[go: up one dir, main page]

JP2019211314A5 - - Google Patents

Download PDF

Info

Publication number
JP2019211314A5
JP2019211314A5 JP2018107017A JP2018107017A JP2019211314A5 JP 2019211314 A5 JP2019211314 A5 JP 2019211314A5 JP 2018107017 A JP2018107017 A JP 2018107017A JP 2018107017 A JP2018107017 A JP 2018107017A JP 2019211314 A5 JP2019211314 A5 JP 2019211314A5
Authority
JP
Japan
Prior art keywords
measuring
measured
reflectance coefficient
coefficient
vna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018107017A
Other languages
Japanese (ja)
Other versions
JP7153309B2 (en
JP2019211314A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018107017A priority Critical patent/JP7153309B2/en
Priority claimed from JP2018107017A external-priority patent/JP7153309B2/en
Publication of JP2019211314A publication Critical patent/JP2019211314A/en
Publication of JP2019211314A5 publication Critical patent/JP2019211314A5/ja
Application granted granted Critical
Publication of JP7153309B2 publication Critical patent/JP7153309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ベクトルネットワークアナライザ(以下「VNA」と呼ぶ)を用いた反射係数の測定方法に関し、より具体的には、VNAの校正を含む1ポートでの対象物(以下「DUT」と呼ぶ)の反射係数の測定方法に関する。 The present invention relates to a method for measuring a reflectance coefficient using a vector network analyzer (hereinafter referred to as "VNA"), and more specifically, an object to be subjected to one port including calibration of VNA (hereinafter referred to as "DUT"). ) Is related to the measurement method of the reflectance coefficient.

本発明は、ベクトルネットワークアナライザ(VNA)を用いた反射係数の測定方法を提供する。その測定方法は、(a)VNAのつのポートに直接接続された測定物の反射係数Γdmを測定するステップと、(b)そのつのポートにSパラメータSij,X(i、j=1、2、X=A、B、C)が既知の長さが異なる3つのラインA、B、Cを介して接続された測定物の反射係数ΓXm(X=A、B、C)を測定するステップと、(c)反射係数Γdm、ΓXm及びSパラメータSij,Xを用いて測定物の真の反射係数Γを求めるステップと、を含む。 The present invention provides a method for measuring a reflectance coefficient using a vector network analyzer (VNA). Its measurement method, (a) a step of measuring a reflection coefficient gamma dm of the object that is directly connected to one port of VNA, (b) S parameter S ij to the one port, X (i, j = 1, 2, X = A, B, C) Reflection coefficient Γ Xm (X = A, B, C) of the object to be measured connected via three lines A, B, C with different known lengths. ), And (c) finding the true reflection coefficient Γ d of the object under test using the reflection coefficients Γ dm , Γ Xm and the S-parameters Sij, X.

本発明によれば、VNAのつのポートでのDUTの反射係数の測定においてVNAの回路エラーを全て取り除いた、すなわち回路エラーの校正を含む測定が可能である。高精度の測定結果(真の反射係数)を得ることができる。また、基準器として長さの異なる3つのラインのみを用いるのでその製造や長さを基にした特性評価が容易である。 According to the present invention to remove any circuit errors of the VNA in the measurement of the reflection coefficient of the DUT at one port VNA, i.e. it is possible to measure including calibration circuitry error. Highly accurate measurement results (true reflectance coefficient) can be obtained. Moreover, since only three lines having different lengths are used as the reference device, it is easy to manufacture the lines and evaluate the characteristics based on the lengths.

図2は、本発明の一実施形態のVNAの1ポートでのDUTの反射係数の測定の概念図である。図2では、図1の場同様に、VNA20の内部回路(部品)として、信号源11と受信器12のみを記載している。実際にはVNA20は他に信号分離器(スプリッタ、カプラ)、検波器、信号処理部(プロセッサ)、表示部等を含む。図2の四角枠内のδ、μ、τは、順番に方向性、トラッキング、マッチングのVNA内部の回路エラーを意味している。 FIG. 2 is a conceptual diagram of measuring the reflectance coefficient of a DUT at one port of a VNA according to an embodiment of the present invention. In Figure 2, similarly if the Figure 1, as the internal circuit of VNA20 (parts) describes only the receiver 12 and the signal source 11. Actually, the VNA 20 also includes a signal separator (splitter, coupler), a detector, a signal processing unit (processor), a display unit, and the like. Δ, μ, and τ in the square frame of FIG. 2 mean circuit errors inside the VNA of directionality, tracking, and matching in order.

1、11:信号源
2、12:受信器
3、13:測定物(DUT)
10、20:ベクトルネットワークアナライザ(VNA)
15、16、17:ラインA、B、C
1, 11: Signal source 2, 12: Receiver 3, 13: Object to be measured (DUT)
10, 20: Vector network analyzer (VNA)
15, 16, 17: Lines A, B, C

Claims (5)

ベクトルネットワークアナライザ(VNA)を用いた反射係数の測定方法であって、
VNAの1つのポートに直接接続された測定物の反射係数Γdmを測定するステップと、
前記1つのポートにSパラメータSij,X(i、j=1、2、X=A、B、C)が既知の長さが異なる3つのラインA、B、Cを介して前記測定物を接続した場合の反射係数ΓXm(X=A、B、C)を測定するステップと、
前記反射係数Γdm、ΓXm及び前記SパラメータSij,Xを用いて前記測定物の真の反射係数Γを求めるステップと、を含む測定方法。
A method of measuring the reflectance coefficient using a vector network analyzer (VNA).
The step of measuring the reflectance coefficient Γ dm of the object to be measured directly connected to one port of the VNA,
The object to be measured is via three lines A, B, and C having S-parameters S ij, X (i, j = 1, 2, X = A, B, C) known to the one port and having different lengths. And the step of measuring the reflectance coefficient Γ Xm (X = A, B, C) when
A measurement method including a step of obtaining the true reflection coefficient Γ d of the object to be measured by using the reflection coefficients Γ dm and Γ Xm and the S parameters Sij and X.
前記3つのラインA、B、Cの長さは、測定周波数での前記反射係数Γdm、ΓXmの位相がπ/4ずつずれるように設定される、請求項1に記載の測定方法。 The measuring method according to claim 1, wherein the lengths of the three lines A, B, and C are set so that the phases of the reflection coefficients Γ dm and Γ Xm at the measurement frequency are shifted by π / 4. 前記測定物の真の反射係数Γを求めるステップは、下記の4つの式から、ただし、δ、μ、τは、方向性、トラッキング、マッチングの回路エラーを意味し、
Figure 2019211314
Figure 2019211314
Figure 2019211314
Figure 2019211314
真の反射係数Γを求めるステップを含む、請求項1または2に記載の測定方法。
The step of finding the true reflectance coefficient Γ d of the object to be measured is derived from the following four equations, where δ, μ, and τ mean a circuit error of directionality, tracking, and matching.
Figure 2019211314
Figure 2019211314
Figure 2019211314
Figure 2019211314
The measuring method according to claim 1 or 2, comprising the step of obtaining the true reflection coefficient Γ d .
前記測定物の反射係数ΓXmを測定するステップは、
前記1つのポートに前記ラインAを介して前記測定物を接続した場合の反射係数ΓAmを測定するステップと、
前記1つのポートに前記ラインBを介して前記測定物を接続した場合の反射係数ΓBmを測定するステップと、
前記1つのポートに前記ラインCを介して前記測定物を接続した場合の反射係数ΓCmを測定するステップと、を含む請求項1〜3のいずれか一項に記載の測定方法。
The step of measuring the reflectance coefficient Γ Xm of the object to be measured is
A step of measuring the reflectance coefficient Γ Am when the object to be measured is connected to the one port via the line A, and
A step of measuring the reflectance coefficient Γ Bm when the object to be measured is connected to the one port via the line B, and
The measuring method according to any one of claims 1 to 3, comprising a step of measuring a reflectance coefficient Γ Cm when the object to be measured is connected to the one port via the line C.
前記3つのラインA、B、Cは、エアーライン、導波管、または平面回路のいずれかを含む、請求項1〜4のいずれか一項に記載の測定方法。 The measuring method according to any one of claims 1 to 4, wherein the three lines A, B, and C include any of an air line, a waveguide, and a planar circuit.
JP2018107017A 2018-06-04 2018-06-04 Measurement method of reflection coefficient using vector network analyzer Active JP7153309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018107017A JP7153309B2 (en) 2018-06-04 2018-06-04 Measurement method of reflection coefficient using vector network analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107017A JP7153309B2 (en) 2018-06-04 2018-06-04 Measurement method of reflection coefficient using vector network analyzer

Publications (3)

Publication Number Publication Date
JP2019211314A JP2019211314A (en) 2019-12-12
JP2019211314A5 true JP2019211314A5 (en) 2020-12-10
JP7153309B2 JP7153309B2 (en) 2022-10-14

Family

ID=68845123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107017A Active JP7153309B2 (en) 2018-06-04 2018-06-04 Measurement method of reflection coefficient using vector network analyzer

Country Status (1)

Country Link
JP (1) JP7153309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983431B (en) * 2020-08-31 2022-11-15 中电科思仪科技股份有限公司 Method for improving simulation precision of port reflection coefficient of vector network analyzer
KR20220105531A (en) * 2021-01-20 2022-07-27 삼성전자주식회사 Method and apparatus for detecting reflection coeffiectient

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853613A (en) * 1987-10-27 1989-08-01 Martin Marietta Corporation Calibration method for apparatus evaluating microwave/millimeter wave circuits
US6823276B2 (en) * 2003-04-04 2004-11-23 Agilent Technologies, Inc. System and method for determining measurement errors of a testing device
WO2005101037A1 (en) * 2004-04-02 2005-10-27 Murata Manufacturing Co., Ltd. High frequency electric characteristics measuring method and equipment for electronic component
WO2006090550A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Method for measuring dielectric constant of transmission line material and method for measuring electric characteristic of electronic component using the dielectric constant measuring method
CN101258412B (en) * 2005-09-01 2013-02-20 株式会社村田制作所 Method and apparatus for measuring scattering coefficient of device under test

Similar Documents

Publication Publication Date Title
CN111398882B (en) A multi-component based electric field probe and magnetic field probe calibration system and method
CN107861050B (en) A method of On-wafer measurement is carried out using vector network analyzer
CN108802510B (en) Integrated noise parameter measuring device and measuring method
CN106405462B (en) Piece scattering parameter trace to the source and uncertainty evaluation method
TWI438450B (en) Correction method of measurement error and electronic component characteristic measuring device
US20080238441A1 (en) Vector Network Analyzer-Noise Figure Measurement
CN106772173B (en) A method of identifying the port of electronic calibration device based on impedance transformation
WO2012105127A1 (en) Measurement error correction method and electronic component characteristic measurement device
JP2019211314A5 (en)
JP2001153904A (en) Network analyzer, network analyzing method and storage medium
CN104297711B (en) Uncertainty analysis method for vector network analyzer
US9243883B2 (en) Apparatus and method for conducting and real-time application of EC probe calibration
TWI467186B (en) Scattering parameter analysis system and method
CN103217385B (en) Method for assessing random error of ellipsometer measurement system
JP7153309B2 (en) Measurement method of reflection coefficient using vector network analyzer
CN108008363B (en) A Calibration System for Quantitative Measurement Radar
CN106771849B (en) A Test Method for Reflection Response of Two Impedance Discontinuities on a Transmission Line
US11523755B2 (en) Device and method for detecting and compensating for an oblique ear probe insertion
CN116299246B (en) Method for evaluating internal calibration precision of synthetic aperture radar system
JP6330049B2 (en) Method, calibration unit and system for determining system error and power values for network analyzer calibration
JP5458817B2 (en) Method of correcting electrical characteristic measurement error of electronic component and electronic component characteristic measuring apparatus
Mubarak et al. Residual error analysis of a calibrated vector network analyzer
Aldoumani et al. Enhanced vector calibration of load-pull measurement systems
CN110141269A (en) Accurate positioner and control method suitable for high-frequency ultrasonic probe
KR20150091792A (en) Methods and apparatuses for calibrating microwave imaging apparatus using variation due to temperature