JP2005154958A - Fibrillated acrylic fiber, method for producing the same and structure containing the fiber - Google Patents
Fibrillated acrylic fiber, method for producing the same and structure containing the fiber Download PDFInfo
- Publication number
- JP2005154958A JP2005154958A JP2003396451A JP2003396451A JP2005154958A JP 2005154958 A JP2005154958 A JP 2005154958A JP 2003396451 A JP2003396451 A JP 2003396451A JP 2003396451 A JP2003396451 A JP 2003396451A JP 2005154958 A JP2005154958 A JP 2005154958A
- Authority
- JP
- Japan
- Prior art keywords
- acrylonitrile
- fiber
- weight
- acrylic fiber
- fibrillated acrylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 101
- 229920002972 Acrylic fiber Polymers 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229920005989 resin Polymers 0.000 claims abstract description 48
- 239000011347 resin Substances 0.000 claims abstract description 48
- 238000009987 spinning Methods 0.000 claims abstract description 29
- 229920000642 polymer Polymers 0.000 claims abstract description 27
- 238000010521 absorption reaction Methods 0.000 claims abstract description 25
- 238000010009 beating Methods 0.000 claims abstract description 19
- 229920002959 polymer blend Polymers 0.000 claims abstract description 5
- 239000000178 monomer Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 206010016807 Fluid retention Diseases 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- 238000007334 copolymerization reaction Methods 0.000 claims description 4
- 150000002148 esters Chemical group 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 239000011550 stock solution Substances 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 150000001408 amides Chemical group 0.000 claims description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 3
- 238000002166 wet spinning Methods 0.000 claims description 3
- 229920002614 Polyether block amide Polymers 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 16
- 229920002239 polyacrylonitrile Polymers 0.000 abstract description 11
- 206010061592 cardiac fibrillation Diseases 0.000 abstract description 7
- 230000002600 fibrillogenic effect Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000123 paper Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- -1 reinforcements Substances 0.000 description 4
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 239000002783 friction material Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- SZHIIIPPJJXYRY-UHFFFAOYSA-M sodium;2-methylprop-2-ene-1-sulfonate Chemical compound [Na+].CC(=C)CS([O-])(=O)=O SZHIIIPPJJXYRY-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- CCJAYIGMMRQRAO-UHFFFAOYSA-N 2-[4-[(2-hydroxyphenyl)methylideneamino]butyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCCN=CC1=CC=CC=C1O CCJAYIGMMRQRAO-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Chemical compound CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Paper (AREA)
Abstract
Description
本発明はフィブリル化アクリル繊維およびその製造方法並びに該繊維を含有する構造物に関する。 The present invention relates to a fibrillated acrylic fiber, a method for producing the same, and a structure containing the fiber.
極細繊維やフィブリル化繊維などの細い繊度を有する繊維は、紙や不織布の材料あるいは摩擦材やセメントの補強材などとして広く利用されている。アクリル繊維は、耐水性、耐薬品性に優れ、難融性であるという特徴を有しており、このような用途に適した素材である。このため、細い繊度を有するアクリル繊維を得るべく様々な試みがなされているが、繊維を叩解してフィブリル化する方法が最も一般的である。 Fibers having fine fineness such as ultrafine fibers and fibrillated fibers are widely used as paper or non-woven materials, friction materials, cement reinforcing materials, or the like. Acrylic fibers are excellent in water resistance and chemical resistance, and have the characteristics of being hardly fusible, and are suitable materials for such applications. For this reason, various attempts have been made to obtain acrylic fibers having a fine fineness, but the most common method is to beat the fibers to form a fibril.
しかし、汎用アクリル繊維は叩解工程を経てもフィブリル化が困難である。このため、添加物を利用する方法などが提案されている。例えば、特許文献1や2には、繊維を構成するアクリロニトリル系重合体に対して非相溶性である酢酸セルロースやアクリル樹脂を紡糸原液に添加して紡糸することで、繊維内に相分離構造を有するアクリル繊維を得た後、該繊維を叩解してフィブリル化させる方法が開示されている。しかし、これらの方法においては添加した非相溶性物質が合一し、繊維中の非相溶性物質の領域が大きくなりやすいため、紡糸時に糸切れが多発したり、繊維の分割性が悪化したりするなどの問題を有している。 However, it is difficult to fibrillate general-purpose acrylic fibers even after a beating process. For this reason, methods using an additive have been proposed. For example, in Patent Documents 1 and 2, cellulose acetate or an acrylic resin that is incompatible with the acrylonitrile-based polymer constituting the fiber is added to the spinning dope and spun to form a phase separation structure in the fiber. After obtaining the acrylic fiber which has, the method of beating a fiber and making it a fibril is disclosed. However, in these methods, the incompatible substances added are united and the area of the incompatible substances in the fiber tends to be large, so that yarn breakage frequently occurs during spinning, and the fiber splitting property deteriorates. Have problems.
また、特許文献3や4では、アクリロニトリル結合含有量の異なる2種類のアクリロニトリル系重合体からなるフィブリル化アクリル繊維が開示されている。これらの場合においては、使用される2種類のアクリロニトリル系重合体のアクリロニトリル結合含有量の差が小さく、相分離が起こりにくいため、水分率が数百%という高率の原料繊維をフィブリル化しており、かかる高水分率の原料繊維として、熱処理を施していない、いわゆるゲル状繊維を用いている。このような原料繊維を叩解して得られたフィブリル化アクリル繊維は、熱安定性に乏しく、最終製品の紙や不織布を製造する際の乾燥工程で収縮してしまうという問題を有している。
本発明はかかる現状を改善したフィブリル化アクリル繊維およびその製造方法並びに該繊維を含有する構造物を提供することを目的とする。 It is an object of the present invention to provide a fibrillated acrylic fiber improved in the present situation, a method for producing the same, and a structure containing the fiber.
本発明者は上述の目的を達成すべく鋭意検討を進めた結果、アクリロニトリル系重合体の紡糸原液中に該重合体に対してある程度の相溶性を有し、且つ親水性を有するアクリロニトリル系親水性樹脂を含有せしめたものを採用して得られた原料繊維は分割性が良好であり、叩解により容易にフィブリル化できることを見出し、本発明に到達した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventor has obtained a certain degree of compatibility with the polymer in the spinning solution of the acrylonitrile polymer, and has a hydrophilic property. It has been found that the raw material fiber obtained by using the resin-containing material has good splitting properties and can be easily fibrillated by beating.
即ち、本発明は以下の手段により達成される。
(1)80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体95〜99重量%および10〜70重量%のアクリロニトリルを結合含有するアクリロニトリル系親水性樹脂1〜5重量%の重合体混合物からなる紡糸原液を紡糸することによって得られ、吸水速度が0.15g/g以上且つ吸水率が20重量%以上である原料繊維を叩解して得られるフィブリル化アクリル繊維。
(2)原料繊維が、120重量%以下の保水率を有することを特徴とする(1)に記載のフィブリル化アクリル繊維。
(3)アクリロニトリル系親水性樹脂が親水性成分としてポリアルキレンオキシド鎖、ポリエーテルアミド鎖、ポリエーテルエステル鎖からなる群から選ばれた少なくとも一つを有することを特徴とする(1)または(2)に記載のフィブリル化アクリル繊維。
(4)アクリロニトリル系親水性樹脂が共重合成分として下記化2で示す単量体を30〜90重量%結合含有することを特徴とする(1)または(2)に記載のフィブリル化アクリル繊維。
(6)80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体95〜99重量%および10〜70重量%のアクリロニトリルを結合含有するアクリロニトリル系親水性樹脂1〜5重量%の重合体混合物からなる紡糸原液を湿式紡糸するに際し、延伸後の未乾燥繊維の水分率を50〜130重量%とし、該未乾燥繊維を105〜130℃の温度で湿熱処理して得られる繊維を叩解することを特徴とするフィブリル化アクリル繊維の製造方法。
That is, the present invention is achieved by the following means.
(1) Containing a polymer mixture of 95 to 99% by weight of acrylonitrile-based polymer containing 80% by weight or more of acrylonitrile and 1 to 5% by weight of acrylonitrile-based hydrophilic resin containing 10% to 70% by weight of acrylonitrile. A fibrillated acrylic fiber obtained by beating a raw fiber having a water absorption rate of 0.15 g / g or more and a water absorption of 20% by weight or more, which is obtained by spinning a spinning dope.
(2) The fibrillated acrylic fiber according to (1), wherein the raw fiber has a water retention of 120% by weight or less.
(3) The acrylonitrile-based hydrophilic resin has at least one selected from the group consisting of a polyalkylene oxide chain, a polyether amide chain, and a polyether ester chain as a hydrophilic component (1) or (2) ) Fibrillated acrylic fiber.
(4) The fibrillated acrylic fiber according to (1) or (2), wherein the acrylonitrile-based hydrophilic resin contains 30 to 90% by weight of a monomer represented by the following chemical formula 2 as a copolymerization component.
(6) Containing a polymer mixture of 95 to 99% by weight of acrylonitrile-based polymer containing 80% by weight or more of acrylonitrile and 1 to 5% by weight of acrylonitrile-based hydrophilic resin containing 10% to 70% by weight of acrylonitrile. When wet-spinning the spinning dope, the moisture content of the undried fiber after stretching is 50 to 130% by weight, and the fiber obtained by wet-heat treatment of the undried fiber at a temperature of 105 to 130 ° C. is beaten. A method for producing a fibrillated acrylic fiber.
本発明に採用される原料繊維は、特別な装置を用いずに操業性良く紡糸することができ、且つ叩解により短時間に容易にフィブリル化することのできるものであるため、本発明のフィブリル化アクリル繊維は低コストで製造することが可能である。従って、従来よりフィブリル化アクリル繊維が使用されている紙、不織布、あるいは摩擦材、補強材、さらには低廉な材料の求められることの多い産業資材用途に使用することでこれらの製品のコストダウンに寄与することができる。 Since the raw fiber employed in the present invention can be spun with good operability without using a special apparatus and can be easily fibrillated in a short time by beating, the fibrillation of the present invention Acrylic fibers can be manufactured at low cost. Therefore, the cost of these products can be reduced by using paper, non-woven fabrics, or friction materials, reinforcements, and industrial materials that are often required for low-cost materials. Can contribute.
また、本発明に採用される原料繊維に含有されるアクリロニトリル系親水性樹脂はバインダー的な役割を果たすことが可能である。このため、本発明のフィブリル化アクリル繊維を紙原料として使用する場合にはバインダーの量を通常よりも削減する、場合によっては不使用とすることもできる。 Further, the acrylonitrile-based hydrophilic resin contained in the raw fiber employed in the present invention can play a role as a binder. For this reason, when using the fibrillated acrylic fiber of this invention as a paper raw material, the quantity of a binder can be reduced rather than usual, and it can also make it non-use depending on the case.
さらに、本発明によれば、湿熱処理を施しても原料繊維の分割性が維持され、熱的に安定なフィブリル化アクリル繊維を得ることができるので、寸法安定性の求められる用途にも好適に利用することができる。 Furthermore, according to the present invention, the splitting property of the raw material fibers can be maintained even after the wet heat treatment, and a thermally stable fibrillated acrylic fiber can be obtained, which is suitable for applications requiring dimensional stability. Can be used.
以下、本発明を詳述する。本発明のアクリロニトリル系重合体は従来公知のアクリル繊維の製造に用いられるものであればよいが、アクリロニトリルを80重量%以上結合含有することが必要であり、より好ましくは88重量%以上である。アクリロニトリルの結合含有量が80重量%に満たない場合には、後述するアクリロニトリル系親水性樹脂のアクリロニトリルの結合含有量との差が小さく、繊維の分割性が低下する。 The present invention is described in detail below. The acrylonitrile-based polymer of the present invention is not particularly limited as long as it is used in the production of conventionally known acrylic fibers, but it is necessary to contain 80% by weight or more of acrylonitrile, and more preferably 88% by weight or more. When the acrylonitrile bond content is less than 80% by weight, the difference from the acrylonitrile bond content of the acrylonitrile-based hydrophilic resin described later is small, and the fiber splitting property is lowered.
また、アクリロニトリル系重合体において、アクリロニトリルと共重合しうる単量体としては、ビニル化合物であればよく、複数種を共重合しても構わない。代表的な例としては、アクリル酸、メタクリル酸、又はこれらのエステル類;アクリルアミド、メタクリルアミド又はこれらのN−アルキル置換体;酢酸ビニル等のビニルエステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル又はビニリデン類;ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、p−スチレンスルホン酸等の不飽和スルホン酸又はこれらの塩類等アクリロニトリルと共重合可能な周知の単量体を挙げることができる。 In the acrylonitrile-based polymer, the monomer that can be copolymerized with acrylonitrile may be a vinyl compound, and a plurality of types may be copolymerized. Typical examples include acrylic acid, methacrylic acid, or esters thereof; acrylamide, methacrylamide, or N-alkyl substituted products thereof; vinyl esters such as vinyl acetate; vinyl chloride, vinyl bromide, vinylidene chloride, and the like. Examples of known monomers that can be copolymerized with acrylonitrile, such as unsaturated sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, p-styrene sulfonic acid, or salts thereof. be able to.
なお、アクリロニトリル系重合体として、上述の組成を満たす重合体を複数種用いても構わない。 In addition, as an acrylonitrile-type polymer, you may use multiple types of polymers which satisfy | fill the above-mentioned composition.
次に、本発明のアクリロニトリル系親水性樹脂としては、10〜70重量%のアクリロニトリルを結合含有することが必要であり、より好ましくは15〜50重量%、さらに好ましくは15〜30重量%である。アクリロニトリルの結合含有量が10〜70重量%の範囲であれば、上述したアクリロニトリル系重合体に対してある程度の相溶性を有するものとすることができる。すなわち、該範囲を外れる場合には、アクリロニトリル系重合体に対する相溶性が低すぎる、あるいは、高すぎる状態となり、紡糸工程で糸切れが多発したり、繊維の分割性が低下したりすることがある。 Next, the acrylonitrile-based hydrophilic resin of the present invention needs to contain 10 to 70% by weight of acrylonitrile, more preferably 15 to 50% by weight, and still more preferably 15 to 30% by weight. . If the acrylonitrile bond content is in the range of 10 to 70% by weight, it can have a certain degree of compatibility with the acrylonitrile polymer described above. In other words, if it is out of the range, the compatibility with the acrylonitrile polymer is too low or too high, and yarn breakage may occur frequently in the spinning process, or the fiber splitting property may be reduced. .
また、紡糸原液作成にあたっては、使用する重合体全量に対して、アクリロニトリル系重合体を95〜99重量%、アクリロニトリル系親水性樹脂を1〜5重量%となるようにする。この範囲を外れる場合には、紡糸時におけるノズル詰まり、糸切れ等の製造上の問題や十分な分割性を得られない等の特性上の問題が発生する。 In preparing the spinning dope, the acrylonitrile polymer is 95 to 99% by weight and the acrylonitrile hydrophilic resin is 1 to 5% by weight with respect to the total amount of the polymer used. If it is out of this range, problems in production such as nozzle clogging and yarn breakage during spinning and problems in characteristics such as inability to obtain sufficient splitting properties occur.
本発明の原料繊維は、後述する条件で測定したときの吸水速度が0.15g/g以上且つ吸水率が20重量%以上であるものである。原料繊維がこれらの特性を有する場合には、繊維の分割性を維持しながら、熱安定性の良好なフィブリル化アクリル繊維を得ることができる。 The raw fiber of the present invention has a water absorption rate of 0.15 g / g or more and a water absorption of 20% by weight or more when measured under the conditions described later. When the raw fiber has these characteristics, a fibrillated acrylic fiber having good thermal stability can be obtained while maintaining the fiber splitting property.
本発明に採用する原料繊維としては、上述した特徴を有することに加え、保水率が120重量%以下、好ましくは70重量%以下、さらに好ましくは40重量%以下であることが望ましい。上述した特徴を有した上で、保水率が120重量%以下であれば、繊維の分割性を維持しながら、得られるフィブリル化アクリル繊維の熱安定性を向上させることが可能となる。 In addition to having the above-described characteristics, the raw fiber employed in the present invention desirably has a water retention rate of 120% by weight or less, preferably 70% by weight or less, and more preferably 40% by weight or less. If it has the characteristics mentioned above and a water retention is 120 weight% or less, it will become possible to improve the thermal stability of the obtained fibrillated acrylic fiber, maintaining the division property of a fiber.
本発明のアクリロニトリル系親水性樹脂の有する親水性成分としては、親水性を有するものであれば特に限定は無く、例えば水酸基やアミノ基などを挙げることができるが、特にポリアルキレンオキシド鎖、ポリエーテルアミド鎖、ポリエーテルエステル鎖などを採用した場合には樹脂の熱可塑性が増し、バインダー的な役割を果たせるようになるので、最終的に得られるフィブリル化アクリル繊維は紙原料に適したものとなる。 The hydrophilic component of the acrylonitrile-based hydrophilic resin of the present invention is not particularly limited as long as it has hydrophilicity, and examples thereof include a hydroxyl group and an amino group. Particularly, a polyalkylene oxide chain, a polyether, etc. When amide chain, polyether ester chain, etc. are adopted, the thermoplasticity of the resin increases and it becomes possible to play a role as a binder, so the fibrillated acrylic fiber finally obtained is suitable for paper raw materials .
上記親水性成分を組み込む方法としては、側鎖上に親水性成分が組み込まれたビニル単量体をアクリロニトリルと共重合させる方法や反応性官能基を有するビニル単量体をアクリロニトリルと共重合させた後、親水性成分を含有する反応性化合物をグラフト反応させる方法などが挙げられる。 As a method for incorporating the hydrophilic component, a method for copolymerizing a vinyl monomer having a hydrophilic component on its side chain with acrylonitrile, or a method for copolymerizing a vinyl monomer having a reactive functional group with acrylonitrile. Thereafter, a method in which a reactive compound containing a hydrophilic component is grafted is exemplified.
前者の方法において、側鎖上に親水性成分が組み込まれたビニル単量体としては、上述の化2で示される単量体が扱いやすく、代表的なものである。該単量体の結合含有量としては、30〜90重量%、好ましくは50〜85重量%、さらに好ましくは70〜85重量%であることが望ましい。30〜90重量%であれば、繊維の機械的強度を保ちつつ、分割性の良好な原料繊維が得られやすくなる。なお、この化2でいう低級アルキル基とは、大概炭素数5以下、さらに実用的には3以下のものを指す。またアクリロニトリルとの共重合に際しては、上記のビニル単量体に加えて他のビニル化合物を共重合しても構わない。 In the former method, as the vinyl monomer in which the hydrophilic component is incorporated on the side chain, the monomer represented by Chemical Formula 2 is easy to handle and is typical. The bond content of the monomer is 30 to 90% by weight, preferably 50 to 85% by weight, and more preferably 70 to 85% by weight. If it is 30-90 weight%, it will become easy to obtain raw material fiber with favorable splitting property, maintaining the mechanical strength of a fiber. The lower alkyl group in the chemical formula 2 generally means a group having 5 or less carbon atoms, and more practically 3 or less. In the copolymerization with acrylonitrile, other vinyl compounds may be copolymerized in addition to the above vinyl monomers.
側鎖上に親水性成分が組み込まれたビニル単量体の好適な例としては、2−メタクリロイルオキシエチルイソシアネートとポリエチレングリコールモノメチルエーテルの反応生成物などが挙げられ、化2で示される単量体の好適な例としては、メトキシポリエチレングリコール(30モル)メタアクリレート、メトキシポリエチレングリコール(30モル)アクリレート、ポリエチレングリコール−2,4,6−トリス−1−フェニルエチルフェニルエーテルメタアクリレート(数平均分子量約1600)などが挙げられる。また、後者の方法であるグラフト反応させる場合において、反応性官能基を有するビニル単量体の好適な例としては、2−ヒドロキシエチルメタアクリレート、アクリル酸、メタアクリル酸、N−ヒドロキシメチルアクリルアミド、N,N−ジメチルアミノエチルメタアクリレート、グリシジルメタアクリレート、2−メタクリロイルオキシエチルイソシアネートなどが挙げられ、親水性成分を含有する反応性化合物の好適な例としては、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメタクリレートなどが挙げられる。 Preferable examples of the vinyl monomer having a hydrophilic component incorporated on the side chain include a reaction product of 2-methacryloyloxyethyl isocyanate and polyethylene glycol monomethyl ether. Suitable examples of methoxypolyethylene glycol (30 mol) methacrylate, methoxypolyethylene glycol (30 mol) acrylate, polyethylene glycol-2,4,6-tris-1-phenylethylphenyl ether methacrylate (number average molecular weight of about 1600). In addition, in the case of the graft reaction which is the latter method, suitable examples of the vinyl monomer having a reactive functional group include 2-hydroxyethyl methacrylate, acrylic acid, methacrylic acid, N-hydroxymethylacrylamide, N, N-dimethylaminoethyl methacrylate, glycidyl methacrylate, 2-methacryloyloxyethyl isocyanate, and the like. Suitable examples of the reactive compound containing a hydrophilic component include polyethylene glycol monomethyl ether and polyethylene glycol monomethacrylate. Etc.
本発明のアクリロニトリル系親水性樹脂のその他の性質としては、10〜300g/g、好ましくは20〜150g/gの水膨潤度を有することが望ましい。水膨潤度が300g/gを超えると、紡糸工程において糸切れなどのトラブルが起こりやすくなる。また、水膨潤度の調整には色々な方法を用いうるが、架橋性単量体を共重合するとか、化2で示される単量体のlあるいはmの大きさを変更するなどの方法が例示できる。 As other properties of the acrylonitrile-based hydrophilic resin of the present invention, it is desirable to have a water swelling degree of 10 to 300 g / g, preferably 20 to 150 g / g. When the degree of water swelling exceeds 300 g / g, troubles such as yarn breakage are likely to occur in the spinning process. Various methods can be used to adjust the degree of water swelling, such as copolymerizing a crosslinkable monomer or changing the size of the monomer 1 or m shown in Chemical Formula 2. It can be illustrated.
さらに、アクリロニトリル系親水性樹脂は水およびアクリロニトリル系重合体の溶剤に対して可溶であっても構わないが、好ましくは、水およびアクリロニトリル系重合体の溶剤に不溶であり且つ左記溶剤中で安定に分散するという性質を有するものであることが望ましい。水およびアクリロニトリル系重合体の溶剤に不溶であることは、紡糸工程において繊維中からアクリロニトリル系親水性樹脂が溶出することを抑制するため、最終的に得られるフィブリル化アクリル繊維に上述したバインダー的な機能を持たせることを可能とし、また、安定に分散するという性質は、紡糸工程におけるノズル詰まりや糸切れなどのトラブルを抑制するため、安定的な紡糸に寄与するものである。 Further, the acrylonitrile-based hydrophilic resin may be soluble in water and the solvent of the acrylonitrile-based polymer, but is preferably insoluble in water and the solvent of the acrylonitrile-based polymer and stable in the solvent described on the left. It is desirable to have the property of dispersing in The insolubility in water and the solvent of the acrylonitrile polymer suppresses the dissolution of the acrylonitrile hydrophilic resin from the fiber in the spinning process. Therefore, the fibrillated acrylic fiber finally obtained has a binder-like property as described above. The property of being able to have a function and being stably dispersed contributes to stable spinning in order to suppress troubles such as nozzle clogging and yarn breakage in the spinning process.
以上に述べてきた、アクリロニトリル系重合体を合成する方法としては、特に制限はなく、周知の重合手段である懸濁重合法、乳化重合法、溶液重合法などを利用することができる。また、アクリロニトリル系親水性樹脂を合成する方法としても上記重合方法が利用でき、場合によっては、上述のごとく、親水性成分を導入するためにグラフト反応を利用することもできる。 The method for synthesizing the acrylonitrile-based polymer described above is not particularly limited, and well-known polymerization means such as suspension polymerization method, emulsion polymerization method, solution polymerization method and the like can be used. In addition, the polymerization method can be used as a method for synthesizing the acrylonitrile-based hydrophilic resin. In some cases, as described above, a graft reaction can also be used to introduce the hydrophilic component.
次に、本発明のフィブリル化アクリル繊維の製造方法について述べる。本発明のフィブリル化アクリル繊維の原料繊維は、叩解によるフィブリル化を容易とするために、繊維内部においてアクリロニトリル系重合体中にアクリロニトリル系親水性樹脂が分散され、且つアクリロニトリル系重合体とアクリロニトリル系親水性樹脂との境界の少なくとも一部にミクロボイドが形成され、各々のミクロボイドが連結している構造となっていることが望ましい。かかる構造の原料繊維とするためには、下記の手段を選択することが好ましい。 Next, the manufacturing method of the fibrillated acrylic fiber of this invention is described. In the fibrillated acrylic fiber raw material fiber of the present invention, in order to facilitate fibrillation by beating, acrylonitrile-based hydrophilic resin is dispersed in the acrylonitrile-based polymer inside the fiber, and the acrylonitrile-based polymer and acrylonitrile-based hydrophilic are dispersed. It is desirable that a microvoid is formed at least at a part of the boundary with the functional resin, and that each microvoid is connected. In order to obtain a raw material fiber having such a structure, it is preferable to select the following means.
即ち、チオシアン酸ナトリウム等の無機塩水溶液を溶剤に用いて湿式紡糸する場合で説明すれば以下のようになる。まず、チオシアン酸ナトリウム等の無機塩水溶液に上述のアクリロニトリル系重合体を溶解した後に、上述のアクリロニトリル系親水性樹脂を直接あるいは水または溶剤に溶解または分散させた状態として添加混合した紡糸原液を作製し、ノズルから紡出後、凝固、水洗、延伸の各工程を経て、延伸後の未乾燥繊維の水分率を50〜130重量%、好ましくは60〜120重量%とする。続いて湿熱処理を105℃〜130℃、好ましくは110℃〜125℃で行う。 That is, the case of wet spinning using an aqueous solution of an inorganic salt such as sodium thiocyanate as a solvent is as follows. First, after dissolving the above-mentioned acrylonitrile polymer in an aqueous solution of an inorganic salt such as sodium thiocyanate, a spinning stock solution is prepared by adding and mixing the above-mentioned acrylonitrile-based hydrophilic resin directly or in a dissolved or dispersed state in water or a solvent. Then, after spinning from the nozzle, the water content of the undried fiber after stretching is 50 to 130% by weight, preferably 60 to 120% by weight, through the steps of coagulation, water washing and stretching. Subsequently, wet heat treatment is performed at 105 ° C to 130 ° C, preferably 110 ° C to 125 ° C.
ここで、延伸後の未乾燥繊維の水分率が50重量%未満の場合には、繊維内部に形成されるミクロボイドが連結しないため、繊維の分割性が低下し、また、130重量%を超える場合には繊維内部に多数の大きなボイドが形成され、可紡性が低下し好ましくない。なお、延伸後の未乾燥繊維の水分率を制御する方法は多数あるが、上記範囲内に制御するには、凝固浴温度としては5〜15℃程度、延伸倍率としては7〜15倍程度が望ましい。 Here, when the moisture content of the undried fiber after drawing is less than 50% by weight, the microvoids formed inside the fiber are not connected, so that the fiber splitting ability is reduced, and more than 130% by weight. In this case, a large number of large voids are formed inside the fiber, and the spinnability is lowered, which is not preferable. Although there are many methods for controlling the moisture content of the undried fiber after stretching, in order to control within the above range, the coagulation bath temperature is about 5 to 15 ° C., and the stretching ratio is about 7 to 15 times. desirable.
また、湿熱処理については105℃に満たない場合は熱安定性に劣り、130℃を越えるとミクロボイドの閉塞が起こるため好ましくない。なお、ここでいう湿熱処理とは、飽和水蒸気や過熱水蒸気の雰囲気下で加熱を行う処理を意味する。 In addition, when the heat treatment is less than 105 ° C., the heat stability is inferior, and when it exceeds 130 ° C., microvoids are blocked. In addition, the wet heat treatment here means a treatment for heating in an atmosphere of saturated steam or superheated steam.
本発明のフィブリル化アクリル繊維は、上述のようにして得られた湿熱処理後の原料繊維を乾燥させることなく、適当な長さにカットし、水に分散させた状態で叩解することで得ることもできるが、該原料繊維を乾燥させてから叩解処理を行ってもよいことは言うまでもない。ただし、この場合、乾燥温度は湿熱処理時の温度を超えないようにすることが望ましい。乾燥温度が湿熱処理時の温度を超えてしまうとミクロボイドが閉塞してしまうため、繊維の分割性が低下し、目的のフィブリル化アクリル繊維が得られないことがある。 The fibrillated acrylic fiber of the present invention can be obtained by beating the raw fiber after the wet heat treatment obtained as described above into an appropriate length without being dried and beating in a state dispersed in water. However, it goes without saying that the beating treatment may be performed after the raw fiber is dried. However, in this case, it is desirable that the drying temperature does not exceed the temperature during the wet heat treatment. If the drying temperature exceeds the temperature at the time of the wet heat treatment, the microvoids are clogged, so that the fiber partitionability is lowered, and the target fibrillated acrylic fiber may not be obtained.
以上、チオシアン酸ナトリウム等の無機塩を溶剤に用いた場合について説明してきたが、有機溶剤を用いる場合でも上記条件は同じである。ただし、溶剤の種類が異なっているので、延伸後の未乾燥繊維の水分率を上記範囲内に制御するには凝固浴温度を40℃以上とするのが望ましい。なお、延伸後の未乾燥繊維の水分率の評価方法については後述する。 As described above, the case where an inorganic salt such as sodium thiocyanate is used as a solvent has been described. However, the above conditions are the same even when an organic solvent is used. However, since the types of solvents are different, it is desirable to set the coagulation bath temperature to 40 ° C. or higher in order to control the moisture content of the undried fibers after drawing within the above range. In addition, the evaluation method of the moisture content of the undried fiber after extending | stretching is mentioned later.
上述のようにして得られた原料繊維は、繊維内部においてアクリロニトリル系重合体中にアクリロニトリル系親水性樹脂が分散され、且つアクリロニトリル系重合体とアクリロニトリル系親水性樹脂との境界の少なくとも一部にミクロボイドが形成され、各々のミクロボイドが連結している構造を有し、後述する条件において、吸水速度0.15g/g以上および吸水率20重量%以上の特性を有するものである。該構造は、繊維の機械的強度を維持することができ、また、熱安定性を向上させるために湿熱処理を施し、保水率を120重量%以下程度まで低下させても、叩解処理により容易にフィブリル化することを可能とするものである。 The raw material fiber obtained as described above has an acrylonitrile-based hydrophilic resin dispersed in the acrylonitrile-based polymer inside the fiber, and a microvoid at least part of the boundary between the acrylonitrile-based polymer and the acrylonitrile-based hydrophilic resin. Are formed, and each microvoid is connected to each other. Under the conditions described later, the water absorption rate is 0.15 g / g or more and the water absorption rate is 20% by weight or more. The structure can maintain the mechanical strength of the fiber, and can be easily treated by beating even if wet heat treatment is performed to improve thermal stability and the water retention is reduced to about 120% by weight or less. It is possible to fibrillate.
なお、上記構造を形成させるためには、上述した特徴を有するアクリロニトリル系重合体およびアクリロニトリル系親水性樹脂を上述した範囲内の割合で使用しなければならないことは言うまでもない。 Needless to say, in order to form the above structure, the acrylonitrile-based polymer and the acrylonitrile-based hydrophilic resin having the above-described characteristics must be used in a proportion within the above-described range.
このような原料繊維の構造は、以下のような理由によりもたらされるものであると考えられる。まず、原料繊維の構成として、アクリロニトリル系重合体に対してある程度の相溶性を有するアクリロニトリル系親水性樹脂を分散含有せしめているが、この「ある程度の相溶性」を有することで、アクリロニトリル系重合体とアクリロニトリル系親水性樹脂の界面では相分離によりボイドが形成されるものの該相分離は部分的にしか起きないため、大きなボイドではなくミクロボイドとなる。加えて、「分散含有せしめている」ことで、形成されたミクロボイドも繊維中に分散した状態となる。さらに、延伸後の未乾燥繊維の水分率を制御したことによって各ミクロボイドは連結されると考えられる。 Such a raw fiber structure is considered to be brought about for the following reasons. First, as a constitution of the raw material fiber, an acrylonitrile-based hydrophilic resin having a certain degree of compatibility with the acrylonitrile-based polymer is dispersed and contained. By having this “some degree of compatibility”, the acrylonitrile-based polymer is included. Although a void is formed by phase separation at the interface between the acrylonitrile-based hydrophilic resin and the phase separation occurs only partially, it becomes a microvoid instead of a large void. In addition, by “dispersing”, the formed microvoids are also dispersed in the fiber. Furthermore, it is thought that each microvoid is connected by controlling the moisture content of the undried fiber after drawing.
本発明のフィブリル化アクリル繊維を得るためには、叩解処理を行うが、該叩解処理の方法としては特に制限はなく、通常の叩解方法を採用することができる。代表的な例としては、ビーターやリファイナーなどの叩解機を用いてフィブリル化する方法が挙げられる。 In order to obtain the fibrillated acrylic fiber of the present invention, a beating process is performed, and the method of the beating process is not particularly limited, and a normal beating method can be employed. A typical example is a fibrillation method using a beater such as a beater or refiner.
本発明のフィブリル化アクリル繊維を含有する構造物としては、不織布、紙、シート状物、積層体、綿状体(球状や塊状のものを含む)などを挙げることができる。また、該構造物形成にあたっては、本発明のフィブリル化アクリル繊維を単独で使用してもよいし、必要に応じて天然繊維、有機繊維、半合成繊維、合成繊維、無機繊維、ガラス繊維などの繊維、熱硬化性樹脂、ゴムなどを併用してもよい。なお、構造物中に本発明のフィブリル化アクリル繊維が占める割合については、該構造物の用途において求められる機械的特性などを満足するよう適宜選択すればよい。 Examples of the structure containing the fibrillated acrylic fiber of the present invention include a nonwoven fabric, paper, a sheet-like material, a laminate, and a cotton-like material (including spherical and massive materials). Further, in forming the structure, the fibrillated acrylic fiber of the present invention may be used alone, and if necessary, natural fiber, organic fiber, semi-synthetic fiber, synthetic fiber, inorganic fiber, glass fiber, etc. You may use together a fiber, a thermosetting resin, rubber | gum, etc. In addition, what is necessary is just to select suitably the ratio for which the fibrillated acrylic fiber of this invention accounts in a structure satisfies the mechanical characteristics etc. which are calculated | required in the use of this structure.
また、本発明のフィブリル化アクリル繊維は、コンクリートや樹脂板の補強材、クラッチ板やブレーキシューなどの摩擦材などにも使用することができる。特に、アクリロニトリル系親水性樹脂として化2で示される単量体を共重合したものなどを使用した場合には、バインダー的な能力が高くなるため、紙原料として大変有用である。 The fibrillated acrylic fiber of the present invention can also be used as a reinforcing material for concrete or a resin plate, or a friction material such as a clutch plate or a brake shoe. In particular, when an acrylonitrile-based hydrophilic resin obtained by copolymerization of a monomer represented by Chemical Formula 2 is used, the ability as a binder is increased, so that it is very useful as a paper raw material.
さらに、原料繊維として、保水率が120重量%以下である繊維を使用した場合には、熱的に安定な本発明のフィブリル化アクリル繊維が得られ、加熱による変形の度合が小さいため、上述した用途の中において特に寸法安定性の求められる用途に好適に利用することができる。 Furthermore, when a fiber having a water retention rate of 120% by weight or less is used as the raw material fiber, the thermally stable fibrillated acrylic fiber of the present invention is obtained, and the degree of deformation due to heating is small. Among applications, it can be suitably used particularly for applications requiring dimensional stability.
以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部および百分率は特に断りのない限り重量基準で示す。また、実施例において記述するアクリロニトリル系親水性樹脂の水膨潤度、延伸後の未乾燥繊維の水分率並びに原料繊維の吸水速度、吸水率および保水率は下記の方法で測定したものである。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are shown on a weight basis unless otherwise specified. In addition, the water swelling degree of the acrylonitrile-based hydrophilic resin described in the examples, the moisture content of the undried fibers after stretching, the water absorption rate, the water absorption rate, and the water retention rate of the raw fiber are measured by the following methods.
(1)水膨潤度
アクリロニトリル系親水性樹脂約0.5gを純水中に浸漬し、25℃で24時間経過後、水膨潤状態のアクリロニトリル系親水性樹脂を濾紙の間にはさみ樹脂間の水を除去する。このようにして調製した試料の重量(W1とする)を測定する。次に該試料を80℃の真空乾燥機中で恒量になるまで乾燥して重量(W0とする)を測定する。以上の結果より、次式に従って水膨潤度を計算する。
水膨潤度(g/g)=(W1−W0)/W0
(1) Degree of water swelling About 0.5 g of acrylonitrile-based hydrophilic resin is immersed in pure water, and after 24 hours at 25 ° C., the water-swelled acrylonitrile-based hydrophilic resin is sandwiched between filter papers and water between the resins. Remove. The weight (W1) of the sample thus prepared is measured. Next, the sample is dried to a constant weight in a vacuum dryer at 80 ° C., and the weight (W0) is measured. From the above results, the degree of water swelling is calculated according to the following formula.
Water swelling degree (g / g) = (W1-W0) / W0
(2)延伸後の未乾燥繊維の水分率
延伸後の未乾燥繊維をイオン交換水中に浸漬した後、遠心脱水機(国産遠心機(株)社製TYPE H−770A)で遠心加速度1100G(Gは重力加速度を示す)下2.5分間脱水する。脱水後重量を測定(W3とする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(W2とする)し、次式により計算する。
延伸後の未乾燥繊維の水分率(%)=(W3−W2)/W2×100
(2) Moisture ratio of undried fiber after stretching After immersing the undried fiber after stretching in ion-exchanged water, centrifugal acceleration 1100G (G by a centrifugal dehydrator (TYPE H-770A manufactured by Kokusan Centrifuge Co., Ltd.)) Dehydrated for 2.5 minutes. After dehydration, the weight is measured (W3), the undried fiber is dried at 120 ° C. for 15 minutes, the weight is measured (W2), and the following formula is calculated.
Moisture content of undried fiber after stretching (%) = (W3−W2) / W2 × 100
(3)吸水速度
105℃で乾燥させた原料繊維約5gを解繊した後、ガーゼに包み、30℃に調整したイオン交換水に30秒間浸漬する。浸漬後、ガーゼに包んだ状態のまま、直ちに遠心脱水機(同上)で遠心加速度1100G下2分間脱水する。脱水後ガーゼから繊維を取り出し、重量を測定(W5とする)後、80℃にて乾燥して重量を測定(W4とする)して次式により計算する。
吸水速度(g/g)=(W5−W4)/W4
(3) About 5 g of raw fiber dried at a water absorption rate of 105 ° C. is defibrated, wrapped in gauze, and immersed in ion-exchanged water adjusted to 30 ° C. for 30 seconds. Immediately after the immersion, the sample is immediately dehydrated for 2 minutes under a centrifugal acceleration of 1100 G with a centrifugal dehydrator (same as above) while being wrapped in gauze. After dehydration, the fiber is taken out from the gauze and weighed (W5), dried at 80 ° C., weighed (W4), and calculated by the following formula.
Water absorption rate (g / g) = (W5-W4) / W4
(4)吸水率
105℃で乾燥させた原料繊維約10gをガーゼに包み、25℃のイオン交換水に24時間浸漬した後、遠心脱水機(同上)を用い、遠心加速度1100G下2分間脱水し、繊維間の水を除去する。脱水後の繊維重量を測定(W7とする)後、80℃真空乾燥機中で恒量になるまで乾燥して重量を測定(W6とする)し、次式により計算する。
吸水率(%)=(W7−W6)/W6×100
(4) About 10 g of raw fiber dried at a water absorption rate of 105 ° C. is wrapped in gauze and immersed in ion exchange water at 25 ° C. for 24 hours, and then dehydrated for 2 minutes under a centrifugal acceleration of 1100 G using a centrifugal dehydrator (same as above). Remove the water between the fibers. The fiber weight after dehydration is measured (W7), dried in a vacuum dryer at 80 ° C. until a constant weight is measured, and the weight is measured (W6).
Water absorption (%) = (W7−W6) / W6 × 100
(5)保水率
原料繊維をイオン交換水中に浸漬した後、遠心脱水機(同上)で遠心加速度1100G下2.5分間脱水する。脱水後重量を測定(W9とする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(W8とする)し、次式により計算する。
保水率(%)=(W9−W8)/W8×100
(5) Water retention rate After the raw material fibers are immersed in ion-exchanged water, they are dehydrated for 2.5 minutes under a centrifugal acceleration of 1100 G with a centrifugal dehydrator (same as above). After dehydration, the weight is measured (W9), the undried fiber is dried at 120 ° C. for 15 minutes, the weight is measured (W8), and the following formula is calculated.
Water retention rate (%) = (W9−W8) / W8 × 100
<アクリロニトリル系重合体およびアクリロニトリル系親水性樹脂の製造>
表1に示す組成で水系懸濁重合を行い、アクリロニトリル系重合体(a1〜a4)およびアクリロニトリル系親水性樹脂(b1〜b4)を作成した。また、アクリロニトリル系親水性樹脂b2については、まずポリエチレングリコールモノメチルエーテル(数平均分子量750)と2−メタクリロイルオキシエチルイソシアネートを窒素雰囲気下、トルエン中において60℃で反応させてマクロモノマーを合成した後、得られたマクロモノマーとアクリロニトリルを水系懸濁重合させることによって作成した。なお、表中の略号はそれぞれ、AN:アクリロニトリル、MA:アクリル酸メチル、SMAS:メタアリルスルホン酸ナトリウム、VAc:酢酸ビニル、M30:メトキシポリエチレングリコール(30モル)メタアクリレート、MOI:2−メタクリロイルオキシエチルイソシアネート、PEGME:ポリエチレングリコールモノメチルエーテルを示している。また、アクリロニトリル系親水性樹脂については上記測定方法より求めた水膨潤度を併記した。
<Production of acrylonitrile-based polymer and acrylonitrile-based hydrophilic resin>
Aqueous suspension polymerization was performed with the composition shown in Table 1 to prepare acrylonitrile polymers (a1 to a4) and acrylonitrile hydrophilic resins (b1 to b4). As for the acrylonitrile-based hydrophilic resin b2, first, a polyethylene monomer monomethyl ether (number average molecular weight 750) and 2-methacryloyloxyethyl isocyanate are reacted in toluene at 60 ° C. in a nitrogen atmosphere to synthesize a macromonomer. The resulting macromonomer and acrylonitrile were prepared by aqueous suspension polymerization. The abbreviations in the table are: AN: acrylonitrile, MA: methyl acrylate, SMAS: sodium methallylsulfonate, VAc: vinyl acetate, M30: methoxypolyethylene glycol (30 mol) methacrylate, MOI: 2-methacryloyloxy Ethyl isocyanate, PEGME: Polyethylene glycol monomethyl ether. Moreover, about the acrylonitrile-type hydrophilic resin, the water swelling degree calculated | required from the said measuring method was written together.
