[go: up one dir, main page]

JP6536834B2 - イミドアニオン含有マイエナイト型化合物及びその製造法 - Google Patents

イミドアニオン含有マイエナイト型化合物及びその製造法 Download PDF

Info

Publication number
JP6536834B2
JP6536834B2 JP2016506402A JP2016506402A JP6536834B2 JP 6536834 B2 JP6536834 B2 JP 6536834B2 JP 2016506402 A JP2016506402 A JP 2016506402A JP 2016506402 A JP2016506402 A JP 2016506402A JP 6536834 B2 JP6536834 B2 JP 6536834B2
Authority
JP
Japan
Prior art keywords
type compound
mayenite type
imide anion
cage
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016506402A
Other languages
English (en)
Other versions
JPWO2015133240A1 (ja
Inventor
細野 秀雄
秀雄 細野
文隆 林
文隆 林
壽治 横山
壽治 横山
政明 北野
政明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Tokyo Institute of Technology NUC
Original Assignee
Japan Science and Technology Agency
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Tokyo Institute of Technology NUC filed Critical Japan Science and Technology Agency
Publication of JPWO2015133240A1 publication Critical patent/JPWO2015133240A1/ja
Application granted granted Critical
Publication of JP6536834B2 publication Critical patent/JP6536834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/003Storage or handling of ammonia
    • C01C1/006Storage or handling of ammonia making use of solid ammonia storage materials, e.g. complex ammine salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/164Calcium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/166Strontium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、イミドアニオン(NH2-)を含むマイエナイト型化合物及びこれらの製造方法とその用途に関する。
イミドアニオン(NH2-)を含有する金属イミド、例えば、マグネシウムイミド(MgNH)等は、水素と反応させることにより基本構造を変えることなくマグネシウム水素化物とマグネシウムアミドに変化可能であり、この変化は可逆的なため、近年水素貯蔵材料の前駆体として注目されている(非特許文献1)。
また、例えば、EuNHなどのイミド化合物は、強塩基としてオレフィンの異性化反応などの触媒反応を促進することもよく知られている(非特許文献2)。しかし、一般に、金属イミドは反応性が非常に高いため、大気中に放置するとすぐに分解してしまうという問題がある。
一方、CaO、Al23、SiO2を構成成分とするアルミノケイ酸カルシウム中に、鉱物名をマイエナイトと呼ぶ物質があり、その結晶と同型の結晶構造を有する化合物を「マイエナイト型化合物」という。マイエナイト化合物は一般的に、CaCO3やAl23原料を混合後、高温(1300℃)で焼成することにより合成できる。
マイエナイト型化合物は、12CaO・7Al23(以下、「C12A7」と記す)なる代表組成を有し、その特異的な結晶内では2分子を含む単位胞にある66個の酸素イオンの内の2個が、結晶骨格で形成されるケージ内の空間に「フリー酸素」として包接されている、ということが報告されている(非特許文献3)。すなわち、2(12CaO・7Al23)=Ca24Al2855=[Ca24Al2854]4+・2O2-であり、O2-はフリー酸素と呼ばれる。
マイエナイト型化合物は、上記の代表組成の式を構成するCaの一部又は全てがLi、Na、K、Mg、Sr、Ba、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ir、Ru、Rh、Ptからなる群から選ばれる少なくとも一種類以上の典型金属元素、又は遷移金属元素で置換されていてもよい。また、上記の代表組成の式を構成するAlの一部又は全てがB、Ga、C、Si、Fe、Geからなる群から選ばれる少なくとも一種類以上の典型金属元素、又は遷移金属元素で置換されていてもよい。さらに、上記の代表組成の式を構成するOの一部又は全てがH、F、Cl、Br、Auからなる群から選ばれる少なくとも一種類以上の典型元素又は金属元素で置換されていてもよい。
マイエナイトに含まれるフリー酸素イオンは、ケージ内にあるため、直接、外界雰囲気との反応が防がれている。しかし、2000年に、本発明者は原料を雰囲気と温度を制御した条件下で固相反応させてケージ内に活性酸素種であるO-とO2 -を生成させる方法を見出した(特許文献1)。
そして、2003年以降、マイエナイトに含まれるフリー酸素イオンが種々の陰イオンで置換できることが本発明者らにより明らかにされた。特に、強い還元雰囲気にC12A7を保持すると、全てのフリー酸素イオンを電子で置換することができる。フリー酸素イオンを電子で置換したC12A7は、化学式で、[Ca24Al2864]4+(e-4(以下、「C12A7:e」)と記すことができる。また、このように、陰イオンに対し電子が置き換わった物質をエレクトライドと呼び、エレクトライドは良好な電子伝導特性を示す特徴を有する(非特許文献4、5)。
本発明者らは、導電性マイエナイト型化合物であるC12A7:e及びC12A7と同型化合物である12SrO・7Al23やC12A7と12SrO・7Al23との混晶化合物とその製造法を見いだした(特許文献2)。
また、酸素イオンを含むC12A7(以下、「C12A7:O」)の単結晶を(イ)アルカリ金属又はアルカリ土類金属蒸気中、高温でアニールする方法、(ロ)不活性イオンをイオン打ち込みする方法、又は、(ハ)還元雰囲気で融液から直接固化する方法で、1×1019/cm3以上の伝導電子を有するC12A7:eと同型化合物が得られることを見出した(特許文献3)。
また、C12A7:O単結晶をチタン金属(Ti)蒸気中でアニールし、金属電気伝導性を示すC12A7:eを得ることに成功し、その製法及び電子放出材料としての用途に関する発明を特許出願した(特許文献4)。
C12A7:eに包接される電子は、陽イオンである結晶骨格のケージ内に緩く結合しているために、電場印加又は化学的な手段により外部に取り出すことができる。本発明者らは、外部に取り出された電子を還元反応に用いることができると考え、C12A7:eに包接される電子でケトン化合物を還元し、2級アルコール及びジケトン化合物を製造する方法を発明し、これを特許出願した(特許文献5)。
さらに、Alの一部をGa又はInで置換したマイエナイト型化合物に係わる発明の出願がなされており(特許文献6)、これはPDP保護膜材料や、有機ELデバイスにおける電荷注入材料など、高温加熱処理が必要とされる電極材料として適する。また、水素雰囲気下で熱処理すると1×1018/cm3以上のハイドライドを有するC12A7化合物が得られる発明も特許出願している(特許文献7)。
一方、C12A7:Oをアンモニア気流中で熱処理し、ケージ内に窒素種を導入しようとする試みが報告されている。例えば、ボイセン(Boysen)らは、アンモニア気流中でC12A7:Oを950℃で10時間処理することにより、窒化したマイエナイトを得ている(非特許文献6〜8)。得られた試料の含有窒素量は0.6から1.2重量%の範囲であり、中性子回折の解析結果から導入窒素種は1価のアミドアニオン(NH2 -)であると報告している。
同様に、ポルフス(Polfus)らも、C12A7:Oを950℃で窒化処理しており(非特許文献9)、XPS(X線光電子分光法)及びGP−MS(気相質量分析法)を用いてNH2 -がC12A7のケージの中に取り込まれることを報告している。さらに、彼らは、マイエナイトケージの内部にNH2 -が取り込まれるだけでなく、骨格の酸素イオンも3価の窒素イオン(N3-)に一部置換されると述べている。
特開2002−003218号公報 特開2005−314196号公報 再表WO2005/000741号公報 再表WO2007/060890号公報 特開2008−214302公報 特開2009−203126号公報 WO2010/090266号公報
U. Ash―Kurlander, G. E. Shter, S. Kababya, A. Schmidt, and G. S. Grader, J. Phys. Chem. C, 117, 1237-1246,(2013) T.Baba,G.J.Kim, Y.Ono,J.Chem. Soc., Faraday Trans.,88, 891-897,(1992) H.B.Bartl,T.Scheller,N.Jahrb Mineral Monatsh,547,(1970) S.Matsuishi,Y.Toda,M.Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Tanaka and H.Hosono,Science,301,626−629,(2003) S.Matsuishi,T.Nomura,M.Hirano,K.Kodama,S.Shamoto and H. Hosono,Chemistry of Materials,21,2589−2591,(2009) H. Boysen, I. Kaiser―Bischoff, M. Lerch, Diffusion Fundamentals,8, 2―1-2−8,(2008) H. Boysen, I. Kaiser―Bischoff, M. Lerch, S.Berendts,A.Borger,D.M.Trots.M.Hoelzel,A.Senyshyn,ZEITSCHRIFT fur RISTALLOGRAPHIE suppl.,30,323−328,(2009) H. Boysen, I. Kaiser―Bischoff, M. Lerch, S.Berendts,M.Hoelzel,A.Senyshyn,Acta Physica Polonica A,117,38−41,(2010) J. M. Polfus, K. Toyoura, C. H. Hervoches, M. F. Sunding, I. Tanaka, R. Haugsrud, Journal of Material Chemistry,22,15828−15835,(2012)
金属イミドは水素貯蔵特性や強塩基性を示すため、金属イミドは水素貯蔵材や固体塩基触媒等として応用可能であるが、従来の金属イミドは大気中の水蒸気などと速やかに反応し分解してしまうために機能性材料として実用に供することが困難であった。本発明は、大気中や溶媒中でも安定にイミドアニオン(NH2-)を保有する材料の開発、及びその合成法や用途を提供することを課題とする。
本発明者らは、C12A7化合物のケージ中に導入できる新たな陰イオンの可能性について鋭意研究を重ねた結果、ある一定温度範囲の液化アンモニアに浸漬されたマイエナイト型化合物は、イミドアニオンをケージ内に取り込む特性を持つこと見出した。即ち、C12A7ケージの大きさは約4Åであり、また、イミドアニオンの大きさは約3Åのために、本発明の処理でイミドアニオンはケージ内に取り込まれるものと考えられる。
本発明により、空気中や溶媒中でも安定なイミドアニオン含有化合物が初めて合成可能になり、実用的な無機イミド化合物を提供することが可能になった。本発明のイミドアニオンを注入されているマイエナイト型化合物の最大NH含有量は約0.26重量%、NH濃度として、約2.7×1020cm-3に相当する。また、このマイエナイト型化合物は、昇温脱離測定の結果(図1)から、500℃程度まで安定であり、それ以上の温度になるとイミドアニオンはアンモニアとして放出される(NH2-+ 2OH- →2O2-+NH3、又は、NH2-+ 2H- →4e-+NH3)という特性を示す。
ケージ構造を持たない酸化カルシウム、アルミナ、又はそれらの複合酸化物に対して、同様に液化アンモニアに浸漬し加熱処理してもイミドアニオンは取り込まれないことが分かった。一方、C12A7化合物の場合には、液化アンモニア処理によりイミドアニオンを注入できる。よって、イミドアニオンの包接はマイエナイト型化合物に特徴的なナノポーラスケージ構造に起因すると考えられる。また、イミドアニオンは、母体のケージに含まれるアニオン種に関わらず、注入できる。
また、大気中での暴露試験や有機溶媒への浸漬試験から、イミドアニオン含有マイエナイト型化合物は大気中や有機溶媒内で安定であることも判明した。以上の結果から、本発明によって、1×1018cm-3以上の濃度のNH2-を含み、かつ化学的安定性を有するイミドアニオンをマイエナイト型化合物に注入できることが分かった。マイエナイト型化合物には、理論上最大で約1.1×1021cm-3のNH2-を導入できるが、その0.1%程度の含有量があれば、各種応用が可能になる。
本発明の方法に係わる高温液化アンモニア処理法には、次の二つの利点がある。一つ目に、高圧で高密度のアンモニアと接触することができる。すなわち、反応効率を高めることができる。また、高温高圧条件では、自己解離(Autoprotolysis)により、式1で示すように、活性なアミドアニオンが生成しマイエナイト型化合物との反応を促進させる可能性も考えられる。二つ目に、高圧容器を用いて閉鎖系で反応を行うため、アンモニアを回収して未反応のアンモニアを繰り返し使用できる。 2NH3 → NH2‐ + NH4 + (1)
本発明によって得られた化合物は、活性なイミドアニオンの取り込み、及びアンモニアとしての放出が容易であり、かつ化学的安定性を有する。そのため、イミドアニオン供与材(アミノ化試薬)として、有機化学合成に応用可能である。また、アンモニア供給体として、例えば、還元反応(例えば、NOx還元)などの他の化学反応にも利用できる。
本発明の化合物の昇温脱離スペクトルである。 本発明の化合物を合成するための安熱合成装置の概略図である。 本発明の化合物のラマンスペクトルである。 本発明の化合物の1H MAS NMRスペクトルである。 本発明の化合物を大気雰囲気で保存した評価試験1、有機溶媒に浸漬した評価試験2,3の後のラマンスペクトルである。
以下、1018cm-3以上のイミドアニオン含有マイエナイト型化合物(以下、「本発明の化合物」という)、及びその製造法について詳細に説明する。
<マイエナイト型化合物基材の製造> 以下、マイエナイト型化合物の代表組成であるC12A7について具体的に説明するが、本発明は、C12A7に限らず、CaをSrに置換した12SrO・7Al23等のC12A7と結晶構造が同型のマイエナイト型化合物の全てに適用できる。本発明の出発材料に用いるC12A7からなる基材は、粉末の他、多孔体、固体焼結体、薄膜、固体単結晶等の成型体でもよく、成型体の形状はいずれでもよい。また、他の物質からなる担体に担持されているC12A7を基材として用いてもよい。
C12A7の原料は固相法、水熱法、ゾルゲル法等で合成される。水熱反応は100℃以上、1気圧以上の高温高圧下の水が関与する反応であり、低温で短時間の反応によりセラミックス粉末を合成できる。水熱合成法を用いることで、比表面積の大きな(20〜60m2-1程度)C12A7粉末が得られる。例えば、C12A7の前駆体となる水酸化物であるCa3Al2(OH)12及び水酸化アルミニウムは水と水酸化カルシウム、水酸化アルミニウムを化学量論組成で混合し、例えば、150℃、6時間程度加熱することで得ることができる。この粉末を750〜900℃で真空排気処理するとC12A7が得られる。また、吸着水、表面水酸基、ケージ内のOH-等を除去できるため、電子を注入する工程での還元剤の失活を防止できる。
<C12A7基材に伝導電子や水素陰イオンを含ませる工程> 伝導電子を含んだC12A7の粉末を作製する場合、化学当量組成のC12A7の原料の粉末を還元雰囲気下で加熱すればよい。伝導電子を含んだC12A7の多孔体、固体焼結体は、化学当量組成のC12A7の原料粉末を成形後にCa、CaH2やTi等と還元雰囲気下で加熱すればよい。薄膜、固体単結晶以外の基材は伝導電子を含まないC12A7基材の製造を経由することなく、原料から直接伝導電子を含んだC12A7基材を製造できる。水素陰イオンを含むC12A7基材も、同様に、水素気流下やCa等と還元雰囲気下で加熱すれば、粉末、多孔体、固体焼結体を合成できる。
伝導電子を含んだC12A7の薄膜は、C12A7の固体焼結体をターゲットに用い、パルスレーザー堆積(PLD)法、スパッタ法、プラズマ溶射法等によりMgO、Y3Al512等の基板上に成膜したC12A7の薄膜を500℃以上で加熱しながら再度PLD法によりC12A7薄膜を堆積して一体化させれば作製できる。再度のPLD法ではプラズマ化されたC12A7が還元剤として働き該薄膜に伝導電子が含まれる。水素陰イオンを含むC12A7の薄膜も、同様に合成できる。
また、伝導電子を含んだC12A7の固体単結晶は、C12A7の原料粉末を1600℃程度で融解した融液を引き上げること(CZ法)によりC12A7単結晶を作製し、真空にしたガラス管中に該単結晶を金属Ca粉末又はTi粉末等と共に封入し還元雰囲気下で加熱して該固体単結晶に伝導電子を含ませればよい。水素陰イオンを含むC12A7の固体単結晶も、同様に合成できる。
固体焼結体又は固体単結晶の伝導電子又は水素陰イオンを含んだC12A7を粉末に加工することも可能である。乳鉢中での粉砕、ジェットミルによる粉砕等を用いて、粉末加工できる。粉末の大きさは特に限定されないが、これらの方法により粒子径が100nm〜1mm程度の範囲に分布する粒子が得られる。これらの方法により、伝導電子又は水素陰イオンを1×1015cm-3以上含むC12A7を作製することができる。
なお、作製法により粉末、多孔体、固体焼結体、薄膜、固体単結晶に関わらず、それらの基材の表面部から伝導電子が抜けていることがある。その場合、真空、不活性ガス中、又は還元雰囲気下において900℃以上〜該化合物の融点(1250℃)未満で加熱し、基材の最表面まで1×1015cm-3以上の伝導電子を含ませることができる。
<マイエナイト型化合物にイミドアニオンを含ませる工程> 本発明の化合物を作製する場合、アモノサーマル装置などの高圧容器を使用して、液化アンモニアに450〜700℃の範囲、より好ましくは450〜650℃の範囲で浸漬処理すればよい。浸漬処理温度が400℃以下では、マイエナイト型化合物にイミドアニオンは注入されない。また、700℃を超えた温度では、液体アンモニアの分解反応が進行するため、好ましくない。
液体アンモニア中のマイエナイトの濃度は、アンモニアに対し0.05から50重量%、好ましくは0.5から20重量%、より好ましくは、1から10重量%が好ましい。濃度が0.05重量%未満ではイミドイオンはケージ内に効率よく導入されるが、効率の面で好ましくない。一方、濃度が50重量%を超えると、イミドイオンの導入に長時間必要になるため、好ましくない。処理時間は、処理温度や液体アンモニア中のマイエナイト濃度といった条件により一概に決められないが、所定温度で1分以上であれば構わない。
イミドアニオンの注入は次のように進行すると考えられる。アンモニアは式2又は式3に示されるように、マイエナイト型化合物の骨格内に包接されている酸素イオン(O2‐)又は電子(e-)と反応しアミドアニオンを与える。さらに、アミドアニオンは式4、5に示すように、骨格内に包接されている酸素イオン(O2‐)又は電子(e-)と反応して、イミドアニオンを与え、酸素イオン(O2‐)又は電子(e-)がイミドアニオンに置換される。既往の気相アンモニア処理に比べて、反応圧力が約500倍高いために、式4及び式5のイミドアニオンを生成する反応まで進行すると考えられる。
NH3 + O2cage → NH2cage +OH‐cage (2) NH3 + e-cage → NH2cage +H‐cage (3) NH2cage + O2cage → NH2- cage +OH‐cage (4) NH2cage + 2e-cage → NH2- cage +H‐cage (5)
有機金属錯体、超分子、ゼオライトなどのナノポーラス材料によるナノ包接化は、不安定化学種の安定化や貯蔵に有効であるが、特にイミド化合物を安定に包接する方法は知られていなかった。そして、今回はじめてマイエナイト化合物により、活性なイミドアニオンの包接化に成功した。このことは、活性なN1化学種(C-N結合生成能をもつ窒素化有機反応試剤)の貯蔵に成功したことを意味する。
本発明のイミドアニオンを注入されているマイエナイト型化合物は、例えば、不飽和結合をもつオレフィンのハイドロアミノ化による1級アミン合成などに応用できる。通常、ハロゲン化アルキルとアンモニアの反応では、生成したアミンの求核性が高く、逐次的なアルキル化が進行して一級アミンは得られない。それに対して、選択的に求核部、例えば、二重結合に対して選択的にイミドアニオンを反応させられるために、選択的な反応が実現可能である。
また、高温でアンモニアを放出するという特性は、従来の材料にはない特性である。これは、高温での還元反応に対して、利用できることを意味し、たとえば、NOx還元などの触媒反応に対して、助触媒的な働きを行うことができる。
以下、実施例に基づいて本発明を詳細に説明する。図2に、実験で使用したアモノサーマル装置の概要を示す。本装置は、ターボ分子ポンプ1、アンモニアボンベ2、リアクター3、排気口からなる。また、ガスの流量の調整や安全な運転のため、マスフローコントローラー4、ストップバルブ5、安全弁6も使用している。安熱処理は、初めに系内を排気し、次に所定量のアンモニアを封入してから運転を行った。
<酸素イオンを含むC12A7化合物の調製> CaCO3及びAl23の各粉末をCaとAl2の割合が12:7となるように混合し、アルミナ坩堝中にて1300℃で6時間加熱した。得られた粉末(C12A7:Oと記す)はアルミナ乳鉢で粉砕した。
<伝導電子を含むC12A7化合物の調製> 上記で得たC12A7:Oをさらに、1350℃で24時間加熱したのち、シリカガラス管内に挿入し、1×10-4Paの真空中、等量の金属Ti粉末とともに1100℃で24時間加熱した。反応後、表面に付着したTiOxは機械的に除去した。得られたC12A7:eの伝導電子濃度は約1.1×1021cm-3となった。
<含有窒素アニオンの定量方法> 試料中の窒素アニオン量は、非特許文献10及び11に従い、イオンクロマトグラフィー又は昇温脱離ガス分析によって求めた。なお、NH2-含有濃度およびNH含有重量は、化学式[Ca24Al28O64]4+・xNH2 (x=0-2)から簡単に計算でき、x=2のとき、NH2-含有濃度は1.14×1021cm-3で、NH含有重量は1.08wt%である。
F. Hayashi, K. Ishizu, M. Iwamoto, Journal of American Ceramic Society, 93, 104-110 (2010). F. Hayashi, Y. Toda, Y. Kanie, M. Kitano, Y. Inoue, T. Yokoyama, M. Hara, H. Hosono, Chemical Science, 4, 3124-3130 (2013).
前者の場合、5〜30mgのサンプルを塩酸又はフッ酸に溶かし、生成したアンモニウムイオンを電気伝導度検出器(CDD-10A)搭載島津製イオンクロマトグラフィーにより分析した。検出限界は0.001重量%であり、これは、窒素アニオン濃度0.01×1020cm-3に相当する。また、後者の場合、0.5〜10mgのサンプルを電子科学製TDS1200の装置に入れて、昇温速度12℃/分で脱離ガスの昇温分析を行った。結果を図1に示す。検出限界は0.0001重量%であり、これは、窒素アニオン濃度0.001×1020cm-3に相当する。
<液化アンモニア処理> 200mgのC12A7:eと約5gの液体NH3をハステロイ製オートクレーブ(10ml、オートクレーブエンジニアリング社)に詰め、500℃、45MPaの条件で3時間反応させた。ただし、圧力値に関しては、封入NH量や装置の死容積によって大きく変動する。試料が超臨界NH3に浸漬していれば、圧力値は本反応に対して大きな影響は与えない。以下、実施例2〜4、比較例1〜4でも同様である。表1に、分析結果を示した。NH2-含有量は0.021重量%であり、NH2-含有濃度は0.22×1020cm-3であった。
反応温度を600℃、反応圧力を55MPaとした以外は、実施例1と同様な方法でイミドアニオン含有マイエナイト型化合物を調製した。分析結果を表1に示す。NH2-含有量は0.239重量%であり、NH2-含有濃度は2.53×1020cm-3であった。
反応温度を450℃、反応圧力を40MPaとした以外は、実施例1と同様な方法でイミドアニオン含有マイエナイト型化合物を調製した。分析結果を表1に示す。NH2-含有量は0.010重量%であり、NH2-含有濃度は0.11×1020cm-3であった。
出発原料をC12A7:Oとした以外は、実施例2と同様な方法でイミドアニオン含有マイエナイト型化合物を調製した。分析結果を表1に示す。NH2-含有量は0.256重量%であり、NH2-含有濃度は2.71×1020cm-3であった。
[比較例1] 反応温度を400℃、反応圧力が35MPaとした以外は、実施例1と同様な方法でイミドアニオン含有マイエナイト型化合物を調製した。結果を表1に示す。導入窒素種は全く検出されなかった。
[比較例2] C12A7:e粉末の代わりに、CaOを用いる以外は実施例2と同様な方法で、イミドアニオン含有マイエナイト型化合物を調製した。結果を表1に示す。このとき、比較例1と同様に導入窒素種は検出されなかった。
[比較例3] C12A7:e粉末の代わりに、Al23を用いる以外は実施例2と同様な方法で、イミドアニオン含有マイエナイト型化合物を調製した。結果を表1に示す。比較例1,2と同様に、含有窒素種は検出されなかった。
[比較例4] C12A7:e粉末の代わりに、CaO・Al23を用いる以外は実施例2と同様な方法で、イミドアニオン含有マイエナイト型化合物を調製した。結果を表1に示す。比較例1〜3と同様に、含有窒素種は検出されなかった。
Figure 0006536834
図3に、実施例2,4及び比較例1,3,4で得られた液化アンモニア処理試料のラマンスペクトルを示す。実施例2,3で得られた試料には、3210cm-1にNH2-イオンに帰属される1本のシャープなシグナルが観察されるが、比較例1,3,4で得られた試料には、NH2-由来のシグナルは見られない。すなわち、マイエナイト構造を持つ化合物だけが、NH2-を含有していることが確認された。
図4に、実施例4で得た試料の1H MAS NMRを示す。なお、本試料の調製には、14NH3の代わりに15NH3を用いた。反応前のC12A7:Oの試料には、-0.7ppm付近に強度が弱い、非特許文献12よりOH-に帰属されるシグナルが見られる。アンモニア処理を行うと、このOH-由来のシグナル強度は高くなるとともに、新たに+5.2ppmと-1.5ppmにシグナルが観察された。前者と後者はそれぞれ、H-とNH2-に帰属される。
K.Hayashi,Journal of Solid State Chemistry,184,1428-1432(2011)
[評価試験1] 大気中での安定性を評価するため、実施例4で得た試料を用い、室温下で大気に40日間さらした。40日後の試料中のNH2-濃度は、2.65×1020cm-3であった。
[評価試験2] プロトン性極性溶媒中での安定性を評価するため、実施例4で得た試料を、メタノール(MeOH)溶媒に分散させ、10分攪拌し、その後、室温下で10分放置した。MeOH溶媒処理後の試料中のNH2-濃度は、2.60×1020cm-3であった。
[評価試験3] 非プロトン性極性有機溶媒中での安定性を評価するため、実施例4で得た試料を、テトラヒドロフラン(THF)に分散させ、10分攪拌し、その後、室温下で10分放置した。THF溶媒処理後の試料中のNH2-濃度は、2.63×1020cm-3であった。
表2に、処理前と処理後の試料のNH2-の含有重量と濃度をまとめた。反応前のNH2-濃度は、実施例4で示しているように2.71×1020cm-3であった。一方、評価試験1〜3で示しているように、反応後のNH2-濃度は2.60〜2.65×1020cm-3であった。反応前後の減少量はわずか4〜8%程度であり、空気中や有機溶媒中で安定なことが示された。
Figure 0006536834
図5に、評価試験1〜3を行った後の試料のラマンスペクトルを示し、処理前の試料のスペクトル(実施例4)と比較した。反応前後で、NH2-由来のシグナルの形や強度はほとんど変化せず、ケージ内のイミドアニオンは大気中又は有機溶媒中でも安定に存在できることがラマン分光測定からも明らかとなった。
本発明によって、活性なイミドアニオンを固体中に閉じ込めることが可能なことが示された。包接イミドアニオンはその化学構造から高い求核性をもつと考えられる。イミド含有マイエナイト型化合物は、昇温脱離実験により500℃付近まで安定であることから、有機合成化学で重要なC−N結合を生成する有機反応試剤と利用できると期待される。また,含有窒素種は500℃以上でアンモニアとして放出できる(図1)。

Claims (4)

  1. 1×1018cm-3以上の濃度のイミドアニオンを注入されていることを特徴とするマイエナイト型化合物。
  2. ケージ中に電子又はフリー酸素イオンを含むマイエナイト型化合物を液化アンモニア中で450℃から700℃、圧力30〜100MPaの範囲で加熱処理することを特徴とする請求項1に記載のマイエナイト型化合物の製造方法。
  3. 請求項1記載のマイエナイト型化合物からなるイミドアニオン供給材料。
  4. 請求項1記載のマイエナイト型化合物からなるアンモニア供給材料。
JP2016506402A 2014-03-07 2015-02-12 イミドアニオン含有マイエナイト型化合物及びその製造法 Active JP6536834B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014044716 2014-03-07
JP2014044716 2014-03-07
PCT/JP2015/053861 WO2015133240A1 (ja) 2014-03-07 2015-02-12 イミドアニオン含有マイエナイト型化合物及びその製造法

Publications (2)

Publication Number Publication Date
JPWO2015133240A1 JPWO2015133240A1 (ja) 2017-04-06
JP6536834B2 true JP6536834B2 (ja) 2019-07-03

Family

ID=54055050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016506402A Active JP6536834B2 (ja) 2014-03-07 2015-02-12 イミドアニオン含有マイエナイト型化合物及びその製造法

Country Status (5)

Country Link
US (1) US10016742B2 (ja)
EP (1) EP3115339B1 (ja)
JP (1) JP6536834B2 (ja)
CN (1) CN106232523B (ja)
WO (1) WO2015133240A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675680B2 (ja) * 2016-02-15 2020-04-01 国立大学法人京都大学 改質カルシウムアルミネート化合物およびその製造方法
JP7519655B2 (ja) * 2019-02-26 2024-07-22 つばめBhb株式会社 成形焼結体および成形焼結体の製造方法
JP7229585B2 (ja) * 2019-07-12 2023-02-28 学校法人 東洋大学 燃料電池触媒用組成物およびそれを含む燃料電池
CN116251595B (zh) * 2023-02-09 2024-04-26 中国石油大学(华东) 一种铝酸钙基多金属复合材料及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531868B2 (ja) 2000-04-18 2004-05-31 独立行政法人 科学技術振興機構 活性酸素種を包接する12CaO・7Al2O3化合物およびその製造方法
US7507289B2 (en) 2003-06-26 2009-03-24 Japan Science And Technology Agency Electroconductive 12CaO—7Al2O3 and compound of same type, and method for preparation thereof
TWI283234B (en) * 2004-02-13 2007-07-01 Asahi Glass Co Ltd Method for preparing electroconductive Mayenite type compound
JP4111931B2 (ja) 2004-04-30 2008-07-02 独立行政法人科学技術振興機構 電気伝導性複合酸化物結晶化合物及びその製造方法。
KR101245943B1 (ko) 2005-05-30 2013-03-21 도오쿄 인스티튜드 오브 테크놀로지 도전성 마이에나이트형 화합물의 제조 방법
JP4833221B2 (ja) 2005-11-24 2011-12-07 独立行政法人科学技術振興機構 金属的電気伝導性12CaO・7Al2O3化合物の製造方法
JP5000331B2 (ja) 2007-03-07 2012-08-15 独立行政法人科学技術振興機構 ケトン化合物を用いた2級アルコール又はジケトン化合物の製法
JP5245455B2 (ja) 2008-02-28 2013-07-24 旭硝子株式会社 マイエナイト型化合物
EP2351708A4 (en) * 2008-10-06 2013-07-17 Asahi Glass Co Ltd PROCESS FOR THE PRODUCTION OF AN OXIDE
EP2394959A4 (en) 2009-02-05 2013-07-17 Asahi Glass Co Ltd METHOD FOR THE PRODUCTION OF MAYENITHLATED OXIDES AND METHOD FOR THE PRODUCTION OF GUIDING MAYENITHALING OXIDES
JP2011153056A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp アンモニア雰囲気に接する圧力容器

Also Published As

Publication number Publication date
CN106232523B (zh) 2018-06-22
WO2015133240A1 (ja) 2015-09-11
EP3115339A1 (en) 2017-01-11
EP3115339A4 (en) 2017-11-22
US10016742B2 (en) 2018-07-10
US20170072382A1 (en) 2017-03-16
EP3115339B1 (en) 2018-10-17
JPWO2015133240A1 (ja) 2017-04-06
CN106232523A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
US10124319B2 (en) Method for producing conductive mayenite compound powder having large specific surface area
RU2551383C2 (ru) Катализатор синтеза аммиака и способ синтеза аммиака
JP6536834B2 (ja) イミドアニオン含有マイエナイト型化合物及びその製造法
JP6143761B2 (ja) 水素生成触媒及び水素の製造法
US10792645B2 (en) Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
Hong et al. Bimetallic NiIr nanoparticles supported on lanthanum oxy-carbonate as highly efficient catalysts for hydrogen evolution from hydrazine borane and hydrazine
TW201811426A (zh) 氨合成用催化劑之製造方法及氨之製造方法
Gage et al. Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites
Kondrat et al. The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite
WO2003033406A1 (en) 12CaO · 7Al2O3 COMPOUND AND METHOD FOR PREPARATION THEREOF
EP1977029A2 (en) Crystalline composition, device, and associated method
Clavel et al. Easy access to Ni3N–and Ni–carbon nanocomposite catalysts
WO2021006136A1 (ja) 金属酸水素化物の製造方法、金属酸水素化物、及びそれを用いたアンモニア合成方法
CN111819154B (zh) 电子或负氢离子吸收释放材料、电子或负氢离子吸收释放性组合物、过渡金属负载物及催化剂、以及与它们相关的用途
CN103582718B (zh) 化学蒸镀原料用的有机钌化合物及该有机钌化合物的制造方法
JP2018131351A (ja) 大気中co2を回収して炭素を分離する方法
Cruz-López et al. Synthesis and characterization of gallium nitride nanoparticles by using solvothermal-soft-chemical methodology
Noei et al. Coverage-Induced Hydrogen Transfer on ZnO Surfaces: From Ideal to Real Systems.
Weber et al. Impact of the exchange of the coordinating solvent shell in [Bi38O45 (OMc) 24 (dmso) 9] by alcohols: crystal structure, gas phase stability, and thermoanalysis
JP2016059852A (ja) 触媒、アンモニア合成方法
WO2019060784A1 (en) ACTIVATED MAGNESIUM BORIDE MATERIALS FOR HYDROGEN STORAGE
BARĂU et al. WC powders obtained by sol-gel and coprecipitation methods
Shao et al. Synthesis and characterization of antimony trichloride and bismuth trichloride complexes with valine
Garza et al. Synthesis of Ni and Mg MOF-derived carbons for potential hydrogen storage applications
Hauser et al. A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6536834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350