JP6624631B2 - Lithium transition metal composite oxide and method for producing the same - Google Patents
Lithium transition metal composite oxide and method for producing the same Download PDFInfo
- Publication number
- JP6624631B2 JP6624631B2 JP2015164555A JP2015164555A JP6624631B2 JP 6624631 B2 JP6624631 B2 JP 6624631B2 JP 2015164555 A JP2015164555 A JP 2015164555A JP 2015164555 A JP2015164555 A JP 2015164555A JP 6624631 B2 JP6624631 B2 JP 6624631B2
- Authority
- JP
- Japan
- Prior art keywords
- transition metal
- metal composite
- composite oxide
- lithium
- lithium transition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、二次電池用正極活物質として、高温サイクルにともなう抵抗上昇を抑え、放電容量及び放電電圧の低下が小さい、リチウム遷移金属複合酸化物及びその製造方法に関する。 The present invention relates to a lithium transition metal composite oxide as a positive electrode active material for a secondary battery, which suppresses a rise in resistance due to a high-temperature cycle and has a small decrease in discharge capacity and discharge voltage, and a method for producing the same.
リチウムイオン二次電池は起電力やエネルギー密度の点で優れており、小型ビデオカメラ、携帯電話、ノートパソコンなどの携帯電子・通信機器用の電池として広く使用されている。近年では携帯用の電子機器のみならず自動車用、蓄電設備などの移動体・大型向け電源としても注目されてきており、これらの分野向けの開発も活発に進められてきている。 Lithium ion secondary batteries are excellent in terms of electromotive force and energy density, and are widely used as batteries for portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. In recent years, attention has been paid not only to portable electronic devices but also to power sources for mobile and large-sized vehicles such as automobiles and power storage facilities, and developments in these fields have been actively promoted.
リチウム二次電池用の正極活物質としては、コバルト酸リチウム(LiCoO2)が広く利用されているが、主原料であるコバルトが高価である上に資源の枯渇等による供給不安が指摘されている。これに対して、リチウム遷移金属複合酸化物(化学式:Li1+xNiyCozMn1−x−y−zO2)はコバルトの使用量が少なく、代替となるニッケル、マンガンは資源が比較的豊富である上に経済性の面からも有利であり、その将来性が期待されている。 As a positive electrode active material for a lithium secondary battery, lithium cobalt oxide (LiCoO 2 ) is widely used. However, cobalt, which is a main raw material, is expensive and supply insecurity due to depletion of resources has been pointed out. . On the other hand, the lithium transition metal composite oxide (chemical formula: Li 1 + x Ni y Co z Mn 1-x-y-z O 2 ) uses a small amount of cobalt, and nickel and manganese as alternatives have relatively few resources. It is abundant and economically advantageous, and its potential is expected.
しかし、ニッケルを多く含むリチウム遷移金属複合酸化物を正極活物質として用いた場合、コバルト酸リチウムに比べ結晶構造が不安定であるため、充放電サイクルに伴う容量低下が大きいことが問題とされている。 However, when a lithium-transition metal composite oxide containing a large amount of nickel is used as the positive electrode active material, the crystal structure is unstable as compared with lithium cobalt oxide. I have.
このような欠点を解決するために、様々な提案がなされている。 Various proposals have been made to solve such drawbacks.
例えば特許文献1には充放電時における界面抵抗の低減、及びその効果による放電容量の向上、レート特性、サイクル特性の向上を目的として、リチウム遷移金属複合酸化物の粒子表面をaLi2O−ZrO2(0.1≦a≦2.0)の組成の被覆材にて被覆した、一般式:Li1−x−y−zNixCoyAlzO2またはLi1−x−y−zNixCoyMnzO2(0<x<1、0<y<1、0<z<1)で表されるリチウム遷移金属複合酸化物が提案されている。 For example, Patent Literature 1 discloses that a particle surface of a lithium transition metal composite oxide is made of aLi 2 O—ZrO for the purpose of reducing interface resistance during charge and discharge and improving discharge capacity, rate characteristics, and cycle characteristics by the effect. 2 coated with a coating material having a composition of (0.1 ≦ a ≦ 2.0): Li 1-x-y-z Ni x Co y Al z O 2 or Li 1-x-y-z Ni x Co y Mn z O 2 (0 <x <1,0 <y <1,0 <z <1) lithium transition metal composite oxide represented by have been proposed.
また特許文献2では、サイクル特性や経年寿命を向上させることができる電池用正極活物質として、LixMOy(式中のMは、Co、Ni、Mn、Al、Mgの少なくとも一種を含む)で表されるリチウム遷移金属複合酸化物に酸化ジルコニウム粒子をメカノケミカル法によりリチウム含有複合酸化物の表面に形成、被覆層を構成することが提案されている。 In Patent Document 2, Li x MO y (M in the formula includes at least one of Co, Ni, Mn, Al, and Mg) as a positive electrode active material for a battery capable of improving cycle characteristics and aging life. It has been proposed to form zirconium oxide particles on the surface of a lithium-containing composite oxide by a mechanochemical method on a lithium transition metal composite oxide represented by the formula (1) to form a coating layer.
さらに、正極活物質の表面を酸化ジルコニウムで被覆する手段として、特許文献3には、リチウム及び遷移金属からなる複合酸化物にジルコニウムイソプロポキシドを加水分解・重合反応をさせたジルコニアゾル水溶液を噴霧法で被覆し、加熱処理する方法が提案されている。 Further, as means for coating the surface of the positive electrode active material with zirconium oxide, Patent Literature 3 discloses spraying a zirconia sol aqueous solution obtained by hydrolyzing and polymerizing zirconium isopropoxide on a composite oxide composed of lithium and a transition metal. There is proposed a method of coating with a method and performing a heat treatment.
特許文献4には、酸化ジルコニウムを添加することで、一部が主成分である遷移金属に固溶し、正極活物質の結晶内部でのLiの拡散が容易となるため、低温での出力特性が向上することが提案されている。 Patent Document 4 discloses that, by adding zirconium oxide, a part of the solid solution is dissolved in a transition metal as a main component, and the diffusion of Li in the crystal of the positive electrode active material is facilitated. It has been proposed that this be improved.
これらの製造方法によって得られたリチウム遷移金属複合酸化物は、充電容量および放電容量がともに高く、サイクル特性・出力特性も改善されている。しかしながら、いずれの文献においても添加するジルコニウム化合物については使用原料名のみの表記で、粒子形態については言及されていない。 The lithium transition metal composite oxide obtained by these production methods has both high charge capacity and high discharge capacity and improved cycle characteristics and output characteristics. However, in any of the documents, the zirconium compound to be added is expressed only by the name of the raw material used, and does not mention the particle form.
本発明では、上記問題点に鑑みてなされたものであり、二次電池の高温サイクルにともなう抵抗上昇を抑え、放電容量及び放電電圧の低下が小さい二次電池用正極活物質としてのリチウム遷移金属複合酸化物及びその製造方法を提供することを目的とする。また、本発明では、低コストで量産性に優れたリチウム遷移金属複合酸化物の製造方法を提供することをも目的とする。 The present invention has been made in view of the above-described problems, and suppresses a rise in resistance due to a high-temperature cycle of a secondary battery, and has a small decrease in discharge capacity and discharge voltage. An object is to provide a composite oxide and a method for producing the same. Another object of the present invention is to provide a method for producing a lithium transition metal composite oxide which is low in cost and excellent in mass productivity.
本発明者は、上記課題を解決すべく、種々検討し、リチウム遷移金属複合酸化物に比表面積が30〜90m2/gの酸化ジルコニウムを混合、焼成しジルコニウム化合物を付着させることが、二次電池の高温サイクルにともなう抵抗上昇を抑え、放電容量及び放電電圧の低下を抑制するのに極めて効果的であることを見出し、本発明を完成した。 The present inventor has studied variously to solve the above-mentioned problems, and it has been found that mixing and firing zirconium oxide having a specific surface area of 30 to 90 m 2 / g to a lithium transition metal composite oxide to attach a zirconium compound is secondary. The present inventors have found that the present invention is extremely effective in suppressing a rise in resistance due to a high-temperature cycle of a battery and suppressing a decrease in discharge capacity and discharge voltage, and completed the present invention.
本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
(1)化学組成が一般式Li1+xNiyCozMn1−x−y−z−wMwO2で表され、ここで、MはAl,Mg,W及びZrから選ばれた1種又は2種以上の金属元素であり、xは−0.05≦x≦0.05、yは0.3≦y<0.9、zは0.05≦z≦0.35、wは0≦w≦0.1の範囲をとるリチウム遷移金属複合酸化物に比表面積が30〜90m2/gの酸化ジルコニウムが、前記リチウム遷移金属複合酸化物の粒子の表面に0.1〜1.0質量%付着した複合粒子からなる、最大粒子径が50μm以下であることを特徴とするリチウム遷移金属複合酸化物。 (1) chemical composition represented by the general formula Li 1 + x Ni y Co z Mn 1-x-y-z-w M w O 2, wherein one M is selected from Al, Mg, W and Zr Or two or more metal elements, x is −0.05 ≦ x ≦ 0.05, y is 0.3 ≦ y <0.9, z is 0.05 ≦ z ≦ 0.35, and w is 0 Zirconium oxide having a specific surface area of 30 to 90 m 2 / g is added to the surface of the particles of the lithium transition metal composite oxide in the range of ≦ w ≦ 0.1. A lithium transition metal composite oxide comprising a composite particle adhered by mass% and having a maximum particle diameter of 50 μm or less.
(2)リチウム塩及び遷移金属複合水酸化物と同時に、または順に比表面積が30〜90m2/gの酸化ジルコニウムを乾式で混合し、ついで焼成温度が500℃以上700℃以下に保持される第一の焼成工程と、前記第一の焼成工程から焼成温度を下げずに引き続き行われ、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程または前記第一の焼成工程から焼成温度を一旦室温まで下げた後、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程により焼成することを特徴とする上記(1)に記載のリチウム遷移金属複合酸化物の製造方法。 (2) Zirconium oxide having a specific surface area of 30 to 90 m 2 / g is mixed with a lithium salt and a transition metal composite hydroxide simultaneously or sequentially in a dry manner, and then the calcination temperature is kept at 500 ° C or more and 700 ° C or less. The first baking step and the baking step are performed continuously without lowering the baking temperature from the first baking step, and the baking temperature is maintained at 700 ° C. or more and 1000 ° C. or less. The method for producing a lithium-transition metal composite oxide according to the above (1), wherein the temperature is once lowered to room temperature and then fired in a second firing step in which the firing temperature is kept at 700 ° C. or more and 1000 ° C. or less. Method.
(3) 前記リチウム塩及び遷移金属複合水酸化物と同時に、または順に混合する前記酸化ジルコニウムの添加量がリチウム遷移金属複合酸化物の0.1〜1.0質量%であることを特徴とする上記(2)に記載のリチウム遷移金属複合酸化物の製造方法。
(3) The addition amount of the zirconium oxide mixed with the lithium salt and the transition metal composite hydroxide simultaneously or sequentially is 0.1 to 1.0% by mass of the lithium transition metal composite oxide. The method for producing a lithium transition metal composite oxide according to the above (2).
(4) 前記一般式Li1+xNiyCozMn1−x−y−z−wMwO2で表されるリチウム遷移金属複合酸化物となるように、リチウム塩及び遷移金属複合化合物を混合し、ここで同時に、または順に比表面積が30〜90m2/gの酸化ジルコニウム粒子を混合して、混合粉を焼成させることにより前記リチウム遷移金属複合酸化物の表面に酸化ジルコニウムが付着した複合粒子にすることを特徴とする上記(2)または(3)に記載のリチウム遷移金属複合酸化物の製造方法。 (4) mixing said general formula Li 1 + x Ni y Co z Mn 1-x-y-z-w M w O 2 expressed as a lithium transition metal composite oxides, the lithium salt and transition metal complex compound Here, simultaneously or sequentially, zirconium oxide particles having a specific surface area of 30 to 90 m 2 / g are mixed, and the mixed powder is calcined, whereby zirconium oxide is attached to the surface of the lithium transition metal composite oxide. The method for producing a lithium transition metal composite oxide according to the above (2) or (3), wherein
本発明により、リチウム遷移金属複合酸化物の表面に比表面積が30〜90m2/gの酸化ジルコニウムを付着させることで、リチウム遷移金属複合酸化物を高温環境下に置いたときの充放電サイクルに伴う抵抗上昇を抑え、放電容量及び放電電圧の低下抑制が可能になる効果を奏する。この効果が得られるはっきりとした理由は不明であるが、リチウム遷移金属複合酸化物に比表面積の大きい酸化ジルコニウム微粉を付着させることで必要以上のリチウムの脱挿入によるNiの価数変化を抑制し、結晶構造が崩れにくくなり、放電サイクルに伴う抵抗上昇を抑え、放電容量及び放電電圧の低下を抑えるものと推定される。 According to the present invention, by depositing zirconium oxide having a specific surface area of 30 to 90 m 2 / g on the surface of a lithium transition metal composite oxide, a charge / discharge cycle when the lithium transition metal composite oxide is placed in a high-temperature environment is obtained. This has the effect of suppressing the increase in resistance and suppressing the decrease in discharge capacity and discharge voltage. It is not clear why this effect can be obtained, but by attaching zirconium oxide fine powder having a large specific surface area to the lithium transition metal composite oxide, it is possible to suppress a change in the valency of Ni due to excessive insertion and extraction of lithium. In addition, it is presumed that the crystal structure is less likely to collapse, the resistance increase due to the discharge cycle is suppressed, and the decrease in the discharge capacity and discharge voltage is suppressed.
以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明者は、二次電池用正極活物質としてのリチウム遷移金属複合酸化物粒子に、比表面積が30〜90m2/gの酸化ジルコニウムを付着させると、高温サイクルにともなう二次電池の抵抗上昇が小さく、放電容量及び放電電圧の低下が抑制され、極めて効果的であることを見出し、本発明を完成した。 The inventors of the present invention have found that when zirconium oxide having a specific surface area of 30 to 90 m 2 / g is attached to lithium transition metal composite oxide particles as a positive electrode active material for a secondary battery, the resistance of the secondary battery increases with high temperature cycling. , The reduction in discharge capacity and discharge voltage was suppressed, and it was found to be extremely effective. Thus, the present invention was completed.
本発明で好適に用いることができるリチウム遷移金属複合酸化物は、化学組成が一般式Li1+xNiyCozMn1−x−y−z−wMwO2で表され、ここで、MはAl,Mg,W及びZrから選ばれた1種又は2種以上の金属元素であり、xは−0.05≦x≦0.05、yは0.3≦y<0.9、zは0.05≦z≦0.35、wは0≦w≦0.1の範囲をとるリチウム遷移金属複合酸化物である。 Lithium transition metal complex oxide can be suitably used in the present invention, the chemical composition is represented by the general formula Li 1 + x Ni y Co z Mn 1-x-y-z-w M w O 2, where, M Is one or more metal elements selected from Al, Mg, W and Zr, x is −0.05 ≦ x ≦ 0.05, y is 0.3 ≦ y <0.9, z Is a lithium transition metal composite oxide in the range of 0.05 ≦ z ≦ 0.35 and w is in the range of 0 ≦ w ≦ 0.1.
また、ここで、−0.05≦x≦0.05としたのは、x<−0.05では、Li層に入るNiが多くなり、リチウム遷移金属複合酸化物の放電容量が小さくなるためであり、x>0.05では、過剰なLiが遷移金属層に入り、Ni価数を高め、放電容量の低下を引き起こす原因となるためで、0.3≦y<0.9としたのは、Ni価数変化を用いた正極材料であるためで、0.05≦z≦0.35としたのは、結晶構造安定化のためにNi量に応じた必要量としたものである。 In addition, the reason for setting -0.05 ≦ x ≦ 0.05 is that when x <−0.05, Ni in the Li layer increases, and the discharge capacity of the lithium transition metal composite oxide decreases. When x> 0.05, the excess Li enters the transition metal layer, increases the Ni valence, and causes a decrease in discharge capacity. Is a positive electrode material using a change in the valence of Ni, and the reason why 0.05 ≦ z ≦ 0.35 is that a necessary amount corresponding to the amount of Ni for stabilizing the crystal structure.
上記リチウム遷移金属複合酸化物Li1+xNiyCozMn1−x−y−z−wMwO2におけるMは、高温特性の改善に効果があるものとして選択され、Al,Mg,W及びZrから選ばれた1種又は2種以上の金属元素であり、wは0≦w≦0.1の範囲が好ましい。w≧0.1とした場合、放電容量が低下し好ましくない。 M in the lithium transition metal composite oxide Li 1 + x Ni y Co z Mn 1-x-y-z-w M w O 2 is selected as having an effect on improvement of high-temperature characteristics, and Al, Mg, W, and One or two or more metal elements selected from Zr, and w is preferably in a range of 0 ≦ w ≦ 0.1. When w ≧ 0.1, the discharge capacity decreases, which is not preferable.
本発明のリチウム遷移金属複合酸化物は、上記リチウム遷移金属複合酸化物の粒子の表面に、比表面積が30〜90m2/gの酸化ジルコニウムが0.1〜1.0質量%付着した複合粒子からなり、最大粒子径が50μm以下であることを特徴とする。 The lithium transition metal composite oxide of the present invention is a composite particle in which 0.1 to 1.0% by mass of zirconium oxide having a specific surface area of 30 to 90 m 2 / g adheres to the surface of the lithium transition metal composite oxide particle. And a maximum particle size of 50 μm or less.
酸化ジルコニウムの比表面積を30〜90m2/gとするのは、比表面積が30m2/gより小さいと、酸化ジルコニウムの粒子数が少なく、リチウム遷移金属複合酸化物との接触面が小さくなるため、リチウム遷移金属複合酸化物粒子表面への均一な付着が困難になる。一方、90m2/gより大きい場合では遷移金属複合化合物やリチウム塩との混合前に酸化ジルコニウム同士が凝集してしまい、リチウム遷移金属複合酸化物の粒子表面への均一な付着が困難になる問題を生ずるからである。なお酸化ジルコニウムの比表面積の測定にはマウンテック社のMacsorb HM model−1208を使用した。 To a specific surface area of the zirconium oxide and 30~90m 2 / g has a specific surface area of 30 m 2 / g less, small number of particles of zirconium oxide, since the contact surface with the lithium-transition metal composite oxide is reduced This makes uniform adhesion to the surface of the lithium transition metal composite oxide particles difficult. On the other hand, if it is larger than 90 m 2 / g, zirconium oxides will aggregate before mixing with the transition metal composite compound or lithium salt, making it difficult to uniformly attach the lithium transition metal composite oxide to the particle surface. This is because The specific surface area of zirconium oxide was measured using Macsorb HM model-1208 manufactured by Mountech.
酸化ジルコニウムが0.1〜1.0質量%付着した複合粒子とするのは、付着量が0.1質量%より小さいと、二次電池を高温環境下に置いたときの充放電サイクルに伴う抵抗上昇の抑制、放電容量及び放電電圧の低下抑制効果が見られない。下限を0.1質量%とするが、0.2質量%以上がより好ましい。一方、付着量が1.0質量%を超えて大きい場合、初期容量・充放電効率が低下してしまう問題を生ずる。そのため0.1〜1.0質量%とする。 The reason why the composite particles to which 0.1 to 1.0% by mass of zirconium oxide is adhered is that when the amount of adhesion is smaller than 0.1% by mass, the secondary battery is accompanied by a charge / discharge cycle when the battery is placed in a high-temperature environment. No effect of suppressing a rise in resistance and suppressing a decrease in discharge capacity and discharge voltage is observed. The lower limit is set to 0.1% by mass, but more preferably 0.2% by mass or more. On the other hand, if the adhesion amount is larger than 1.0 mass%, that may arise from the problem of initial capacity and charge and discharge efficiency is lowered. And 0.1 to 1.0 mass% for it.
次に、本発明のリチウム遷移金属複合酸化物の製造方法について説明する。 Next, a method for producing the lithium transition metal composite oxide of the present invention will be described.
本発明に係るリチウム遷移金属複合酸化物の製造方法は、一般式Li1+xNiyCozMn1−x−y−z−wMwO2で表されるリチウム遷移金属複合酸化物となるように、リチウム塩及び遷移金属複合化合物を混合し、ここで同時に、または順に比表面積が30〜90m2/gの酸化ジルコニウム粒子を乾式で混合する段階と、ついで焼成温度が500℃以上700℃以下に保持される第一の焼成工程と、前記第一の焼成工程から焼成温度を下げずに引き続き行われ、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程または前記第一の焼成工程から焼成温度を一旦室温まで下げた後、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程を行う工程とを、順次行うことを特徴とする。 The method for producing a lithium transition metal composite oxide according to the present invention is such that a lithium transition metal composite oxide represented by the general formula Li 1 + x Ni y Co z Mn 1-x-y-z-w M w O 2 is obtained. , A lithium salt and a transition metal composite compound are mixed, and simultaneously or sequentially, zirconium oxide particles having a specific surface area of 30 to 90 m 2 / g are dry-mixed, and then the calcination temperature is 500 ° C or higher and 700 ° C or lower. A first baking step, which is carried out without lowering the baking temperature from the first baking step, and a baking step, wherein the baking temperature is kept at 700 ° C. or more and 1000 ° C. or less. And a step of performing a second baking step in which the baking temperature is kept at 700 ° C. or more and 1000 ° C. or less after the baking temperature is once lowered to room temperature from the baking step.
一般式Li1+xNiyCozMn1−x−y−z−wMwO2で表されるリチウム遷移金属複合酸化物とするには、まず遷移金属複合化合物を準備する。その際、化学組成が一般式:NiyCozMn1−y−z−wMw(OH)2で表される遷移金属複合水酸化物が特に好適である。上記一般式から明らかなように、典型的なリチウム遷移金属複合酸化物(化学式:Li1+xNiyCozMn1−x−y−zO2)の遷移金属に対してLiをやや過剰に含むものも含まれる。 To the general formula Li 1 + x Ni y Co z Mn 1-x-y-z-w lithium transition metal composite oxide represented by M w O 2 is first prepared a transition metal complex compound. At that time, the chemical composition formula: Ni y Co z Mn 1- y-z-w M w (OH) a transition metal complex hydroxide represented by 2 is particularly preferred. As is apparent from the above general formula, Li is contained in a slightly excessive amount with respect to a transition metal of a typical lithium transition metal composite oxide (chemical formula: Li 1 + x Ni y Co z Mn 1-x-y-z O 2 ). Things are also included.
用いるリチウム塩としては特に指定はないが炭酸リチウム、水酸化リチウムが好ましい。y<0.6においては炭酸リチウムが好適であり、yが0.6以上では水酸化リチウムが適している。また、リチウム塩の粒径は、遷移金属複合化合物との反応性を考慮すると、平均粒子径で10μm以下が好ましい。 Although the lithium salt to be used is not particularly specified, lithium carbonate and lithium hydroxide are preferable. When y <0.6, lithium carbonate is suitable, and when y is 0.6 or more, lithium hydroxide is suitable. The average particle diameter of the lithium salt is preferably 10 μm or less in consideration of the reactivity with the transition metal composite compound.
酸化ジルコニウムは、リチウム遷移金属複合酸化物に対し、0.1〜1.0質量%添加混合する。添加量が0.1質量%より小さいと、二次電池を高温環境下に置いたときの充放電サイクルに伴う抵抗上昇の抑制、放電容量及び放電電圧の低下抑制効果が見られない。一方、1.0質量%を超えて大きい場合は初期容量・充放電効率が低下してしまう問題を生ずる。 Zirconium oxide is added and mixed in an amount of 0.1 to 1.0% by mass with respect to the lithium transition metal composite oxide. When the addition amount is less than 0.1% by mass, the effect of suppressing the increase in resistance and the effect of suppressing the decrease in discharge capacity and discharge voltage due to charge / discharge cycles when the secondary battery is placed in a high-temperature environment are not seen. On the other hand, when it is larger than 1.0% by mass, there arises a problem that the initial capacity / charge / discharge efficiency is reduced.
混合工程に引き続いて焼成工程を行うが、焼成工程は、焼成温度が500℃以上700℃以下に保持される第一の焼成工程と、前記第一の焼成工程から焼成温度を下げずに引き続き行われ、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程または前記第一の焼成工程から焼成温度を一旦室温まで下げた後、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程を行う。 The firing step is performed subsequent to the mixing step. The firing step includes a first firing step in which the firing temperature is maintained at 500 ° C. or higher and 700 ° C. or lower, and a continuous firing step without lowering the firing temperature from the first firing step. After the firing temperature is temporarily reduced to room temperature from the second firing step or the first firing step in which the firing temperature is maintained at 700 ° C or higher and 1000 ° C or lower, the firing temperature is maintained at 700 ° C or higher and 1000 ° C or lower. A second firing step is performed.
第一の焼成工程では500〜700℃で2〜10時間焼成する。500〜700℃とするのはLi塩と遷移金属複合化合物の反応がこの温度域で起こる為である。 In the first firing step, firing is performed at 500 to 700 ° C. for 2 to 10 hours. The reason for setting the temperature to 500 to 700 ° C. is that the reaction between the Li salt and the transition metal composite compound occurs in this temperature range.
第二の焼成工程では反応促進のため第一の焼成工程より高い700〜1000℃で5〜30時間焼成する。1000℃以上では一次粒子の成長や粒子同士の焼結が進み好ましくない。700℃未満では一次粒子が十分に成長せず、結晶性が低くなる。また目的の組成が得られなくなるため好ましくない。 In the second firing step, firing is performed at 700 to 1000 ° C., which is higher than that in the first firing step, for 5 to 30 hours to promote the reaction. If the temperature is higher than 1000 ° C., the growth of primary particles and the sintering of the particles progress, which is not preferable. If the temperature is lower than 700 ° C., the primary particles do not grow sufficiently, and the crystallinity becomes low. In addition, the desired composition cannot be obtained, which is not preferable.
好適な焼成時間は温度との組み合わせで一概には定まらないが第一の焼成工程では2〜10時間が好ましく、第二の焼成工程では5〜30時間が好ましい。 A suitable baking time is not generally determined by a combination with the temperature, but is preferably 2 to 10 hours in the first baking step and 5 to 30 hours in the second baking step.
合成(焼成)されたリチウム遷移金属複合酸化物は、最大粒子径が50μm以下に粒度調整する。最大粒子径が50μmを超えると、粒子のばらつきが大きくなり、充放電中に熱が発生しやすくなり劣化してしまう問題を生ずる。なお、粒度調整手段は、特に問うことなく、例えば、ロールミル、ジェットミル、フルイ等を用いることができる。 The lithium transition metal composite oxide synthesized (calcined) is adjusted to a maximum particle size of 50 μm or less. If the maximum particle size exceeds 50 μm, the dispersion of the particles becomes large, and heat is easily generated during charge / discharge, which causes a problem of deterioration. The particle size adjusting means may be, for example, a roll mill, a jet mill, a sieve, or the like without any particular limitation.
本発明に係る上記リチウム遷移金属複合酸化物を正極活物質として使用する場合にも、通常のリチウム遷移金属複合酸化物と同様、負極活物質には炭素材料、リチウム吸蔵合金等のリチウム吸蔵放出可能な物質を用い、電解液としてはリチウム塩を非水系電解液または樹脂に溶解した非水系電解液を用いる。たとえばリチウム塩として六フッ化リン酸リチウム(LiPF6)を用い、非水系電解液としてエチレンカーボネートとジエチルカーボネートの混合溶液を用いる。このほかにもリチウム塩としてはLiClO4、LiAsF6、LiBF4、LiSO3CF3、LiN(SO3CF3)2などやそれらの混合物が用いられる。また、非水電解液としてはジエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等やその混合物、及びポリエチレンイミン等を主鎖とした高いイオン伝導性を有する高分子固体電解質(樹脂)等を用いることが可能である。 When the lithium transition metal composite oxide according to the present invention is used as a positive electrode active material, as in the case of a normal lithium transition metal composite oxide, the negative electrode active material can store and release lithium such as a carbon material and a lithium storage alloy. A nonaqueous electrolytic solution in which a lithium salt is dissolved in a resin or a resin is used as the electrolytic solution. For example, lithium hexafluorophosphate (LiPF6) is used as a lithium salt, and a mixed solution of ethylene carbonate and diethyl carbonate is used as a non-aqueous electrolyte. In addition, as the lithium salt, LiClO 4 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , LiN (SO 3 CF 3 ) 2 , and a mixture thereof are used. In addition, as the non-aqueous electrolyte, it is possible to use diethyl carbonate, propylene carbonate, vinylene carbonate and the like, a mixture thereof, and a polymer solid electrolyte (resin) having a high ionic conductivity having polyethyleneimine or the like as a main chain. is there.
以下本発明を実施例比較例により説明する。なお、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples. The present invention is not limited to the embodiments.
(実施例1)
化学式Li1.02Ni0.49Co0.20Mn0.29O2となるよう調整した炭酸リチウム、遷移金属複合化合物(化学式:Ni0.5Co0.2Mn0.3(OH)2)に、比表面積が60m2/gの酸化ジルコニウムをリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合、その後、650℃で3時間、引き続き870℃で8時間焼成し酸化ジルコニウムが付着したリチウム遷移金属複合酸化物を合成した。得られたリチウム遷移金属複合酸化物を、最大粒子径が50μm以下になるように解砕し、実施例1活物質を作製した。
(Example 1)
Formula Li 1.02 Ni 0.49 Co 0.20 Mn 0.29 O 2 and comprising as adjusted lithium carbonate, a transition metal complex compound (Formula: Ni 0.5 Co 0.2 Mn 0.3 ( OH) 2 ), Zirconium oxide having a specific surface area of 60 m 2 / g was added to the lithium transition metal composite oxide in a ratio of 0.5% by mass, and dry-mixed with a precision mixer, and then at 650 ° C. for 3 hours. Subsequently, the mixture was calcined at 870 ° C. for 8 hours to synthesize a lithium transition metal composite oxide to which zirconium oxide was attached. The obtained lithium transition metal composite oxide was pulverized so that the maximum particle diameter became 50 μm or less, to prepare an active material of Example 1.
(電池作製)
得られた実施例1活物質を用い、導電材としてアセチレンブラック、結着剤としてクレハ株式会社製KFポリマー#1120をそれぞれ用い、活物質:導電材:結着材の比を90:6:4(質量比)で混練し、正極スラリーを作製した。このスラリーをアルミニウム製の集電体にドクターブレード法により塗布し、乾燥後、直径11mm、厚さ0.3mmの円盤状に打ち抜き、正極を作製した。それを圧力20MPaで加圧成形し、120℃で8時間の減圧乾燥を行い、正極板とした。負極には厚さ0.21mmの金属リチウムを約15mm四方に切り抜いたものを使用し、電解液にはエチレンカーボネートとジエチルカーボネート体積比3:7の混合溶媒に溶質LiPF6を1モルの割合で溶解したものを使用し、セパレータには多孔質ポリプロピレン膜を用い、直径20mm、高さ3.2mmのCR2032タイプ(宝泉株式会社製の部品キャップ、ケース、ガスケット、スペーサ、及びウェーブワッシャーを使用)のコイン型リチウム二次電池を作製した。
(Battery fabrication)
Using the obtained active material of Example 1, acetylene black as a conductive material and KF polymer # 1120 manufactured by Kureha Corporation as a binder were used, and the ratio of active material: conductive material: binder was 90: 6: 4. (Mass ratio) to prepare a positive electrode slurry. The slurry was applied to a collector made of aluminum by a doctor blade method, dried, and then punched into a disk having a diameter of 11 mm and a thickness of 0.3 mm to produce a positive electrode. It was molded under pressure at a pressure of 20 MPa, and dried under reduced pressure at 120 ° C. for 8 hours to obtain a positive electrode plate. For the negative electrode, 0.21 mm-thick metal lithium cut out to about 15 mm square is used. For the electrolytic solution, 1 mol of solute LiPF6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7. Using a porous polypropylene membrane for the separator, a CR2032 type with a diameter of 20 mm and a height of 3.2 mm (using a component cap, case, gasket, spacer, and wave washer manufactured by Hosen Co., Ltd.) A coin-type lithium secondary battery was manufactured.
作製したコイン型リチウム二次電池を、まず25℃の恒温槽内にて、初回充電容量・初回充放電効率を測定した。充電は、レート35mA/g、上限4.25V定電流定電圧で電流が2mA/gとなった時点で充電を終了した。放電は、レート35mA/g、放電下限電圧3.0Vとした。初回充放電効率とは、初回の放電容量を初回充電容量で除算した割合(%)で算出した。 First, the initial charge capacity and initial charge / discharge efficiency of the manufactured coin-type lithium secondary battery were measured in a constant temperature bath at 25 ° C. The charging was terminated when the current reached 2 mA / g at a constant rate of 35 mA / g and an upper limit of 4.25 V constant current and constant voltage. The discharge was performed at a rate of 35 mA / g and a discharge lower limit voltage of 3.0 V. The initial charge / discharge efficiency was calculated as a ratio (%) obtained by dividing the initial discharge capacity by the initial charge capacity.
次に、前記初回容量測定後のコイン型リチウム二次電池を45℃の恒温槽内にて、充電と放電電流を80mA/g、電位範囲3.0V〜4.3Vで120回の繰返し充放電試験を行った。初回充電容量・初回充放電効率、120サイクル中の最大放電容量を1サイクル目と設定し、その100サイクル後の放電容量維持率の結果を表1に示す。また、サイクル毎の平均放電電圧について、放電電圧維持率で比較した結果を図3に示す。 Next, the coin-type lithium secondary battery after the initial capacity measurement was repeatedly charged and discharged in a 45 ° C. constant temperature bath at a charging and discharging current of 80 mA / g in a potential range of 3.0 V to 4.3 V 120 times. The test was performed. The initial charge capacity / initial charge / discharge efficiency and the maximum discharge capacity in 120 cycles were set as the first cycle, and the results of the discharge capacity maintenance rate after 100 cycles are shown in Table 1. FIG. 3 shows the results of comparing the average discharge voltage for each cycle with the discharge voltage maintenance ratio.
前記記載のサイクル評価後のコイン型リチウム二次電池を25℃の恒温槽内にてSOC100%まで充電を行い、インピーダンス測定を行った。測定装置として、Bio−Logic社製VSPを使用した。測定条件は振幅を±10mV、周波数を200kHz〜10mHzの範囲で測定した。測定結果を複素平面上にプロットし、コールコールプロットを作成した。その結果を図1に示す。 After the cycle evaluation described above, the coin-type lithium secondary battery was charged to a SOC of 100% in a constant temperature bath at 25 ° C., and the impedance was measured. VSP manufactured by Bio-Logic was used as a measuring device. The measurement conditions were an amplitude of ± 10 mV and a frequency of 200 kHz to 10 mHz. The measurement results were plotted on a complex plane to create a Cole-Cole plot. The result is shown in FIG.
(実施例2)
酸化ジルコニウムとして比表面積が90m 2 /gのものを用いたことを除き、実施例1と同様にして実施例2活物質を作製した。
(Example 2)
Example 2 An active material was prepared in the same manner as in Example 1, except that zirconium oxide having a specific surface area of 90 m 2 / g was used.
コイン型リチウム二次電池を作製し、実施例1と同様に初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。また、サイクル毎の平均放電電圧について、放電電圧維持率で比較した結果を図3に併せて示す。 A coin-type lithium secondary battery was manufactured, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. FIG. 3 also shows the results of comparison of the average discharge voltage for each cycle with the discharge voltage maintenance ratio.
(実施例3)
酸化ジルコニウムとして比表面積が30m 2 /gのものを用いたことを除き、実施例1と同様にして実施例3活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。また、サイクル毎の平均放電電圧について、放電電圧維持率で比較した結果を図3に併せて示す。
(Example 3)
Example 3 An active material of Example 3 was produced in the same manner as in Example 1, except that zirconium oxide having a specific surface area of 30 m 2 / g was used. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG. FIG. 3 also shows the results of comparison of the average discharge voltage for each cycle with the discharge voltage maintenance ratio.
(実施例4)
遷移金属複合化合物として、化学式:Ni0.5Co0.2Mn0.25Al0.05(OH)2を用いたことを除き、実施例1と同様にして実施例4活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Example 4)
Example 4 An active material was produced in the same manner as in Example 1 except that the chemical formula: Ni 0.5 Co 0.2 Mn 0.25 Al 0.05 (OH) 2 was used as the transition metal composite compound. . Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(実施例5)
遷移金属複合化合物として、化学式:Ni0.5Co0.2Mn0.27Mg0.03(OH)2を用いたことを除き、実施例1と同様にして実施例5活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Example 5)
Example 5 An active material was prepared in the same manner as in Example 1, except that the chemical formula: Ni 0.5 Co 0.2 Mn 0.27 Mg 0.03 (OH) 2 was used as the transition metal composite compound. . Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(実施例6)
遷移金属複合化合物として、化学式:Ni0.5Co0.2Mn0.29W0.01(OH)2を用いたことを除き、実施例1と同様にして実施例6活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Example 6)
Example 6 An active material was produced in the same manner as in Example 1, except that the chemical formula: Ni 0.5 Co 0.2 Mn 0.29 W 0.01 (OH) 2 was used as the transition metal composite compound. . Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(実施例7)
遷移金属複合化合物として、化学式:Ni0.5Co0.2Mn0.29Zr0.01(OH)2を用いたことを除き、実施例1と同様にして実施例7活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Example 7)
Example 7 An active material was prepared in the same manner as in Example 1, except that the chemical formula: Ni 0.5 Co 0.2 Mn 0.29 Zr 0.01 (OH) 2 was used as the transition metal composite compound. . Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(実施例8)
化学式Li1.01Ni0.33Co0.33Mn0.33O2となるように炭酸リチウム、遷移金属複合化合物(化学式:Ni1/3Co1/3Mn1/3(OH)2)、比表面積が60m2/gの酸化ジルコニウムをリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合を行った。その後、650℃で3時間、引き続き950℃で15時間焼成し酸化ジルコニウムが付着したリチウム遷移金属複合酸化物を合成した。得られたリチウム遷移金属複合酸化物を、最大粒子径が50μm以下になるように解砕し、実施例8の活物質を作製した。
(Example 8)
Lithium carbonate and a transition metal composite compound (chemical formula: Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 ) so that the chemical formula is Li 1.01 Ni 0.33 Co 0.33 Mn 0.33 O 2. Then, zirconium oxide having a specific surface area of 60 m 2 / g was added to the lithium transition metal composite oxide at a ratio of 0.5% by mass, and dry mixing was performed with a precision mixer. Thereafter, the mixture was calcined at 650 ° C. for 3 hours and subsequently at 950 ° C. for 15 hours to synthesize a lithium transition metal composite oxide to which zirconium oxide was attached. The obtained lithium transition metal composite oxide was pulverized so that the maximum particle diameter became 50 μm or less, to produce an active material of Example 8.
同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図2に併せて示す。 Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(実施例9)
化学式Li1.01Ni0.79Co0.1Mn0.1O2となるように水酸化リチウム一水和物、遷移金属複合化合物(化学式:Ni0.8Co0.1Mn0.1(OH)2)、比表面積が60m2/gの酸化ジルコニウムをリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合、その後、酸素フロー中で600℃で5時間、引き続き780℃で20時間焼成し、酸化ジルコニウムが付着したリチウム遷移金属複合酸化物を合成した。得られたリチウム遷移金属複合酸化物を、最大粒子径が50μm以下になるように解砕し、実施例9の活物質を作製した。
(Example 9)
Lithium hydroxide monohydrate, a transition metal composite compound (chemical formula: Ni 0.8 Co 0.1 Mn 0.1 so that the chemical formula is Li 1.01 Ni 0.79 Co 0.1 Mn 0.1 O 2 (OH) 2 ), zirconium oxide having a specific surface area of 60 m 2 / g was added at a ratio of 0.5% by mass with respect to the lithium transition metal composite oxide, and dry-mixed with a precision mixer, followed by oxygen flow. At 600 ° C. for 5 hours and subsequently at 780 ° C. for 20 hours to synthesize a lithium transition metal composite oxide to which zirconium oxide was attached. The obtained lithium transition metal composite oxide was pulverized so that the maximum particle diameter became 50 μm or less, to produce an active material of Example 9.
同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図2に併せて示す。 Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(比較例1)
酸化ジルコニウムを添加しないことを除き、実施例1と同様にして比較例1活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。また、サイクル毎の平均放電電圧について、放電電圧維持率で比較した結果を図3に併せて示す。
(Comparative Example 1)
Comparative Example 1 An active material was produced in the same manner as in Example 1, except that zirconium oxide was not added. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG. FIG. 3 also shows the results of comparison of the average discharge voltage for each cycle with the discharge voltage maintenance ratio.
(比較例2)
酸化ジルコニウムとして比表面積が12m 2 /gのものを用いたことを除き、実施例1と同様にして比較例2活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Comparative Example 2)
Comparative Example 2 An active material was produced in the same manner as in Example 1, except that zirconium oxide having a specific surface area of 12 m 2 / g was used. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
酸化ジルコニウムとして比表面積が120m 2 /gのものを用いたことを除き、実施例1と同様にして比較例3活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。 Comparative Example 3 An active material was produced in the same manner as in Example 1, except that zirconium oxide having a specific surface area of 120 m 2 / g was used. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(比較例4)
酸化ジルコニウムの添加量を0.05質量%にしたことを除き、実施例1と同様にして比較例3活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Comparative Example 4)
Comparative Example 3 An active material was produced in the same manner as in Example 1, except that the addition amount of zirconium oxide was 0.05% by mass. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(比較例5)
酸化ジルコニウムの添加量を1.5質量%にしたことを除き、実施例1と同様にして比較例5活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図1に併せて示す。
(Comparative Example 5)
Comparative Example 5 An active material was produced in the same manner as in Example 1, except that the amount of zirconium oxide added was changed to 1.5% by mass. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(比較例6)
酸化ジルコニウムを添加しないことを除き、実施例8同様にして比較例6活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図2に併せて示す。
(Comparative Example 6)
Comparative Example 6 An active material was produced in the same manner as in Example 8, except that zirconium oxide was not added. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
(比較例7)
酸化ジルコニウムを添加しないことを除き、実施例9同様にして比較例7活物質を作製した。同様にコイン型リチウム二次電池を作製し、初回充電容量・初回充放電効率及び放電容量維持率、インピーダンス測定を実施した。その結果を、表1、図2に併せて示す。
(Comparative Example 7)
Comparative Example 7 An active material was produced in the same manner as in Example 9 except that zirconium oxide was not added. Similarly, a coin-type lithium secondary battery was prepared, and the initial charge capacity / initial charge / discharge efficiency, discharge capacity maintenance ratio, and impedance were measured. The results are shown in Table 1 and FIG.
表1及び図1、図2及び図3から、本件発明により、リチウム遷移金属複合酸化物の最大粒子径が50μm以下になるように制限し、さらに、比表面積が30〜90m2/gの酸化ジルコニウムを前記リチウム遷移金属複合酸化物の表面に付着させることにより、
(1)表1に示す100サイクルの充放電繰り返し後の放電容量維持率が改善され、
(2)図1、2に示すコールコールプロットの2つある半円のうち、拡散移動抵抗の大きさを示す右側の半円が比較例に比べて小さくなっているため本発明の効果が確認出来る。
(3)また、図3に示す実施例の平均放電電圧が、比較例よりも高めで推移しており、放電電圧の低下が抑制できていることが確認できた。
From Table 1 and FIGS. 1, 2 and 3, according to the present invention, the lithium transition metal composite oxide is limited to have a maximum particle diameter of 50 μm or less, and further has an oxidation specific surface area of 30 to 90 m 2 / g. By attaching zirconium to the surface of the lithium transition metal composite oxide,
(1) The discharge capacity retention rate after 100 cycles of charge and discharge shown in Table 1 is improved,
(2) Out of the two semicircles of the Cole-Cole plots shown in FIGS. 1 and 2, the right semicircle indicating the magnitude of the diffusion transfer resistance is smaller than the comparative example, so the effect of the present invention is confirmed. I can do it.
(3) Further, the average discharge voltage of the example shown in FIG. 3 was higher than that of the comparative example, and it was confirmed that the decrease of the discharge voltage was suppressed.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015164555A JP6624631B2 (en) | 2015-08-24 | 2015-08-24 | Lithium transition metal composite oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015164555A JP6624631B2 (en) | 2015-08-24 | 2015-08-24 | Lithium transition metal composite oxide and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017043496A JP2017043496A (en) | 2017-03-02 |
JP2017043496A5 JP2017043496A5 (en) | 2018-10-11 |
JP6624631B2 true JP6624631B2 (en) | 2019-12-25 |
Family
ID=58211231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015164555A Active JP6624631B2 (en) | 2015-08-24 | 2015-08-24 | Lithium transition metal composite oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6624631B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7509513B2 (en) * | 2017-11-21 | 2024-07-02 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for lithium ion secondary battery |
KR102288295B1 (en) * | 2018-06-20 | 2021-08-10 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
KR102288294B1 (en) * | 2018-06-20 | 2021-08-10 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
KR102288293B1 (en) | 2018-06-20 | 2021-08-10 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI263369B (en) * | 2003-09-26 | 2006-10-01 | Lg Chemical Ltd | Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery |
JP5192818B2 (en) * | 2006-03-02 | 2013-05-08 | Agcセイミケミカル株式会社 | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same |
JP4766040B2 (en) * | 2007-12-07 | 2011-09-07 | 日亜化学工業株式会社 | A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same. |
JP6070551B2 (en) * | 2011-06-24 | 2017-02-01 | 旭硝子株式会社 | Method for producing positive electrode active material for lithium ion secondary battery, method for producing positive electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery |
JP2013235666A (en) * | 2012-05-07 | 2013-11-21 | Honda Motor Co Ltd | Positive-electrode active material for batteries and method for manufacturing the same |
FR2994510B1 (en) * | 2012-08-09 | 2014-08-08 | Renault Sa | PROCESS FOR THE PREPARATION OF PARTIALLY SURFACE-PROTECTED ACTIVE MATERIALS FOR LITHIUM BATTERIES |
-
2015
- 2015-08-24 JP JP2015164555A patent/JP6624631B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017043496A (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102553596B1 (en) | Nickel manganese-containing composite hydroxide and method for producing the same | |
KR101746187B1 (en) | Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same | |
KR101345509B1 (en) | Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery | |
KR102437198B1 (en) | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery | |
JP5590337B2 (en) | Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof | |
JP5565465B2 (en) | Nonaqueous electrolyte secondary battery | |
KR100934612B1 (en) | Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode | |
JP2022510983A (en) | Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it | |
CN101809788A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising the same | |
JP4813450B2 (en) | Lithium-containing composite oxide and non-aqueous secondary battery using the same | |
JPWO2012131881A1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP2008153017A (en) | Positive active material for nonaqueous electrolyte secondary battery | |
KR20180059736A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP2015122234A (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, and method for manufacturing the same | |
JP2019512450A (en) | Method of manufacturing lithium secondary battery positive electrode active material and lithium secondary battery positive electrode active material manufactured thereby | |
WO2022134541A1 (en) | Positive electrode material, preparation method therefor, and electrochemical device | |
JP2008115075A5 (en) | ||
CN107534143A (en) | Non-aqueous electrolyte secondary battery positive active material and its manufacture method and the non-aqueous electrolyte secondary battery using the positive active material | |
KR100922685B1 (en) | Cathode Active Material for Lithium Secondary Battery | |
JP6624631B2 (en) | Lithium transition metal composite oxide and method for producing the same | |
JP2006344509A (en) | Lithium secondary battery | |
KR20170076348A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP2014067508A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery | |
JP5109423B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP2017010842A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180830 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20180830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6624631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |