックでそれぞれ、再生信号振幅が平均(各トラックでの測定値の平均)に対して70%以上低下した信号をミッシングパルスとして、その発生頻度(発生回数)を磁気テープ全長で除して、磁気テープの単位長さ当たり(1m当たり)のミッシングパルス発生頻度(単位:回/m)として求めた。
エッジダメージが重度に発生しているほど、上記方法で求められるミッシングパルス発生頻度は増加する。したがって、上記方法で求められるミッシングパルス発生頻度は、エッジダメージの指標となる。ミッシングパルス発生頻度が10.0回/m以下であれば、エッジダメージの発生が実用上十分なレベルまで抑制されていると判断することができる。なおエッジダメージが発生する位置は一定ではないため、本評価では、一方のエッジに最も近いトラックでの測定結果と、他方のエッジに最も近いトラックでの測定結果の中で、より大きい測定結果をミッシングパルス発生頻度として採用し、表1に示した。
更に、実施例1〜8と比較例1〜8との対比から、磁性層表面粗さRaが1.8nm以下の磁気テープにおけるエッジダメージの発生を、XRD強度比、垂直方向角型比およびバックコート層表面の対数減衰率をそれぞれ先に記載した範囲とすることにより抑制できることが確認できる。
Claims (5)
- 非磁性支持体の一方の表面側に強磁性粉末、非磁性粉末および結合剤を含む磁性層を有し、他方の表面側に非磁性粉末および結合剤を含むバックコート層を有する磁気テープであって、
前記強磁性粉末は強磁性六方晶フェライト粉末であり、
前記磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、
In−Plane法を用いた前記磁性層のX線回折分析により求められる六方晶フェライト結晶構造の(114)面の回折ピークのピーク強度Int(114)に対する(110)面の回折ピークのピーク強度Int(110)の強度比、Int(110)/Int(114)、は0.5以上4.0以下であり、
前記磁気テープの垂直方向角型比は、0.65以上1.00以下であり、かつ
前記バックコート層の表面において振り子粘弾性試験により求められる対数減衰率は、0.060以下である磁気テープ。 - 前記対数減衰率は、0.010以上0.060以下である、請求項1に記載の磁気テープ。
- 前記磁性層の表面において測定される中心線平均表面粗さRaは、1.2nm以上1.8nm以下である、請求項1または2に記載の磁気テープ。
- 前記垂直方向角型比は、0.65以上0.90以下である、請求項1〜3のいずれか1項に記載の磁気テープ。
- 前記非磁性支持体と前記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する、請求項1〜4のいずれか1項に記載の磁気テープ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/038,884 US10854230B2 (en) | 2017-07-19 | 2018-07-18 | Magnetic tape having characterized magnetic layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017140019 | 2017-07-19 | ||
JP2017140019 | 2017-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019021369A JP2019021369A (ja) | 2019-02-07 |
JP6678204B2 true JP6678204B2 (ja) | 2020-04-08 |
Family
ID=65354218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018131331A Active JP6678204B2 (ja) | 2017-07-19 | 2018-07-11 | 磁気テープ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6678204B2 (ja) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0620254A (ja) * | 1992-07-03 | 1994-01-28 | Tdk Corp | 磁気記録媒体およびその製造方法 |
JP2004005793A (ja) * | 2002-05-30 | 2004-01-08 | Fuji Photo Film Co Ltd | 磁気記録媒体 |
JP2007297427A (ja) * | 2006-04-27 | 2007-11-15 | Dainippon Printing Co Ltd | 粘着フィルムおよびその製造方法 |
JP5181905B2 (ja) * | 2008-07-31 | 2013-04-10 | 凸版印刷株式会社 | ガスバリア積層体 |
JP6318108B2 (ja) * | 2015-03-18 | 2018-04-25 | 富士フイルム株式会社 | 磁気テープ |
-
2018
- 2018-07-11 JP JP2018131331A patent/JP6678204B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019021369A (ja) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6723202B2 (ja) | 磁気テープ | |
JP6707060B2 (ja) | 磁気テープ | |
JP6723203B2 (ja) | 磁気テープ | |
JP6685248B2 (ja) | 磁気テープ | |
JP6649297B2 (ja) | 磁気テープ装置および磁気再生方法 | |
JP6717785B2 (ja) | 磁気記録媒体 | |
US10854230B2 (en) | Magnetic tape having characterized magnetic layer | |
US10854227B2 (en) | Magnetic recording medium having characterized magnetic layer | |
JP6689223B2 (ja) | 磁気テープ | |
JP6707061B2 (ja) | 磁気記録媒体 | |
JP6684239B2 (ja) | 磁気テープ | |
JP6706909B2 (ja) | 磁気テープおよびその製造方法 | |
JP6717786B2 (ja) | 磁気テープおよび磁気テープ装置 | |
JP6585570B2 (ja) | 磁気記録媒体およびその製造方法 | |
JP6689222B2 (ja) | 磁気テープ | |
JP6637456B2 (ja) | 磁気テープ | |
JP6684238B2 (ja) | 磁気テープ | |
JP6649298B2 (ja) | 磁気テープ装置およびヘッドトラッキングサーボ方法 | |
JP6602806B2 (ja) | 磁気テープ | |
JP6556100B2 (ja) | 磁気テープ | |
JP6316249B2 (ja) | 磁気テープおよびその製造方法 | |
JP2018137015A (ja) | 磁気テープ | |
JP6723296B2 (ja) | 磁気記録媒体 | |
JP6714658B2 (ja) | 磁気記録媒体および磁気記録再生装置 | |
JP6678204B2 (ja) | 磁気テープ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190808 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200130 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6678204 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |