[go: up one dir, main page]

JP6533187B2 - Dielectric constant evaluation method - Google Patents

Dielectric constant evaluation method Download PDF

Info

Publication number
JP6533187B2
JP6533187B2 JP2016101309A JP2016101309A JP6533187B2 JP 6533187 B2 JP6533187 B2 JP 6533187B2 JP 2016101309 A JP2016101309 A JP 2016101309A JP 2016101309 A JP2016101309 A JP 2016101309A JP 6533187 B2 JP6533187 B2 JP 6533187B2
Authority
JP
Japan
Prior art keywords
phase
frequency
dielectric constant
measured
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101309A
Other languages
Japanese (ja)
Other versions
JP2017207422A (en
Inventor
照男 徐
照男 徐
裕史 濱田
裕史 濱田
信 矢板
信 矢板
大祐 来山
大祐 来山
秀之 野坂
秀之 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
NTT Inc
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016101309A priority Critical patent/JP6533187B2/en
Publication of JP2017207422A publication Critical patent/JP2017207422A/en
Application granted granted Critical
Publication of JP6533187B2 publication Critical patent/JP6533187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、複数の周波数の電磁波を用いて物体の比誘電率を測定する誘電率評価方法に関するものである。   The present invention relates to a dielectric constant evaluation method for measuring the relative dielectric constant of an object using electromagnetic waves of a plurality of frequencies.

近年、物品の製造メーカにおいては、製品検査の重要度が増している。特に、食品の製造メーカにおいては、加工食品への異物混入により、会社の信頼性低下や出荷停止など、業績を逼迫する状況になる場合も生じている。製品の出荷検査の段階で、製品への異物混入を検出して、異物が混入した製品の出荷を未然に防ぐことが望ましい。しかしながら、既存の検出装置であるイメージング装置は、金属の検出は可能であるが、昆虫や、製品とは異なる食品などの有機物質を高い精度で検出することはできないという問題点があった。   In recent years, the importance of product inspection has increased in the manufacture of articles. In particular, in the case of food manufacturers, contamination of processed food with foreign substances may lead to a situation in which the company's reliability may decline or shipping may be halted, resulting in tight performance. It is desirable to detect contamination of the product at the product inspection stage to prevent shipment of the product contaminated with contamination. However, although the imaging apparatus which is the existing detection apparatus can detect metals, it has a problem that it can not detect organic substances such as insects and food different from products with high accuracy.

物体の比誘電率の値を取得する誘電率評価方法は、物体を透過する電磁波の周波数および計測した位相の情報により、物体の比誘電率を算出する。比誘電率を求めることができれば、物体への異物の混入を検出することが可能になる。一方、物体を透過した電磁波の位相を観測すれば、この位相と電磁波の周波数とから、物体中の光路長を得ることが可能である。物体中の光路長は、物体の厚さと物体の比誘電率とからなるパラメータであり、物体の厚さが既知であれば比誘電率を求めることができる。   The dielectric constant evaluation method for acquiring the value of the relative dielectric constant of an object calculates the relative dielectric constant of an object based on the frequency of an electromagnetic wave passing through the object and information of the measured phase. If the relative dielectric constant can be determined, it is possible to detect the entry of foreign matter into the object. On the other hand, if the phase of the electromagnetic wave transmitted through the object is observed, it is possible to obtain the optical path length in the object from the phase and the frequency of the electromagnetic wave. The optical path length in the object is a parameter consisting of the thickness of the object and the relative permittivity of the object, and if the thickness of the object is known, the relative permittivity can be determined.

従来の誘電率評価方法は、電磁波放射器から、周波数が既知の2つの電磁波を被測定物に照射し、被測定物を透過した電磁波を検出器で検出して、この電磁波の位相を測定する(非特許文献1参照)。測定は、図7(A)に示すように電磁波放射器100と検出器101との間に被測定物がない場合と、図7(B)に示すように被測定物102がある場合の2回行う。   In the conventional dielectric constant evaluation method, two electromagnetic waves with known frequencies are irradiated from the electromagnetic wave emitter to the object to be measured, the electromagnetic wave transmitted through the object to be measured is detected by the detector, and the phase of the electromagnetic waves is measured. (See Non-Patent Document 1). In the measurement, as shown in FIG. 7A, there is no object to be measured between the electromagnetic wave emitter 100 and the detector 101, and in the case where the object to be measured 102 is present as shown in FIG. 7B. Do it

まず、図7(A)の構成で2つの異なる周波数f1とf2の電磁波が空気を透過した後の位相θ1_airとθ2_airを測定する。次に、図7(B)の構成で2つの異なる周波数f1とf2の電磁波が被測定物102を透過した後の位相θ1_sampleとθ2_sampleを測定し、被測定物102がない場合の測定結果との位相変化θ1=θ1_sample−θ1_air、θ2=θ2_sample−θ2_airを算出する。これら位相変化θ1,θ2の差分である位相差θ2−θ1は式(1)で表される。この式(1)により被測定物102の比誘電率εrを算出することができる。式(1)におけるLは被測定物102の厚さ、cは光速である。 First, measuring the phase theta 1 _ air and theta 2 _ air after the two different electromagnetic waves frequencies f 1 and f 2 are transmitted through the air in the configuration of FIG. 7 (A). Next, the phases θ 1 _ sample and θ 2 _ sample after the electromagnetic waves of two different frequencies f 1 and f 2 pass through the DUT 102 in the configuration of FIG. 7B are measured, and the DUT 102 is measured. The phase change θ 1 = θ 1 _ sample −θ 1 _ air , θ 2 = θ 2 _ sample −θ 2 _ air with respect to the measurement result when there is not is calculated. The phase difference θ 2 −θ 1 which is the difference between the phase changes θ 1 and θ 2 is expressed by equation (1). The relative dielectric constant ε r of the object to be measured 102 can be calculated by this equation (1). In the equation (1), L is the thickness of the object to be measured 102 and c is the speed of light.

図8に示すように、測定される電磁波の位相変化θは電磁波の周波数fに比例して増加するが、現実の測定器は0〜2πの範囲でしか位相を測定できないため、位相変化θについても実際の位相変化の量を算出することができない。   As shown in FIG. 8, the phase change θ of the measured electromagnetic wave increases in proportion to the frequency f of the electromagnetic wave, but the actual measuring instrument can measure the phase only in the range of 0 to 2π. Also, the amount of actual phase change can not be calculated.

Liangliang Zhang,et al.,“Terahertz multiwavelength phase imaging without 2π ambiguity”,Optics letters,Vol.31,Issue 24,pp.3668-3670,2006Liangliang Zhang, et al., “Terahertz multiwavelength phase imaging without 2π ambiguity”, Optics letters, Vol. 31, Issue 24, pp. 3686-3670, 2006

実際の測定環境には反射等による位相誤差が存在するため、高精度な誘電率評価を行うために、2周波の間隔Δf=f2−f1をできるだけ拡げる必要がある。図9(A)は、誘電率評価の誤差(比誘電率εrの算出誤差)が2周波の間隔Δfの増大に伴って1/Δfで減少するが、Δfの上限に達すると急激に増大することを示している。図9(B)は、2周波の間隔Δfが狭い場合を示しており、観測される電磁波の位相に、測定環境等に影響される乱れがあるため、この乱れが位相誤差になり、誘電率評価の誤差が大きくなることを示している。一方、図9(C)のように2周波の間隔Δfが拡がると、位相誤差の影響が小さくなり、誘電率評価の誤差が小さくなるが、図9(D)のように2周波間の位相差が2π以上変化すると、測定不能となってしまう(図9(A)のΔfの上限)。以上のように、従来の誘電率評価方法では、2周波の間隔Δfに上限が存在するため、高い精度で物体の比誘電率を検出することができないという課題があった。 Since a phase error due to reflection or the like exists in an actual measurement environment, it is necessary to widen the interval Δf = f 2 −f 1 between two frequencies as much as possible in order to perform highly accurate dielectric constant evaluation. In FIG. 9A, the error of the dielectric constant evaluation (calculation error of the relative dielectric constant ε r ) decreases by 1 / Δf with the increase of the interval Δf of two frequencies, but increases rapidly when the upper limit of Δf is reached. It shows that you do. FIG. 9 (B) shows the case where the interval Δf between the two frequencies is narrow, and the disturbance of the phase of the observed electromagnetic wave is affected by the measurement environment etc., so this disturbance becomes a phase error and the dielectric constant It shows that the error of evaluation becomes large. On the other hand, if the interval Δf between the two frequencies is broadened as shown in FIG. 9C, the influence of the phase error becomes smaller and the error in the dielectric constant evaluation becomes smaller. However, as shown in FIG. When the phase difference changes by 2π or more, measurement becomes impossible (upper limit of Δf in FIG. 9A). As described above, in the conventional dielectric constant evaluation method, there is a problem that the relative dielectric constant of the object can not be detected with high accuracy because the upper limit exists in the interval Δf between the two frequencies.

本発明は、上記課題を解決するためになされたもので、複数の周波数の電磁波を用いる誘電率評価方法において、高い精度で物体の比誘電率を検出することを目的とする。   The present invention has been made to solve the above-described problems, and has an object of detecting the relative dielectric constant of an object with high accuracy in a dielectric constant evaluation method using electromagnetic waves of a plurality of frequencies.

本発明の誘電率評価方法は、各周波数で想定される最大位相誤差をθnoise、被測定物の想定される最大比誘電率をεeff_max、前記被測定物の厚さをL、光速をcとしたとき、隣接する2つの周波数fn,fn+1の間隔Δfが
を満たすm個(mは3以上の整数、nは1以上(m−1)以下の整数)の周波数f1,f2,・・・,fmの電磁波を前記被測定物に照射する電磁波照射ステップと、前記被測定物を透過した電磁波を検出する電磁波検出ステップと、前記m個の周波数の電磁波のそれぞれの位相変化を検出する位相検出ステップと、隣接する2つの周波数fn,fn+1の電磁波の位相差を算出する位相差算出ステップと、この位相差算出ステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す更新ステップと、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1と周波数f1の電磁波の位相変化とm個の周波数f1,f2,・・・,fmのうちの最高の周波数fmと周波数fmの電磁波の更新後の位相変化と前記被測定物の既知の厚さLとから、前記被測定物の比誘電率εrを算出する比誘電率算出ステップとを含むことを特徴とするものである。
In the dielectric constant evaluation method of the present invention, the maximum phase error assumed at each frequency is θ noise , the assumed maximum relative dielectric constant of the object to be measured is ε eff _ max , the thickness of the object to be measured is L, the speed of light Where c is the interval Δf between two adjacent frequencies f n and f n + 1
Of the electromagnetic waves having frequencies f 1 , f 2 ,..., F m with m (m is an integer of 3 or more and n is an integer of 1 or more (m-1) or less) satisfying the above An irradiation step, an electromagnetic wave detection step of detecting an electromagnetic wave transmitted through the object to be measured, a phase detection step of detecting a phase change of each of the electromagnetic waves of m frequencies, and two adjacent frequencies f n and f n Is added to each of the phase change of the electromagnetic waves of each frequency after f n +1 when the phase difference calculation step of calculating the phase difference of the +1 electromagnetic wave and the phase difference calculated in this phase difference calculation step is negative. , And an update step of repeating the process of updating from n = 1 to n = m−1, and the lowest frequency f 1 and frequency f 1 among m frequencies f 1 , f 2 ,. phase change and the m frequency f 1, f 2 of the electromagnetic wave, ..., a f m Chino from the highest frequency f m and the frequency f of the known thickness of the electromagnetic wave phase shift between the object to be measured after the update of the m L, the relative dielectric constant calculation step of calculating a relative dielectric constant epsilon r of the object to be measured And is included.

また、本発明の誘電率評価方法の1構成例は、背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記位相検出ステップを行い、前記位相差算出ステップは、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とするステップを含み、前記更新ステップは、前記位相差算出ステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返すステップを含み、前記比誘電率算出ステップは、周波数f1と周波数f1の電磁波の位相変化θ1と周波数fmと周波数fmの電磁波の更新後の位相変化φmと前記被測定物の既知の厚さLとから、前記被測定物の比誘電率εrを算出するステップを含むことを特徴とするものである。 In one configuration example of the dielectric constant evaluation method of the present invention, the phase is once in each of the state in which there is only the background material and there is no such object, and the state in which the background material and the object are present. The detection step is performed, and the phase difference calculation step is measured in a state in which there is the phase of the electromagnetic wave measured in the state where there is only the background material and there is no object to be measured, the background material and the object to be measured the phase change is the difference between the phase of the electromagnetic wave is calculated for each frequency, two adjacent frequencies f n, the difference between the phase change theta n and theta n + 1 of an electromagnetic wave f n + 1, these frequencies f n , F n + 1 as the phase difference of the electromagnetic wave, and the updating step is a phase change θ of the electromagnetic wave of each frequency after f n + 1 if the phase difference calculated in the phase difference calculating step is negative. n + 1, θ n + 2 , ···, and updates by adding 2π to each theta m The management includes the step of repeating the n = 1 to n = m-1, the relative dielectric constant calculation step, an electromagnetic wave of frequency f 1 and the frequency phase change of the electromagnetic wave of f 1 theta 1 and the frequency f m and the frequency f m And calculating the relative dielectric constant ε r of the object to be measured from the phase change φ m after updating and the known thickness L of the object to be measured.

本発明によれば、m個の周波数の電磁波に関して位相接続を行うことで、周波数間隔の上限を拡張することが可能となり、被測定物の比誘電率εrを高い精度で検出することが可能となる。 According to the present invention, it is possible to extend the upper limit of the frequency interval by performing phase connection on electromagnetic waves of m frequencies, and to detect the relative dielectric constant ε r of the object to be measured with high accuracy It becomes.

本発明の複数周波数による位相変化測定を説明する図である。It is a figure explaining the phase change measurement by multiple frequencies of this invention. 本発明の位相接続処理を説明する図である。It is a figure explaining the phase connection process of this invention. 本発明の実施の形態に係る誘電率評価装置の構成を示すブロック図である。It is a block diagram which shows the structure of the dielectric constant evaluation apparatus based on embodiment of this invention. 本発明の実施の形態に係る誘電率評価装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the dielectric constant evaluation apparatus which concerns on embodiment of this invention. 本発明の実施の形態の測定対象となる被測定物の1例を説明する図である。It is a figure explaining one example of the to-be-measured object used as the measuring object of embodiment of this invention. 従来の誘電率評価方法および本発明の実施の形態に係る誘電率評価方法における誘電率評価誤差を計算した結果を示す図である。It is a figure which shows the result of having calculated the dielectric constant evaluation error in the conventional dielectric constant evaluation method and the dielectric constant evaluation method which concerns on embodiment of this invention. 従来の誘電率評価方法で用いる光学系の構成を説明する図である。It is a figure explaining the composition of the optical system used with the conventional dielectric constant evaluation method. 従来の誘電率評価方法における電磁波の周波数と位相変化との関係を示す図である。It is a figure which shows the relationship of the frequency and phase change of electromagnetic waves in the conventional dielectric constant evaluation method. 従来の誘電率評価方法の問題点を説明する図である。It is a figure explaining the problem of the conventional dielectric constant evaluation method.

[発明の原理]
従来の誘電率評価方法において、2周波の間隔Δfの上限は、位相ジャンプによる不連続点の存在に起因する。したがって、この不連続点を接続することにより、2周波の間隔Δfの上限を拡張することが可能である。本発明では、図1のように隣接する周波数の間隔Δf=fn+1−fnが以下の式(2)を満たすm個の周波数f1,f2,・・・,fn,fn+1,・・・,fm-1,fmで位相変化検出を行う(mは3以上の整数、nは1以上(m−1)以下の整数)。このとき、電磁波の周波数fnにおいて検出した位相変化をθnとする。図1の丸印は位相変化のサンプリング点(位相変化測定点)を示している。
[Principle of the invention]
In the conventional dielectric constant evaluation method, the upper limit of the two-frequency interval Δf is due to the presence of a discontinuity due to the phase jump. Therefore, by connecting these discontinuities, it is possible to extend the upper limit of the two-frequency interval Δf. In the present invention, m frequencies f 1 , f 2 ,..., F n , f where the interval Δf = f n + 1 −f n of adjacent frequencies satisfies the following equation (2) as shown in FIG. Phase change detection is performed by n + 1 ,..., f m-1 and f m (m is an integer of 3 or more, n is an integer of 1 or more and (m-1) or less). At this time, the phase change detected at the frequency f n of the electromagnetic wave is taken as θ n . Circles in FIG. 1 indicate sampling points of phase change (phase change measuring points).

上記と同様に、Lは被測定物の厚さ、cは光速であり、θnoiseは各周波数での想定される最大位相誤差である。式(2)は、最大位相誤差θnoiseを考慮した時に、隣接周波数間の位相差が2π以上変化しないための条件を示している。εeff_maxは被測定物がとりうる実効的な比誘電率の最大値である。本発明により誘電率評価を行う場合、θnoise,εeff_maxについては、予め設定した固定値を使用する。 Similarly to the above, L is the thickness of the object to be measured, c is the speed of light, and θ noise is the estimated maximum phase error at each frequency. Equation (2) shows the condition for not changing the phase difference between adjacent frequencies by 2π or more when the maximum phase error θ noise is taken into consideration. ε eff _ max is the maximum value of the effective relative permittivity that can be taken by the object to be measured. When performing the dielectric constant evaluation according to the present invention, fixed values set in advance are used for θ noise and ε eff _ max .

次に、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1間の差分を算出し、算出した差分が負の場合には、θn+1以降の位相変化θn+1,θn+2,・・・,θmの全てに2πを加算して更新する。差分が0以上の場合には、位相変化θn+1,θn+2,・・・,θmの全てに0を加算すればよい。すなわち、差分が0以上の場合には値の更新は不要である。以上のような更新ステップを、n=1からn=m−1まで繰り返す。n=m−1までの更新ステップが完了した後の位相変化θn+1,θn+2,・・・,θmを、φn+1,φn+2,・・・,φmとする。更新後の周波数と位相変化の関係を図2に示す。なお、周波数f1の電磁波の位相変化θ1は更新の対象とならないため、φ1とせず、θ1のままとしている。このように更新ステップを行うことで、図2のように電磁波の周波数に比例して位相変化が直線的に増加する特性にすることを、本発明では位相接続と呼ぶ。 Next, the difference between the phase changes θ n and θ n + 1 of two adjacent electromagnetic waves of frequencies f n and f n + 1 is calculated, and if the calculated difference is negative, θ n + 1 or later The phase change θ n + 1 , θ n + 2 ,..., Θ m is updated by adding 2π. When the difference is equal to or larger than 0, the phase change θ n + 1, θ n + 2, ···, it may be added to 0 for all theta m. That is, when the difference is 0 or more, updating of the value is unnecessary. The above update steps are repeated from n = 1 to n = m-1. phase change theta n + 1 after the n = update step to m-1 is completed, θ n + 2, ···, a θ m, φ n + 1, φ n + 2, ···, φ m I assume. The relationship between the frequency after update and the phase change is shown in FIG. The phase change theta 1 of the electromagnetic wave of frequency f 1 since not subject to update, without phi 1, it is set to remain theta 1. By performing the updating step in this manner, as shown in FIG. 2, the characteristic that the phase change linearly increases in proportion to the frequency of the electromagnetic wave is referred to as phase connection in the present invention.

次に、位相接続の終了後、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1と、周波数f1の電磁波の位相変化θ1と、m個の周波数f1,f2,・・・,fmのうちの最高の周波数fmと、周波数fmの電磁波の更新後の位相変化φmとを用いて、以下の式(3)により被測定物の比誘電率εrを算出する。 Next, after the phase connection is completed, the lowest frequency f 1 of m frequencies f 1 , f 2 ,..., F m , the phase change θ 1 of the electromagnetic wave of frequency f 1 , and m Using the highest frequency f m of the frequencies f 1 , f 2 ,..., F m and the phase change φ m after the update of the electromagnetic wave of the frequency f m , measurement is made according to the following equation (3) The relative dielectric constant ε r of the object is calculated.

こうして、本発明では、複数の周波数の電磁波に関して位相接続を行うことで、2周波の間隔Δfの上限を拡張することが可能となり、被測定物の比誘電率εrを高い精度で検出することが可能となる。 Thus, according to the present invention, by performing phase connection with respect to electromagnetic waves of a plurality of frequencies, it is possible to extend the upper limit of the two-frequency interval Δf, and to detect the relative dielectric constant ε r of the object to be measured with high accuracy. Is possible.

[実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。図3は本発明の実施の形態に係る誘電率評価装置の構成を示すブロック図である。本実施の形態の誘電率評価装置は、m個(mは3以上の整数)の周波数f1,f2,・・・,fmの電磁波を被測定物11に照射する電磁波放射器1と、被測定物11を透過した電磁波を検出する検出器2と、検出器2の検出結果に基づいて被測定物11の比誘電率εrを算出する比誘電率評価部3とから構成される。
比誘電率評価部3は、位相検出部30と、位相差算出部31と、更新処理部32と、比誘電率算出部33と、算出結果出力部34とを備えている。
Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 is a block diagram showing the configuration of the dielectric constant evaluation device according to the embodiment of the present invention. The dielectric constant evaluation apparatus according to the present embodiment includes an electromagnetic wave emitter 1 that irradiates the object 11 with electromagnetic waves of m (m is an integer of 3 or more) frequencies f 1 , f 2 ,. A detector 2 for detecting an electromagnetic wave transmitted through the object to be measured 11 and a relative dielectric constant evaluation unit 3 for calculating the relative dielectric constant ε r of the object to be measured 11 based on the detection result of the detector 2 .
The relative dielectric constant evaluation unit 3 includes a phase detection unit 30, a phase difference calculation unit 31, an update processing unit 32, a relative dielectric constant calculation unit 33, and a calculation result output unit 34.

図4は本実施の形態の誘電率評価装置の動作を説明するフローチャートである。まず、比誘電率ε1が既知の背景物質10のみがあって被測定物11がない状態で電磁波放射器1は、m個の周波数f1,f2,・・・,fmの電磁波を背景物質10に照射する(図4ステップS100)。 FIG. 4 is a flow chart for explaining the operation of the dielectric constant evaluation device of the present embodiment. First, the ratio electromagnetic radiator 1 dielectric constant epsilon 1 is in the absence of the measurement object 11 if there is only known background material 10, m pieces of frequency f 1, f 2, · · ·, the electromagnetic wave of f m The background material 10 is irradiated (FIG. 4 step S100).

上記のとおり、隣接する2つの周波数の間隔Δf=fn+1−fnは式(2)を満たしている。このとき、各周波数での最大位相誤差θnoiseについては、測定環境等に影響される乱れを考慮して、想定される値を予め設定しておけばよい。また、本実施の形態では、食品における異物混入検出などの用途を想定しているので、実効的な比誘電率の最大値εeff_maxについても、異物の最大誘電率を考慮して、想定される値を予め設定しておけばよい。また、本実施の形態では、被測定物11の厚さLは既知の値である。 As described above, the interval between adjacent two frequencies Δf = f n + 1 −f n satisfies the equation (2). At this time, with regard to the maximum phase error θ noise at each frequency, an estimated value may be set in advance in consideration of the disturbance affected by the measurement environment or the like. Further, in this embodiment, it is assumed the use of such contamination detection in food, for the maximum value epsilon eff _ max of the effective dielectric constant, in consideration of the maximum dielectric constant of the foreign matter, contemplated The value to be set may be set in advance. Further, in the present embodiment, the thickness L of the object to be measured 11 is a known value.

検出器2は、背景物質10を透過したm個の周波数f1,f2,・・・,fmの電磁波を検出する(図4ステップS101)。
比誘電率評価部3の位相検出部30は、ステップS101の検出器2の検出結果から、m個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を検出する(図4ステップS102)。なお、電磁波の位相を検出する技術は、既存の測定器を使用して実現できる周知の技術である。
The detector 2 detects the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the background material 10 (step S101 in FIG. 4).
The phase detection unit 30 of the relative dielectric constant evaluation unit 3 detects the phases of the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m from the detection result of the detector 2 in step S101 ( FIG. 4 step S102). In addition, the technique which detects the phase of electromagnetic waves is a well-known technique which can be implement | achieved using the existing measuring device.

次に、誘電率評価装置を使用するユーザは、比誘電率ε1が既知の背景物質10の上部(または背景物質10の内部)に、厚さLが既知で、比誘電率εrが未知の被測定物11を配置する。
電磁波放射器1は、このように被測定物11が配置された状態で、背景物質10および被測定物11にm個の周波数f1,f2,・・・,fmの電磁波を照射する(図4ステップS103)。
Next, a user who uses the dielectric constant evaluation apparatus has a known thickness L and an unknown relative dielectric constant ε r on the top of the background material 10 (or inside the background material 10) whose relative dielectric constant ε 1 is known The object to be measured 11 is placed.
The electromagnetic wave emitter 1 radiates electromagnetic waves of m frequencies f 1 , f 2 ,..., F m to the background material 10 and the object 11 under the condition that the object 11 is disposed as described above. (FIG. 4 step S103).

検出器2は、背景物質10および被測定物11を透過したm個の周波数f1,f2,・・・,fmの電磁波を検出する(図4ステップS104)。
比誘電率評価部3の位相検出部30は、ステップS104の検出器2の検出結果から、m個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を検出する(図4ステップS105)。
The detector 2 detects the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the background substance 10 and the object to be measured 11 (step S104 in FIG. 4).
The phase detection unit 30 of the relative dielectric constant evaluation unit 3 detects the phases of the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m from the detection result of the detector 2 in step S104 ( FIG. 4 step S105).

続いて、比誘電率評価部3の位相差算出部31は、ステップS102で得られた電磁波の位相とステップS105で得られた電磁波の位相との差である位相変化θを電磁波の周波数毎に算出し、隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の電磁波の位相変化θnとθn+1との差θn+1−θnを、2つの周波数fn,fn+1の電磁波の位相差Δθとする(図4ステップS106)。このように、本実施の形態では、2回の位相の測定結果の差分をとることで得られる被測定物11による正味の位相変化をθとする。位相差算出部31は、以上のような位相差Δθの算出をn=1からn=m−1までのそれぞれについて行う。 Subsequently, the phase difference calculation unit 31 of the relative dielectric constant evaluation unit 3 calculates the phase change θ, which is the difference between the phase of the electromagnetic wave obtained in step S102 and the phase of the electromagnetic wave obtained in step S105, for each frequency of the electromagnetic wave. calculated, two adjacent frequencies f n, f n + 1 ( n is 1 or more (m-1) an integer) the difference between the phase change theta n and theta n + 1 of an electromagnetic wave theta n + 1 - [theta] Let n be the phase difference Δθ of electromagnetic waves of two frequencies f n and f n + 1 (step S106 in FIG. 4). As described above, in the present embodiment, the net phase change due to the DUT 11 obtained by taking the difference between the measurement results of the phase twice is assumed to be θ. The phase difference calculation unit 31 calculates the phase difference Δθ as described above for each of n = 1 to n = m−1.

次に、比誘電率評価部3の更新処理部32は、隣接する2つの周波数fn,fn+1の電磁波の位相差Δθが負かどうかを判定し(図4ステップS108)、位相差Δθが負の場合には、θn+1以降の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する(図4ステップS109)。上記のとおり、位相差Δθが0以上の場合には、位相変化θn+1,θn+2,・・・,θmのそれぞれに0を加算することになるので、位相差Δθが0以上の場合には位相変化の更新は不要である。このような更新ステップを、n=1から開始して、nを1ずつ増やしながら繰り返し行い(図4ステップS107〜S110)、n=m−1まで処理を終えた時点で(図4ステップS111においてYES)、更新処理部32の動作が終了する。上記のとおり、n=m−1までの更新ステップが完了した後の位相変化θn+1,θn+2,・・・,θmを、φn+1,φn+2,・・・,φmとする。 Next, the update processing unit 32 of the relative dielectric constant evaluation unit 3 determines whether or not the phase difference Δθ between the two adjacent electromagnetic waves of the frequencies f n and f n + 1 is negative (step S108 in FIG. 4). Δθ is in the case of negative, θ n + 1 and subsequent phase change θ n + 1, θ n + 2, ···, and updates by adding 2π to each theta m (Fig. 4 step S109). As described above, when the phase difference [Delta] [theta] of 0 or more, the phase change θ n + 1, θ n + 2, ···, it means that adds 0 to the respective theta m, the phase difference [Delta] [theta] 0 In the above case, updating of the phase change is not necessary. Such an updating step is repeated starting from n = 1 and incrementing n one by one (FIG. 4 steps S107 to S110), and when processing is completed up to n = m-1 (FIG. 4 step S111 YES), the operation of the update processing unit 32 ends. As described above, the phase changes θ n + 1 , θ n + 2 ,..., Θ m after the update steps up to n = m−1 are completed are φ n + 1 , φ n + 2 ,. ·, Φ m .

なお、ステップS109の処理を繰り返すことにより、位相変化θn+1,θn+2,・・・,θmが増大していくが、ステップS109の処理後においても隣接する2つの周波数fn,fn+1の電磁波の位相差Δθは変化しない。したがって、ステップS109の処理を1回行う度に位相差Δθを計算し直す必要はなく、位相差算出部31の算出結果を基にステップS108の判定処理を行うようにすればよい。 Although the phase changes θ n + 1 , θ n +2 ,..., Θ m increase by repeating the process of step S109, the two adjacent frequencies f n also after the process of step S109. , F n + 1 do not change. Therefore, it is not necessary to recalculate the phase difference Δθ every time the process of step S109 is performed once, and the determination process of step S108 may be performed based on the calculation result of the phase difference calculation unit 31.

比誘電率評価部3の比誘電率算出部33は、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1と、位相差算出部31が算出した周波数f1の電磁波の位相変化θ1と、m個の周波数f1,f2,・・・,fmのうちの最高の周波数fmと、更新処理部32が算出した周波数fmの電磁波の更新後の位相変化φmと、被測定物11の既知の厚さLとを用いて、式(3)により被測定物11の比誘電率εrを算出する(図4ステップS112)。 The relative permittivity calculation unit 33 of the relative permittivity evaluation unit 3 calculates the lowest frequency f 1 of the m frequencies f 1 , f 2 ,..., F m and the frequency calculated by the phase difference calculation unit 31. an electromagnetic wave phase shift theta 1 of f 1, m pieces of frequency f 1, f 2, ···, and the highest frequency f m of f m, of the electromagnetic wave of the frequency f m of the update processing unit 32 is calculated Using the phase change φ m after the update and the known thickness L of the device under test 11, the relative dielectric constant ε r of the device under test 11 is calculated according to equation (3) (step S112 in FIG. 4).

比誘電率評価部3の算出結果出力部34は、比誘電率算出部33の算出結果を出力する(図4ステップS113)。具体的には、算出結果出力部34は、例えば比誘電率算出部33が算出した被測定物11の比誘電率εrを表示したり、比誘電率εrの情報を外部に送信したりする。以上のようにして、本実施の形態の誘電率評価装置の動作が終了する。 The calculation result output unit 34 of the relative dielectric constant evaluation unit 3 outputs the calculation result of the relative dielectric constant calculation unit 33 (step S113 in FIG. 4). Specifically, the calculation result output unit 34, and transmits for example, to display the relative dielectric constant epsilon r of the measurement object 11 to the dielectric constant calculator 33 has calculated, the information of the relative permittivity epsilon r to the outside Do. As described above, the operation of the dielectric constant evaluation device of the present embodiment is completed.

本実施の形態では、従来との比較のため、1例として図5に示すような比誘電率ε1=3、厚さL1=30mmの背景物質10の中に比誘電率εr=10で厚さL=1〜10mmの範囲の被測定物11が入っている場合について本実施の形態の効果を説明する。この条件の場合、実効誘電率の最大値εeff_maxは4.88である。また、誘電体境界での反射により発生する最大位相誤差θnoiseが0.1ラジアンとすると、隣接する2つの周波数の間隔Δfの最大値は式(2)を用いて8GHzと計算される。 In the present embodiment, for comparison with the prior art, the relative dielectric constant ε r = 10 in the background material 10 having a relative dielectric constant ε 1 = 3 and a thickness L 1 = 30 mm as shown in FIG. 5 as an example. The effect of the present embodiment will be described for the case where the object to be measured 11 in the range of thickness L = 1 to 10 mm is contained. Under this condition, the maximum value of effective dielectric constant ε eff _ max is 4.88. Further, assuming that the maximum phase error θ noise generated by the reflection at the dielectric boundary is 0.1 radian, the maximum value of the interval Δf between two adjacent frequencies is calculated to be 8 GHz using the equation (2).

式(1)を用いる従来の誘電率評価方法において、f1=300GHzとf2=308GHzの2周波を用いた場合の誘電率評価誤差(比誘電率εrの算出誤差)のシミュレーション結果を図6に示す。この場合、2周波の間隔Δfは8GHzとなる。図6の点線60が従来の誘電率評価方法で被測定物11の比誘電率εrを算出した場合の誤差を示している。最大誤差は14.5%であった。 In the conventional dielectric constant evaluation method using equation (1), the simulation result of the dielectric constant evaluation error (calculation error of the relative dielectric constant ε r ) in the case of using two frequencies of f 1 = 300 GHz and f 2 = 308 GHz is shown. It is shown in 6. In this case, the interval Δf between the two frequencies is 8 GHz. The dotted line 60 in FIG. 6 shows an error when the relative dielectric constant ε r of the device under test 11 is calculated by the conventional dielectric constant evaluation method. The maximum error was 14.5%.

一方、図6の実線61は本実施の形態の誘電率評価方法で被測定物11の比誘電率εrを算出した場合の誤差を示している。ここでは、f1=300GHz、f2=308GHz、f3=316GHz、f4=324GHz、f5=330GHzの5つの周波を用いて、電磁波の最低周波数と最高周波数の周波数間隔を30GHzまで拡張した。図6によれば、最大誤差を3.7%まで低減可能なことが分かる。 On the other hand, a solid line 61 in FIG. 6 indicates an error when the relative dielectric constant ε r of the device under test 11 is calculated by the dielectric constant evaluation method of the present embodiment. Here, the frequency interval between the lowest frequency and the highest frequency of the electromagnetic wave is extended to 30 GHz using five frequencies f 1 = 300 GHz, f 2 = 308 GHz, f 3 = 316 GHz, f 4 = 324 GHz, f 5 = 330 GHz . According to FIG. 6, it can be seen that the maximum error can be reduced to 3.7%.

本実施の形態で説明した比誘電率評価部3は、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。コンピュータのCPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   The relative dielectric constant evaluation unit 3 described in the present embodiment can be realized by a computer provided with a central processing unit (CPU), a storage device, and an interface, and a program for controlling these hardware resources. The CPU of the computer executes the processing described in the present embodiment in accordance with the program stored in the storage device.

本発明は、電磁波を用いて物体の比誘電率を測定する技術に適用することができる。   The present invention can be applied to a technique for measuring the relative permittivity of an object using an electromagnetic wave.

1…電磁波放射器、2…検出器、3…比誘電率評価部、10…背景物質、11…被測定物、30…位相検出部、31…位相差算出部、32…更新処理部、33…比誘電率算出部、34…算出結果出力部。   DESCRIPTION OF SYMBOLS 1 ... electromagnetic wave radiator, 2 ... detector, 3 ... relative dielectric constant evaluation part, 10 ... background material, 11 ... thing to be measured, 30 ... phase detection part, 31 ... phase difference calculation part, 32 ... update process part, 33 ... relative permittivity calculation unit, 34 ... calculation result output unit.

Claims (2)

各周波数で想定される最大位相誤差をθnoise、被測定物の想定される最大比誘電率をεeff_max、前記被測定物の厚さをL、光速をcとしたとき、隣接する2つの周波数fn,fn+1の間隔Δfが
を満たすm個(mは3以上の整数、nは1以上(m−1)以下の整数)の周波数f1,f2,・・・,fmの電磁波を前記被測定物に照射する電磁波照射ステップと、
前記被測定物を透過した電磁波を検出する電磁波検出ステップと、
前記m個の周波数の電磁波のそれぞれの位相変化を検出する位相検出ステップと、
隣接する2つの周波数fn,fn+1の電磁波の位相差を算出する位相差算出ステップと、
この位相差算出ステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す更新ステップと、
m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1と周波数f1の電磁波の位相変化とm個の周波数f1,f2,・・・,fmのうちの最高の周波数fmと周波数fmの電磁波の更新後の位相変化と前記被測定物の既知の厚さLとから、前記被測定物の比誘電率εrを算出する比誘電率算出ステップとを含むことを特徴とする誘電率評価方法。
Assuming that the maximum phase error assumed at each frequency is θ noise , the assumed maximum relative dielectric constant of the object to be measured is ε eff _ max , the thickness of the object to be measured is L, and the speed of light is c, 2 adjacent Of two frequencies f n and f n + 1
Of the electromagnetic waves having frequencies f 1 , f 2 ,..., F m with m (m is an integer of 3 or more and n is an integer of 1 or more (m-1) or less) satisfying the above Irradiation step,
An electromagnetic wave detection step of detecting an electromagnetic wave transmitted through the object to be measured;
A phase detection step of detecting a phase change of each of the m frequency electromagnetic waves;
A phase difference calculating step of calculating a phase difference between electromagnetic waves of two adjacent frequencies f n and f n + 1 ;
When the phase difference calculated in this phase difference calculation step is negative, the process of adding 2π to each of the phase change of the electromagnetic wave of each frequency after f n + 1 and updating is performed, n = 1 to n = m−1 Update step to repeat up to
The phase change of the electromagnetic wave with the lowest frequency f 1 and the frequency f 1 among the m frequencies f 1 , f 2 ,..., f m and the m frequencies f 1 , f 2 ,. Relative permittivity r r of the object to be measured from the phase change after updating of the electromagnetic wave of the highest frequency f m and frequency f m and the known thickness L of the object to be measured And a calculation step.
請求項1記載の誘電率評価方法において、
背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記位相検出ステップを行い、
前記位相差算出ステップは、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とするステップを含み、
前記更新ステップは、前記位相差算出ステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返すステップを含み、
前記比誘電率算出ステップは、周波数f1と周波数f1の電磁波の位相変化θ1と周波数fmと周波数fmの電磁波の更新後の位相変化φmと前記被測定物の既知の厚さLとから、前記被測定物の比誘電率εrを算出するステップを含むことを特徴とする誘電率評価方法。
In the dielectric constant evaluation method according to claim 1,
The phase detection step is performed once in each of a state in which there is only the background material and there is no such object, and a state in which there is the background material and the object.
In the phase difference calculating step, a phase of an electromagnetic wave measured in a state where there is only the background material and there is no object to be measured, and a phase of an electromagnetic wave measured in a state where the background material and the object to be measured are present The phase change which is the difference is calculated for each frequency, and the difference between the phase changes θ n and θ n + 1 of two adjacent electromagnetic waves having frequencies f n and f n + 1 can be calculated as these frequencies f n and f n + 1 Step of phase difference of the electromagnetic waves of
In the updating step, when the phase difference calculated in the phase difference calculating step is negative, the phase change θ n + 1 , θ n + 2 ,..., Θ m of the electromagnetic wave of each frequency after f n + 1 Including the step of repeating the process of updating by adding 2π to each, from n = 1 to n = m−1,
Known thickness of the dielectric constant calculation step, the frequency f 1 and an electromagnetic wave phase shift theta 1 and the frequency f m and the phase change phi m and the object to be measured after the electromagnetic wave of the update frequency f m of frequency f 1 Calculating the relative dielectric constant ε r of the device under test from L and L.
JP2016101309A 2016-05-20 2016-05-20 Dielectric constant evaluation method Active JP6533187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101309A JP6533187B2 (en) 2016-05-20 2016-05-20 Dielectric constant evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101309A JP6533187B2 (en) 2016-05-20 2016-05-20 Dielectric constant evaluation method

Publications (2)

Publication Number Publication Date
JP2017207422A JP2017207422A (en) 2017-11-24
JP6533187B2 true JP6533187B2 (en) 2019-06-19

Family

ID=60415526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101309A Active JP6533187B2 (en) 2016-05-20 2016-05-20 Dielectric constant evaluation method

Country Status (1)

Country Link
JP (1) JP6533187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12025642B2 (en) * 2019-12-20 2024-07-02 Nippon Telegraph And Telephone Corporation Dielectric constant measurement method, dielectric measurement device and dielectric measurement program
CN111103327B (en) * 2019-12-30 2022-05-17 中国人民解放军军事科学院国防科技创新研究院 Equivalent electromagnetic parameter inversion method and device for artificial structure with non-uniform dielectric material
JP7400954B2 (en) * 2020-04-22 2023-12-19 日本電信電話株式会社 Object permittivity measuring device and object thickness measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9122210D0 (en) * 1991-10-18 1991-11-27 Marconi Gec Ltd Method for measurement of the gas and water content in oil
US5867117A (en) * 1996-12-13 1999-02-02 The University Of Kansas, Center For Research, Incorporated Swept-step radar system and detection method using same
JP2001050908A (en) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Millimeter wave imaging system
SE517315C2 (en) * 1999-09-17 2002-05-21 Sik Inst Foer Livsmedel Och Bi Apparatus and method for detecting foreign bodies in products
JP2013032981A (en) * 2011-08-02 2013-02-14 Otsuka Denshi Co Ltd Film thickness measuring device

Also Published As

Publication number Publication date
JP2017207422A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Aichholzer et al. Microwave testing of moist and oven-dry wood to evaluate grain angle, density, moisture content and the dielectric constant of spruce from 8 GHz to 12 GHz
JP6533187B2 (en) Dielectric constant evaluation method
Kandjani et al. A new paradigm for signal processing of Raman spectra using a smoothing free algorithm: Coupling continuous wavelet transform with signal removal method
KR20150143162A (en) Optical measuring methods and system
JP2015534267A5 (en)
KR101739628B1 (en) Apparatus and method for analyzing a semiconductor wafer by using a terahertz wave
CN107924390A (en) Method and system for determining a concentration range of a sample by means of a calibration curve
CN117129371B (en) Calibration method and device for surface density measuring instrument and readable storage medium
JP6427195B2 (en) How to measure the effective atomic number of a substance
CN115046943A (en) Water quality detection method, device and system and storage medium
CN113348358B (en) Loosely coupled inspection and metrology system for mass production process monitoring
KR20170134567A (en) Calibration method and apparatus for broadband non-chromatic aberration combined wave plate and corresponding measurement system
Hasar et al. A microwave method based on amplitude-only reflection measurements for permittivity determination of low-loss materials
JP6032404B2 (en) X-ray crystal analysis method
LeBrun et al. A radial calibration window for analytical ultracentrifugation
JP6176332B2 (en) Measuring method and apparatus for basis weight and moisture content
EP3745122A3 (en) X-ray analyzer
JP6787834B2 (en) Permittivity measurement systems, equipment and methods
JP6457408B2 (en) Imaging method
US20160054166A1 (en) Echo curve determination at a resolution that differs on area-by-area basis
JP5807303B2 (en) Detection method, detection device and detection program for corrosion of steel under coating film
JP2019211314A5 (en)
Bodermann et al. Development of a scatterometry reference standard
Alsaleh et al. Machine Learning-Based Monostatic Microwave Radar for Building Material Classification
Egorov et al. Estimating the errors of the results of lidar probing of a weakly turbid atmosphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6533187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150