<実施例1〜3、比較例1>
50%チオシアン酸ナトリウム水溶液900部に対して、表2に示す割合でアクリロニトリル系重合体を溶解させた後、水に分散させたアクリロニトリル系親水性樹脂を添加混合する方法で紡糸原液を作成した。得られた紡糸原液を紡出し、5℃の12%チオシアン酸ナトリウム水溶液中で凝固を行い、次いで水洗、12倍延伸を施し、得られた未乾燥繊維を116℃×10分間の条件でスチームを用いて湿熱処理を行い、乾燥工程を行わず、原料繊維を作成した。次いで、得られた原料繊維を5mmにカットした後、絶乾繊維重量として50gになるように量り採り、これに水を加えて5リットルとし水温を20℃に調整した後、熊谷理機工業(株)製ナイヤガラ式ビーター(タイプBE−10)を用い2kg荷重で30分間叩解した。得られた繊維のフィブリル化状態を光学顕微鏡で観察し、以下に示す基準で分割性を3段階評価した。
○:フィブリル化している
△:繊維表面が毛羽立つ程度
×:ほとんどフィブリル化していない
<Examples 1-3, Comparative Example 1>
A spinning stock solution was prepared by dissolving acrylonitrile polymer in 900% of 50% sodium thiocyanate aqueous solution at a ratio shown in Table 2 and then adding and mixing acrylonitrile hydrophilic resin dispersed in water. The obtained spinning solution is spun and coagulated in a 12% sodium thiocyanate aqueous solution at 5 ° C., then washed with water and stretched 12 times. The resulting undried fiber is steamed at 116 ° C. for 10 minutes. Using the wet heat treatment, a raw material fiber was prepared without performing a drying step. Next, the obtained raw fiber was cut to 5 mm, and weighed so that the weight of the dry fiber would be 50 g. After adding water to adjust to 5 liters and adjusting the water temperature to 20 ° C., Kumagai Riki Kogyo ( Using a Niagara type beater (type BE-10) manufactured by Co., Ltd., it was beaten for 30 minutes under a 2 kg load. The fibrillation state of the obtained fiber was observed with an optical microscope, and the splitting property was evaluated in three stages according to the following criteria.
○: Fibrilized Δ: Fiber surface is fuzzy ×: Almost no fibrillation
フィブリル化状態の評価結果、延伸後の未乾燥繊維の水分率の測定結果、並びに原料繊維の吸水速度、吸水率および保水率の測定結果を表2に示す。 Table 2 shows the evaluation results of the fibrillation state, the measurement results of the moisture content of the undried fibers after stretching, and the measurement results of the water absorption rate, the water absorption rate and the water retention rate of the raw fiber.
実施例1〜3については、いずれも容易にフィブリル化アクリル繊維を得ることができた。これらに対して、比較例1では、吸水速度および吸水率が低く、分割性も繊維表面が毛羽立つ程度であった。これは、アクリロニトリル系重合体中のアクリロニトリル結合含有量が少ないことで、アクリロニトリル系親水性樹脂のアクリロニトリル結合含有量との差が小さくなったため、相分離が起こりにくくなり、ミクロボイドが十分に形成されなかったためと考えられる。 In Examples 1 to 3, fibrillated acrylic fibers could be easily obtained. On the other hand, in Comparative Example 1, the water absorption rate and the water absorption rate were low, and the splitting property was such that the fiber surface was fluffy. This is because the acrylonitrile bond content in the acrylonitrile-based polymer is small and the difference from the acrylonitrile bond content of the acrylonitrile-based hydrophilic resin is small, so phase separation hardly occurs and microvoids are not sufficiently formed. It is thought that it was because of.
<実施例4、5、比較例2、3>
実施例1のアクリロニトリル系重合体とアクリロニトリル系親水性樹脂の割合を表3のように変える以外は実施例1と同様にして紡糸原液の作成、原料繊維の作成、叩解および評価を行った。表3に結果を示す。
<Examples 4 and 5, Comparative Examples 2 and 3>
Except for changing the ratio of the acrylonitrile-based polymer and the acrylonitrile-based hydrophilic resin of Example 1 as shown in Table 3, a spinning dope, a raw fiber, beating and evaluation were performed in the same manner as in Example 1. Table 3 shows the results.
実施例4、5についてはいずれもフィブリル化アクリル繊維を得ることができた。比較例2ではアクリロニトリル系親水性樹脂が多すぎるため、紡糸時にノズル詰まりや糸切れが発生し、繊維を得ることができなかった。また、比較例3は、アクリロニトリル系親水性樹脂を全く使用していないためにミクロボイドの形成が少なく、分割性に乏しいものになったと考えられる。 In each of Examples 4 and 5, fibrillated acrylic fibers could be obtained. In Comparative Example 2, since there was too much acrylonitrile-based hydrophilic resin, nozzle clogging and thread breakage occurred during spinning, and fibers could not be obtained. Further, in Comparative Example 3, since no acrylonitrile-based hydrophilic resin is used, the formation of microvoids is small, and it is considered that the partitionability is poor.
<実施例6〜8、比較例4>
実施例1のアクリロニトリル系重合体とアクリロニトリル系親水性樹脂の割合を表4のように変える以外は実施例1と同様にして紡糸原液の作成、原料繊維の作成、叩解および評価を行った。表4に結果を示す。
<Examples 6 to 8, Comparative Example 4>
Except for changing the ratio of the acrylonitrile-based polymer and the acrylonitrile-based hydrophilic resin of Example 1 as shown in Table 4, preparation of a spinning dope, preparation of raw fibers, beating and evaluation were performed in the same manner as in Example 1. Table 4 shows the results.
実施例6、7については、いずれも容易にフィブリル化アクリル繊維を得ることができ、実施例8についてもフィブリル化アクリル繊維が得られた。これらに対して、比較例4は、吸水速度が低く、繊維の分割性の不十分なものであった。これは、アクリロニトリル系親水性樹脂中のアクリロニトリル結合含有量が多いことで、該樹脂中の親水性成分が少なくなり、アクリロニトリル系重合体に対するアクリロニトリル結合含有量の差も小さくなるため、ミクロボイドの形成や連結が起こりにくくなったと考えられる。 In each of Examples 6 and 7, fibrillated acrylic fibers could be easily obtained, and in Example 8, fibrillated acrylic fibers were also obtained. On the other hand, Comparative Example 4 had a low water absorption rate and an insufficient fiber splitting property. This is because the acrylonitrile bond content in the acrylonitrile-based hydrophilic resin is large, the hydrophilic component in the resin is reduced, and the difference in the acrylonitrile bond content with respect to the acrylonitrile-based polymer is also reduced. It seems that the connection is less likely to occur.
<実施例9、比較例5>
実施例3と同じ紡糸原液を使用して、実施例3の紡糸条件に対し、表5に示すような条件の変更を加えて、原料繊維の作成、叩解および評価を行った。表5に結果を示す。
<Example 9, Comparative example 5>
Using the same spinning dope as in Example 3, the conditions shown in Table 5 were changed with respect to the spinning conditions in Example 3 to prepare, beat and evaluate the raw fibers. Table 5 shows the results.
実施例9については、実施例3に比べ操業性は若干劣るものの、より容易にフィブリル化アクリル繊維を得ることができた。比較例5では、凝固浴温度を低くしたことで、繊維の緻密化が進み、ミクロボイドとなるべき空間が減少した結果、吸水速度および吸水率が低く、分割性が低下したものと考えられる。 About Example 9, although the operativity was a little inferior compared with Example 3, the fibrillated acrylic fiber was able to be obtained more easily. In Comparative Example 5, it is considered that by reducing the coagulation bath temperature, the densification of the fibers progressed and the space to be microvoids decreased, resulting in a low water absorption rate and a low water absorption rate, resulting in a decrease in partitionability.
<実施例10〜12、比較例6〜8>
実施例1と同じ紡糸原液を使用して、実施例1の紡糸条件に対し、表6に示すような条件の変更を加えて、原料繊維の作成、叩解および評価を行った。表6に結果を示す。
<Examples 10-12, Comparative Examples 6-8>
Using the same spinning dope as in Example 1, the conditions shown in Table 6 were changed with respect to the spinning conditions in Example 1, and the raw fiber was prepared, beaten and evaluated. Table 6 shows the results.
実施例10、11は、いずれもフィブリル化アクリル繊維が得られた。比較例7は、吸水速度および吸水性が低く、熱安定性の低いものであると考えられる。また比較例6、8、9は、いずれも分割性に劣るものであった。これは、変更した条件により繊維中のミクロボイドが閉塞もしくは減少してしまったことが原因と考えられる。なお、比較例9については、湿熱処理温度よりも高温で乾燥したため、ミクロボイドが閉塞したものと考えられる。 In Examples 10 and 11, fibrillated acrylic fibers were obtained. Comparative Example 7 is considered to have a low water absorption rate and water absorption and low thermal stability. Moreover, all of Comparative Examples 6, 8, and 9 were inferior in separability. This is thought to be because microvoids in the fiber were blocked or reduced due to the changed conditions. In Comparative Example 9, it was considered that the microvoids were clogged because they were dried at a temperature higher than the wet heat treatment temperature.
<実施例12>
実施例1で得られたフィブリル化アクリル繊維の水分散液から熊谷理機工業(株)製角型シートマシンを用いて、シートを作成した。該シートを濾紙の間に挟み、熊谷理機工業(株)製ロータリードライヤーを用いて、130℃で乾燥させ、本発明のフィブリル化アクリル繊維からなる紙を作成した。得られた紙は、寸法安定性に優れたものであった。
<Example 12>
A sheet was prepared from the aqueous dispersion of fibrillated acrylic fiber obtained in Example 1 using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd. The sheet was sandwiched between filter papers, and dried at 130 ° C. using a rotary dryer manufactured by Kumagai Riki Kogyo Co., Ltd. to produce a paper made of fibrillated acrylic fibers of the present invention. The obtained paper was excellent in dimensional stability.
<比較例10>
比較例7で得られた原料繊維を用いる以外は実施例12と同様の方法で紙を作成した。得られた紙は収縮が激しく、寸法安定性に劣るものであった。これは、比較例7で得られた原料繊維が熱安定性の低いものであるため、該繊維を叩解して得られたフィブリル化アクリル繊維の熱安定性も低く、加熱により収縮してしまったことが原因と考えられる。
<Comparative Example 10>
A paper was prepared in the same manner as in Example 12 except that the raw material fiber obtained in Comparative Example 7 was used. The resulting paper was severely shrinkable and inferior in dimensional stability. This is because the raw fiber obtained in Comparative Example 7 is low in thermal stability, and the thermal stability of the fibrillated acrylic fiber obtained by beating the fiber is low, and it contracted by heating. This is thought to be the cause.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396451A JP4210924B2 (en) | 2003-11-27 | 2003-11-27 | Fibrilized acrylic fiber, method for producing the same, and structure containing the fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396451A JP4210924B2 (en) | 2003-11-27 | 2003-11-27 | Fibrilized acrylic fiber, method for producing the same, and structure containing the fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005154958A true JP2005154958A (en) | 2005-06-16 |
JP4210924B2 JP4210924B2 (en) | 2009-01-21 |
Family
ID=34721893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003396451A Expired - Fee Related JP4210924B2 (en) | 2003-11-27 | 2003-11-27 | Fibrilized acrylic fiber, method for producing the same, and structure containing the fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4210924B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008223183A (en) * | 2007-03-14 | 2008-09-25 | Japan Exlan Co Ltd | Acrylic fiber for reinforcement with excellent water dispersibility |
JP2019143284A (en) * | 2018-02-15 | 2019-08-29 | 日本エクスラン工業株式会社 | Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber |
JP2019148050A (en) * | 2018-02-26 | 2019-09-05 | 日本エクスラン工業株式会社 | Easily decrimping hygroscopic acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber |
CN113668087A (en) * | 2020-05-15 | 2021-11-19 | 日本爱克兰工业株式会社 | Easily beatable acrylic fiber, pulp-like acrylic fiber, structure containing the fiber, and production method of the fiber |
-
2003
- 2003-11-27 JP JP2003396451A patent/JP4210924B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008223183A (en) * | 2007-03-14 | 2008-09-25 | Japan Exlan Co Ltd | Acrylic fiber for reinforcement with excellent water dispersibility |
JP2019143284A (en) * | 2018-02-15 | 2019-08-29 | 日本エクスラン工業株式会社 | Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber |
JP7177986B2 (en) | 2018-02-15 | 2022-11-25 | 日本エクスラン工業株式会社 | Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber |
JP2019148050A (en) * | 2018-02-26 | 2019-09-05 | 日本エクスラン工業株式会社 | Easily decrimping hygroscopic acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber |
JP7177987B2 (en) | 2018-02-26 | 2022-11-25 | 日本エクスラン工業株式会社 | Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber |
CN113668087A (en) * | 2020-05-15 | 2021-11-19 | 日本爱克兰工业株式会社 | Easily beatable acrylic fiber, pulp-like acrylic fiber, structure containing the fiber, and production method of the fiber |
JP2021181669A (en) * | 2020-05-15 | 2021-11-25 | 日本エクスラン工業株式会社 | Easy-to-beat acrylonitrile-based fiber, pulp-like acrylonitrile-based fiber, structure containing the fiber, and method for producing the fiber. |
JP7672624B2 (en) | 2020-05-15 | 2025-05-08 | 日本エクスラン工業株式会社 | Easily beaten acrylonitrile fiber, pulp-like acrylonitrile fiber, structure containing said fiber, and method for producing said fiber |
Also Published As
Publication number | Publication date |
---|---|
JP4210924B2 (en) | 2009-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5698839B2 (en) | Dopes and fibers containing lignin / polyacrylonitrile and methods for their production | |
CN111868322B (en) | Beating acrylic fiber containing carboxyl group, process for producing the fiber, and structure containing the fiber | |
JP5948544B2 (en) | Production method of composite sheet material | |
US5861213A (en) | Fibrillatable fiber of a sea-islands structure | |
JP2010202987A (en) | Composite sheet material and method for producing the same | |
WO2001098566A1 (en) | Carbon fiber precursor fiber bundle | |
JP4210924B2 (en) | Fibrilized acrylic fiber, method for producing the same, and structure containing the fiber | |
WO1997044511A1 (en) | Easily fibrillable fiber | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
JP2003342831A (en) | Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber | |
JP4480858B2 (en) | Lightweight composite acrylic fiber and method for producing the same | |
JP7672624B2 (en) | Easily beaten acrylonitrile fiber, pulp-like acrylonitrile fiber, structure containing said fiber, and method for producing said fiber | |
JP3892132B2 (en) | Acrylic fiber and method for producing the same | |
JP2016166435A (en) | Carbon fiber precursor acrylic fiber and carbon fiber | |
JP3556510B2 (en) | Acrylic binder fiber | |
JPH09302525A (en) | Easy fibrillated fiber and method for producing the same | |
CN116043349B (en) | Preparation method of polyacrylonitrile fiber and pulp for sealing and friction materials | |
JP3897430B2 (en) | Acrylic binder fiber | |
JP4943368B2 (en) | Process for producing easily splittable acrylic composite fiber | |
JPH09170115A (en) | Easy fibrillated fiber and method for producing the same | |
JP2000080521A (en) | Split acrylic fiber, split acrylic fiber and sheet | |
JPH11256423A (en) | Splittable acrylic fiber, acrylic fiber sheet and nonwoven fabric sheet using the same | |
JP2004308038A (en) | Low density wet nonwoven | |
DE2434927C3 (en) | Flillable synthetic fiber, process for their production and their use | |
JPH1136135A (en) | Carbon fiber precursor acrylonitrile fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4210924 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |