[go: up one dir, main page]

JP6656608B1 - Carboxyl group-containing beaten acrylonitrile fiber, method for producing the fiber, and structure containing the fiber - Google Patents

Carboxyl group-containing beaten acrylonitrile fiber, method for producing the fiber, and structure containing the fiber Download PDF

Info

Publication number
JP6656608B1
JP6656608B1 JP2019547538A JP2019547538A JP6656608B1 JP 6656608 B1 JP6656608 B1 JP 6656608B1 JP 2019547538 A JP2019547538 A JP 2019547538A JP 2019547538 A JP2019547538 A JP 2019547538A JP 6656608 B1 JP6656608 B1 JP 6656608B1
Authority
JP
Japan
Prior art keywords
acrylonitrile
fiber
beaten
fibers
carboxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547538A
Other languages
Japanese (ja)
Other versions
JPWO2019230640A1 (en
Inventor
小見山拓三
水谷健太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Application granted granted Critical
Publication of JP6656608B1 publication Critical patent/JP6656608B1/en
Publication of JPWO2019230640A1 publication Critical patent/JPWO2019230640A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/84Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising combined with mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/18Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylonitriles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】カルボキシル基を有する叩解状アクリロニトリル系繊維は、水に対する膨潤性が高いという特性を有しており、粉体捕捉性の面で有利とされている。しかし、この特性は加熱や乾燥により収縮しやすいという側面も生み出し、加工時における形態安定性が悪いという問題点を発生させてしまう。本発明の目的は、形態安定性に優れるカルボキシル基含有叩解状アクリロニトリル系繊維を提供することにある。【解決手段】0.2〜4.0mmol/gのカルボキシル基量を有し、共有結合による架橋構造を実質的に有さない重合体で構成されている叩解状アクリロニトリル系繊維であって、坪量50g/m2の紙形状としたときの収縮率が25%以下であることを特徴とする叩解状アクリロニトリル系繊維。【選択図】なしA beaten acrylonitrile fiber having a carboxyl group has a property of having high swelling property in water, and is considered advantageous in terms of powder capturing property. However, this characteristic also causes an aspect that it is likely to shrink due to heating or drying, which causes a problem of poor morphological stability during processing. An object of the present invention is to provide a beaten acrylonitrile fiber containing a carboxyl group, which is excellent in morphological stability. A beaten acrylonitrile fiber composed of a polymer having a carboxyl group content of 0.2 to 4.0 mmol / g and having substantially no cross-linked structure by covalent bonds. A beaten acrylonitrile fiber having a shrinkage of 25% or less when formed into a paper shape having an amount of 50 g / m 2. [Selection diagram] None

Description

本発明は、カルボキシル基含有叩解状アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する構造体に関する。 The present invention relates to a carboxyl group-containing beaten acrylonitrile-based fiber, a method for producing the fiber, and a structure containing the fiber.

叩解状繊維は多分岐構造や高比表面積を特徴として有し、接着性や活性炭等の機能性粒子の捕捉性に優れることから、製紙、包材、塗料、建材、産業資材、美容、健康等様々な分野で応用されている。 The beaten fiber has a multi-branched structure and a high specific surface area, and is excellent in adhesiveness and ability to capture functional particles such as activated carbon, so that papermaking, packaging materials, paints, building materials, industrial materials, beauty, health, etc. It is applied in various fields.

アクリル系繊維においてもその叩解は検討されており、特許文献1ではカルボキシル基を有する原料アクリル系繊維を叩解することで高度の接着性を有する叩解状アクリロニトリル系繊維が得られることを報告している。 Beating of acrylic fibers is also being studied, and Patent Document 1 reports that beaten acrylonitrile fibers having high adhesiveness can be obtained by beating raw material acrylic fibers having a carboxyl group. .

該繊維は、上述の接着性や機能性粒子の捕捉性に加え、カルボキシル基を有するため、易分散性、イオン吸着性、吸湿性、消臭性等の機能が発現し、様々な用途への応用が期待できる。 Since the fiber has a carboxyl group in addition to the above-described adhesiveness and the ability to capture functional particles, it has functions such as easy dispersibility, ion adsorption, moisture absorption, and deodorization, and is used for various applications. Applications can be expected.

特開2003−166118号公報JP-A-2003-166118

特許文献1の叩解状アクリロニトリル系繊維は、水に対する膨潤性が高いという特性を有しており、粉体捕捉性の面で有利とされている。しかし、この特性は加熱や乾燥により収縮しやすいという側面も生み出し、加工時における形態安定性が悪いという問題点を発生させてしまう。また、特許文献1の叩解状アクリロニトリル系繊維は、フィブリル化繊維が一度乾燥されるとフィブリルが互いに接着して、再び膨潤しなくなる性質をもっている。このため、一旦乾燥させてしまうとカルボキシル基の有するイオン吸着性、吸湿性、消臭性などの特性を有効に利用できないという問題点も有している。 The beaten acrylonitrile-based fiber disclosed in Patent Document 1 has a property that it has a high swelling property with respect to water, and is considered to be advantageous in terms of powder capturing properties. However, this property also has the aspect of easily shrinking by heating and drying, and causes a problem of poor form stability during processing. Further, the beaten acrylonitrile-based fiber disclosed in Patent Document 1 has a property that once the fibrillated fiber is dried, the fibrils adhere to each other and do not swell again. For this reason, there is also a problem that once dried, the properties of the carboxyl group such as ion adsorption, moisture absorption and deodorization cannot be effectively used.

本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、形態安定性に優れるカルボキシル基含有叩解状アクリロニトリル系繊維を提供することにある。 The present invention has been made in view of the state of the art, and an object of the present invention is to provide a carboxyl group-containing beaten acrylonitrile fiber having excellent form stability.

本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、アクリロニトリル系重合体を溶解した紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解することによって、マクロ的に見た場合にはカルボキシル基を有する部分が繊維構造内全体に存在している一方で、より微視的に見た場合には繊維を構成する各フィブリルの内部よりも表面により多くのカルボキシル基が存在するという構造を有する繊維を得ることができ、これを叩解処理することで、加工時の形態安定性に優れるとともに、カルボキシル基に由来する機能を十分に発揮することができるカルボキシル基含有叩解状アクリロニトリル系繊維が得られることを見出し、本発明に到達した。 The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, after spinning a spinning solution in which an acrylonitrile-based polymer was dissolved from a nozzle, the solution was obtained through coagulation, water washing, and stretching. By hydrolyzing the undried fibers, a portion having a carboxyl group is present throughout the fiber structure when viewed macroscopically, while constituting the fiber when viewed more microscopically. Fibers with a structure in which more carboxyl groups are present on the surface than inside each fibril can be obtained, and by beating this fiber, it has excellent form stability during processing and a function derived from carboxyl groups. It has been found that a carboxyl group-containing beaten acrylonitrile-based fiber capable of sufficiently exhibiting the above is obtained, and the present invention has been achieved.

即ち、本発明は以下の手段により達成される。
(1) 0.2〜4.0mmol/gのカルボキシル基量を有し、共有結合による架橋構造を実質的に有さない重合体で構成されている叩解状アクリロニトリル系繊維であって、坪量50g/mの紙形状としたときの収縮率が20%以下であることを特徴とする叩解状アクリロニトリル系繊維。
(2) 水膨潤度が0.2倍以上であることを特徴とする(1)に記載の叩解状アクリロニトリル系繊維。
(3) 濾水度が730ml以下であることを特徴とする(1)または(2)に記載の叩解状アクリロニトリル系繊維。
(4) アクリロニトリル系重合体を溶解した紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解処理した後に叩解処理を施すことを特徴とする叩解状アクリロニトリル系繊維の製造方法。
(5) 加水分解処理を、未乾燥繊維に塩基性水溶液または酸性水溶液を含浸し、絞った後に、湿熱雰囲気下で加熱することによって行うことを特徴とする(4)に記載の叩解状アクリロニトリル系繊維の製造方法。
(6) 湿熱雰囲気下での加熱温度が105〜140℃であることを特徴とする(5)に記載の叩解状アクリロニトリル系繊維の製造方法。
(7) 未乾燥繊維の水分率が20〜250%であることを特徴とする(4)〜(6)のいずれかに記載の叩解状アクリロニトリル系繊維の製造方法。
(8) 加水分解処理後に乾燥工程を経てから叩解処理を施すことを特徴とする(4)〜(7)のいずれかに記載の叩解状アクリロニトリル系繊維の製造方法。
(9) (1)〜(3)のいずれかに記載の叩解状アクリロニトリル系繊維を含有する構造体。
(10) フィルター、衛材用品の吸収層及び拡散層、燃料電池拡散膜用カーボンシート並びに製紙製品の中から選択されたものであることを特徴とする(9)に記載の構造体。
That is, the present invention is achieved by the following means.
(1) Beating acrylonitrile-based fibers composed of a polymer having a carboxyl group content of 0.2 to 4.0 mmol / g and having substantially no covalent cross-linked structure, Beating acrylonitrile-based fibers having a shrinkage factor of 20 % or less when formed into a paper having a shape of 50 g / m 2 .
(2) The beaten acrylonitrile fiber according to (1), wherein the degree of water swelling is 0.2 times or more.
(3) The beaten acrylonitrile fiber according to (1) or (2), wherein the freeness is 730 ml or less.
(4) A spinning solution in which an acrylonitrile-based polymer is dissolved is spun out from a nozzle, and then the undried fibers obtained through the steps of coagulation, washing and drawing are hydrolyzed, and then beating is performed. A method for producing beaten acrylonitrile-based fibers.
(5) The beating-like acrylonitrile system according to (4), wherein the hydrolysis treatment is performed by impregnating the undried fiber with a basic aqueous solution or an acidic aqueous solution, squeezing, and heating the wet fiber in a moist and hot atmosphere. Fiber manufacturing method.
(6) The method for producing beaten acrylonitrile-based fibers according to (5), wherein the heating temperature in a moist heat atmosphere is 105 to 140 ° C.
(7) The method for producing beaten acrylonitrile-based fibers according to any one of (4) to (6), wherein the moisture content of the undried fibers is 20 to 250%.
(8) The method for producing beaten acrylonitrile-based fibers according to any one of (4) to (7), wherein a beating treatment is performed after a drying step after the hydrolysis treatment.
(9) A structure containing the beaten acrylonitrile-based fiber according to any one of (1) to (3).
(10) The structure according to (9), which is selected from a filter, an absorption layer and a diffusion layer of a sanitary ware, a carbon sheet for a fuel cell diffusion membrane, and a paper product.

本発明の叩解状アクリロニトリル系繊維は、カルボキシル基を有しながら、後述する方法において25%以下という低い収縮率を達成できるものである。かかる本発明の叩解状アクリロニトリル系繊維は、接着性や粒子捕捉性に優れるとともに、形態安定性にも優れているため、フィルターなどにおいて機能性粒子などを担持させるバインダーとして好適に使用することができる。さらに、本発明の叩解状アクリロニトリル系繊維は、カルボキシル基に由来するイオン交換性、吸湿、消臭、抗ウイルス、抗アレルゲン性などの機能も発揮することができるため、これらの機能を紙やフィルターに付与するための機能素材としても有用である。 The beaten acrylonitrile fiber of the present invention has a carboxyl group and can achieve a low shrinkage of 25% or less in the method described later. The beaten acrylonitrile-based fiber of the present invention is excellent in adhesiveness and particle trapping property and also excellent in form stability, so that it can be suitably used as a binder for supporting functional particles in a filter or the like. . Furthermore, the beaten acrylonitrile-based fiber of the present invention can also exhibit functions such as ion exchange properties derived from carboxyl groups, moisture absorption, deodorization, antivirus, and antiallergenic properties. It is also useful as a functional material for providing

本発明の叩解状アクリロニトリル系繊維は、カルボキシル基を含有するものであり、その含有量としては、後述する方法において、0.2〜4.0mmol/gであり、好ましくは0.4〜3.0mmol/g、より好ましくは0.6〜2.0mmol/gである。カルボキシル基量が0.2mmol/gに満たない場合には、接着性、粒子捕捉性、イオン交換性能等が十分に得られないことがあり、4.0mmol/gを超える場合には、繊維の親水性が高くなりすぎて、水に激しく膨潤したり、溶解したりするため、繊維物性に悪影響を及ぼす。また、本発明の叩解状アクリロニトリル系繊維の原料となる叩解前のアクリロニトリル系繊維(以下、未叩解繊維とも言う)において、良好な叩解性を得るためにも、上記に示した範囲のカルボキシル基を含有することが望ましい。 The beaten acrylonitrile-based fiber of the present invention contains a carboxyl group, and its content is 0.2 to 4.0 mmol / g, and preferably 0.4 to 3.0 mmol / g in the method described later. 0 mmol / g, more preferably 0.6 to 2.0 mmol / g. When the amount of carboxyl groups is less than 0.2 mmol / g, the adhesiveness, particle trapping property, ion exchange performance, etc. may not be sufficiently obtained. It becomes too hydrophilic and swells and dissolves violently in water, adversely affecting fiber properties. Further, in the acrylonitrile-based fiber before beating (hereinafter, also referred to as unbeaten fiber), which is a raw material of the beaten acrylonitrile-based fiber of the present invention, in order to obtain good beating properties, a carboxyl group in the above range is used. It is desirable to contain.

また、上記未叩解繊維においては、共有結合による架橋構造が存在すると、繊維を構成する各高分子が連結されて叩解性を低下させるので、共有結合による架橋構造を実質的に有さないものを採用する。この結果、本発明の叩解状アクリロニトリル系繊維も共有結合による架橋構造を実質的に有さないものとなる。ここで、「共有結合による架橋構造を実質的に有さない」とは、架橋剤などを用いて意図的に形成させた架橋構造を有さないことを意味しており、後述する加水分解処理などにおいて意図せず副生する可能性のある微量の架橋構造までをも有さないことを意味するものではない。 Further, in the unbeaten fiber, the presence of a crosslinked structure due to covalent bonds, each polymer constituting the fiber is connected to reduce the beating property, so that those that have substantially no crosslinked structure due to covalent bonds. adopt. As a result, the beaten acrylonitrile-based fibers of the present invention also have substantially no crosslinked structure due to covalent bonds. Here, "substantially does not have a crosslinked structure by a covalent bond" means that it does not have a crosslinked structure intentionally formed by using a crosslinking agent or the like, and is subjected to a hydrolysis treatment described later. However, this does not mean that there is no trace of a crosslinked structure that may be unintentionally produced as a by-product.

本発明の叩解状アクリロニトリル系繊維は、坪量50g/mの紙形状としたときの収縮率が25%以下であり、好ましくは20%以下、より好ましくは15%以下であることが望ましい。かかる収縮率が25%を超える場合、加工時や実使用時の形態安定性に問題が生じることがある。The beaten acrylonitrile fiber of the present invention has a shrinkage of 25% or less, preferably 20% or less, more preferably 15% or less when formed into a paper having a basis weight of 50 g / m 2 . If the shrinkage exceeds 25%, there may be a problem in form stability during processing or actual use.

また、本発明の叩解状アクリロニトリル系繊維は、叩解処理後の湿潤状態から一旦乾燥させた後の水膨潤度(本発明において、単に「水膨潤度」ともいう)が好ましくは0.2倍以上、より好ましくは0.4倍以上、さらに好ましくは0.7倍以上、最も好ましくは1倍以上有するものである。かかる水膨潤度が0.2倍に満たない場合には、例えば浄水フィルター等に加工成形され乾燥された後、実使用時にほとんど水膨潤しないため、水中の除去対象であるイオンが繊維内部に到達しにくくなり、カルボキシル基の有するイオン吸着性の特性を有効に利用できなくなる場合がある。一方、水膨潤度が高すぎると、膨潤により止水したり、繊維が脆化して一部が脱落流出したりするなどの恐れがあるため、その上限としては好ましくは10倍、より好ましくは8倍である。 In addition, the beaten acrylonitrile-based fiber of the present invention preferably has a water swelling degree (hereinafter also referred to simply as “water swelling degree” in the present invention) of 0.2 times or more after being dried once from a wet state after beating treatment. , More preferably 0.4 times or more, further preferably 0.7 times or more, and most preferably 1 time or more. When the degree of water swelling is less than 0.2 times, for example, after being formed into a water purification filter and dried, it hardly swells in water during actual use, so that ions to be removed in water reach inside the fiber. In some cases, the ion-adsorbing property of the carboxyl group cannot be used effectively. On the other hand, if the degree of water swelling is too high, there is a risk that the water will stop due to swelling, or the fibers will become brittle and some of the fibers will fall off, so the upper limit is preferably 10 times, more preferably 8 times. It is twice.

本発明の叩解状アクリロニトリル系繊維は、濾水度が730ml以下であることが望ましく、濾水度が730mlを超える場合、バインダー性、粒子捕捉性等が有意に発揮されない場合がある。 The beaten acrylonitrile fiber of the present invention desirably has a freeness of 730 ml or less. If the freeness exceeds 730 ml, the binder properties, the particle-trapping properties, and the like may not be exhibited significantly.

また、本発明においては、未叩解繊維の内部構造において、カルボキシル基を有する部分がアクリロニトリル系重合体からなる繊維構造全体にわたって存在している一方で、分子レベルでは均一に混ざっていない構造であることが望ましい。かかる構造の具体的な例としては、アクリロニトリル系繊維を構成する小繊維(いわゆるフィブリル)が、表層部にカルボキシル基を有し、中心部にはカルボキシル基を有さない芯鞘構造となっているもの、すわなち鞘部にカルボキシル基を有する芯鞘構造の小繊維の集合体からなる構造を挙げることができる。ここで、繊維全体にわたって存在しているとは、後述する測定方法によって測定される繊維断面におけるマグネシウム元素の含有割合の変動係数CVが50%以下であること意味する。かかる変動係数CVは、好ましくは40%以下、より好ましくは30%以下である。 Further, in the present invention, in the internal structure of the unbeaten fiber, a portion having a carboxyl group is present over the entire fiber structure made of an acrylonitrile-based polymer, but is not uniformly mixed at a molecular level. Is desirable. As a specific example of such a structure, the small fibers (so-called fibrils) constituting the acrylonitrile-based fiber have a core-sheath structure having a carboxyl group in the surface layer and having no carboxyl group in the center. In other words, there can be mentioned a structure composed of an aggregate of small fibers having a core-sheath structure having a carboxyl group in a sheath portion. Here, being present over the entire fiber means that the coefficient of variation CV of the magnesium element content ratio in the fiber cross section measured by the measurement method described below is 50% or less. Such a coefficient of variation CV is preferably 40% or less, more preferably 30% or less.

繊維構造内においてカルボキシル基が偏って存在していたり、分子レベルで均一に存在していたりすると、十分な叩解性が得られないことがある。カルボキシル基を有する部分が繊維全体にわたって存在し、かつ分子レベルでは均一に混ざっていない構造においては、カルボキシル基を有する部分が水膨潤して引き裂かれやすくなるので、叩解によるフィブリル化が容易になる。 If the carboxyl groups are present unevenly in the fiber structure or are uniformly present at the molecular level, sufficient beating properties may not be obtained. In a structure in which a portion having a carboxyl group is present throughout the entire fiber and is not uniformly mixed at the molecular level, the portion having a carboxyl group is easily swollen by water and thus easily fibrillated by beating.

また、叩解された各フィブリルの表面はカルボキシル基が豊富になるため、親水性や水分の拡散性が増すとともに、粒子捕捉性、接着性、イオン交換性等が発揮されやすくなる。一方で、各フィブリルの内部はアクリロニトリル系重合体が構成されているので、収縮しにくく、形態安定性に寄与する。 Further, since the surface of each beaten fibril is rich in carboxyl groups, the hydrophilicity and the diffusibility of water are increased, and the particle trapping property, adhesive property, ion exchange property and the like are easily exhibited. On the other hand, since the inside of each fibril is composed of an acrylonitrile-based polymer, it does not easily shrink and contributes to form stability.

また、未叩解繊維の叩解性をさらに良くするためには、カルボキシル基の対イオンが水素イオン以外のカチオンであることが好ましい。より具体的には、対イオンが水素イオン以外のカチオンである割合、すなわち、中和度が好ましくは25%以上、より好ましくは35%以上、さらに好ましくは50%以上であることが望ましい。 In order to further improve the beating property of the unbeaten fiber, it is preferable that the counter ion of the carboxyl group is a cation other than a hydrogen ion. More specifically, the ratio of the counter ion being a cation other than a hydrogen ion, that is, the degree of neutralization is preferably 25% or more, more preferably 35% or more, and further preferably 50% or more.

上記のカチオンの例としては、Li、Na、K等のアルカリ金属、Mg、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の金属、NH、アミン等の陽イオンなどが挙げられ、複数種類の陽イオンが混在していてもよい。中でも、Li,Na,K,Mg,Ca,Zn等が好適である。Examples of the above cations include alkali metals such as Li, Na, and K; alkaline earth metals such as Mg, Ca, and Ba; metals such as Cu, Zn, Al, Mn, Ag, Fe, Co, and Ni; and NH. 4 , cations such as amines, etc., and a plurality of types of cations may be mixed. Among them, Li, Na, K, Mg, Ca, Zn and the like are preferable.

上述してきた本発明の叩解状アクリロニトリル系繊維の製造方法としては、アクリロニトリル系重合体を溶解した紡糸原液を、ノズルから紡出し、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解して未叩解繊維を作製し、該未叩解繊維を叩解する方法を挙げることができる。以下に、かかる製造方法について詳述する。 As a method for producing the beaten acrylonitrile-based fiber of the present invention described above, a spinning solution in which an acrylonitrile-based polymer is dissolved is spun from a nozzle, and coagulated, washed with water, and the undried fiber obtained through each of the steps of drawing is obtained. A method of producing unbeaten fibers by hydrolysis and beaten the unbeaten fibers can be mentioned. Hereinafter, such a manufacturing method will be described in detail.

まず、原料となるアクリロニトリル系重合体は、重合組成としてアクリロニトリルを好ましくは40重量%以上、より好ましくは50重量%以上、さらに好ましくは85重量%以上含有するものである。従って、該アクリロニトリル系重合体としては、アクリロニトリル単独重合体のほかに、アクリロニトリルと他のモノマーとの共重合体も採用できる。共重合体における他のモノマーとしては、特に限定はないが、ハロゲン化ビニル及びハロゲン化ビニリデン;(メタ)アクリル酸エステル(なお(メタ)の表記は、該メタの語の付いたもの及び付かないものの両方を表す);メタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有モノマー及びその塩、アクリルアミド、スチレン、酢酸ビニル等が挙げられる。 First, the acrylonitrile-based polymer as a raw material contains acrylonitrile as a polymerization composition, preferably at least 40% by weight, more preferably at least 50% by weight, further preferably at least 85% by weight. Accordingly, as the acrylonitrile-based polymer, a copolymer of acrylonitrile and another monomer can be employed in addition to the acrylonitrile homopolymer. Other monomers in the copolymer are not particularly limited, but vinyl halides and vinylidene halides; (meth) acrylic acid esters (the notation of (meth) is given with or without the word of the meta) Sulfonic acid group-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid and salts thereof, acrylamide, styrene, vinyl acetate and the like.

次に、かかるアクリロニトリル系重合体を用いて、湿式紡糸により繊維化を行うが、溶剤として、ロダン酸ソーダ等の無機塩を用いた場合で説明すれば以下のようになる。まず、上述のアクリロニトリル系重合体を溶剤に溶解して紡糸原液を作製する。該紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て、未乾燥繊維(以下、ゲル状アクリロニトリル系繊維ともいう)の水分率を20〜250重量%、好ましくは25〜130重量%、より好ましくは30〜100重量%とする。 Next, fiberization is performed by wet spinning using such an acrylonitrile-based polymer, and the case where an inorganic salt such as sodium rhodanate is used as a solvent will be described below. First, the acrylonitrile-based polymer is dissolved in a solvent to prepare a spinning dope. After spinning the spinning dope from a nozzle, the coagulation, washing, and drawing steps are performed to reduce the moisture content of the undried fiber (hereinafter, also referred to as gel acrylonitrile-based fiber) to 20 to 250% by weight, preferably 25 to 130% by weight. % By weight, more preferably 30 to 100% by weight.

ここで、ゲル状アクリロニトリル系繊維の水分率が20重量%未満の場合には、後述する加水分解処理において薬剤が繊維内部に浸透せず、カルボキシル基を繊維全体にわたって生成させることができなくなる場合がある。また、250重量%を超える場合には繊維内部に水分を多く含み、繊維強度が低くなりすぎるため、可紡性が低下し好ましくない。繊維強度の高さをより重視する場合には、25〜130重量%の範囲内とするのが望ましい。また、ゲル状アクリロニトリル系繊維の水分率を上記範囲内に制御する方法は多数あるが、例えば、凝固浴温度としては−3℃〜15℃、好ましくは−3℃〜10℃、延伸倍率としては5〜20、好ましくは7〜15倍程度が望ましい。 Here, when the water content of the gel-like acrylonitrile fiber is less than 20% by weight, the drug may not penetrate into the fiber in the hydrolysis treatment described later, and the carboxyl group may not be able to be generated over the entire fiber. is there. On the other hand, if the content exceeds 250% by weight, a large amount of water is contained inside the fiber, and the fiber strength becomes too low. When more emphasis is placed on the fiber strength, it is desirable to be within the range of 25 to 130% by weight. There are many methods for controlling the moisture content of the gel-like acrylonitrile fiber within the above range. For example, the coagulation bath temperature is −3 ° C. to 15 ° C., preferably −3 ° C. to 10 ° C., and the draw ratio is It is desirably about 5 to 20, preferably about 7 to 15 times.

かかるゲル状アクリロニトリル系繊維は、次に加水分解処理を施される。該処理により、ゲル状アクリロニトリル系繊維中のニトリル基が加水分解され、カルボキシル基が生成される。 The gel acrylonitrile fiber is then subjected to a hydrolysis treatment. By this treatment, the nitrile groups in the gel-like acrylonitrile fiber are hydrolyzed to generate carboxyl groups.

かかる加水分解処理の手段としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アンモニア等の塩基性水溶液、あるいは、硝酸、硫酸、塩酸等の水溶液を含浸、または浸漬した状態で加熱処理する手段が挙げられる。具体的な処理条件としては、上述したカルボキシル基の量の範囲などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、一般的には、0.5〜20重量%、好ましくは1.0〜15重量%の処理薬剤を含浸、絞った後、湿熱雰囲気下で、温度105〜140℃、好ましくは110〜135℃で10〜60分処理する条件の範囲内で設定することが工業的、繊維物性的にも好ましい。また、105℃未満であると繊維の着色が強くなることがある。なお、湿熱雰囲気とは、飽和水蒸気または過熱水蒸気で満たされた雰囲気のことを言う。 As a means for such a hydrolysis treatment, a basic aqueous solution such as an alkali metal hydroxide, an alkali metal carbonate, or ammonia, or a means for impregnating or immersing an aqueous solution such as nitric acid, sulfuric acid, or hydrochloric acid is used. No. As specific treatment conditions, various conditions such as the concentration of the treatment agent, the reaction temperature, and the reaction time may be appropriately set in consideration of the above-described range of the amount of the carboxyl group. After impregnating and squeezing 5 to 20% by weight, preferably 1.0 to 15% by weight of the treatment agent, the conditions for treatment at 105 to 140 ° C, preferably 110 to 135 ° C for 10 to 60 minutes in a moist heat atmosphere. It is preferable to set within the range of industrial and fiber properties. If the temperature is lower than 105 ° C., the coloring of the fiber may be increased. Note that the moist heat atmosphere refers to an atmosphere filled with saturated steam or superheated steam.

上述のようにして加水分解処理を施された繊維中には、加水分解処理に用いられたアルカリ金属水酸化物、アルカリ金属炭酸塩、アンモニア等の種類に応じたアルカリ金属やアンモニウムなどのカチオンを対イオンとする塩型カルボキシル基が生成しているが、引き続き、必要に応じてカルボキシル基の対イオンを変換する処理を行ってもよい。硝酸塩、硫酸塩、塩酸塩などの金属塩水溶液によるイオン交換処理を行えば、所望の金属イオンを対イオンとする塩型カルボキシル基とすることができる。さらに、水溶液のpHや金属塩濃度・種類を調整することで、異種の対イオンを混在させたり、その割合を調整したりすることも可能である。 In the fiber subjected to the hydrolysis treatment as described above, cations such as alkali metal hydroxides, alkali metal carbonates, alkali metals and ammonium according to the type of ammonia used in the hydrolysis treatment are used. Although a salt-type carboxyl group serving as a counter ion has been generated, a treatment for converting the counter ion of the carboxyl group may be performed as needed. By performing ion exchange treatment with an aqueous solution of a metal salt such as a nitrate, a sulfate, or a hydrochloride, a salt-type carboxyl group having a desired metal ion as a counter ion can be obtained. Further, by adjusting the pH of the aqueous solution and the concentration and type of the metal salt, it is possible to mix different counter ions or to adjust the ratio thereof.

上記のようにしてカルボキシル基が導入された繊維、すなわち未叩解繊維は必要に応じて、水洗、乾燥、カットされ、次に叩解処理が行われるが、叩解方法は限定されるものでなく、ビータやリファイナーなどの叩解機を用いることができる。 The fiber into which the carboxyl group has been introduced as described above, that is, the unbeaten fiber is washed with water, dried and cut as necessary, and then subjected to beating treatment, but the beating method is not limited, and beater And a refining machine such as a refiner.

以上のようにして本発明にかかる叩解状アクリロニトリル系繊維が得られるが、未叩解繊維の製造については既存のアクリル繊維の連続生産設備を流用することで連続的に実施することができる。また、上述の方法においては、ロダン酸ソーダ等の無機塩を溶剤に用いているが、有機溶剤を用いる場合でも上記条件は同じである。ただし、溶剤の種類が異なっているので、凝固浴温度については、その溶剤に適した温度を選択して、ゲル状アクリロニトリル系繊維の水分率を上記範囲内に制御する。 As described above, the beaten acrylonitrile fiber according to the present invention can be obtained, but the production of unbeaten fiber can be continuously performed by diverting existing continuous production equipment for acrylic fiber. Further, in the above method, an inorganic salt such as sodium rhodanate is used as a solvent, but the above conditions are the same even when an organic solvent is used. However, since the type of the solvent is different, a temperature suitable for the solvent is selected for the coagulation bath temperature, and the water content of the gel acrylonitrile fiber is controlled within the above range.

また、上述のような製造方法においては、ボイド構造を有するゲル状アクリロニトリル系繊維を加水分解処理することから、繊維表面から順次加水分解するのではなく、薬剤がボイドを伝わって繊維内奥部にも浸透し、繊維全体にわたって加水分解するものと考えられる。さらに微視的に見ると、一般にアクリロニトリル系繊維は微小フィブリルの集まりとして存在していることから、薬剤はフィブリル間に浸透し、フィブリル表面から加水分解が進行して、フィブリル内部は加水分解を受けずにもとのアクリロニトリル系重合体が残っていることが予想される。すなわち、カルボキシル基を有する部分が繊維全体にわたって存在し、かつ分子レベルでは均一に混ざっていない構造ができあがり、カルボキシル基を有する部分を境界としてフィブリル化が容易となる。そして、叩解後には、各フィブリル表面のカルボキシル基により粒子捕捉性が向上し、内部に残存したアクリロニトリル系重合体で低熱収縮性が発現するものと推測される。 Further, in the above-described production method, since the gel-like acrylonitrile-based fiber having a void structure is subjected to a hydrolysis treatment, the drug is not hydrolyzed sequentially from the fiber surface, but the drug is transmitted through the void to the inner part of the fiber. Also penetrate and hydrolyze throughout the fiber. Further microscopically, since acrylonitrile fibers generally exist as a collection of microfibrils, the drug penetrates between the fibrils, hydrolysis proceeds from the fibril surface, and the inside of the fibrils undergoes hydrolysis. It is expected that the original acrylonitrile-based polymer will remain. In other words, a structure in which a portion having a carboxyl group exists throughout the entire fiber and is not uniformly mixed at a molecular level is completed, and fibrillation is facilitated with the portion having a carboxyl group as a boundary. After beating, it is assumed that the carboxyl group on each fibril surface improves the particle trapping property, and the acrylonitrile polymer remaining inside exhibits low heat shrinkage.

なお、上述した製造方法において、ゲル状アクリロニトリル系繊維、すなわち延伸後の未乾燥繊維を用いず、乾燥後のアクリロニトリル系繊維に加水分解処理を施した場合には、薬剤が繊維内奥部には浸透せず、繊維表面から順次加水分解することになるため、繊維表層部にカルボキシル基が多く、繊維内奥部にはカルボキシル基が少ない構造が誘導される。このような構造では、叩解性が著しく悪化する。 In the above-described production method, the gel-like acrylonitrile-based fiber, that is, without using the undried fiber after stretching, when the acrylonitrile-based fiber after drying is subjected to a hydrolysis treatment, the drug is in the inner part of the fiber Since the fibers are not permeated and are sequentially hydrolyzed from the fiber surface, a structure having many carboxyl groups in the fiber surface layer portion and few carboxyl groups in the inner portion of the fiber is induced. With such a structure, beating properties are significantly deteriorated.

上述してきた本発明の叩解状アクリロニトリル系繊維は、粒子捕捉性や補強材機能のほか、カルボキシル基に由来するイオン交換性、吸湿性、消臭性、抗ウイルス性などの機能を有しているので、単独で又は他の素材と組み合わせて、多くの用途で有用な構造体として利用できる。該構造体においては、本発明の叩解状アクリロニトリル系繊維の含有率を好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは20重量%以上とすることが、本発明の叩解状アクリロニトリル系繊維の効果を得る観点から望ましい。 The beaten acrylonitrile-based fiber of the present invention described above has, in addition to particle-capturing properties and a reinforcing material function, functions such as ion exchange properties derived from carboxyl groups, hygroscopicity, deodorant properties, and antiviral properties. Therefore, it can be used alone or in combination with other materials as a useful structure in many applications. In the structure, the content of the beaten acrylonitrile-based fiber of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 20% by weight or more. It is desirable from the viewpoint of obtaining the effect of the acrylonitrile fiber.

該構造体の外観形態としては、紙状物、シート状物、積層体、球状や円筒状の成型体等がある。該構造体内における本発明の繊維の含有形態としては、他の繊維や樹脂組成物などの素材との混合により、実質的に均一に分布させたもの、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に集中して存在せしめたものや、夫々の層に特定比率で分布せしめたもの等がある。 Examples of the appearance of the structure include a paper-like material, a sheet-like material, a laminate, and a spherical or cylindrical molded product. As a content form of the fiber of the present invention in the structure, by mixing with a material such as another fiber or a resin composition, substantially uniformly distributed, in the case of a structure having a plurality of layers, There are ones that are concentrated in one of the layers (single or plural) and ones that are distributed at a specific ratio in each layer.

上記に例示した構造体の外観形態や含有形態、該構造体を構成する他の素材、および該構造体と組み合わせる他の部材をいかなるものとするかは、最終製品の種類(例えば、衛材用品(おむつ、尿吸収パッド、生理用ナプキンなど)の拡散層や吸収層、燃料電池拡散膜用カーボンシート、浄水フィルター、活性炭担持シートやフィルター、抄紙用バインダー、製紙製品、湿式摩擦材など)に応じて要求される機能、特性、形状や、かかる機能を発現することへの本発明の叩解状アクリロニトリル系繊維の寄与の仕方等を勘案して適宜決定される。 The appearance form and content form of the structure exemplified above, the other materials constituting the structure, and the other members to be combined with the structure are determined by the type of the final product (for example, (Diapers, urine absorption pads, sanitary napkins, etc.) depending on the diffusion layer or absorption layer, fuel cell diffusion membrane carbon sheet, water purification filter, activated carbon carrying sheet or filter, papermaking binder, papermaking products, wet friction material, etc. It is appropriately determined in consideration of the required functions, characteristics, shapes, and how the beaten acrylonitrile fiber of the present invention contributes to exhibiting such functions.

なお、上記の各用途においては、本発明の叩解状アクリロニトリル系繊維の特性が有効に活用することができる。例えば、衛材用品の拡散層用途においてはフィブリルの親水性により、尿などの拡散性を向上することができ、また、衛材用品の吸収層用途や活性炭担持シート用途などにおいては、粒子捕捉性を利用して吸水樹脂や活性炭粒子を固定することができる。 In each of the above applications, the characteristics of the beaten acrylonitrile fiber of the present invention can be effectively utilized. For example, the hydrophilicity of fibrils can improve the diffusibility of urine and the like in the use of a diffusion layer for sanitary ware, and the particle-capturing property in the use of absorbent layers and activated carbon-carrying sheets for sanitary ware. Utilizing water can fix the water-absorbing resin and activated carbon particles.

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。実施例中、部及び百分率は特に断りのない限り重量基準で示す。また、各特性の測定は以下の方法により実施した。 Examples are shown below to facilitate understanding of the present invention, but these are merely illustrative, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are indicated by weight unless otherwise specified. The measurement of each characteristic was performed by the following method.

<繊維構造内のカルボキシル基の分布状態>
未叩解繊維の試料を、該繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、カルボキシル基の対イオンをマグネシウムとする。マグネシウム塩型とした繊維試料について、エネルギー分散型X線分光器(EDS)を用い、繊維断面の外縁から中心にかけて概ね等間隔で選んだ10点の測定点におけるマグネシウム元素の含有割合を測定する。得られた各測定点の数値から次式により変動係数CV[%]を算出する。
変動係数CV[%]=(標準偏差/平均値)×100
<Distribution of carboxyl groups in the fiber structure>
An ion exchange treatment is performed by immersing a sample of the unbeaten fiber in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour, followed by washing with water and drying. Thereby, the counter ion of the carboxyl group is changed to magnesium. Using an energy dispersive X-ray spectrometer (EDS), the content ratio of the magnesium element at ten measurement points selected at substantially equal intervals from the outer edge to the center of the fiber cross section is measured for the fiber sample of the magnesium salt type. The coefficient of variation CV [%] is calculated from the numerical values of the obtained measurement points by the following equation.
Coefficient of variation CV [%] = (standard deviation / average value) × 100

<カルボキシル基量>
叩解した試料を約1g秤量し、1mol/l塩酸50mlに30分浸漬後、水洗し浴比1:500で純水に15分間浸漬する。浴pHが4以上となるまで水洗した後、熱風乾燥機にて105℃で5時間乾燥させる。乾燥した試料を約0.2g精秤し(W1[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V1[ml])を求め、次式により全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=(0.1×15−0.1×V1)/W1
<Amount of carboxyl group>
About 1 g of the beaten sample is weighed, immersed in 50 ml of 1 mol / l hydrochloric acid for 30 minutes, washed with water, and immersed in pure water at a bath ratio of 1: 500 for 15 minutes. After washing with water until the bath pH becomes 4 or more, it is dried with a hot air drier at 105 ° C. for 5 hours. About 0.2 g of the dried sample is precisely weighed (W1 [g]), and 100 ml of water, 15 ml of 0.1 mol / l sodium hydroxide, and 0.4 g of sodium chloride are added thereto and stirred. Next, the sample is strained using a wire mesh and washed with water. To the obtained filtrate (including the washing solution), 2 to 3 drops of phenolphthalein solution was added, and titration was carried out with 0.1 mol / l hydrochloric acid according to a conventional method to obtain the consumed hydrochloric acid amount (V1 [ml]). The total amount of carboxyl groups is calculated by the following equation.
Total carboxyl group content [mmol / g] = (0.1 × 15-0.1 × V1) / W1

<中和度>
叩解した試料を熱風乾燥機にて105℃で5時間乾燥して約0.2g精秤し(W2[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V2[ml])を求める。次式によって、試料に含まれるH型カルボキシル基量を算出し、その結果と上述の全カルボキシル基量から中和度を求める。
H型カルボキシル基量[mmol/g]=(0.1×15−0.1×V2)/W2
中和度[%]=[(全カルボキシル基量−H型カルボキシル基量)/全カルボキシル基量]×100
<Degree of neutralization>
The beaten sample was dried in a hot air drier at 105 ° C. for 5 hours, weighed accurately about 0.2 g (W2 [g]), and added thereto 100 ml of water, 15 ml of 0.1 mol / l sodium hydroxide, and 0 ml of sodium chloride. Add 0.4 g and stir. Next, the sample is strained using a wire mesh and washed with water. To the obtained filtrate (including the washing solution), 2-3 drops of a phenolphthalein solution are added, and titration is carried out with 0.1 mol / l hydrochloric acid according to a conventional method to determine the consumed hydrochloric acid amount (V2 [ml]). The amount of H-type carboxyl groups contained in the sample is calculated by the following equation, and the degree of neutralization is determined from the result and the above-mentioned total carboxyl group amount.
H-type carboxyl group amount [mmol / g] = (0.1 × 15-0.1 × V2) / W2
Neutralization degree [%] = [(total carboxyl group amount-H type carboxyl group amount) / total carboxyl group amount] × 100

<濾水度(CSF)>
JIS P 8121−2:2012 パルプ−ろ水度試験方法−第2部:カナダ標準ろ水度法に従って測定する。
<Freeness (CSF)>
JIS P 8121-2: 2012 Pulp-Freeness test method-Part 2: Measured according to Canadian standard freeness method.

<収縮率>
叩解したサンプルを水スラリーとし、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/m、サイズ25cm×25cmに抄紙する。次いで、105℃×1時間の条件で乾燥し、4つの辺の長さをそれぞれ測定する。測定値から一辺の長さの平均値(B[cm])を求め、次式によって収縮率を算出する。
収縮率(%)=(25−B)/25×100
<Shrinkage>
The beaten sample is used as a water slurry, and paper is made to have a basis weight of 50 g / m 2 and a size of 25 cm × 25 cm using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd. Next, drying is performed at 105 ° C. × 1 hour, and the lengths of the four sides are measured. The average value (B [cm]) of the length of one side is obtained from the measured value, and the shrinkage ratio is calculated by the following equation.
Shrinkage (%) = (25−B) / 25 × 100

<水膨潤度>
叩解したサンプルを水スラリーとし、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/mとなるように抄紙を行い、105℃×1時間の条件で乾燥して評価用の紙を作成し、重量(W3[g])を測定する。かかる評価用の紙を純水に浸漬させた後、1200rpmにて5分間遠心脱水を行う。脱水後の重量(W4[g])を測定し、下記の式にて水膨潤度を算出する。
水膨潤度[倍]=(W4−W3)/W3
なお、遠心脱水はKUBOTA社製遠心脱水装置(KS−8000)を用い、ステンレスバスケットを装着したユニバーサルスイングロータ(RS3000/6)を使用することによって行う。
<Water swelling degree>
The beaten sample was converted into a water slurry, paper was formed using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd. so as to have a basis weight of 50 g / m 2, and dried at 105 ° C. × 1 hour for evaluation. Is made, and the weight (W3 [g]) is measured. After immersing the evaluation paper in pure water, centrifugal dehydration is performed at 1200 rpm for 5 minutes. The weight (W4 [g]) after dehydration is measured, and the degree of water swelling is calculated by the following equation.
Water swelling degree [times] = (W4-W3) / W3
The centrifugal dehydration is performed by using a centrifugal dehydrator (KS-8000) manufactured by KUBOTA and using a universal swing rotor (RS3000 / 6) equipped with a stainless steel basket.

<活性炭捕捉量>
固形分換算で1g相当の叩解したサンプルを純水1Lに加え撹拌する。その中に粉末活性炭(太平化学産業製ブロコールB印活性炭/平均粒子径90μm)を6g加えて30分撹拌する。その後目開き173μmのふるい(面積200cm)でろ過を行い、ふるい上のろ過物の105℃×5時間乾燥後の重量(A[g])を測定し、下記式によりサンプル1gあたりの活性炭捕捉量を算出した。
活性炭捕捉量(g/g)=(A−1)/1
<Activated carbon capture amount>
A beaten sample equivalent to 1 g in terms of solid content is added to 1 L of pure water and stirred. 6 g of powdered activated carbon (Brocoll B mark activated carbon manufactured by Taihei Kagaku Sangyo / average particle diameter 90 μm) is added thereto, and the mixture is stirred for 30 minutes. Thereafter, the mixture was filtered through a sieve having an opening of 173 μm (area: 200 cm 2 ), and the weight (A [g]) of the filtrate on the sieve after drying at 105 ° C. for 5 hours was measured. The amount was calculated.
Activated carbon capture amount (g / g) = (A-1) / 1

<紙力(接着性)>
叩解したサンプル/アクリル短繊維(繊度0.4dtex,繊維長3.0mm)=30/70の重量比率で水スラリーを作成し、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/mとなるように抄紙を行い、熱カレンダーで乾燥して評価用の紙を作成した。得られた紙を2cm(W)×10cm(L)の大きさに切断し、引っ張り試験機(エー・アンド・デイ社製RTA500(U−1573))を用いて、引っ張り速度2cm/分として破断強度を測定した。破断強度が大きいほど接着性に優れていると判断される。
<Paper strength (adhesive)>
A water slurry was prepared at a weight ratio of beaten sample / acrylic short fiber (fineness: 0.4 dtex, fiber length: 3.0 mm) = 30/70, and the basis weight was calculated using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd. Paper was made at 50 g / m 2 and dried with a hot calender to make paper for evaluation. The obtained paper was cut into a size of 2 cm (W) × 10 cm (L), and ruptured using a tensile tester (RTA500 (U-1573) manufactured by A & D Corporation) at a pulling speed of 2 cm / min. The strength was measured. It is judged that the higher the breaking strength, the better the adhesion.

<鉛吸着性(イオン交換性)>
(試験液の調整)
1Lのメスフラスコに蒸留水0.5Lを入れ、硫酸マグネシウム七水和物84mg、塩化カルシウムに水和物100mg、炭酸水素ナトリウム166mgおよび次亜塩素酸ナトリウム(有効塩素6%以上)10.5mgを加えて、完全に溶解させる。次いで、9.3%硝酸鉛水溶液1.2mlを加え、蒸留水を標線手前まで加えた後、0.1N水酸化ナトリウム水溶液を加えてpH8.3〜8.8の範囲に調整する。十分に撹拌したのち、蒸留水を標線まで加えて1Lとする。
(鉛吸着試験)
上記のようにして調整した試験液200gに乾燥換算重量0.2gの叩解した試料を加え、20℃の恒温槽内において5時間静置する。次いで、ろ過を行い、ろ液中の鉛をICP質量分析法(JIS K 0102:2016 54.4)にて定量した。なお、ブランク条件の鉛濃度は70ppbであり、これよりもろ液中の鉛濃度が低いほど吸着性能が優れていると言える。
<Lead adsorption (ion exchange)>
(Preparation of test solution)
0.5 L of distilled water was placed in a 1 L volumetric flask, and 84 mg of magnesium sulfate heptahydrate, 100 mg of hydrate of calcium chloride, 166 mg of sodium hydrogen carbonate and 10.5 mg of sodium hypochlorite (effective chlorine 6% or more) were added. In addition, completely dissolve. Next, 1.2 ml of a 9.3% aqueous solution of lead nitrate is added, distilled water is added up to just before the marked line, and then a 0.1N aqueous solution of sodium hydroxide is added to adjust the pH to a range of 8.3 to 8.8. After stirring sufficiently, add distilled water up to the marked line to make 1 L.
(Lead adsorption test)
To 200 g of the test solution prepared as described above, a beaten sample having a dry conversion weight of 0.2 g is added, and the mixture is allowed to stand in a thermostat at 20 ° C. for 5 hours. Next, filtration was performed, and lead in the filtrate was quantified by ICP mass spectrometry (JIS K0102: 2016 54.4). The lead concentration under blank conditions was 70 ppb, and it can be said that the lower the lead concentration in the filtrate, the better the adsorption performance.

<ゲル状アクリロニトリル系繊維の水分率>
ゲル状アクリロニトリル系繊維を純水中に浸漬した後、遠心脱水機(国産遠心機(株)社製TYPE H−770A)で遠心加速度1100G(Gは重力加速度を示す)にて2分間脱水する。脱水後重量を測定(W5[g]とする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(W6[g]とする)し、次式により計算する。
ゲル状アクリロニトリル系繊維の水分率(%)=(W5−W6)/W5×100
<Moisture content of gel acrylonitrile fiber>
After the gel-like acrylonitrile fiber is immersed in pure water, it is dehydrated with a centrifugal dehydrator (TYPE H-770A manufactured by Domestic Centrifuge Co., Ltd.) at a centrifugal acceleration of 1100 G (G indicates gravitational acceleration) for 2 minutes. After measuring the weight after dehydration (W5 [g]), the undried fiber is dried at 120 ° C. for 15 minutes, the weight is measured (W6 [g]), and calculated by the following equation.
Water content (%) of gel acrylonitrile fiber = (W5−W6) / W5 × 100

<実施例1>
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体10部を44%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、−2.5℃の凝固浴に紡出し、凝固、水洗、12倍延伸して水分率が35%のゲル状アクリロニトリル系繊維を得た。該繊維を1.5%の水酸化ナトリウム水溶液中に浸漬し、絞った後に、湿熱雰囲気中で、123℃×25分間加水分解処理を行い、水洗後、105℃×1時間乾燥し、未叩解繊維を得た。該未叩解繊維を4mmにカットし、濃度1%の水スラリーとした後、ナイアガラビーター(熊谷理機工業製BE−23)を用いて、重錘2kgにて表1に記載の叩解時間で叩解処理を行い、実施例1の叩解状アクリロニトリル系繊維を得た。なお、4mmにカットした未叩解繊維の濾水度は760mlであった。
<Example 1>
A spinning stock solution obtained by dissolving 10 parts of an acrylonitrile-based polymer composed of 90% of acrylonitrile and 10% of methyl acrylate in 90 parts of a 44% aqueous solution of sodium thiocyanate is spun into a coagulation bath at −2.5 ° C., coagulated, washed with water, It was stretched 12 times to obtain a gel-like acrylonitrile fiber having a water content of 35%. The fiber was immersed in a 1.5% aqueous sodium hydroxide solution, squeezed, hydrolyzed in a moist heat atmosphere at 123 ° C. for 25 minutes, washed with water, dried at 105 ° C. for 1 hour, and unbeaten. Fiber was obtained. The unbeaten fiber was cut into 4 mm to make a 1% concentration water slurry, and then beaten with a Niagara beater (BE-23, manufactured by Kumagaya Riki Kogyo Co., Ltd.) at a weight of 2 kg for the beating time shown in Table 1. The treatment was performed to obtain a beaten acrylonitrile fiber of Example 1. In addition, the freeness of the unbeaten fiber cut to 4 mm was 760 ml.

<実施例2〜5>
実施例1の処方において、水酸化ナトリウム水溶液の濃度を4.0%に変更することおよび表1に記載の叩解時間で叩解処理すること以外は同様にして、実施例2〜5の叩解状アクリロニトリル系繊維を得た。
<Examples 2 to 5>
In the formulation of Example 1, the beaten acrylonitrile of Examples 2 to 5 was prepared in the same manner except that the concentration of the aqueous sodium hydroxide solution was changed to 4.0% and the beating treatment was performed at the beating time shown in Table 1. A system fiber was obtained.

<実施例6〜8>
実施例1の処方において、水酸化ナトリウム水溶液の濃度を実施例6では7.5%、実施例7では10.0%、実施例8では20.0%に変更することおよび表1に記載の叩解時間で叩解処理すること以外は同様にして、実施例6〜8の叩解状アクリロニトリル系繊維を得た。
<Examples 6 to 8>
In the formulation of Example 1, the concentration of the aqueous sodium hydroxide solution was changed to 7.5% in Example 6, 10.0% in Example 7, and 20.0% in Example 8, and as described in Table 1. Except that the beating treatment was performed for the beating time, beaten acrylonitrile fibers of Examples 6 to 8 were obtained in the same manner.

<実施例9>
実施例5の処方において、加水分解処理工程と水洗工程の間に、純水中で硝酸によりpHを3.5に調整し、60℃で30分間保持する工程を挿入すること以外は同様にして、実施例9の叩解状アクリロニトリル系繊維を得た。
<Example 9>
The procedure of Example 5 was repeated except that a step of adjusting the pH to 3.5 with nitric acid in pure water and holding the mixture at 60 ° C. for 30 minutes was performed between the hydrolysis treatment step and the water washing step. Thus, a beaten acrylonitrile fiber of Example 9 was obtained.

<比較例1>
実施例2の処方において、叩解処理を実施しないこと以外は同様にして、比較例1の繊維を得た。
<Comparative Example 1>
A fiber of Comparative Example 1 was obtained in the same manner as in the formulation of Example 2, except that beating treatment was not performed.

<比較例2、3>
アクリロニトリル95%及びメタクリル酸2%及びアクリル酸メチル3%からなるアクリロニトリル系重合体10部を44%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、常法に従って紡出し、凝固、水洗、延伸した後、乾燥せずに4mmにカットを行い、実施例1と同様の方法で叩解処理を行い、比較例2および3の繊維を得た。
<Comparative Examples 2 and 3>
A spinning solution prepared by dissolving 10 parts of an acrylonitrile-based polymer composed of 95% of acrylonitrile, 2% of methacrylic acid, and 3% of methyl acrylate in 90 parts of a 44% aqueous solution of sodium thiocyanate is spun out by a conventional method, coagulated, washed and stretched. After that, it was cut to 4 mm without drying, and beaten in the same manner as in Example 1 to obtain fibers of Comparative Examples 2 and 3.

<比較例4>
比較例2において延伸後に105℃×1時間乾燥させたこと以外は同様に処理を行い、比較例4の繊維を得た。
<Comparative Example 4>
The same treatment as in Comparative Example 2 was carried out except that drying was performed at 105 ° C. × 1 hour after stretching to obtain a fiber of Comparative Example 4.

<比較例5>
実施例1において、ゲル状アクリロニトリル系繊維の代わりに、該繊維に対して、乾熱処理(110℃)と湿熱処理(60℃)を2回交互に行うことにより得られた緻密化繊維を用いて、加水分解処理以降の処理を同様に行い、比較例5の繊維を得た。叩解前の繊維のカルボキシル基の分布状態のCV値は大きく、繊維表層部位のみにカルボキシル基が導入されている芯鞘構造であった。
<Comparative Example 5>
In Example 1, a densified fiber obtained by alternately performing dry heat treatment (110 ° C.) and wet heat treatment (60 ° C.) twice on the fiber instead of the gel acrylonitrile fiber was used. The treatment after the hydrolysis treatment was performed in the same manner to obtain a fiber of Comparative Example 5. The CV value of the distribution state of the carboxyl group of the fiber before beating was large, and the fiber had a core-sheath structure in which the carboxyl group was introduced only into the surface layer of the fiber.

上述の実施例、比較例において得られた繊維の評価結果を表1に示す。なお、表中の「−」は測定していないことを示す。 Table 1 shows the evaluation results of the fibers obtained in the above Examples and Comparative Examples. Note that "-" in the table indicates that measurement was not performed.

Figure 0006656608
Figure 0006656608

表1に示すように、実施例1〜8においては、未叩解繊維の叩解性が良好であり、得られる叩解状アクリロニトリル系繊維も収縮率が低く、形態安定性に優れており、また、鉛吸着性からイオン交換能を有していることも分かる。なお、実施例5の中和度を低下させた実施例9では濾水度が低くなる結果となり、中和度の高い方が叩解性が良好となることが示された。 As shown in Table 1, in Examples 1 to 8, the beating properties of the unbeaten fibers were good, and the beaten acrylonitrile fibers obtained also had a low shrinkage rate, excellent shape stability, and lead. It can also be seen from the adsorptive properties that it has ion exchange capacity. In addition, in Example 9 in which the degree of neutralization of Example 5 was reduced, the freeness was reduced, and it was shown that the higher the degree of neutralization, the better the beating property.

一方、叩解処理を行っていない比較例1は紙力が測定できないほど弱く、活性炭捕捉量も低く実用性の低いものであった。これに対して、わずかに叩解処理を施した実施例2では紙力を有しており、本発明においてはわずかな叩解でもバインダー性が得られることが示された。 On the other hand, Comparative Example 1 in which no beating treatment was performed was so weak that the paper strength could not be measured, the activated carbon trapping amount was low, and the practicality was low. On the other hand, in Example 2, which was slightly beaten, the paper had a paper strength, and in the present invention, it was shown that binder properties could be obtained even with a slight beat.

また、カルボキシル基を含有するモノマーを共重合したポリマーからアクリロニトリル系繊維を作成した比較例2および3では収縮率が高く、形態安定性に問題があった。さらに、かかる比較例2と濾水度が同じである実施例1を比較すると、本発明の実施例1の方が、紙力(接着性)および活性炭捕捉量が良好であり、本発明の繊維が、接着性、粒子捕捉性にも優れていることが分かる。 Further, in Comparative Examples 2 and 3 in which acrylonitrile fibers were prepared from a polymer obtained by copolymerizing a monomer containing a carboxyl group, the shrinkage was high, and there was a problem in form stability. Furthermore, when comparing Example 1 with the same freeness as Comparative Example 2, Example 1 of the present invention has better paper strength (adhesiveness) and activated carbon capture amount, However, it can be seen that they are also excellent in adhesion and particle trapping properties.

また、カルボキシル基を含有するモノマーを共重合したポリマーから得られたアクリロニトリル系繊維に乾燥処理を施した比較例4、および、カルボキシル基を有する部分が繊維構造内に存在していない(繊維表層部位のみカルボキシル基が導入されている)原料繊維を用いた比較例5では叩解が進行せず、紙を作成することもできなかった。
Further, Comparative Example 4 in which an acrylonitrile fiber obtained from a polymer obtained by copolymerizing a monomer having a carboxyl group was subjected to a drying treatment, and a portion having a carboxyl group was not present in the fiber structure (fiber surface layer portion). In Comparative Example 5 using a raw material fiber (in which only a carboxyl group was introduced), beating did not proceed, and paper could not be prepared.

Claims (10)

0.2〜4.0mmol/gのカルボキシル基量を有し、共有結合による架橋構造を実質的に有さない重合体で構成されている叩解状アクリロニトリル系繊維であって、坪量50g/mの紙形状としたときの収縮率が20%以下であることを特徴とする叩解状アクリロニトリル系繊維。
Beating acrylonitrile fiber composed of a polymer having a carboxyl group content of 0.2 to 4.0 mmol / g and having substantially no covalent crosslinked structure, and having a basis weight of 50 g / m 2. A beaten acrylonitrile-based fiber having a shrinkage factor of 20 % or less when formed into the paper shape of No. 2.
水膨潤度が0.2倍以上であることを特徴とする請求項1に記載の叩解状アクリロニトリル系繊維。 The beaten acrylonitrile-based fiber according to claim 1, wherein the water swelling degree is 0.2 times or more. 濾水度が730ml以下であることを特徴とする請求項1または2に記載の叩解状アクリロニトリル系繊維。 The beaten acrylonitrile-based fiber according to claim 1 or 2, wherein the freeness is 730 ml or less. アクリロニトリル系重合体を溶解した紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解処理した後に叩解処理を施すことを特徴とする叩解状アクリロニトリル系繊維の製造方法。 Beating acrylonitrile characterized by applying a spinning solution in which an acrylonitrile-based polymer is dissolved from a nozzle, hydrolyzing the undried fibers obtained through coagulation, washing, and drawing steps and then subjecting the fibers to beating. Method for producing base fiber. 加水分解処理を、未乾燥繊維に塩基性水溶液または酸性水溶液を含浸し、絞った後に、湿熱雰囲気下で加熱することによって行うことを特徴とする請求項4に記載の叩解状アクリロニトリル系繊維の製造方法。 The production of beating-like acrylonitrile-based fibers according to claim 4, wherein the hydrolysis treatment is performed by impregnating the undried fibers with a basic aqueous solution or an acidic aqueous solution, squeezing the fibers, and then heating the fibers in a moist heat atmosphere. Method. 湿熱雰囲気下での加熱温度が105〜140℃であることを特徴とする請求項5に記載の叩解状アクリロニトリル系繊維の製造方法。 The method for producing beaten acrylonitrile-based fibers according to claim 5, wherein the heating temperature in a moist heat atmosphere is 105 to 140C. 未乾燥繊維の水分率が20〜250%であることを特徴とする請求項4〜6のいずれかに記載の叩解状アクリロニトリル系繊維の製造方法。 The method for producing beaten acrylonitrile-based fibers according to any one of claims 4 to 6, wherein the moisture content of the undried fibers is 20 to 250%. 加水分解処理後に乾燥工程を経てから叩解処理を施すことを特徴とする請求項4〜7のいずれかに記載の叩解状アクリロニトリル系繊維の製造方法。 The method for producing beaten acrylonitrile-based fibers according to any one of claims 4 to 7, wherein a beating treatment is performed after a drying step after the hydrolysis treatment. 請求項1〜3のいずれかに記載の叩解状アクリロニトリル系繊維を含有する構造体。 A structure containing the beaten acrylonitrile-based fiber according to claim 1. フィルター、衛材用品の吸収層及び拡散層、燃料電池拡散膜用カーボンシート並びに製紙製品の中から選択されたものであることを特徴とする請求項9に記載の構造体。

The structure according to claim 9, wherein the structure is selected from a filter, an absorption layer and a diffusion layer of a sanitary article, a carbon sheet for a fuel cell diffusion membrane, and a paper product.

JP2019547538A 2018-05-31 2019-05-27 Carboxyl group-containing beaten acrylonitrile fiber, method for producing the fiber, and structure containing the fiber Active JP6656608B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018104466 2018-05-31
JP2018104466 2018-05-31
PCT/JP2019/020865 WO2019230640A1 (en) 2018-05-31 2019-05-27 Carboxyl group-containing beaten acrylonitrile-based fibers, production method for said fibers, and structure containing said fibers

Publications (2)

Publication Number Publication Date
JP6656608B1 true JP6656608B1 (en) 2020-03-04
JPWO2019230640A1 JPWO2019230640A1 (en) 2020-06-11

Family

ID=68697013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547538A Active JP6656608B1 (en) 2018-05-31 2019-05-27 Carboxyl group-containing beaten acrylonitrile fiber, method for producing the fiber, and structure containing the fiber

Country Status (3)

Country Link
JP (1) JP6656608B1 (en)
CN (1) CN111868322B (en)
WO (1) WO2019230640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162439A1 (en) * 2023-02-03 2024-08-08 東洋紡株式会社 Amino group-containing fiber, manufacturing method for same, article using said fiber, molding, carbon dioxide adsorption material including same, use method for carbon dioxide adsorption material, and carbon dioxide separation/recovery device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177986B2 (en) * 2018-02-15 2022-11-25 日本エクスラン工業株式会社 Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) * 2018-02-26 2022-11-25 日本エクスラン工業株式会社 Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7219418B2 (en) * 2018-03-09 2023-02-08 日本エクスラン工業株式会社 Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177988B2 (en) * 2018-03-09 2022-11-25 日本エクスラン工業株式会社 Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
CN113529422A (en) 2020-04-14 2021-10-22 日本爱克兰工业株式会社 Particle-supported fiber structure and method for producing same
CN113668087A (en) * 2020-05-15 2021-11-19 日本爱克兰工业株式会社 Easy-beating acrylic fiber, pulp-like acrylic fiber, structure containing the fiber, and method for producing the fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS39197B1 (en) * 1961-06-19 1964-01-14
JPS62263378A (en) * 1986-05-06 1987-11-16 日本エクスラン工業株式会社 Water swellable fiber
JPH11293516A (en) * 1998-04-13 1999-10-26 Mitsubishi Rayon Co Ltd Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties
WO2005085522A1 (en) * 2004-03-03 2005-09-15 Japan Exlan Company Limited Paper capable of moisture absorption and desorption and process for producing the same
WO2019058966A1 (en) * 2017-09-22 2019-03-28 日本エクスラン工業株式会社 Moisture absorbent acrylonitrile-based fiber, method for producing same and fiber structure containing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598915A (en) * 1979-01-16 1980-07-28 Japan Exlan Co Ltd Production of fiber swelling with water
US5698078A (en) * 1992-12-17 1997-12-16 Kanebo, Ltd. Wet non-woven fabric and method for producing the same
JP2003166118A (en) * 2001-09-21 2003-06-13 Asahi Kasei Corp Binder fibrous material
KR101060028B1 (en) * 2004-03-03 2011-08-29 니혼 엑스란 고교 (주) Moisture-Proof and Wetlands
CN109689951B (en) * 2016-09-12 2022-03-22 日本爱克兰工业株式会社 Modacrylic fiber, method for producing the fiber, and fiber structure containing the fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS39197B1 (en) * 1961-06-19 1964-01-14
JPS62263378A (en) * 1986-05-06 1987-11-16 日本エクスラン工業株式会社 Water swellable fiber
JPH11293516A (en) * 1998-04-13 1999-10-26 Mitsubishi Rayon Co Ltd Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties
WO2005085522A1 (en) * 2004-03-03 2005-09-15 Japan Exlan Company Limited Paper capable of moisture absorption and desorption and process for producing the same
WO2019058966A1 (en) * 2017-09-22 2019-03-28 日本エクスラン工業株式会社 Moisture absorbent acrylonitrile-based fiber, method for producing same and fiber structure containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162439A1 (en) * 2023-02-03 2024-08-08 東洋紡株式会社 Amino group-containing fiber, manufacturing method for same, article using said fiber, molding, carbon dioxide adsorption material including same, use method for carbon dioxide adsorption material, and carbon dioxide separation/recovery device

Also Published As

Publication number Publication date
CN111868322A (en) 2020-10-30
JPWO2019230640A1 (en) 2020-06-11
WO2019230640A1 (en) 2019-12-05
CN111868322B (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6656608B1 (en) Carboxyl group-containing beaten acrylonitrile fiber, method for producing the fiber, and structure containing the fiber
TWI376441B (en) Moisture transferring paper and process for producing the same
Grande et al. Nanochitins of varying aspect ratio and properties of microfibers produced by interfacial complexation with seaweed alginate
Haque et al. Synthesis and characterization of cellulose-based eco-friendly hydrogels
WO2018047344A1 (en) Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
JP6085921B2 (en) Acrylonitrile fiber, carbon material obtained by firing the fiber, and electrode containing the material
JPH11293516A (en) Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties
JP2000265365A (en) Crosslinked acrylic moisture-absorbing fiber and its production
JP7641481B2 (en) Particle-carrying fiber structure and method for producing same
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
CN1191581A (en) easily fibrillated fibers
JP2021181669A (en) Easy-to-beat acrylonitrile-based fiber, pulp-like acrylonitrile-based fiber, structure containing the fiber, and method for producing the fiber.
JP3369508B2 (en) Hygroscopic fiber
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP2021066779A5 (en)
JP2003166118A (en) Binder fibrous material
JP2019143284A (en) Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2021127364A (en) Material which improves absorbency of blood-containing liquid, sanitary products containing the material and method for absorbing blood-containing liquid
JP4645945B2 (en) Polyacrylonitrile-based transparent sheet and method for producing the same
TW200533810A (en) Moisture-transfering paper
JP7219418B2 (en) Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2005154958A (en) Fibrillated acrylic fiber, method for producing the same and structure containing the fiber
JP4437539B2 (en) Hygroscopic sheet
JP2019060066A (en) Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190830

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200119

R150 Certificate of patent or registration of utility model

Ref document number: 6656608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250