JP6644113B2 - 感光性樹脂組成物及び硬化レリーフパターンの製造方法 - Google Patents
感光性樹脂組成物及び硬化レリーフパターンの製造方法 Download PDFInfo
- Publication number
- JP6644113B2 JP6644113B2 JP2018128502A JP2018128502A JP6644113B2 JP 6644113 B2 JP6644113 B2 JP 6644113B2 JP 2018128502 A JP2018128502 A JP 2018128502A JP 2018128502 A JP2018128502 A JP 2018128502A JP 6644113 B2 JP6644113 B2 JP 6644113B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- photosensitive resin
- resin composition
- polymer
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CCCC1=CCC*C1 Chemical compound CCCC1=CCC*C1 0.000 description 2
- OSWKCSAEXSZJRL-QVQONSNRSA-N CC(C=C1)=CC=CC=C1OC/C=C\C(\NC(C(CC(O)=O)=C)=O)=C/C=C Chemical compound CC(C=C1)=CC=CC=C1OC/C=C\C(\NC(C(CC(O)=O)=C)=O)=C/C=C OSWKCSAEXSZJRL-QVQONSNRSA-N 0.000 description 1
- DFATXMYLKPCSCX-UHFFFAOYSA-N CC(CC(O1)=O)C1=O Chemical compound CC(CC(O1)=O)C1=O DFATXMYLKPCSCX-UHFFFAOYSA-N 0.000 description 1
- CFILURUBWZBYPN-UHFFFAOYSA-N CS1=CCC=CC1 Chemical compound CS1=CCC=CC1 CFILURUBWZBYPN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/037—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
- C08G73/128—Unsaturated polyimide precursors the unsaturated precursors containing heterocyclic moieties in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0382—Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0387—Polyamides or polyimides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0388—Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2012—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Polymerisation Methods In General (AREA)
Description
本発明は、例えば電子部品の絶縁材料、及び半導体装置におけるパッシベーション膜、バッファーコート膜、層間絶縁膜等のレリーフパターンの形成に用いられるネガ型感光性樹脂組成物、それを用いた硬化レリーフパターンの製造方法に関するものである。
本発明は、例えば電子部品の絶縁材料、及び半導体装置におけるパッシベーション膜、バッファーコート膜、層間絶縁膜等のレリーフパターンの形成に用いられる感光性樹脂組成物、それを用いたポリイミドの製造方法、及び半導体装置に関するものである。
従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂、ポリベンゾオキサゾール樹脂、フェノール樹脂等が用いられている。これらの樹脂の中でも、感光性樹脂組成物の形態で提供されるものは、該組成物の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン皮膜を容易に形成することができる。このような感光性樹脂組成物は、従来の非感光型材料に比べて、大幅な工程短縮を可能にするという特徴を有している。
従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂の中でも、感光性ポリイミド前駆体組成物の形で提供されるものは、該組成物の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン皮膜を容易に形成することができる(例えば特許文献2参照)。このような感光性ポリイミド前駆体組成物は、従来の非感光型ポリイミド材料に比べて、大幅な工程短縮を可能にするという特徴を有している。
通常、ポリイミド前駆体をキュアして脱水閉環させることにより、ポリイミド樹脂膜を得る場合、300℃以上の高温を必要とする。しかし、当該条件下でキュアすると、デバイスによってはチップの収率が低下するという問題がある。そこで、最近では200℃以下の低温でキュアさせるプロセスが望まれている。
しかしながら、ポリイミド前駆体を200℃以下の低温でキュアした場合、イミド環化反応(イミド化)が不十分であり、樹脂膜中にポリイミド前駆体が残存する。このため、ポリイミド樹脂膜の耐薬品性が十分ではないという問題点があった。
本発明は、このような従来の実情に鑑みて考案されたものであり、200℃以下の低温キュア条件下においても、イミド化率が良好で、耐薬品性が高い樹脂層が得られるネガ型感光性樹脂組成物、該感光性樹脂組成物を用いた硬化レリーフパターンの製造方法を提供することを目的とする。
電子機器の高性能化に伴い、昨今、感光性ポリイミドに対しても解像度と信頼性の両立が求められるようになって来た。そのため、従来、信頼性重視のため、比較的解像度に関しての要求が緩かったネガ型感光性ポリイミドに関しても、高解像度並びに厳しい膜厚の面内均一性が求められるようになってきた。
本発明者らは、特定の重量平均分子量(Mw)を有する感光性樹脂を用いることにより、200℃以下の低温キュア条件下においても、ポリイミドのイミド環化反応(イミド化)が良好に進行し、耐薬品性が高い樹脂層が得られることを見出し、本発明を完成するに至ったものである。すなわち、本発明は以下の通りである。
[1]
(A)ポリイミド前駆体:100質量部;及び
(B)光重合開始剤:0.1質量部〜20質量部;
を含むネガ型感光性樹脂組成物であって、
前記(A)ポリイミド前駆体が、下記一般式(1):
前記一般式(1)において、X1が、一般式(6)を含み、Y1が、一般式(8)を含み、
[2]
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、9,000未満である、[1]に記載のネガ型感光性樹脂組成物。
[3]
前記光重合開始剤は、
下記一般式(10):
で表わされるオキシムエステル化合物を含む、請求項1又は2に記載のネガ型感光性樹脂組成物。
[4]
前記ネガ型感光性樹脂組成物は層間絶縁膜形成用のネガ型感光性樹脂組成物である、[1]〜[3]のいずれかに記載のネガ型感光性樹脂組成物。
[5]
(1)[1]〜[4]のいずれかに記載の感光性樹脂組成物を基板上に塗布することによって感光性樹脂層を前記基板上に形成する工程と、
(2)前記感光性樹脂層を露光する工程と、
(3)前記露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
(4)前記レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法。
[6]
前記基板が、銅又は銅合金から構成されている、[5]に記載の硬化レリーフパターンの製造方法。
[7]
層間絶縁膜を含む半導体装置の製造方法であって、
前記層間絶縁膜は、
[1]〜[4]のいずれかに記載の感光性樹脂組成物を露光する工程と、
前記露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
前記レリーフパターンを加熱処理することによって硬化レリーフパターンとして前記層間絶縁膜を形成する工程と、
を含む工程により製造される、半導体装置の製造方法。
[8]
前記層間絶縁膜は、銅又は銅合金と密着する、[7]に記載の半導体装置の製造方法。
[9]
[1]〜[4]のいずれかに記載の感光性樹脂組成物を硬化して得られる、ポリイミドの製造方法。
本発明者らは、末端に反応性の置換基を有するポリイミド前駆体を含む、特定の粘度のネガ型感光性樹脂組成物を用いることにより、上記の目的が達成されることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
〔1〕
主鎖の末端に、熱又は光によって反応する反応性の置換基を有する感光性ポリイミド前駆体を含み、粘度が80ポイズ以下であることを特徴とする、ネガ型感光性樹脂組成物。
〔2〕
前記反応性の置換基が、以下の群:
アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基、イミノ基、イソシアナト基、シアナト基、シクロアルキル基、エポキシ基、オキセタニル基、カーボネート基、ヒドロキシル基、メルカプト基、メチロール基、およびアルコキシアルキル基からなる群から選ばれる少なくとも一つを含む、〔1〕に記載の感光性樹脂組成物。
〔3〕
前記反応性の置換基が、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基からなる群から選ばれる少なくとも一つを含む、〔2〕に記載の感光性樹脂組成物。
〔4〕
前記反応性の置換基が、メタクリル基を含む、〔3〕に記載の感光性樹脂組成物。
〔5〕
前記感光性ポリイミド前駆体が下記一般式(A1):
前記感光性ポリイミド前駆体の主鎖の少なくとも一方の末端が下記一般式(E1)又は(F1)の構造を有する、〔1〕〜〔4〕のいずれかに記載の感光性樹脂組成物。
〔6〕
前記b1及びg1は末端に二重結合を有する反応性の置換基である〔5〕に記載のネガ型感光性樹脂組成物。
〔7〕
前記感光性ポリイミド前駆体の主鎖の少なくとも一方の末端が、前記一般式(F1)の構造を含む、〔5〕又は〔6〕に記載のネガ型感光性樹脂組成物。
〔8〕
前記f1がアミド基、イミド基、ウレア基、ウレタン基の少なくとも1つの基を含む、〔7〕に記載のネガ型感光性樹脂組成物。
〔9〕
前記b1が、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基、イミノ基、イソシアナト基、シアナト基、シクロアルキル基、エポキシ基、オキセタニル基、カーボネート基、ヒドロキシル基、メルカプト基、メチロール基、およびアルコキシアルキル基からなる群から選ばれる少なくとも一つを含む、〔5〕に記載の感光性樹脂組成物。
〔10〕
前記b1が、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基からなる群から選ばれる少なくとも一つを含む、〔9〕に記載の感光性樹脂組成物。
〔11〕
前記b1熱又は光で架橋する反応性の置換基が、メタクリル基を含む、〔10〕に記載の感光性樹脂組成物。
〔12〕
前記g1熱又は光で架橋する反応性の置換基が、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基、イミノ基、イソシアナト基、シアナト基、シクロアルキル基、エポキシ基、オキセタニル基、カーボネート基、ヒドロキシル基、メルカプト基、メチロール基、およびアルコキシアルキル基からなる群から選ばれる少なくとも一つを含む〔5〕に記載の感光性樹脂組成物。
〔13〕
前記g1熱又は光で架橋する反応性の置換基が、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基からなる群から選ばれる少なくとも一つを含む、〔12〕に記載の感光性樹脂組成物。
〔14〕
前記g1熱又は光で架橋する反応性の置換基が、メタクリル基を含む、〔13〕に記載の感光性樹脂組成物。
〔15〕
前記一般式(A1)中のXが、下記(B1)〜(B3):
Yが、下記(C1)〜(C3):
から選ばれる少なくとも1種以上の2価の有機基である、〔5〕に記載の感光性樹脂組成物。
〔16〕
前記一般式(A1)において、Xが、前記一般式(B3)を含み、Yが、前記一般式(C2)を含む、〔15〕に記載のネガ型感光性樹脂組成物。
〔17〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、13,000以下である、〔16〕に記載のネガ型感光性樹脂組成物。
〔18〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、10,000未満である、〔17〕に記載のネガ型感光性樹脂組成物。
〔19〕
前記一般式(A1)において、Xが、前記一般式(B3)を含み、Yが、前記一般式(C1)を含む、〔15〕に記載のネガ型感光性樹脂組成物。
〔20〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、13,000以下である、〔19〕に記載のネガ型感光性樹脂組成物。
〔21〕
前記一般式(A1)において、Xが、前記一般式(B2)を含み、Yが、前記一般式(C2)を含む、〔15〕に記載のネガ型感光性樹脂組成物。
〔22〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、13,000以下である、〔21〕に記載のネガ型感光性樹脂組成物。
〔23〕
前記一般式(A1)において、Xが、前記一般式(B2)を含み、Yが、前記一般式(C1)及び(C3)からなる群から選択される少なくとも1つを含む、〔15〕に記載のネガ型感光性樹脂組成物。
〔24〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、13,000以下である、〔23〕に記載のネガ型感光性樹脂組成物。
〔25〕
前記一般式(A1)において、Xが、前記一般式(B1)を含み、Yが、前記一般式(C1)、を含む、〔15〕に記載のネガ型感光性樹脂組成物。
〔26〕
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、13,000以下である、〔25〕に記載のネガ型感光性樹脂組成物。
〔27〕
粘度が40ポイズ以下である、〔1〕〜〔26〕のいずれかに記載の感光性樹脂組成物。
〔28〕
粘度が20ポイズ以下である、〔27〕に記載の感光性樹脂組成物。
〔29〕
主鎖の末端に、熱又は光によって反応する反応性の置換基を有する感光性ポリイミド前駆体を含むネガ型感光性樹脂組成物であって、
前記感光性ポリイミド前駆体が下記一般式(A1):
前記感光性ポリイミド前駆体の主鎖の少なくとも一方の末端が下記一般式(E1)又は(F1)で表される構造を有するネガ型感光性樹脂組成物。
〔30〕
前記b1及びg1は末端に二重結合を有する反応性の置換基である〔29〕に記載のネガ型感光性樹脂組成物。
〔31〕
前記感光性ポリイミド前駆体の主鎖の少なくとも一方の末端が、前記一般式(F1)の構造を含む、〔29〕又は〔30〕に記載のネガ型感光性樹脂組成物。
〔32〕
前記f1がアミド基、イミド基、ウレア基、ウレタン基の少なくとも1つの基を含む、〔31〕に記載のネガ型感光性樹脂組成物。
〔33〕
以下の工程:
(1)〔1〕〜〔32〕のいずれかに記載の感光性樹脂組成物を基板上に塗布し、該基板上に感光性樹脂層を形成する塗布工程、
(2)該感光性樹脂層を露光する露光工程、
(3)該露光後の感光性樹脂層を現像してレリーフパターンを形成する現像工程、および、
(4)該レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する加熱工程、
を含むことを特徴とする、硬化レリーフパターンの製造方法。
〔34〕
〔1〕〜〔32〕のいずれかに記載の感光性樹脂組成物の製造方法であって、
前記感光性ポリイミド前駆体は、以下の工程:
ジアミンモノマーと酸二無水物モノマーとを、一方が過剰の状態で重縮合反応させることにより、ポリイミドを得る工程、および
前記ポリイミドの末端に残存するアミンまたは酸無水物と、熱又は光によって反応する反応性置換基を有する化合物とを反応させることにより、前記ポリイミドの主鎖の末端に、該反応性置換基を導入する工程、
を含んで合成されることを特徴とする、感光性樹脂組成物の製造方法。
本発明によれば、特定の重量平均分子量(Mw)を有する感光性樹脂を用いることにより、200℃以下の低温キュア条件下においても、ポリイミドのイミド環化反応(イミド化)が良好に進行する。これにより本発明では、樹脂膜中にポリイミド前駆体が残存することが少なく、耐薬品性が高い樹脂層が得られる感光性樹脂組成物、該感光性樹脂組成物を用いた硬化レリーフパターンの製造方法を提供することができる。
本発明によれば、基板上に塗布して膜とした場合、膜厚の面内均一性に優れたネガ型感光性樹脂組成物を提供することができる。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、本実施形態は本発明を説明するための例示であり、本発明を限定することを意図するものではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
<ネガ型感光性樹脂組成物>
本発明は、(A)ポリイミド前駆体を100質量部、及び(B)光重合開始剤を0.1質量部〜20質量部を含み、前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、16,000未満であることを特徴とするネガ型感光性樹脂組成物である。
本発明に用いられる(A)ポリイミド前駆体について説明する。本発明の(A)ポリイミド前駆体は、ポリアミド酸エステル又はポリアミド酸塩から成る群より選ばれる少なくとも一種の樹脂を主成分とする。ここで、主成分とは、これらの樹脂を全樹脂の50質量%以上含有することを意味し、60質量%以上含有することが好ましい。また、必要に応じて他の樹脂を含んでいてもよい。
この中で、X1が一般式(5)を含み、且つ、Y1が一般式(7)または(8)または(9)を含む構造が耐薬品性と銅ボイドの抑制効果の観点から好ましい。
この中で、X1が一般式(4)を含み、且つ、Y1が一般式(7)を含む構造が耐薬品性と銅ボイドの抑制効果の観点から好ましい。
この中で、X1が一般式(6)を含む構造が耐薬品性と銅ボイドの抑制効果に優れるため好ましい。特に耐薬品性と銅ボイドの抑制効果の観点から、X1が一般式(6)を含む構造で、且つ、Y1が一般式(8)または(7)を含む構造がより好ましく、X1が一般式(6)を含む構造で、且つ、Y1が一般式(8)を含む構造が最も好ましい。
これらの組み合わせは耐薬品性と銅ボイドの抑制効果に優れるため特に好ましいが、これらに限定されるものではない。
また、m2は、感光特性の観点から、2以上、10以下の整数、好ましくは2以上、4以下の整数である。
本発明で、エステル結合型のポリイミド前駆体を調製するために好適に用いられる、4価の有機基X1を含むテトラカルボン酸二無水物としては、上記一般式(30)に示されるテトラカルボン酸二無水物をはじめ、例えば、無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルメタン−3,3’,4,4’−テトラカルボン酸二無水物、2,2−ビス(3,4−無水フタル酸)プロパン、2,2−ビス(3,4−無水フタル酸)−1,1,1,3,3,3−ヘキサフルオロプロパン等を、好ましくは無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物を挙げることができるが、これらに限定されるものではない。また、これらは単独で用いることができるのは勿論のこと2種以上を混合して用いてもよい。
上記アシッド/エステル体(典型的には後述する溶剤中の溶液)に、氷冷下、適当な脱水縮合剤、例えば、ジシクロヘキシルカルボジイミド、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン、1,1−カルボニルジオキシ−ジ−1,2,3−ベンゾトリアゾール、N,N’−ジスクシンイミジルカーボネート等を投入混合することにより、アシッド/エステル体をポリ酸無水物とする。その後、得られたアシッド/エステル体のポリ酸無水物に、本発明で好適に用いられる2価の有機基Y1を含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、アミド重縮合させることにより、目的のポリイミド前駆体を得ることができる。もしくは、上記アシッド/エステル体を、塩化チオニル等を用いてアシッド部分を酸クロライド化した後に、ピリジン等の塩基存在下に、ジアミン化合物と反応させることにより、目的のポリイミド前駆体を得ることができる。
上記(A)ポリイミド前駆体の重量平均分子量(Mw)の下限は、4,000以上であってもよく、5,000以上であってもよく、6,000以上であってもよく、7,000以上であってもよい。上記(A)ポリイミド前駆体の重量平均分子量(Mw)の上限は、15,000以下であってもよく、13,000以下であってもよく、12,000以下であってもよく、11,000以下であってもよく、10,000以下であってもよく、10,000未満であってもよい。
本発明に用いられる(B)光重合開始剤について説明する。(B)光重合開始剤の、ネガ型感光性樹脂組成物中の配合量は、(A)ポリイミド前駆体100質量部に対して、0.1質量部〜20質量部である。上記配合量は、光感度又はパターニング性の観点で0.1質量部以上であり、硬化性又は硬化後の感光性樹脂層の膜物性の観点から20質量部以下である。
オキシムエステル系光開始剤を使用、または、特定のポリイミドを使用することにより、銅層とポリイミド層との密着性を高めることができ、ボイドの発生を抑制することができる。
で表されるオキシムエステル化合物である。
このようなオキシムエステル系光開始剤を用いることにより、イミド化率が良好で、耐薬品性が高く、かつ、銅ボイドの発生を抑制できる樹脂層が得られる。
(B2)光酸発生剤、を含むポジ型感光性樹脂組成物を用いることもできる。
ポリベンゾオキサゾール前駆体組成物に用いる感光性樹脂としては、下記一般式(12)で表される繰り返し単位を含むポリ(o−ヒドロキシアミド)を用いることができる。
光酸発生剤は、光照射部のアルカリ水溶液可溶性を増大させる機能を有するものである。光酸発生剤としては、ジアゾナフトキノン化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等が挙げられる。このうち、ジアゾナフトキノン化合物は、感度が高く好ましい。
本実施形態に係る(A2)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)の好適な範囲は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、3,000以上、16,000未満である。当該範囲の重量平均分子量(Mw)の(A2)ポリベンゾオキサゾール前駆体を用いることで、200℃以下のキュア条件下においても、ポリベンゾオキサゾールの環化反応が良好に進行し、耐薬品性が高く、かつ、銅ボイドの発生を抑制できる樹脂層が得られる。重量平均分子量(Mw)が当該範囲よりも大きいと、キュア条件中で(A2)ポリベンゾオキサゾール前駆体の分子運動が不十分で環化が進行し難くなり、得られる樹脂層の耐薬品性が十分でなく、銅ボイドが発生しやすくなる。一方で、重量平均分子量(Mw)が当該範囲よりも小さいと、キュア条件中で(A2)ポリベンゾオキサゾール前駆体の分子運動は活発になりイミド化は進行し易くなる。一方で(A2)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)が小さい為、キュア後に得られる樹脂層の耐薬品性が十分ではなく、銅ボイドが発生しやすくなる。重量平均分子量(Mw)が当該範囲の(A2)ポリベンゾオキサゾール前駆体を用いることで、200℃以下のキュア条件下でも環化率が良好で、かつ、得られる硬化膜の耐薬品性が良好で、かつ、銅ボイドの発生を抑制できる樹脂を得られる。
なお、上記(A2)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)のより好ましい範囲は、3,000以上、15,000以下、さらに好ましくは3,000以上、13,000以下、さらに好ましくは3,000以上、11,000以下、さらに好ましくは3,000以上、10,000以下、更に好ましくは、3,000以上、10,000未満、更に好ましくは、3,000以上、9,500以下、特に好ましくは、3,000以上、9,000以下、である。上記(A2)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)の下限は、4,000以上であってもよく、5,000以上であってもよく、6,000以上であってもよく、7,000以上であってもよい。上記(A2)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)の上限は、15,000以下であってもよく、13,000以下であってもよく、12,000以下であってもよく、11,000以下であってもよく、10,000以下であってもよく、10,000未満であってもよい。
溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類、アルコール類等が挙げられる。
例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、及び基板への接着性の観点から、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ベンジルアルコール、フェニルグリコール、及びテトラヒドロフルフリルアルコールが好ましい。
I)チタンキレート化合物:中でも、アルコキシ基を2個以上有するチタンキレートが、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることからより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n−ブトキサイド)ビス(2,4−ペンタンジオネート、チタニウムジイソプロポキサイドビス(2,4−ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
熱酸発生剤は、硬化温度を下げた場合でも、良好な硬化物の熱物性及び機械的物性を発現させるという観点から、配合することが好ましい。
ジ(t−ブチルフェニル)ヨードニウム塩等のジ(アルキルアリール)ヨードニウム塩;
トリメチルスルホニウム塩のようなトリアルキルスルホニウム塩;ジメチルフェニルスルホニウム塩等のジアルキルモノアリールスルホニウム塩;
ジフェニルメチルスルホニウム塩等のジアリールモノアルキルヨードニウム塩;トリアリールスルホニウム塩等が挙げられる。
また、本発明は、(1)上述した本発明のネガ型感光性樹脂組成物を基板上に塗布することによって樹脂層を該基板上に形成する工程と、(2)該樹脂層を露光する工程と、(3)該露光後の樹脂層を現像してレリーフパターンを形成する工程と、(4)該レリーフパターンをキュアすることによって硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法を提供する。以下、各工程の典型的な態様について説明する。
本工程では、本発明のネガ型感光性樹脂組成物を基材上に塗布し、必要に応じてその後乾燥させて樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
本工程では、上記で形成した樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
本工程においては、露光後の感光性樹脂層の未露光部を現像除去する。現像方法としては、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて任意の温度及び時間の組合せによる現像後ベークを施してもよい。
本工程では、上記現像により得られたレリーフパターンをキュアすることによって、硬化レリーフパターンに変換する。キュアの方法としては、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等、種々の方法を選ぶことができる。キュアは、例えば150℃〜400℃で30分〜5時間の条件で行うことができる。キュアの際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
本発明はまた、上述した本発明の硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを含む、半導体装置を提供する。本発明は、半導体素子である基材と、前記基材上に、上述した硬化レリーフパターン製造方法により形成された樹脂の硬化レリーフパターンとを含む半導体装置も提供する。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
本発明の実施の形態について、以下に具体的に説明する。なお本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合、互いに同一でも異なっていてもよい。
<感光性樹脂組成物>
本発明の感光性樹脂組成物は、主鎖の末端に、反応性の置換基を有する感光性ポリイミド前駆体を含む、粘度が80ポイズ以下のネガ型感光性樹脂であることを特徴とする。
本発明に用いられる、末端に反応性の置換基を有する感光性ポリイミド前駆体について説明する。
本発明における感光性ポリイミド前駆体として好ましく用いられるのは、i線吸光度が0.1〜2.0のものである。i線吸光度は、感光性ポリイミド前駆体を単独の溶液として塗布し、プリベークした後に得られる、10μm厚フィルムについて測定される。
感光性樹脂組成物から得られる硬化レリーフパターンにおける、開口部の側面を順テーパー型にするために、本発明の感光性樹脂組成物は、上記の要件を満たす感光性ポリイミド前駆体を含有することが好ましい。
<i線吸光度の求め方>
10μm厚フィルムのi線吸光度は、感光性ポリイミド前駆体を単独で石英ガラス上に形成した塗膜について、プリベークした後、通常の分光光度計により測定することができる。形成されたフィルムの厚みが10μmでない場合には、該フィルムについて得られた吸光度を、ランベルト・ベールの法則に従って10μm厚に換算することにより、10μm厚のi線吸光度を求めることができる。
i線吸光度が0.1未満の場合には、これを満たす感光性ポリイミド前駆体の構造が限定されるため、機械物性、熱物性等が劣ることとなる。i線吸光度が2.0を超える場合には、塗膜のi線吸収が大きすぎて底部まで光が到達しない。そのため、ネガ型の場合、塗膜の底部が硬化しないという問題が出る場合がある。
で表される構造が挙げられるが、これらに限定されるものではない。また、Xの構造は1種でも2種以上の組み合わせでも構わない。上記式で表される構造を有するX基は、耐熱性と感光特性とを両立するという点で特に好ましい。
で表される構造が挙げられるが、これらに限定されるものではない。また、Yの構造は1種でも2種以上の組み合わせでも構わない。上記式(31)で表される構造を有するY基は、耐熱性及び感光特性を両立するという点で特に好ましい。
から選ばれる少なくとも1種以上の2価の有機基が挙げられる。これらの有機基は、膜厚の面内均一性を向上させる観点から特に好ましいが、これらに限定されるものではない。その中でも特に、一般式(A1)中のYが、前記(C3)を含有することが好ましい。
この中で、Xが一般式(B2)を含み、Yが一般式(C1)または(C2)または(C3)を含む構造が好ましい。
この中で、Xが一般式(B1)を含み、Yが一般式(C1)を含む構造が好ましい。
これらの組み合わせは耐薬品性と銅ボイドの抑制効果に優れるため特に好ましいが、これらに限定されるものではない。これらの組み合わせの中で、耐薬品性と銅ボイドの抑制効果の観点から、Xが一般式(B3)を含み、Yが一般式(C2)を含む構造が最も好ましい。
上記(A)ポリイミド前駆体の重量平均分子量(Mw)の下限は、4,000以上であってもよく、5,000以上であってもよく、6,000以上であってもよく、7,000以上であってもよい。上記(A)ポリイミド前駆体の重量平均分子量(Mw)の上限は、15,000以下であってもよく、13,000以下であってもよく、12,000以下であってもよく、11,000以下であってもよく、10,000以下であってもよく、10,000未満であってもよい。
(ただしR16、R17、R18は同時に水素原子になることはない。)
上記一般式(E1)および(F1)において、b1及びg1は、末端に二重結合を有する反応性の置換基であることが、現像後ベークによる架橋の観点から好ましい。
またf1がアミド基、イミド結合、ウレア基、ウレタン基の少なくとも1つの基を含むことが好ましい。f1がエステル基であると加水分解しやすいので架橋されない可能性がある。これらの4つの基(アミド基、イミド結合、ウレア基、ウレタン基)は、加水分解されにくいので、現像後ベークによる架橋が効率よく行われる。そのため、耐薬品性が高い。
膜厚均一性の観点から、b1は、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基から選ばれる少なくとも一つであることが好ましい。特にメタクリル基が好ましい。
膜厚均一性の観点から、g1は、アクリル基、メタクリル基、ビニル基、アルケニル基、シクロアルケニル基、アルカジエニル基、シクロアルカジエニル基、スチリル基、エチニル基から選ばれる少なくとも一つであることが好ましい。特にメタクリル基が好ましい。
本発明において、エステル結合型のポリイミド前駆体を調製するために好適に用いられる、4価の有機基Xを有するテトラカルボン酸二無水物としては、上記一般式(30)に示される構造を有する酸二無水物をはじめ、例えば、無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルメタン−3,3’,4,4’−テトラカルボン酸二無水物、2,2−ビス(3,4−無水フタル酸)プロパン、2,2−ビス(3,4−無水フタル酸)−1,1,1,3,3,3−ヘキサフルオロプロパン等を挙げることができる。好ましくは無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物等を挙げることができる。好ましくは無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物等を挙げることができる。より好ましくは無水ピロメリット酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ビフェニル−3,3’,4,4’−テトラカルボン酸二無水物等を挙げることができるが、これらに限定されるものではない。また、これらは単独でも、2種以上を混合して用いてもよい。
ケトン類として、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等を;
エステル類として、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル等
を;
ラクトン類として、例えば、γ−ブチロラクトン等を;
エーテル類として、例えば、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等を;
ハロゲン化炭化水素類として、例えば、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン等を;
炭化水素類として、例えば、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等を、それぞれ挙げることができる。これらは必要に応じて、単独で用いても2種以上混合して用いてもよい。
上記アシッド/エステル体(典型的には、上記反応溶媒中に溶解された溶液状態にある。)に、好ましくは氷冷下、適当な脱水縮合剤を投入混合することにより、アシッド/エステル体をポリ酸無水物とする(上記式(D2))。もしくは適当な塩化物を投入混合することにより、アシッド/エステル体をポリ酸塩化物とする。次いでこれに、本発明で好適に用いられる2価の有機基Yを有するジアミン類を、別途溶媒に溶解又は分散させたものを滴下投入する。そして、両者をアミド重縮合させることにより、目的の感光性ポリイミド前駆体を得ることができる(上記式(D3))。上記2価の有機基Yを有するジアミン類とともに、ジアミノシロキサン類を併用してもよい。
上記脱水縮合剤としては、例えば、ジシクロヘキシルカルボジイミド、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン、1,1−カルボニルジオキシ−ジ−1,2,3−ベンゾトリアゾール、N,N’−ジスクシンイミジルカーボネート等が挙げられる。上記塩化物としては、例えば、塩化チオニル、五塩化リン等が挙げられる。
以上のようにして、中間体であるポリ酸無水化物もしくはポリ酸塩化物が得られる。
及びこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、ハロゲン原子等で置換されたもの;
並びにこれらの混合物等が挙げられる。
及びこれらの混合物等が挙げられる。これらの中で好ましく用いられるものとして、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4‘−ジアミノビフェニル、2,2’−ビス(フルオロ)−4,4‘−ジアミノビフェニル、4,4’−ジアミノオクタフルオロビフェニル等を挙げることができる。より好ましくはp−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル等を、並びにこれらの混合物等を挙げることができる。ジアミン類は、上記の例示に限定されるものではない。
(1)無水マレイン酸:
本発明の感光性樹脂組成物は、上記感光性ポリイミド前駆体以外の成分を更に含有してもよい。
本発明の感光性樹脂組成物には、通常、感光剤としては光重合開始剤が用いられる。光重合開始剤としては、光ラジカル重合開始剤であることが好ましく、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−ベンゾイル−4’−メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体、2,2’−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体、チオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、ベンジル、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール等のベンジル誘導体、
溶剤としては、感光性ポリイミド前駆体に対する溶解性の点から、極性の有機溶剤を用いることが好ましい。具体的には、例えばN,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、シクロペンタノン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、テトラメチル尿素、1,3−ジメチル−2−イミダゾリノン、N−シクロヘキシル−2−ピロリドン等が挙げられる。これらは単独又は2種以上の組合せで用いることができる。
具体的な例としては、例えばメチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール等のアルキルアルコール類;
乳酸エチル等の乳酸エステル類;
プロピレングリコール−1−メチルエーテル、プロピレングリコール−2−メチルエーテル、プロピレングリコール−1−エチルエーテル、プロピレングリコール−2−エチルエーテル、プロピレングリコール−1−(n−プロピル)エーテル、プロピレングリコール−2−(n−プロピル)エーテル等のプロピレングリコールモノアルキルエーテル類;
エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル等のモノアルコール類;
2−ヒドロキシイソ酪酸エステル類;
エチレングリコール、プロピレングリコール等のジアルコール類;
等を挙げることができる。
これらの中では、乳酸エステル類、プロピレングリコールモノアルキルエーテル類、2−ヒドロキシイソ酪酸エステル類、及びエチルアルコールが好ましい。特に乳酸エチル、プロピレングリコール−1−メチルエーテル、プロピレングリコール−1−エチルエーテル、及びプロピレングリコール−1−(n−プロピル)エーテルがより好ましい。
以下に限定されるものではないが、特に、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートをはじめとする、エチレングリコール又はポリエチレングリコールのモノ又はジ(メタ)アクリレート;
プロピレングリコール又はポリプロピレングリコールのモノ又はジ(メタ)アクリレート;
グリセロールのモノ、ジ又はトリ(メタ)アクリレート;
シクロヘキサンジ(メタ)アクリレート;
1,4−ブタンジオールのジアクリレート及びジメタクリレート、1,6−ヘキサンジオールのジ(メタ)アクリレート;
ネオペンチルグリコールのジ(メタ)アクリレート;
ビスフェノールAのモノ又はジ(メタ)アクリレート;
ベンゼントリメタクリレート;
イソボルニル(メタ)アクリレート;
アクリルアミド及びその誘導体;
メタクリルアミド及びその誘導体;
トリメチロールプロパントリ(メタ)アクリレート;
グリセロールのジ又はトリ(メタ)アクリレート;
ペンタエリスリトールのジ、トリ、又はテトラ(メタ)アクリレート;
並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。
感光性樹脂組成物の粘度の下限は特に限定はないが、1ポイズ以上であってもよく、3ポイズ以上であってもよい。また、5ポイズ以上であってもよく、8ポイズ以上であってもよい。
本発明はまた、硬化レリーフパターンの形成方法も提供する。
本発明における硬化レリーフパターンの形成方法は、例えば以下の工程:
(1)上述した本発明の感光性樹脂組成物を基板上に塗布することにより、該基板上に感光性樹脂層を形成する塗布工程と、
(2)感光性樹脂層を露光する露光工程と、
(3)露光後の感光性樹脂層を現像することによりレリーフパターンを形成する現像工程と、
(4)レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する加熱工程と、
を上記に記載の順に含むことを特徴とする。
以下、各工程の典型的な態様について説明する。
本工程では、本発明の感光性樹脂組成物を基板上に塗布し、必要に応じて、その後乾燥させることにより感光性樹脂層を形成する。
基板としては、例えばシリコン、アルミニウム、銅、銅合金等から成る金属基板;
エポキシ、ポリイミド、ポリベンゾオキサゾール等の樹脂基板;
前記樹脂基板に金属回路が形成された基板;
複数の金属、又は金属と樹脂とが多層に積層された基板;
等を使用することができる。
塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法を用いることができる。例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
本工程では、上記で形成した感光性樹脂層を露光する。露光装置としては、例えばコンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置が用いられる。露光は、パターンを有するフォトマスク又はレチクルを介して、又は直接に行うことができる。露光に使用する光線は、例えば、紫外線光源等である。
本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法を選択して使用することができる。例えば回転スプレー法、パドル法、超音波処理を伴う浸漬法等である。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる、現像後ベークを施してもよい。現像後ベークの温度は、例えば80〜130℃とすることができる。現像後ベーク時間は例えば0.5〜10分とすることができる。
本工程では、上記現像により得られたレリーフパターンを加熱して感光成分を希散させるとともに、感光性ポリイミド前駆体をイミド化させることにより、ポリイミドからなる硬化レリーフパターンに変換する。
加熱硬化の方法としては、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等、種々の方法を選ぶことができる。
加熱は、例えば200℃〜400℃で30分〜5時間の条件で行うことができる。加熱硬化の際の雰囲気気体としては空気を用いてもよいし、窒素、アルゴン等の不活性ガスを用いてもよい。
以上のようにして、硬化レリーフパターンを製造することができる。
本発明の感光性樹脂組成物を用いることにより、スピンコート時の樹脂のフロー性が向上し、かつプリベーク時のポリマー間の相互作用の状態が変わる。これにより、塗布膜厚の面内均一性を向上した感光性樹脂層を形成することができる。ひいては、硬化レリーフパターンを高解像度で形成することができる。
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。実施例、比較例、及び製造例においては、ネガ型感光性樹脂組成物の物性を以下の方法に従って測定及び評価した。
各(A)ポリイミド前駆体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)で測定した。測定に用いたカラムは昭和電工(株)製の商標名「Shodex KD−805」「Shodex KD−804」「Shodex KD−803」を、3本この順で直列に接続した。標準単分散ポリスチレンは、昭和電工(株)製の商標名「Shodex STANDARD SM−105」を選択した。展開溶媒は、0.01mol/Lの臭化リチウムを含有したN−メチル−2−ピロリドンを使用し、流速は1.0mL/分で測定した。示差屈折率検出器は、日本分光(株)製の商標名「RI−2031 Plus」、ポンプは、日本分光(株)製の商標名「PU−2080 Plus」、カラムオーブンは、日本分光(株)製の商標名「CO−2065 Plus」を使用して測定した。
6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に本発明のネガ型感光性樹脂組成物をスピン塗布し、乾燥することにより、約11μm厚の塗膜を感光性樹脂層として形成した。この塗膜にテストパターン付レチクルを用いてghiステッパー(Prisma−ghi、ウルトラテック社製)により、500mJ/cm2のエネルギーを照射して露光した。次いで、ウェハー上に形成した塗膜を、シクロペンタノンを用いて、現像機(D−SPIN636型、日本国、大日本スクリーン製造社製)でスプレー現像した。そして、プロピレングリコールメチルエーテルアセテートでリンスして未露光部を現像除去することにより、ポリイミド前駆体のレリーフパターンを得た。レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF−2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で2時間キュアすることにより、約9μm厚のポリイミドの硬化レリーフパターンを得た。
浸漬後の塗膜について、浸漬前に対する塗膜の膜厚変動が±1%以内であり、かつ、クラックが発生していない場合を「◎」、塗膜の膜厚変動が±3%以内であり、かつ、クラックが発生していない場合を「○」、塗膜の膜厚変動が±5%以内であり、かつ、クラックが発生していない場合を「△」、膜厚変動が±5%を超えている、又はクラックが発生している場合を「×」と評価した。
6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に、スパッタ装置(L−440S−FHL型、キヤノンアネルバ社製)を用いて200nm厚のTi、400nm厚の銅をこの順にスパッタした。続いて、このウェハー上に、後述の方法により調製した感光性ポリアミド酸エステル組成物を、コーターデベロッパー(D−Spin60A型、SOKUDO社製)を用いて回転塗布し、乾燥することにより10μm厚の塗膜を形成した。この塗膜に、テストパターン付マスクを用いて、平行光マスクアライナー(PLA−501FA型、キヤノン社製)により300mJ/cm2のエネルギーを照射した。次いで、この塗膜を、現像液としてシクロペンタノンを用いて、コーターデベロッパー(D−Spin60A型、SOKUDO社製)でスプレー現像した。そして、プロピレングリコールメチルエーテルアセテートでリンスすることにより、銅上のレリーフパターンを得た。
まず、銅上に該硬化レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF−2000型、光洋リンドバーグ社製)を用いて、湿度5%の空気中で、150℃で168時間加熱した。続いて、プラズマ表面処理装置(EXAM型、神港精機社製)を用いて、銅上のポリイミド樹脂層をプラズマエッチングにより除去した。プラズマエッチング条件は下記の通りである。
出力:133W
ガス種・流量:O2:40ml/分 + CF4:1ml/分
ガス圧:50Pa
モード:ハードモード
エッチング時間:1800秒
なお、銅ボイドの発生面積比率が0〜3%の場合を「◎」、3〜4%の場合を「○+」、4〜5%の場合を「○」、5%〜10%の場合を「△」、10%よりも大きい場合を「×」とした。
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを2Lのセパラブルフラスコに入れ、2−ヒドロキシエチルメタクリレート(HEMA)131.2gとγ―ブチロラクトン400mLを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に室温まで放冷し、16時間放置した。
ポリマー(A)−1の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は2,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから45.1gに変更した以外は、製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−2)の重量平均分子量(Mw)は3,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから57.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−3)の重量平均分子量(Mw)は11,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから60.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−4)の重量平均分子量(Mw)は12,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから67.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−5)の重量平均分子量(Mw)は15,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから70.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−6)の重量平均分子量(Mw)は16,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから75.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−7)の重量平均分子量(Mw)は17,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−8)の重量平均分子量(Mw)は2,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから45.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−9)の重量平均分子量(Mw)は3,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから57.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−10)の重量平均分子量(Mw)は11,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから60.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−11)の重量平均分子量(Mw)は12,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから67.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−12)の重量平均分子量(Mw)は15,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから70.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−13)の重量平均分子量(Mw)は16,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)の添加量を40.0gから75.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−14)の重量平均分子量(Mw)は17,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)21.6gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−15)の重量平均分子量(Mw)は2,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)24.3gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−16)の重量平均分子量(Mw)は3,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)30.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−17)の重量平均分子量(Mw)は11,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)32.4gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−18)の重量平均分子量(Mw)は12,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)36.2gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−19)の重量平均分子量(Mw)は15,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)37.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−20)の重量平均分子量(Mw)は16,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)40.6gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−21)の重量平均分子量(Mw)は17,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)42.5gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−22)の重量平均分子量(Mw)は2,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)47.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−23)の重量平均分子量(Mw)は3,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)60.5gに変更した以外は、製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−24)の重量平均分子量(Mw)は11,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)63.7gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−25)の重量平均分子量(Mw)は12,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)71.1gに変更した以外は、製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−26)の重量平均分子量(Mw)は15,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)74.3gに変更した以外は、製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−27)の重量平均分子量(Mw)は16,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−2,2’−ジメチルベンジジン(m−TB)79.6gに変更した以外は製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A)−28)の重量平均分子量(Mw)は17,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)64.0gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−29)の重量平均分子量(Mw)は2,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)72.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−30)の重量平均分子量(Mw)は3,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)91.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−31)の重量平均分子量(Mw)は11,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)96.1gに変更した以外は製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−32)の重量平均分子量(Mw)は12,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)107.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−33)の重量平均分子量(Mw)は15,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)112.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−34)の重量平均分子量(Mw)は16,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)120.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−35)の重量平均分子量(Mw)は17,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、2,3,6,7−ナフタレンテトラカルボン酸二無水物(NTCDA)134.0gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを4,4’−チオジアニリン(TDA)59.5gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A)−36)の重量平均分子量(Mw)は10,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)24.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−1)の重量平均分子量(Mw)は3,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)30.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−2)の重量平均分子量(Mw)は11,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)32.4gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−3)の重量平均分子量(Mw)は12,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)36.2gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−4)の重量平均分子量(Mw)は15,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)37.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−5)の重量平均分子量(Mw)は16,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ジメチルベンジジン(m−TB)47.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−6)の重量平均分子量(Mw)は3,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ジメチルベンジジン(m−TB)60.5gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−7)の重量平均分子量(Mw)は11,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ジメチルベンジジン(m−TB)63.7gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−8)の重量平均分子量(Mw)は12,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ジメチルベンジジン(m−TB)71.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−9)の重量平均分子量(Mw)は15,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ジメチルベンジジン(m−TB)74.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−10)の重量平均分子量(Mw)は16,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)72.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−11)の重量平均分子量(Mw)は3,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)91.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−12)の重量平均分子量(Mw)は11,000であった。
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)96.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−13)の重量平均分子量(Mw)は12,000であった。
<製造例50>(ポリマー(A2)−14の合成)
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)107.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−14)の重量平均分子量(Mw)は15,000であった。
<製造例51>(ポリマー(A2)−15の合成)
製造例1において、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)112.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−15)の重量平均分子量(Mw)は16,000であった。
<製造例52>(ポリマー(A2)−16の合成)
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを48.1gに変更した以外は、製造例1と同様にして合成した。得られた粉末状のポリマー(ポリマー(A2)−16)の重量平均分子量(Mw)は5,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを52.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−17)の重量平均分子量(Mw)は9,500であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、4,4’−オキシジフタル酸二無水物(ODPA)155.1gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを62.1gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−18)の重量平均分子量(Mw)は13,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)24.3gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−19)の重量平均分子量(Mw)は3,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)30.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−20)の重量平均分子量(Mw)は11,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)32.4gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−21)の重量平均分子量(Mw)は12,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)36.2gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−22)の重量平均分子量(Mw)は15,000であった。
製造例1において、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを、ピロメリット酸無水物(PMDA)109.6gに変更し、4,4’−ジアミノジフェニルエーテル(DADPE)40.0gを1,4−フェニレンジアミン(PPD)37.8gに変更した以外は、製造例1と同様にして合成した。
得られた粉末状のポリマー(ポリマー(A2)−23)の重量平均分子量(Mw)は16,000であった。
攪拌機、温度計を備えた0.5リットルのフラスコ中に、ジカルボン酸として4,4’−ジフェニルエーテルジカルボン酸15.48g、N−メチルピロリドンを仕込み、フラスコを5℃に冷却した後、塩化チオニルを滴下し、30分間反応させて、ジカルボン酸クロリドの溶液を得た。次いで、攪拌機、温度計を備えた0.5リットルのフラスコ中に、N−メチルピロリドンを仕込み、ビスアミノフェノールとしてビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(6FAP)28.57gとm−アミノフェノール2.18gを攪拌溶解した後、ピリジンを添加し、温度を0〜5℃に保ちながら、ジカルボン酸クロリドの溶液を30分間で滴下した後、30分間攪拌を続けた。溶液を3リットルの水に投入し、析出物を回収、純水で3回洗浄した後、減圧乾燥してポリマー(ポリベンゾオキサゾール前駆体(ポリマー(A3)−1))を得た。
得られた粉末状のポリマー(ポリマー(A3)−1))の重量平均分子量(Mw)は10,000であった。
ジカルボン酸をセバシン酸(12.13g)に変更した以外は前述のポリマー(A3)−1に記載の方法と同様にして反応を行い、ポリベンゾオキサゾール前駆体(A3)−2を得た。
得られた粉末状のポリマー(ポリマー(A3)−2)の重量平均分子量(Mw)は11,000であった。
ジカルボン酸をジシクロペンタジエンジカルボン酸(DCPD)(11.3g)に変更した以外は前述のポリマー(A3)−1に記載の方法と同様にして反応を行い、ポリベンゾオキサゾール前駆体(A3)−3を得た。
得られた粉末状のポリマー(ポリマー(A3)−3)の重量平均分子量(Mw)は9,000であった。
ポリマー(A)−2を用いて以下の方法でネガ型感光性樹脂組成物を調製した。
ポリマー(A)−2((A)ポリイミド前駆体に該当)100gを、B−1成分(光重合開始剤に該当)4g、テトラエチレングリコールジメタクリレート((C)−1に該当)4gと共に、N−メチル−2−ピロリドン((D)−1に該当)80gと乳酸エチル((E)−1)20gからなる混合溶媒に溶解した。得られた溶液の粘度を、少量の前記混合溶媒を更に加えることによって約35ポイズ(poise)に調整し、ネガ型感光性樹脂組成物とした。
この組成物について、上述の方法により200℃でキュアして耐薬品性試験を実施したところ、「○」であった。また、上述の方法により銅層上に硬化レリーフパターンを作製した。高温保存試験を行った後、銅層の表面に占めるボイド評価を行ったところ、「〇+」であった。
表2に示す配合量によりネガ型感光性樹脂組成物を調整した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性および銅層の表面に占めるボイド評価は表2−1に示す通りとなった。
表2に示す配合量によりポジ型感光性樹脂組成物を調整した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性および銅層の表面に占めるボイド評価は表2−1に示す通りとなった。
実施例1において、ポリマー(A)−2を(A)−1に、(B)−1を(B)−4に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「×」であった。
実施例1において、ポリマー(A)−2を(A)−7に、(B)−1を(B)−4に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「×」であった。
実施例1において、ポリマー(A)−2を(A)−1に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「△」であった。
実施例1において、ポリマー(A)−2を(A)−7に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「○」であった。
実施例1において、ポリマー(A)−2を(A)−8に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「△」であった。
実施例1において、ポリマー(A)−2を(A)−14に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「○」であった。
実施例1において、ポリマー(A)−2を(A)−15に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「△」であった。
実施例1において、ポリマー(A)−2を(A)−21に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「○」であった。
実施例1において、ポリマー(A)−2を(A)−22に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「△」であった。
実施例1において、ポリマー(A)−2を(A)−28に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「○」であった。
実施例1において、ポリマー(A)−2を(A)−29に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「△」であった。
実施例1において、ポリマー(A)−2を(A)−35に変更した以外は、実施例1と同様にしてネガ型感光性樹脂組成物を調製した。
この組成物について、上記の方法により耐薬品性試験を実施したところ、耐薬品性は「×」であった。また、銅層の表面に占めるボイド評価を行ったところ、「○」であった。
これら実施例1〜52の結果を表2に、比較例1〜12の結果を表3にまとめて示す。
これに対し、重量平均分子量(Mw)が、3,000未満、あるいは16,000以上であるポリマーを用いた比較例では、耐薬品性および銅ボイドの発生が抑制される結果が劣っていることがわかる。
また、実施例26と、その他の実施例とを比較してわかるように、一般式(1)で表される(A)ポリイミド前駆体において、炭素数6〜40の4価の有機基であるX1の構造を特定の基にすることにより、耐薬品性および銅ボイドの発生が抑制される結果を特に優れたものとすることができる。
また、実施例50〜実施例52とその他の実施例とを比較して分かるように、(B)光重合開始剤にオキシムエステル化合物を用いることにより、耐薬品性および銅ボイドの抑制が抑制される結果を特に優れたものとすることができる。
これは、特定の重量平均分子量(Mw)を有する感光性樹脂を用いることにより、200℃以下の低温キュア条件下においても、ポリイミドのイミド環化反応(イミド化)が良好に進行する。このため樹脂膜中にポリイミド前駆体が残存しないためと考察される。
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。実施例、比較例、及び製造例における感光性樹脂組成物の物性は、以下の方法に従って測定及び評価した。
後述の方法により合成した各ポリアミド酸エステルの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて、標準ポリスチレン換算により測定した。GPCの分析条件を以下に記す。
カラム:昭和電工社製 商標名 Shodex 805M/806M直列
標準単分散ポリスチレン:昭和電工(株)製Shodex STANDARD SM−105
溶離液:N−メチル−2−ピロリドン 40℃
流速:1.0ml/分
検出器:昭和電工製 商標名 Shodex RI−930
6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に、後述の方法により調製した感光性樹脂組成物を、コーターデベロッパー(D−Spin60A型、SOKUDO社製)を用いて回転塗布し、乾燥することにより10μm厚の塗布膜を形成した。この塗布膜について、非接触型膜厚測定器(ナノメトリクス製、ナノスペック/AFT 5100型)を用いて、面内の39点の膜厚を測定し、その平均値と最大及び最小の膜厚の差を求めた。このときの膜厚の最大と最小の差を面内均一性の指標とした。
6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に本発明のネガ型感光性樹脂組成物をスピン塗布し、乾燥することにより、約11μm厚の塗膜を感光性樹脂層として形成した。この塗膜にテストパターン付レチクルを用いてghiステッパー(Prisma−ghi、ウルトラテック社製)により、500mJ/cm2のエネルギーを照射して露光した。次いで、ウェハー上に形成した塗膜を、シクロペンタノンを用いて、現像機(D−SPIN636型、日本国、大日本スクリーン製造社製)でスプレー現像した。そして、プロピレングリコールメチルエーテルアセテートでリンスして未露光部を現像除去することにより、ポリイミド前駆体のレリーフパターンを得た。レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF−2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で2時間キュアすることにより、約9μm厚のポリイミドの硬化レリーフパターンを得た。
浸漬後の塗膜について、浸漬前に対する塗膜の膜厚変動が±1%以内であり、かつ、クラックが発生していない場合を「◎」、塗膜の膜厚変動が±3%以内であり、かつ、クラックが発生していない場合を「○」、塗膜の膜厚変動が±5%以内であり、かつ、クラックが発生していない場合を「△」、膜厚変動が±5%を超えている、又はクラックが発生している場合を「×」と評価した。
酸成分として4,4’−オキシジフタル酸二無水物(ODPA)155.1gを2リットル容量のセパラブルフラスコに入れ、2−ヒドロキシエチルメタクリレート(HEMA)134.0g及びγ―ブチロラクトン400mlを加えた。室温下で攪拌しながら、ピリジン79.1gを加えることにより、反応混合物を得た。反応による発熱の終了後、室温まで放冷し、更に16時間静置した。
このポリマーA−1の重量平均分子量(Mw)を測定したところ、20,000であった。
実施例1で用いた酸成分の種類と量、ジアミン成分の種類と量、末端変性剤の種類と量を、ネガ型感光性樹脂組成物溶液の粘度(ポイズ)、得られたポリマーの重量平均分子量(Mw)、面内均一性の評価結果、および耐薬品性試験の結果と併せて表1に示す。
酸末端であると、ポリマーの主鎖の両末端が
熱又は光で架橋する反応性の置換基であり、e1は炭素数1〜30の1価の有機基であり、R11、R14はそれぞれ独立に水素原子又は炭素数1〜30の1価の有機基であり、R12、R13はそれぞれ独立に水素原子、炭素数1〜30の1価の有機基、芳香族環または脂肪族環の一部のいずれかである。(ただしR12とR13は同時に水素原子であることはない。)
の構造となっていることを示し、
酸末端/ジアミン末端の項目がアミン末端であると、ポリマーの主鎖の両末端が
の構造となっていることを示す。
また、表1の結合の種類の項目は、
ポリマーの主鎖の両末端が(E1)の場合には、a1の結合の種類を表し、ポリマーの主鎖の両末端が(F1)の場合には、f1の結合の種類を表している。
酸成分の種類と量、ジアミン成分の種類と量、末端変性剤の種類と量、ネガ型感光性樹脂組成物溶液の粘度(ポイズ)を表1に記載の通り変更した以外は、実施例1に記載の方法と同様の方法を行うことで、実施例2〜29のネガ型感光性樹脂組成物溶液を得た。
得られたポリマーの重量平均分子量(Mw)、面内均一性の評価結果、耐薬品性試験の結果は表1に記載の通りである。
酸成分の種類と量、ジアミン成分の種類と量、末端変性剤の種類と量、ネガ型感光性樹脂組成物溶液の粘度(ポイズ)を表1に記載の通り変更した以外は、実施例1に記載の方法と同様の方法を行うことで、参考例1〜4のネガ型感光性樹脂組成物溶液を得た。
参考例1〜4のネガ型感光性樹脂組成物溶液はネガ型感光性樹脂組成物溶液の粘度(ポイズ)が90であった。得られたポリマーの重量平均分子量(Mw)、面内均一性の評価結果、耐薬品性試験の結果は表1に記載の通りである。
酸成分として4,4’−オキシジフタル酸二無水物(ODPA)155.1gを2リットル容量のセパラブルフラスコに入れ、2−ヒドロキシエチルメタクリレート(HEMA)134.0g及びγ―ブチロラクトン400mlを加えた。室温下で攪拌しながら、ピリジン79.1gを加えることにより、反応混合物を得た。反応による発熱の終了後、室温まで放冷し、更に16時間静置した。
このポリマーB−1の重量平均分子量(Mw)を測定したところ、20,000であった。このポリマーB−1は主鎖の末端に、熱又は光によって反応する反応性の置換基を有していない。
ポリイミド前駆体であるポリマーB−1 100gを、1−フェニル−1,2−プロパンジオン−2−(O−エトキシカルボニル)−オキシム4g、テトラエチレングリコールジメタクリレート8g、ベンゾトリアゾール 0.5g、N−[3−(トリエトキシシリル)プロピル]フタルアミド酸1.5gと共に、N−メチル−2−ピロリドン(以下ではNMPという)80gと乳酸エチル20gからなる混合溶媒に溶解した。得られた溶液の粘度を、前記混合溶媒を更に加えることによって15ポイズに調整し、ネガ型感光性樹脂組成物溶液とした。
この溶液を前述の方法によりシリコンウェハ上に塗布し、膜厚の面内均一性と耐薬品性を求めた。
膜厚の面内均一性と耐薬品性の評価結果は表1の通りである。
酸成分の種類と量、ジアミン成分の種類と量、末端変性剤の種類と量、ネガ型感光性樹脂組成物溶液の粘度(ポイズ)を表1に記載の通り変更した以外は、比較例1に記載の方法と同様の方法を行うことで、比較例2のネガ型感光性樹脂組成物溶液を得た。得られたポリマーの重量平均分子量(Mw)、面内均一性の評価結果、耐薬品性試験の結果は表4に記載の通りである。
本発明のネガ型感光性樹脂組成物は、低温でキュアすることができ、耐薬品性に優れたものとなり、例えば半導体装置、多層配線基板等の電気・電子材料の製造に有用な感光性材料の分野で好適に利用できる。
本発明の膜厚の面内均一性が向上したネガ型感光性ポリイミド前駆体を用いることで、高度な電子機器を製造するに当たって材料に求められる、解像度と信頼性を両立させることができる。
Claims (8)
- (A)ポリイミド前駆体:100質量部;及び
(B)光重合開始剤:0.1質量部〜20質量部;
を含むネガ型感光性樹脂組成物であって、
前記(A)ポリイミド前駆体が、下記一般式(1):
前記一般式(1)において、X1が、一般式(6):
前記(A)ポリイミド前駆体の重量平均分子量(Mw)が、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算において、4,000以上、13,000以下であることを特徴とする、ネガ型感光性樹脂組成物。 - 前記ネガ型感光性樹脂組成物は層間絶縁膜形成用のネガ型感光性樹脂組成物である請求項1または2に記載のネガ型感光性樹脂組成物。
- (1)請求項1〜3のいずれか1項に記載の感光性樹脂組成物を基板上に塗布することによって感光性樹脂層を前記基板上に形成する工程と、
(2)前記感光性樹脂層を露光する工程と、
(3)前記露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
(4)前記レリーフパターンを加熱処理することによって硬化レリーフパターンを形成する工程とを含む、硬化レリーフパターンの製造方法。 - 前記基板が、銅又は銅合金から構成されている、請求項4に記載の硬化レリーフパターンの製造方法。
- 層間絶縁膜を含む半導体装置の製造方法であって、
前記層間絶縁膜は、
請求項1〜3のいずれか1項に記載の感光性樹脂組成物を露光する工程と、
前記露光後の感光性樹脂層を現像してレリーフパターンを形成する工程と、
前記レリーフパターンを加熱処理することによって硬化レリーフパターンとして前記層間絶縁膜を形成する工程と、
を含む工程により製造される半導体装置の製造方法。 - 前記層間絶縁膜は、銅又は銅合金と密着することを特徴とする請求項6に記載の半導体装置の製造方法。
- 請求項1〜3のいずれか1項に記載の感光性樹脂組成物を硬化して得られるポリイミドの製造方法。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016161681 | 2016-08-22 | ||
JP2016161681 | 2016-08-22 | ||
JP2016228240 | 2016-11-24 | ||
JP2016228240 | 2016-11-24 | ||
JP2016238452 | 2016-12-08 | ||
JP2016238452 | 2016-12-08 | ||
JP2017046022 | 2017-03-10 | ||
JP2017046022 | 2017-03-10 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018517451A Division JP6368066B2 (ja) | 2016-08-22 | 2017-08-17 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018169627A JP2018169627A (ja) | 2018-11-01 |
JP6644113B2 true JP6644113B2 (ja) | 2020-02-12 |
Family
ID=61245796
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018517451A Active JP6368066B2 (ja) | 2016-08-22 | 2017-08-17 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
JP2018128502A Active JP6644113B2 (ja) | 2016-08-22 | 2018-07-05 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
JP2018128480A Active JP6797866B2 (ja) | 2016-08-22 | 2018-07-05 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018517451A Active JP6368066B2 (ja) | 2016-08-22 | 2017-08-17 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018128480A Active JP6797866B2 (ja) | 2016-08-22 | 2018-07-05 | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US11163234B2 (ja) |
JP (3) | JP6368066B2 (ja) |
KR (5) | KR20240070713A (ja) |
CN (2) | CN108475020A (ja) |
TW (3) | TWI644943B (ja) |
WO (1) | WO2018037997A1 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110945418B (zh) * | 2017-07-28 | 2022-04-26 | 日产化学株式会社 | 液晶取向剂、液晶取向膜及液晶表示元件 |
US12018127B2 (en) * | 2018-02-13 | 2024-06-25 | Virginia Tech Intellectual Properties, Inc. | Additive manufacturing of aromatic thermoplastics from photocurable precursor salts |
CN111094397B (zh) * | 2018-07-20 | 2022-06-17 | 株式会社Lg化学 | 聚酰亚胺树脂及包含其的负型感光性树脂组合物 |
JP7370229B2 (ja) * | 2018-12-28 | 2023-10-27 | 旭化成株式会社 | 半導体装置、及びその製造方法 |
TWI685716B (zh) * | 2019-01-11 | 2020-02-21 | 律勝科技股份有限公司 | 感光性聚醯亞胺樹脂組成物及其聚醯亞胺膜 |
TWI685717B (zh) * | 2019-01-11 | 2020-02-21 | 律勝科技股份有限公司 | 感光性樹脂組成物及其應用 |
KR20210141469A (ko) | 2019-03-14 | 2021-11-23 | 도레이 카부시키가이샤 | 감광성 수지 조성물, 감광성 수지 시트, 경화막, 경화막의 제조 방법, 유기 el 표시 장치, 및 전자 부품 |
CN109942817A (zh) * | 2019-03-21 | 2019-06-28 | 深圳先进技术研究院 | 一种聚酰亚胺前体、制备方法以及树脂组合物及其应用 |
JP7308168B2 (ja) * | 2019-04-16 | 2023-07-13 | 信越化学工業株式会社 | 有機膜形成用材料、半導体装置製造用基板、有機膜の形成方法、パターン形成方法、及び有機膜形成用化合物 |
CN111848954B (zh) * | 2019-04-25 | 2023-10-17 | 北京鼎材科技有限公司 | 一种改性聚酰亚胺前驱体树脂、光敏树脂组合物及其用途 |
CN112080003A (zh) * | 2019-06-13 | 2020-12-15 | 北京鼎材科技有限公司 | 一种支化聚酰亚胺前驱体树脂、光敏树脂组合物及其用途 |
WO2021024464A1 (ja) * | 2019-08-08 | 2021-02-11 | Hdマイクロシステムズ株式会社 | 樹脂組成物、硬化物の製造方法、硬化物、パターン硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 |
WO2021029019A1 (ja) * | 2019-08-13 | 2021-02-18 | Hdマイクロシステムズ株式会社 | 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 |
TWI840635B (zh) * | 2019-12-30 | 2024-05-01 | 美商羅門哈斯電子材料有限公司 | 用於低損耗電介質之雙馬來醯亞胺交聯劑 |
JP7447303B2 (ja) * | 2020-03-31 | 2024-03-11 | 株式会社カネカ | 熱可塑性-熱硬化性ハイブリッド樹脂、方法、およびその使用 |
CN111522200B (zh) * | 2020-04-07 | 2021-07-27 | 中国科学院化学研究所 | 一种用于12英寸硅晶圆的负型pspi树脂及其制备方法与应用 |
JP7521299B2 (ja) | 2020-07-22 | 2024-07-24 | Hdマイクロシステムズ株式会社 | 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品 |
KR102653481B1 (ko) * | 2020-08-24 | 2024-03-29 | 삼성에스디아이 주식회사 | 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 반도체 소자 |
WO2022137294A1 (ja) * | 2020-12-21 | 2022-06-30 | Hdマイクロシステムズ株式会社 | 感光性樹脂組成物、硬化物及び電子部品 |
US20220204697A1 (en) * | 2020-12-31 | 2022-06-30 | Industrial Technology Research Institute | Polymer and resin composition thereof |
CN116868124A (zh) | 2021-01-22 | 2023-10-10 | 旭化成株式会社 | 感光性树脂组合物、以及使用其的聚酰亚胺固化膜的制造方法及聚酰亚胺固化膜 |
WO2022158359A1 (ja) * | 2021-01-22 | 2022-07-28 | 旭化成株式会社 | 感光性樹脂組成物、並びにこれを用いたポリイミド硬化膜の製造方法及びポリイミド硬化膜 |
JPWO2022210096A1 (ja) * | 2021-04-02 | 2022-10-06 | ||
JPWO2023276517A1 (ja) * | 2021-07-02 | 2023-01-05 | ||
CN117055292A (zh) * | 2022-05-07 | 2023-11-14 | 江苏艾森半导体材料股份有限公司 | 一种负性感光性聚酰亚胺组合物、图形的制造方法以及电子部件 |
US20240069440A1 (en) * | 2022-08-31 | 2024-02-29 | Chang Chun Plastics Co., Ltd. | Photoresist film and application thereof |
TW202424053A (zh) | 2022-10-27 | 2024-06-16 | 日商旭化成股份有限公司 | 負型感光性樹脂組合物、以及使用其之聚醯亞胺硬化膜之製造方法及聚醯亞胺硬化膜 |
CN116239772A (zh) * | 2023-01-13 | 2023-06-09 | 深圳先进电子材料国际创新研究院 | 一种聚酰亚胺前体及其合成方法与包含该聚酰亚胺前体的感光性树脂组合物 |
TW202442629A (zh) * | 2023-03-24 | 2024-11-01 | 日商富士軟片股份有限公司 | 樹脂組成物、二胺化合物、硬化物、積層體、硬化物的製造方法、積層體的製造方法、半導體元件的製造方法及半導體元件 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6315847A (ja) | 1986-07-05 | 1988-01-22 | Asahi Chem Ind Co Ltd | 感光性ポリイミド組成物 |
JP3137382B2 (ja) | 1991-09-30 | 2001-02-19 | 株式会社東芝 | 感光性樹脂組成物 |
JPH06315847A (ja) * | 1992-07-01 | 1994-11-15 | Yoshihide Shibano | ワーク加工時の冷却液供給方法及び装置 |
JP2826940B2 (ja) | 1992-07-22 | 1998-11-18 | 旭化成工業株式会社 | i線露光用感光性組成物 |
EP0718696B1 (en) | 1992-07-22 | 2002-01-16 | Asahi Kasei Kabushiki Kaisha | Photosensitive polyimide precursor composition |
JPH11133604A (ja) * | 1997-10-27 | 1999-05-21 | Toshiba Chem Corp | 感光性組成物 |
SG77689A1 (en) * | 1998-06-26 | 2001-01-16 | Ciba Sc Holding Ag | New o-acyloxime photoinitiators |
JP4046563B2 (ja) | 2002-01-25 | 2008-02-13 | 旭化成エレクトロニクス株式会社 | 高耐熱性感光性樹脂組成物 |
JP2003286345A (ja) * | 2002-03-28 | 2003-10-10 | Kyocera Chemical Corp | 感光性樹脂組成物の製造方法 |
EP1536286A4 (en) | 2002-07-11 | 2009-11-25 | Asahi Kasei Emd Corp | HIGH-GRADE HEAT-RESISTANT LIGHT-SENSITIVE RESIN COMPOSITION OF THE NEGATIVE TYPE |
JP2004271801A (ja) * | 2003-03-07 | 2004-09-30 | Kyocera Chemical Corp | 感光性樹脂組成物およびその製造方法 |
JP2006117561A (ja) * | 2004-10-20 | 2006-05-11 | Hitachi Chemical Dupont Microsystems Ltd | 重合性イミド単量体及びその製造法並びに光硬化性組成物 |
JP2006193691A (ja) * | 2005-01-17 | 2006-07-27 | Nippon Kayaku Co Ltd | 感光性ポリアミド酸及びこれを含有する感光性組成物 |
US7494928B2 (en) | 2005-09-20 | 2009-02-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for patterning and etching a passivation layer |
JP5193446B2 (ja) * | 2006-08-31 | 2013-05-08 | 旭化成イーマテリアルズ株式会社 | ポジ型感光性樹脂組成物 |
TWI322928B (en) | 2006-10-30 | 2010-04-01 | Eternal Chemical Co Ltd | Negative photosensitive polyimide polymer and uses thereof |
JP2008214622A (ja) * | 2007-02-08 | 2008-09-18 | Toray Ind Inc | ポリイミドの製造方法および耐熱性樹脂組成物 |
WO2008123583A1 (ja) * | 2007-04-04 | 2008-10-16 | Asahi Kasei Emd Corporation | 感光性ポリアミド酸エステル組成物 |
JP5121393B2 (ja) * | 2007-10-26 | 2013-01-16 | 旭化成イーマテリアルズ株式会社 | ネガ型感光性樹脂組成物 |
JP2010211095A (ja) * | 2009-03-12 | 2010-09-24 | Toray Ind Inc | 感光性カバーレイ |
TWI437025B (zh) * | 2009-08-14 | 2014-05-11 | Asahi Kasei E Materials Corp | An alkali-soluble polymer, a photosensitive resin composition comprising the same, and a use thereof |
JP5549841B2 (ja) | 2009-09-07 | 2014-07-16 | 日立化成株式会社 | 感光性樹脂組成物、永久レジスト用感光性フィルム、レジストパターンの形成方法、プリント配線板及びその製造方法、表面保護膜並びに層間絶縁膜 |
JP2011123219A (ja) * | 2009-12-09 | 2011-06-23 | Asahi Kasei E-Materials Corp | 感光性ポリアミド樹脂組成物、硬化レリーフパターンの形成方法及び半導体装置 |
TWI430024B (zh) * | 2010-08-05 | 2014-03-11 | Asahi Kasei E Materials Corp | A photosensitive resin composition, a method for manufacturing a hardened bump pattern, and a semiconductor device |
JP5831092B2 (ja) * | 2011-09-27 | 2015-12-09 | 東レ株式会社 | ポジ型感光性樹脂組成物 |
JP5803638B2 (ja) * | 2011-12-08 | 2015-11-04 | 日立化成デュポンマイクロシステムズ株式会社 | 感光性樹脂組成物の製造方法 |
JP6190805B2 (ja) * | 2012-05-07 | 2017-08-30 | 旭化成株式会社 | ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置 |
KR102214856B1 (ko) * | 2012-12-21 | 2021-02-09 | 에이치디 마이크로시스템즈 가부시키가이샤 | 폴리이미드 전구체, 그 폴리이미드 전구체를 포함하는 감광성 수지 조성물, 그것을 사용한 패턴 경화막의 제조 방법 및 반도체 장치 |
WO2014097595A1 (ja) * | 2012-12-21 | 2014-06-26 | 日立化成デュポンマイクロシステムズ株式会社 | 感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び半導体装置 |
JP2015187676A (ja) * | 2014-03-27 | 2015-10-29 | 東レ株式会社 | ポジ型感光性樹脂組成物の熱処理方法 |
TWI535768B (zh) | 2014-07-18 | 2016-06-01 | 長興材料工業股份有限公司 | 含溶劑之乾膜及其用途 |
JP6427383B2 (ja) * | 2014-10-21 | 2018-11-21 | 旭化成株式会社 | 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置 |
TWI625232B (zh) * | 2016-02-26 | 2018-06-01 | Fujifilm Corp | 積層體、積層體的製造方法、半導體元件以及半導體元件的製造方法 |
JP6487875B2 (ja) * | 2016-04-19 | 2019-03-20 | 信越化学工業株式会社 | テトラカルボン酸ジエステル化合物、ポリイミド前駆体の重合体及びその製造方法、ネガ型感光性樹脂組成物、ポジ型感光性樹脂組成物、パターン形成方法、及び硬化被膜形成方法 |
-
2017
- 2017-08-17 KR KR1020247015445A patent/KR20240070713A/ko active Pending
- 2017-08-17 KR KR1020187011096A patent/KR20180055875A/ko not_active Ceased
- 2017-08-17 KR KR1020227001844A patent/KR102667025B1/ko active Active
- 2017-08-17 WO PCT/JP2017/029554 patent/WO2018037997A1/ja active Application Filing
- 2017-08-17 JP JP2018517451A patent/JP6368066B2/ja active Active
- 2017-08-17 US US16/062,229 patent/US11163234B2/en active Active
- 2017-08-17 KR KR1020217018795A patent/KR102354532B1/ko active Active
- 2017-08-17 CN CN201780004863.8A patent/CN108475020A/zh active Pending
- 2017-08-17 CN CN202211288409.9A patent/CN115755526A/zh active Pending
- 2017-08-17 KR KR1020217003557A patent/KR102268692B1/ko active Active
- 2017-08-22 TW TW106128350A patent/TWI644943B/zh active
- 2017-08-22 TW TW110105895A patent/TWI850529B/zh active
- 2017-08-22 TW TW107124969A patent/TWI716709B/zh active
-
2018
- 2018-07-05 JP JP2018128502A patent/JP6644113B2/ja active Active
- 2018-07-05 JP JP2018128480A patent/JP6797866B2/ja active Active
-
2021
- 2021-09-21 US US17/480,648 patent/US11640112B2/en active Active
-
2023
- 2023-03-21 US US18/124,383 patent/US20230221639A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20220011669A1 (en) | 2022-01-13 |
US20230221639A1 (en) | 2023-07-13 |
JP6368066B2 (ja) | 2018-08-01 |
KR20240070713A (ko) | 2024-05-21 |
KR20210076219A (ko) | 2021-06-23 |
TWI716709B (zh) | 2021-01-21 |
KR20220013011A (ko) | 2022-02-04 |
TW201835159A (zh) | 2018-10-01 |
TWI644943B (zh) | 2018-12-21 |
TWI850529B (zh) | 2024-08-01 |
US20180373147A1 (en) | 2018-12-27 |
KR102354532B1 (ko) | 2022-02-08 |
JPWO2018037997A1 (ja) | 2018-09-13 |
CN108475020A (zh) | 2018-08-31 |
KR20210018522A (ko) | 2021-02-17 |
JP6797866B2 (ja) | 2020-12-09 |
CN115755526A (zh) | 2023-03-07 |
KR102667025B1 (ko) | 2024-05-17 |
US11640112B2 (en) | 2023-05-02 |
TW201815889A (zh) | 2018-05-01 |
KR102268692B1 (ko) | 2021-06-23 |
TW202136376A (zh) | 2021-10-01 |
US11163234B2 (en) | 2021-11-02 |
KR20180055875A (ko) | 2018-05-25 |
WO2018037997A1 (ja) | 2018-03-01 |
JP2018200470A (ja) | 2018-12-20 |
JP2018169627A (ja) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6644113B2 (ja) | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 | |
JP6419383B1 (ja) | 感光性樹脂組成物、ポリイミドの製造方法および半導体装置 | |
JP7210588B2 (ja) | ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法 | |
JP7604571B2 (ja) | 感光性樹脂組成物、硬化レリーフパターンの製造方法 | |
KR20120023545A (ko) | 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법 및 반도체 장치 | |
TWI769680B (zh) | 負型感光性樹脂組合物及硬化浮凸圖案之製造方法 | |
KR102456730B1 (ko) | 네거티브형 감광성 수지 조성물, 폴리이미드의 제조 방법 및 경화 릴리프 패턴의 제조 방법 | |
JP6643824B2 (ja) | 感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置 | |
TWI877479B (zh) | 負型感光性樹脂組合物 | |
JP2023158657A (ja) | ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法 | |
JP2023160771A (ja) | 感光性樹脂組成物及び硬化レリーフパターンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6644113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |