[go: up one dir, main page]

JP6503812B2 - Neutral solidifying material and solidifying method - Google Patents

Neutral solidifying material and solidifying method Download PDF

Info

Publication number
JP6503812B2
JP6503812B2 JP2015055434A JP2015055434A JP6503812B2 JP 6503812 B2 JP6503812 B2 JP 6503812B2 JP 2015055434 A JP2015055434 A JP 2015055434A JP 2015055434 A JP2015055434 A JP 2015055434A JP 6503812 B2 JP6503812 B2 JP 6503812B2
Authority
JP
Japan
Prior art keywords
mass
soil
content
neutral
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055434A
Other languages
Japanese (ja)
Other versions
JP2016175966A (en
Inventor
英喜 中田
英喜 中田
陽一 上田
陽一 上田
啓史 藤井
啓史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2015055434A priority Critical patent/JP6503812B2/en
Publication of JP2016175966A publication Critical patent/JP2016175966A/en
Application granted granted Critical
Publication of JP6503812B2 publication Critical patent/JP6503812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、砒素の汚染土壌等を不溶化するとともに、不溶化処理土の固化強度を短期に高めることができ、かつ処理土のpHを中性とする中性固化材及び固化処理方法に関する。   The present invention relates to a neutralizing material and a solidifying method that can insolubilize arsenic-contaminated soil and the like, increase the solidification strength of the insolubilized treated soil in a short period, and make the pH of the treated soil neutral.

近年、道路・トンネル等では、鉛、砒素、フッ素を含有した土壌が大量に発生するケースがある。全ての汚染土壌を掘削除去することは困難であることから、道路路体用盛土、河川築提等に有効利用されることがあり、低コスト・短処理時間で土を改良しつつ汚染物質の溶出を防止できる中性固化材が着目されている。セメント系材料や酸化マグネシウム系材料による不溶化は、改良土又は地下水のpHがアルカリ性になりやすいため、不溶化機能を有する中性固化材が開発されている。例えば、軽焼マグネシアまたは軽焼マグネシア部分水和物に、炭酸カルシウムと硫酸アルミニウムや硫酸第一鉄などのような酸性硫酸塩化合物を添加した中性固化材が提案されている(特許文献1参照)。なお、ここで言う中性とはpHが5.8〜8.6の範囲である。   In recent years, there have been cases where a large amount of soil containing lead, arsenic and fluorine is generated on roads and tunnels. Because it is difficult to excavate and remove all contaminated soil, it can be effectively used for road road embankments, river construction, etc. Attention is focused on neutral solidified materials that can prevent elution. Since insolubilization with a cement-based material or a magnesium oxide-based material tends to make the pH of the improved soil or ground water alkaline, a neutral solidification material having an insolubilizing function has been developed. For example, a neutralizing material has been proposed in which calcium carbonate and an acidic sulfate compound such as aluminum sulfate or ferrous sulfate are added to light-burned magnesia or light-burned magnesia partial hydrate (see Patent Document 1) ). In addition, pH says the range of 5.8-8.6 as said here.

中性固化材で処理された改良土は盛土や河川築提等として有効に利用されることがあるため、改良特性の指標となるコーン指数(現場強度)が例えば400kN/m以上(第3種建設発生土)であることが望ましい。土質のばらつきや含水比の変動等によって、(現場/室内)強さ比が低下するため、コーン指数(室内強度)が例えば500kN/m程度以上が要求されることがある。中性固化材の初期強度発現性は比較的低くなることがあり、中性固化材の強度を増進させる助材として、多孔質材料であるパーライト、ゼオライト、ベントナイト等が開示されている(特許文献2〜5参照)。 Since the improved soil treated with the neutral solidification material may be used effectively as a filling, river construction, etc., the cone index (in-situ strength), which is an index of the improvement characteristics, is, for example, 400 kN / m 2 or more (third It is desirable that it is a seed construction soil). As the (field / indoor) strength ratio decreases due to the dispersion of soil quality, the fluctuation of water content ratio, etc., a cone index (indoor strength) of about 500 kN / m 2 or more may be required. The initial strength development property of the neutral solidification material may be relatively low, and as an auxiliary material for enhancing the strength of the neutral solidification material, porous materials perlite, zeolite, bentonite and the like are disclosed (patent document 2 to 5).

特開2012−92180号公報JP 2012-92180 A 特開2003−334526号公報Unexamined-Japanese-Patent No. 2003-334526 特開2003−342569号公報Unexamined-Japanese-Patent No. 2003-342569 特開2006−187773号公報Unexamined-Japanese-Patent No. 2006-187773 特開2000−109830号公報Unexamined-Japanese-Patent No. 2000-109830

しかしながら、従来の強度増進材を添加した中性固化材の強度増加率が低く、中性固化材の強度増進材としては適していないことがあった。   However, the strength increase rate of the neutral solidification material to which the conventional strength enhancement material is added is low, and it may not be suitable as a strength enhancement material of the neutral solidification material.

そこで、本発明は、砒素等で汚染された土壌の初期強度を高めることができ、砒素の汚染土壌を土壌溶出量基準以下に不溶化し、かつ地下水等の処理土の周辺環境のpHを中性とすることができる中性固化材並びに中性固化材を用いた固化処理方法を提供することを目的とする。   Therefore, the present invention can increase the initial strength of the soil contaminated with arsenic etc., insolubilize the arsenic-contaminated soil below the soil elution amount standard, and neutralize the pH of the surrounding environment of the treated soil such as groundwater. It is an object of the present invention to provide a solidifying material that can be used as the solidifying material and a solidifying method using the solidifying material.

本発明者等は、上記課題を解決するために鋭意検討した結果、軽焼酸化マグネシウム、硫酸アルミニウムおよび硫酸第一鉄から構成される無機質粉末組成物に、多孔質材料として瓦を所定量添加すると、従来の多孔質材料を添加した中性固化材よりも改良土の初期強度を高めることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors added a predetermined amount of a tile as a porous material to an inorganic powder composition composed of light-burned magnesium oxide, aluminum sulfate and ferrous sulfate. It has been found that the initial strength of the modified soil can be enhanced as compared with the neutralizing material to which the conventional porous material is added, and the present invention has been completed.

即ち、本発明は、軽焼酸化マグネシウム15〜55質量%、硫酸アルミニウム35〜80質量%及び硫酸第一鉄3〜20質量%からなる無機質粉末組成物と、瓦とを含む、中性固化材を提供する。この中性固化材によれば、改良土の初期強度を高めることができ、かつ砒素の不溶化が可能である。
また、本発明の中性固化材は、無機質粉末組成物100質量部に対して、瓦を1〜12質量部含む。この範囲にすることによって、より改良土の初期強度を高めることができ、かつ砒素の不溶化が可能である。
また、本発明の中性固化材は、前記瓦のBET比表面積が0.3〜3.0 m/gであることが好ましい。この範囲にすることによって、更に改良土の初期強度を高めることができ、かつ砒素の不溶化が可能である。
また、本発明の中性固化材は、前記瓦のSiO含有量が60〜70質量%、Al含有量が18〜25質量%、Fe含有量が2〜7質量%、CaO含有量が0.1〜3.0質量%、ほう素含有量が0.1〜60mg/kgであることが好ましい。
また、本発明は、前記中性固化材を、土壌1mに対して20〜200kg/m添加し混合する、固化処理方法を提供する。この固化処理方法によれば、改良土の初期強度を高めることができ、かつ砒素の不溶化が可能である。
また、本発明の固化処理方法は、前記土壌の砒素含有量が0.1〜100mg/kgである砒素汚染土壌であることが好ましい。
That is, the present invention is a neutral solidification material containing an inorganic powder composition comprising 15 to 55% by mass of light-burned magnesium oxide, 35 to 80% by mass of aluminum sulfate and 3 to 20% by mass of ferrous sulfate, and tiles. I will provide a. According to this neutral solidification material, the initial strength of the improved soil can be increased, and insolubilization of arsenic is possible.
Moreover, the neutral solidification material of this invention contains 1-12 mass parts of tiles with respect to 100 mass parts of inorganic powder compositions. By setting this range, the initial strength of the improved soil can be further enhanced, and insolubilization of arsenic is possible.
Moreover, as for the neutral solidification material of this invention, it is preferable that the BET specific surface area of the said tile is 0.3-3.0 m < 2 > / g. By setting it in this range, the initial strength of the improved soil can be further enhanced, and insolubilization of arsenic is possible.
Also, neutral solidifying material of the present invention, SiO 2 content of 60 to 70% by weight of the tile, Al 2 O 3 content of 18 to 25 wt%, Fe 2 O 3 content of 2-7 wt% The CaO content is preferably 0.1 to 3.0% by mass, and the boron content is preferably 0.1 to 60 mg / kg.
Further, the present invention, the neutral solidifying material, added and mixed 20 to 200 kg / m 3 with respect to the soil 1 m 3, to provide a solidification method. According to this solidification treatment method, the initial strength of the improved soil can be increased, and insolubilization of arsenic is possible.
Moreover, it is preferable that the solidification treatment method of this invention is arsenic contamination soil whose arsenic content of the said soil is 0.1-100 mg / kg.

本発明によれば、砒素等で汚染された土壌の初期強度を高めることができ、砒素の汚染土壌を土壌溶出量基準以下に不溶化し、かつ地下水等の処理土の周辺環境のpHを中性とすることが可能な中性固化材並びに固化処理方法を提供することができる。   According to the present invention, the initial strength of soil contaminated with arsenic or the like can be enhanced, the arsenic-contaminated soil is insolubilized below the soil elution amount standard, and the pH of the surrounding environment of treated soil such as groundwater is neutral. It is possible to provide a neutral solidifying material that can be used as well as a solidifying method.

廃瓦のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a waste tile.

以下、本発明の中性固化材並びに固化処理方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the neutral solidification material and the solidification treatment method of the present invention will be described in detail.

<中性固化材>
本発明の中性固化材は、軽焼酸化マグネシウム15〜55質量%、硫酸アルミニウム35〜80質量%(無水物換算)及び硫酸第一鉄3〜20質量%(無水物換算)からなる無機質粉末組成物と、瓦とを含む。
ここで軽焼酸化マグネシウムとは、水酸化マグネシウム(Mg(OH))やマグネサイト鉱石(MgCO)を600〜900℃の低温で焼成することで得られる酸化マグネシウムを意味する。
<Neutralizing material>
The solidifying material of the present invention is an inorganic powder comprising 15 to 55% by mass of light-burned magnesium oxide, 35 to 80% by mass of aluminum sulfate (in terms of anhydride) and 3 to 20% by mass of ferrous sulfate (in terms of anhydride) It contains a composition and tiles.
Here, the term "burned magnesium oxide" means magnesium oxide obtained by firing magnesium hydroxide (Mg (OH) 2 ) or magnesite ore (MgCO 3 ) at a low temperature of 600 to 900 ° C.

軽焼酸化マグネシウムの含有量は無水物換算で15〜55質量%が好ましく、16〜54質量%がより好ましく、17〜53質量%がさらに好ましく、18〜52質量%が特に好ましい。
軽焼酸化マグネシウムの含有量が15質量%未満では強度発現性が低下するため好ましくない。また、軽焼酸化マグネシウムの含有量が55質量%を超えると処理土のpHが8.6を上回り、地下水等の周辺環境がアルカリ性になるので好ましくない。
The content of light-burned magnesium oxide is preferably 15 to 55% by mass, more preferably 16 to 54% by mass, still more preferably 17 to 53% by mass, and particularly preferably 18 to 52% by mass in terms of anhydride.
When the content of light-burned magnesium oxide is less than 15% by mass, the strength developing property is unfavorably reduced. In addition, when the content of the light-burned magnesium oxide exceeds 55% by mass, the pH of the treated soil exceeds 8.6 and the surrounding environment such as ground water becomes alkaline, which is not preferable.

硫酸アルミニウムの含有量は無水物換算で35〜80質量%が好ましく、36〜78質量%がより好ましく、37〜76質量%がさらに好ましく、38〜74質量%が特に好ましい。硫酸アルミニウムの含有量が35質量%未満ではpHを中性に確保する(pH8.6以下)ことが難しくなるため好ましくない。また、硫酸アルミニウムの含有量が80質量%を超えるとpHを中性に確保する(pH5.8以上)ことが難しくなるので好ましくない。   35-80 mass% is preferable in conversion of an anhydride, as for content of aluminum sulfate, 36-78 mass% is more preferable, 37-76 mass% is more preferable, 38-74 mass% is especially preferable. If the content of aluminum sulfate is less than 35% by mass, it is not preferable to secure the pH at neutrality (pH 8.6 or less), which is not preferable. Further, when the content of aluminum sulfate exceeds 80% by mass, it is difficult to secure the pH at neutrality (pH 5.8 or more), which is not preferable.

硫酸第一鉄の含有量は3〜20質量%が好ましく、4〜18質量%がより好ましく、5〜15質量%がさらに好ましく、6〜12質量%が特に好ましい。
硫酸第一鉄の含有量が3質量%未満では砒素の不溶化が困難になるため好ましくない。また、硫酸第一鉄の含有量が20質量%を超えると強度発現性が低下するので好ましくない。 無機質粉末組成物は、軽焼酸化マグネシウム、硫酸アルミニウム及び硫酸第一鉄の他に、石膏、石灰石粉、炭酸カルシウム等を少量含んでも良い。
3-20 mass% is preferable, as for content of ferrous sulfate, 4-18 mass% is more preferable, 5-15 mass% is more preferable, 6-12 mass% is especially preferable.
If the content of ferrous sulfate is less than 3% by mass, it is not preferable because insolubilization of arsenic becomes difficult. Further, if the content of ferrous sulfate exceeds 20% by mass, the strength developing property is unfavorably lowered. The mineral powder composition may contain a small amount of gypsum, limestone powder, calcium carbonate and the like in addition to light-burned magnesium oxide, aluminum sulfate and ferrous sulfate.

瓦の含有量は無機質粉末組成物100質量部に対して1〜12質量部が好ましく、2〜12質量部がより好ましく、3〜11質量部がさらに好ましく、5〜10質量部が特に好ましい。瓦の含有量が1質量部未満では強度発現効果が低くなるため好ましくない。また、瓦の含有量が12質量部を超えると強度発現効果が低下することがあるので好ましくない。   The content of the tile is preferably 1 to 12 parts by mass, more preferably 2 to 12 parts by mass, still more preferably 3 to 11 parts by mass, and particularly preferably 5 to 10 parts by mass with respect to 100 parts by mass of the inorganic powder composition. If the content of the tile is less than 1 part by mass, the strength developing effect is reduced, such being undesirable. Moreover, since the strength expression effect may fall when content of a tile exceeds 12 mass parts, it is unpreferable.

軽焼酸化マグネシウムは市販の軽焼酸化マグネシウムであれば十分に使用することができるが、その酸化マグネシウムは水和活性が高いことが好ましい。例えば、そのブレーン比表面積やBET比表面積が大きい軽焼酸化マグネシウムがより好ましい。   Although the light-burned magnesium oxide can be sufficiently used if it is commercially available light-burned magnesium oxide, it is preferable that the magnesium oxide has high hydration activity. For example, light-burned magnesium oxide having a large brane specific surface area or BET specific surface area is more preferable.

軽焼酸化マグネシウムのブレーン比表面積は、6000〜20000cm/gであることが好ましく、7000〜20000cm/gであることがより好ましく、8000〜20000cm/gであることがさらに好ましい。ブレーン比表面積が6000cm/g未満では軽焼酸化マグネシウム組成物の水和活性が低くなり、不溶化効果や固化性能が不十分であるため好ましくない。ブレーン比表面積が20000m2/gを超えると粉体やスラリーの流動性が低下し、中性固化材の発塵性や施工性等が悪くなるため好ましくない。軽焼酸化マグネシウムのBET比表面積は、5〜30m/gであることが好ましく、7〜30m/gであることがより好ましく、8〜30m/gであることがさらに好ましい。BET比表面積が5m/g未満では軽焼酸化マグネシウム組成物の水和活性が低くなり、不溶化効果や固化性能が不十分であるため好ましくない。BET比表面積が30m/gを超えると粉体やスラリーの流動性が低下するため好ましくない Blaine specific surface area of the light burned magnesium oxide is preferably 6000~20000cm 2 / g, more preferably 7000~20000cm 2 / g, more preferably from 8000~20000cm 2 / g. If the brane specific surface area is less than 6000 cm 2 / g, the hydration activity of the light-burned magnesium oxide composition is low, and the insolubilizing effect and the solidification performance are insufficient. If the brane specific surface area exceeds 20000 m 2 / g, the flowability of the powder or the slurry is lowered, and the dusting property and the workability of the neutralized solidifying material deteriorate, which is not preferable. BET specific surface area of the light burned magnesium oxide is preferably 5 to 30 m 2 / g, more preferably 7~30m 2 / g, more preferably from 8~30m 2 / g. If the BET specific surface area is less than 5 m 2 / g, the hydration activity of the light-burned magnesium oxide composition is low, and the insolubilizing effect and the solidification performance are insufficient. If the BET specific surface area exceeds 30 m 2 / g, the flowability of the powder or the slurry is unfavorably reduced.

軽焼酸化マグネシウムのMgO含有率は80質量%以上で、CaO含有率が3質量%以下であることが好ましい。MgO含有率は85質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。MgO含有率が80質量%未満では、処理土の周辺環境(地下水等)のpH緩衝能が低下する恐れがあり、また不溶化性能が低下する恐れがあるため好ましくない。
また、CaO含有率は2質量%以下がより好ましく、1質量%以下が特に好ましい。CaO含有率が3質量%を超えると、処理土の周辺環境(地下水等)のpHがアルカリ性になる恐れがあり、または不溶化性能が低下する恐れがあるため好ましくない。
The MgO content of light-burned magnesium oxide is preferably 80% by mass or more, and the CaO content is preferably 3% by mass or less. The content of MgO is more preferably 85% by mass or more, further preferably 90% by mass or more, and particularly preferably 95% by mass or more. If the MgO content is less than 80% by mass, there is a risk that the pH buffering capacity of the surrounding environment (ground water and the like) of the treated soil may be reduced, and the insolubilization performance may be reduced, which is not preferable.
Moreover, 2 mass% or less is more preferable, and, as for a CaO content rate, 1 mass% or less is especially preferable. If the CaO content exceeds 3% by mass, the pH of the surrounding environment (ground water etc.) of the treated soil may become alkaline, or the insolubilization performance may be reduced, which is not preferable.

軽焼酸化マグネシウムに含有するMgO含有率およびCaO含有率は、JIS M 8853:1998「セラミックス用アルミノけい酸塩質原料の化学分析方法」を参考にして測定することができる。   The MgO content rate and the CaO content rate contained in light burned magnesium oxide can be measured with reference to JIS M 8853: 1998 “Chemical analysis method of aluminosilicate material for ceramics”.

硫酸アルミニウムは市販の硫酸アルミニウムであれば十分に使用することができ、粉末状または液状のどちらでも良いが、好ましくは粉末状が良い。また、硫酸アルミニウムは無水和物または水和物のいずれであっても良い。   Aluminum sulfate can be used sufficiently as long as it is commercially available aluminum sulfate, and may be either powder or liquid, but preferably powder. Aluminum sulfate may be either anhydrate or hydrate.

硫酸第一鉄は市販の硫酸第一鉄であれば十分に使用することができ、粉末状または液状のどちらでも良いが、好ましくは粉末状が良い。また、硫酸第一鉄は無水和物または水和物のいずれであっても良い。   Ferrous sulfate can be used sufficiently as long as it is commercially available ferrous sulfate, and may be in the form of powder or liquid, preferably in the form of powder. Also, ferrous sulfate may be either anhydrate or hydrate.

瓦には粘土瓦やセメント瓦などがあるが、本発明の中性固化材に使用する瓦は粘土瓦が好ましい。粘土瓦には釉薬瓦、いぶし瓦、無釉薬瓦に大別されるが、いずれも使用することが可能である。いぶし瓦や無釉薬瓦がより好ましい。いぶし瓦や無釉薬瓦では、ほう素等の有害物質含有量が少ないため好適である。また、瓦の粉砕品や廃瓦等を使用することが出来る。その粒度は5mmアンダーが好ましく、4mmアンダーがより好ましく、3mmアンダーがさらに好ましく、2mmアンダーが特に好ましい。本発明の中性固化材に使用する瓦の粒度が0.1mmアンダーの場合、強度発現性が十分に発揮されないため好ましくない。
瓦のBET比表面積は0.3〜3.0m/gが好ましく、0.4〜2.5m/gがより好ましく、0.5〜2.0m/gがさらに好ましく、0.6〜1.5m/gが特に好ましい。0.3m/g未満であれば強度発現効果が低下であり、3.0m/gを超えると、コストアップやスラリーでの施工性が低下を招くため好ましくない。
Tiles include clay tiles and cement tiles, but the tiles used for the solidifying material of the present invention are preferably clay tiles. Clay tiles are roughly divided into glazed tiles, glazed tiles, and glazed tiles, but any of them can be used. Smoked tiles and glazed tiles are more preferable. In the case of smoked tiles and glazed tiles, it is preferable because the content of harmful substances such as boron is small. In addition, crushed tiles and waste tiles can be used. The grain size is preferably 5 mm under, more preferably 4 mm under, even more preferably 3 mm under, particularly preferably 2 mm under. When the grain size of the tile used for the neutral solidification material of the present invention is under 0.1 mm, the strength developing property is not sufficiently exhibited, which is not preferable.
BET specific surface area of the tile is preferably 0.3~3.0m 2 / g, more preferably 0.4~2.5m 2 / g, more preferably 0.5~2.0m 2 / g, 0.6 -1.5 m < 2 > / g is especially preferable. If it is less than 0.3 m 2 / g, the strength developing effect is lowered, and if it exceeds 3.0 m 2 / g, it is not preferable because cost increase and workability in a slurry are lowered.

瓦のSiO含有量は60〜70質量%が好ましく、62〜68質量%がより好ましく、63〜67質量%がさらに好ましい。60質量%以下であれば強度発現性や砒素等の不溶化の面で好ましくなく、70質量%を超えると石英含有量が多くなりすぎ強度発現性や砒素等の不溶化の面で好ましくない。
また、Al含有量は18〜25質量%が好ましく、19〜24質量%がより好ましく、20〜23質量%がさらに好ましい。18質量%未満であれば強度発現性の面で好ましくなく、25質量%を超えると強度発現性や砒素等の不溶化の面で好ましくない。
また、Fe含有量が2〜7質量%が好ましく、3〜6質量%がより好ましく、4〜5質量%がさらに好ましい。2質量%以下であれば瓦の純度が強度発現性や砒素等の不溶化の面で好ましく、7質量%を超えると不純物等の混入が多くなり、強度発現性や砒素等の不溶化の面で好ましくない。
SiO 2 content of tiles is preferably 60 to 70 wt%, more preferably 62-68 wt%, more preferably 63 to 67 wt%. If it is 60 mass% or less, it is not preferable in terms of strength development or insolubilization of arsenic etc. If it exceeds 70 mass%, the quartz content becomes too large, which is not preferable in terms of strength development or insolubilization of arsenic etc.
Further, Al 2 O 3 content is preferably 18 to 25 wt%, more preferably from 19 to 24 wt%, more preferably 20 to 23 wt%. If it is less than 18% by mass, it is not preferable in terms of strength development, and if it is more than 25% by mass, it is not preferable in terms of strength development or insolubilization such as arsenic.
Further, it is preferred 2-7 wt% Fe 2 O 3 content is more preferably 3 to 6 wt%, more preferably 4-5 wt%. If it is 2% by mass or less, the purity of the tile is preferable in terms of strength expression and insolubilization such as arsenic, and if it exceeds 7% by mass, contamination with impurities and the like increases, and in terms of strength expression and insolubilization such as arsenic is preferable. Absent.

また、CaO含有量は0.1〜3.0質量%が好ましく、0.1〜2.0質量%がより好ましく、0.1〜1.0質量%がさらに好ましい。CaO含有量が3質量%を超えると、処理土の周辺環境(地下水等)のpHがアルカリ性になる恐れがあり、または不溶化性能が低下する恐れがあるため好ましくない。
また、ほう素含有量は0.1〜60mg/kgが好ましく、0.2〜40mg/kgがより好ましく、0.3〜20mg/kgがさらに好ましく、0.4〜10mg/kgが特に好ましい。0.1mg/mg未満であれば入手困難であることやコストアップになるため好ましくない。60mg/kgを超えるとほう素の溶出量が土壌溶出量基準を超過する恐れがあるため好ましくない。
Moreover, 0.1-3.0 mass% is preferable, 0.1-2.0 mass% is more preferable, 0.1-1.0 mass% is more preferable. If the CaO content exceeds 3% by mass, the pH of the surrounding environment (ground water etc.) of the treated soil may become alkaline, or the insolubilization performance may be reduced, which is not preferable.
The boron content is preferably 0.1 to 60 mg / kg, more preferably 0.2 to 40 mg / kg, still more preferably 0.3 to 20 mg / kg, and particularly preferably 0.4 to 10 mg / kg. If it is less than 0.1 mg / mg, it is not preferable because it becomes difficult to obtain and cost increases. When it exceeds 60 mg / kg, it is not preferable because the elution amount of boron may exceed the soil elution amount standard.

本発明の中性固化材には、汚染土壌の性状に応じて、また本来の中性固化材の性能を損なわない範囲で、石灰石粉、珪石粉、ハイドロタルサイト、ハイドロカルマイト、炭酸マグネシウム、セピオライト、キレート、鉄粉などの各種添加剤と任意に混合することができる。なお、各種添加剤の混合については、事前の室内配合試験の結果および/又は現地混合機を使用した配合試験の結果によって決定するのが好ましい。   In the neutral solidification material of the present invention, limestone powder, silica stone powder, hydrotalcite, hydrocalumite, magnesium carbonate, according to the properties of the contaminated soil and in the range not impairing the performance of the original neutral solidification material It can be optionally mixed with various additives such as sepiolite, chelate, iron powder and the like. In addition, about mixing of various additives, it is preferable to determine based on the result of the previous chamber | room mixing | blending test, and / or the result of the mixing | blending test using a local mixer.

<固化処理方法>
本発明の固化処理方法によって地盤改良する土は、砒素の溶出量が0.011〜0.50mg/Lである汚染土壌が好ましく、0.011〜0.40mg/Lがより好ましく、0.011〜0.35mg/Lがさらに好ましく、0.011〜0.30mg/Lが特に好ましい。
<Solidification method>
The soil to be ground-improved by the solidification treatment method of the present invention is preferably a contaminated soil having an elution amount of arsenic of 0.011 to 0.50 mg / L, more preferably 0.011 to 0.40 mg / L, and 0.011. -0.35 mg / L is further preferable, and 0.011-0.30 mg / L is particularly preferable.

本発明の固化処理方法で使用する中性固化材の添加量は、処理対象の汚染土壌の種類や汚染度合によって選定されるが、土に対して20〜200kg/m添加すれば十分な不溶化効果が得られる。好ましくは20〜150kg/m、より好ましくは20〜100kg/m、特に好ましくは20〜75kg/mで添加される。添加量が20kg/m未満であれば、中性固化材と土との混合が不十分になる可能性があるため好ましくない。一方、添加量が200kg/mを超えると処理コストが高くなりすぎるため経済的に好ましくない。
なお、中性固化材の添加量は、事前の室内配合試験の結果および/又は現地混合機を使用した配合試験の結果によって決定するのが好ましい。
The addition amount of the neutral solidification material used in the solidification treatment method of the present invention is selected according to the type and the degree of contamination of the contaminated soil to be treated, but addition of 20 to 200 kg / m 3 to the soil is sufficient insolubilization An effect is obtained. Preferably, it is added at 20 to 150 kg / m 3 , more preferably 20 to 100 kg / m 3 , particularly preferably 20 to 75 kg / m 3 . If the addition amount is less than 20 kg / m 3 , it is not preferable because mixing of the neutral solidification material and the soil may be insufficient. On the other hand, if the addition amount exceeds 200 kg / m 3 , the treatment cost becomes too high, which is economically unpreferable.
In addition, it is preferable to determine the addition amount of the neutral solidification material based on the result of the previous indoor mixing test and / or the result of the mixing test using the on-site mixer.

また、汚染土壌への中性固化材の添加は、粉体の状態又はスラリーの状態のいずれでも使用することができる。中性固化材と汚染土壌との混合は、バックホウ、ミキシングバケット装着バックホウ、スタビライザー、自走式土質改良機、定置式ミキサー、トレンチャー型撹拌混合機、深層混合処理機、パワーブレンダー、プラント混合等による通常用いられる混合方法で良い。   Moreover, the addition of the neutral solidification material to the contaminated soil can be used either in the form of powder or in the form of slurry. Neutralization material and contaminated soil are mixed by backhoe, backhoe with mixing bucket, stabilizer, self-propelled soil conditioner, stationary mixer, trencher type mixer, deep layer mixer, power blender, plant mixing etc. A mixing method usually used may be used.

以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.

1.使用材料
本発明では、宇部マテリアルズ(株)製の軽焼酸化マグネシウムを用い、硫酸アルミニウムは大明化学工業(株)製(商品名:硫酸アルミニウム、14水和物)を、硫酸第一鉄はチタン工業(株)製(商品名:硫酸第一鉄、7水和物)を使用した。また、多孔質材料として、愛知県陶器瓦工業組合製の廃瓦(商品名:特殊シャモット、0.5mmアンダー品、BET比表面積0.76m/g)、宇部興産(株)製のゼオライト(ウベゼオライト)、クニミネ工業製のベントナイト(クニゲルFs)を使用した。
1. Materials used In the present invention, light-burned magnesium oxide manufactured by Ube Materials Co., Ltd. is used, aluminum sulfate is manufactured by Daimei Chemical Industries, Ltd. (trade name: aluminum sulfate, 14 hydrate), ferrous sulfate is used. Titanium Industry Co., Ltd. (trade name: ferrous sulfate, heptahydrate) was used. In addition, as porous material, waste tile (brand name: special chamotte 0.5 mm under goods, BET specific surface area 0.76 m 2 / g) made by Aichi Prefectural ceramic tile industry association, zeolite (Ube Industries, Ltd.) Ube zeolite) and bentonite (Kunigel Fs) manufactured by Kunimine Industries were used.

[軽焼酸化マグネシウムの化学組成]
使用した軽焼酸化マグネシウムの化学組成を表1に示す。軽焼酸化マグネシウムの化学組成は、JIS M 8853:1998「セラミックス用アルミノけい酸塩質原料の化学分析方法」に準拠して測定した。なお、表中の単位は質量%である。
[Chemical composition of burnt magnesium oxide]
The chemical composition of the light-burned magnesium oxide used is shown in Table 1. The chemical composition of the light-burned magnesium oxide was measured in accordance with JIS M 8853: 1998 "Chemical analysis method of aluminosilicate material for ceramics". The unit in the table is% by mass.

Figure 0006503812

[酸化マグネシウムのブレーン比表面積]
使用した軽焼酸化マグネシウムのブレーン比表面積は、JIS R 5201:1997「セメントの物理試験方法」に従い、ブレーン空気透過装置を用いて測定した。その結果を表2に示す。
[軽焼酸化マグネシウムのBET比表面積]
前記軽焼酸化マグネシウムのBET比表面積は、高精度ガス吸着装置(日本ベル社製、BELSORP−mini)を用いて、定容量型ガス吸着法にて測定した。その結果を表2に示す。
[軽焼酸化マグネシウムの密度]
使用した軽焼酸化マグネシウムの密度は、JIS R 5201:1997「セメントの物理試験方法」に従い、ルシャテリエフラスコを用いて測定した。その結果を表2に示す。
Figure 0006503812

[Brain specific surface area of magnesium oxide]
The brane specific surface area of the light-burned magnesium oxide used was measured using a brane air permeation device according to JIS R 5201: 1997 "Physical test method for cement". The results are shown in Table 2.
[BET specific surface area of lightly burned magnesium oxide]
The BET specific surface area of the light-burned magnesium oxide was measured by a fixed volume gas adsorption method using a high-precision gas adsorption device (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). The results are shown in Table 2.
[Density of burnt magnesium oxide]
The density of the light-burned magnesium oxide used was measured using a Le Chatelier flask according to JIS R 5201: 1997 "Physical test method for cement". The results are shown in Table 2.

Figure 0006503812

[多孔質材料の化学組成]
使用した多孔質材料の化学組成を表3に示す。多孔質材料の化学組成は、JIS M 8853:1998「セラミックス用アルミノけい酸塩質原料の化学分析方法」に準拠して測定した。なお、ほう素の含有量測定では、環境庁告示19号に準拠して試料を調製し、測定はJIS K0102−47.3に準拠して行った。
Figure 0006503812

[Chemical composition of porous material]
The chemical composition of the used porous material is shown in Table 3. The chemical composition of the porous material was measured in accordance with JIS M 8853: 1998 "Chemical analysis method of aluminosilicate material for ceramics". In addition, in content measurement of boron, the sample was prepared based on Environment Agency notification No. 19, and the measurement was performed based on JIS K 0102-47.3.

Figure 0006503812

[廃瓦に含まれる化合物の同定]
粉末X線回折(RINT−2500、リガク社製)を用いて廃瓦に含まれる化合物を同定した結果を図1に示す。図1に示すように、廃瓦に含まれる主な化合物としては石英とムライトであることが確認された。粘土原料にはカオリナイト、雲母鉱物、石英などから構成されるが、粘土瓦の製造において高温焼成したときにムライトが生成し、石英は融点が高いため残存していると推察できる。その高温焼成・冷却工程において、瓦内部に空隙が生じ、多孔質性を有するものと考えられる。
Figure 0006503812

[Identification of compounds contained in waste tiles]
The result of having identified the compound contained in a waste tile using powder X-ray diffraction (RINT-2500, RIGAKU Co., Ltd. make) is shown in FIG. As shown in FIG. 1, it was confirmed that quartz and mullite were the main compounds contained in the waste tile. The clay raw material is composed of kaolinite, mica mineral, quartz and the like, but it can be inferred that mullite is formed when fired at high temperature in the manufacture of clay tile and quartz has a high melting point and thus remains. In the high temperature baking and cooling process, voids are generated inside the tile, and it is considered to be porous.

[試料土]
本発明では、山口県で採取した土を供した。試料土の性状を表4に示す。含水比はJIS A 1203「土の含水比試験方法」に準拠して測定した。湿潤密度は、直径5cm、高さ10cmの型枠に試料土を充填し、充填された試料土の質量と型枠の容積から求めた。また、pHは環境庁告示18号法の検液を用いて測定し、粒度はJIS A 1204「土の粒度試験方法」に準拠して測定した。
[Sample soil]
In the present invention, soil collected in Yamaguchi Prefecture is provided. The properties of the sample soil are shown in Table 4. The moisture content was measured in accordance with JIS A 1203 "Test method for moisture content of soil". The wet density was determined by filling a sample soil into a mold having a diameter of 5 cm and a height of 10 cm, and determining the mass of the loaded sample soil and the volume of the mold. Moreover, pH was measured using the test solution of Environment Agency notification No. 18 method, and the particle size was measured according to JIS A 1204 "Grade size test method of soil".

Figure 0006503812
Figure 0006503812

[模擬汚染土]
珪砂(63質量%、宇部サンド工業製)とカオリナイト(37質量%、カナヤ興産製)を事前に混合した後、砒酸水素二ナトリウム七水和物(NaHAsO・7HO、和光純薬工業(株)製)水溶液を所定量添加し、ソイルミキサーで低速で2.5分間練り混ぜ、容器やパドルに付着した土を掻き落とし、さらに低速で2.5分間練り混ぜた後、ポリエチレン袋で密封した状態で1日間養生することにより模擬汚染土壌を作製した。
作製した模擬汚染土の性状を表5に示す。含水比はJIS A 1203「土の含水比試験方法」に準拠して測定した。湿潤密度は、直径5cm、高さ10cmの型枠に試料土を充填し、充填された試料土の質量と型枠の容積から求めた。また、pHは環境庁告示18号法の検液を用いて測定し、粒度はJIS A 1204「土の粒度試験方法」に準拠して測定した。砒素含有量および溶出量は、環境庁告示19号法および環境庁告示18号法にて試料を調製し、測定はJIS K 0102「工場排水試験方法」に準拠して行った。
[Simulated contaminated soil]
After mixing in advance silica sand (63% by mass, Ube Sand Industry Co., Ltd.) and kaolinite (37% by mass, Kanaya Kosan Co., Ltd.), disodium hydrogen arsenate heptahydrate (Na 2 HAsO 4 · 7H 2 O, Wako pure A predetermined amount of aqueous solution is added, and it is mixed with a soil mixer at low speed for 2.5 minutes, the soil adhering to the container or paddle is scraped off, and then mixed for another 2.5 minutes at low speed. The mock-contaminated soil was made by curing for 1 day in a bag-sealed state.
The properties of the produced simulated contaminated soil are shown in Table 5. The moisture content was measured in accordance with JIS A 1203 "Test method for moisture content of soil". The wet density was determined by filling a sample soil into a mold having a diameter of 5 cm and a height of 10 cm, and determining the mass of the loaded sample soil and the volume of the mold. Moreover, pH was measured using the test solution of Environment Agency notification No. 18 method, and the particle size was measured according to JIS A 1204 "Grade size test method of soil". The arsenic content and the elution amount were prepared in accordance with the Environment Agency Notification 19 Law and Environment Agency Notification 18 Law, and the measurement was performed in accordance with JIS K 0102 “Testing method for factory drainage”.

Figure 0006503812
Figure 0006503812

2.試験方法
[一軸圧縮強さ]
各種中性固化材を前記試料土に60kg/m添加し、ソイルミキサーにて低速で1.5分間練り混ぜた後、容器やパドルに付着した土を掻き落とし、さらに低速で1.5分間練り混ぜた。このようにして得られた処理土は、φ5×10cmのモールドに3層に分けて充填し円柱供試体を作製し、20℃で材齢1日まで密封養生した後、JIS A 1216「土の一軸圧縮試験」に準拠して一軸圧縮強さを測定し、一軸圧縮強さとコーン指数の関係よりコーン指数を求めた。
2. Test method
[Unaxial compression strength]
60 kg / m 3 of various neutral solidification materials are added to the sample soil and mixed at a low speed with a soil mixer for 1.5 minutes, and then the soil adhering to the container or paddle is scraped off, and further 1.5 minutes at a low speed I mixed it. The treated soil obtained in this manner is divided into three layers in a φ5 × 10 cm mold to prepare a cylindrical specimen, sealed and cured at 20 ° C. until age 1 day, and then JIS A 1216 The uniaxial compression strength was measured in accordance with the "uniaxial compression test", and the cone index was determined from the relationship between the uniaxial compression strength and the cone index.

[処理土のpH]
一軸圧縮試験後の試験体を粗砕した後、環境庁告示18号法の検液を作製し、検液のpHはガラス電極式pHメーター(東亜ディーケーケー社製)にて測定した。
[PH of treated soil]
After crushing the test body after the uniaxial compression test, a test solution according to Environment Agency Notification No. 18 was prepared, and the pH of the test solution was measured with a glass electrode type pH meter (manufactured by Toa DKK).

[不溶化試験]
各種中性固化材を前記模擬汚染土に30kg/m添加し、ソイルミキサーにて低速で1.5分間練り混ぜた後、容器やパドルに付着した土を掻き落とし、さらに低速で1.5分間練り混ぜた。このようにして得られた処理土は、ポリエチレン袋で密封した状態で、20℃、1日間養生した後、環境庁告示18号法に準拠して検液を作製した。その検液の重金属濃度をJIS K 0102「工場排水試験方法」に準拠して測定した。

3.試験結果
[固化処理土のコーン指数]
[Insolubilization test]
After adding 30 kg / m 3 of various neutral solidification materials to the above-mentioned simulated polluted soil and mixing with a soil mixer for 1.5 minutes at low speed, the soil adhering to the container or paddle is scraped off, and further 1.5 at low speed. I mixed it for a minute. The treated soil thus obtained was cured for 1 day at 20 ° C. in the state of being sealed with a polyethylene bag, and then a test solution was prepared according to the method disclosed in the Environment Agency Notification No. 18. The heavy metal concentration of the test solution was measured in accordance with JIS K 0102 “Testing method for factory drainage”.

3. Test results [Corn index of solidified soil]

軽焼酸化マグネシウムが32.5質量%、硫酸アルミニウムが57.5質量%、硫酸第一鉄が10質量%からなる無機質粉末組成物に、多孔質材料として廃瓦、ゼオライト、ベントナイトを3〜10質量%(外割)添加し中性固化材を作製した(配合No.2〜10)。また参考例として、多孔質材料を添加してない中性固化材も作製した(配合No.1)。処理対象土としては表4に示した試料土を使用した。これらの中性固化材で改良した処理土のコーン指数(材齢1日)を表6に示す。   An inorganic powder composition comprising 32.5% by mass of light-burned magnesium oxide, 57.5% by mass of aluminum sulfate and 10% by mass of ferrous sulfate, and 3 to 10 of waste tile, zeolite and bentonite as porous materials Mass% (external division) was added to prepare a neutral solidification material (Formulation Nos. 2 to 10). Moreover, the neutral solidification material which did not add the porous material was also produced as a reference example (composition No. 1). The sample soil shown in Table 4 was used as the soil to be treated. The cone index (one-day old) of the treated soil modified with these neutralizing agents is shown in Table 6.

Figure 0006503812

[砒素およびほう素の溶出試験結果]
Figure 0006503812

[Dissolution test result of arsenic and boron]

上述した配合No.1、3及び4の中性固化材で処理した固化処理土からの砒素およびほう素溶出量を測定した。処理対象土としては表5に示した模擬汚染土を使用した。その結果を表7に示す。   Formulation No. 1 described above. The amount of elution of arsenic and boron from the solidified treated soil treated with the neutral solidified materials of 1, 3 and 4 was measured. As the soil to be treated, the simulated contaminated soil shown in Table 5 was used. The results are shown in Table 7.

Figure 0006503812
Figure 0006503812

表6に示すように、本発明の廃瓦を添加した中性固化材(実施例1〜3)は、ゼオライトやベントナイトを添加した場合(比較例1〜3および比較例4〜5)に比べ、強度増加率(%)/添加率(質量%)が大きく、強度増加効果が高いことがわかる。   As shown in Table 6, the neutral solidification materials (Examples 1 to 3) to which the waste tile of the present invention is added are compared to the cases (Zero example 1 and 3 and 4 and 5) when zeolite and bentonite are added. , It is understood that the strength increase rate (%) / addition rate (mass%) is large, and the strength increase effect is high.

また、表7に示すように、本発明の廃瓦を添加した中性固化材(実施例4及び5)では、砒素やほう素の溶出量に悪影響を及ぼさないことが確認された。   Moreover, as shown in Table 7, it was confirmed that the neutral solidified materials (Examples 4 and 5) to which the waste tile of the present invention was added did not adversely affect the elution amount of arsenic and boron.

以上のように、本発明の範囲の軽焼酸化マグネシウム15〜55質量%と、硫酸アルミニウム35〜80質量%、硫酸第一鉄3〜20質量%から構成される無機質粉末組成物と、瓦とを含む中性固化材は、多孔質材料としてゼオライト、ベントナイトを使用した中性固化材に比べて、その改良土の初期強度が高く、砒素やほう素の溶出量に悪影響を及ぼさないことがわかる。   As described above, an inorganic powder composition composed of 15 to 55% by mass of lightly burned magnesium oxide, 35 to 80% by mass of aluminum sulfate, and 3 to 20% by mass of ferrous sulfate in the range of the present invention; It can be seen that, as compared with neutral solidified materials using zeolite and bentonite as porous materials, the neutral solidified materials containing B have higher initial strength of the improved soil and do not adversely affect the elution amount of arsenic and boron. .

Claims (5)

軽焼酸化マグネシウム15〜55質量%、硫酸アルミニウム35〜80質量%及び硫酸第一鉄3〜20質量%からなる無機質粉末組成物と、瓦とを含み、
前記無機質粉末組成物100質量部に対して、瓦を1〜12質量部含むことを特徴とする中性固化材。
Light burned magnesium oxide 15 to 55 wt%, seen containing a mineral powder composition consisting of aluminum sulfate 35 to 80 wt% and ferrous 3-20 wt% sulfuric acid, and a tile,
The relative mineral powder 100 parts by mass of the composition, neutral solidifying material, wherein 1 to 12 parts by mass including Mukoto the tile.
前記瓦のBET比表面積が0.3〜3.0m/gである、請求項1記載の中性固化材。 BET specific surface area of the tile is 0.3~3.0m 2 / g, according to claim 1 Symbol placement neutral solidifying material. 前記瓦のSiO含有量が60〜70質量%、Al含有量が18〜25質量%、Fe含有量が2〜7質量%、CaO含有量が0.1〜3.0質量%及びほう素含有量が0.1〜60mg/kgである、請求項1又は2記載の中性固化材。 The SiO 2 content of 60 to 70 wt% of the tiles, Al 2 O 3 content of 18 to 25 wt%, Fe 2 O 3 content of 2-7 wt%, CaO content is 0.1 to 3. The neutral solidification material according to claim 1 or 2 whose 0 mass% and boron content are 0.1 to 60 mg / kg. 請求項1〜請求項記載の何れか1項記載の中性固化材を、土壌1mに対して20〜200kg/m添加し混合することを特徴とする固化処理方法。 Solidification method characterized by the claims 1 to 3 neutral solidifying material according to any one of the described, it added and mixed 20 to 200 kg / m 3 with respect to the soil 1 m 3. 前記土壌は砒素含有量が0.1〜100mg/kgの砒素汚染土壌である、請求項記載の固化処理方法。 5. The method according to claim 4 , wherein the soil is arsenic-contaminated soil with an arsenic content of 0.1 to 100 mg / kg.
JP2015055434A 2015-03-18 2015-03-18 Neutral solidifying material and solidifying method Active JP6503812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055434A JP6503812B2 (en) 2015-03-18 2015-03-18 Neutral solidifying material and solidifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055434A JP6503812B2 (en) 2015-03-18 2015-03-18 Neutral solidifying material and solidifying method

Publications (2)

Publication Number Publication Date
JP2016175966A JP2016175966A (en) 2016-10-06
JP6503812B2 true JP6503812B2 (en) 2019-04-24

Family

ID=57069041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055434A Active JP6503812B2 (en) 2015-03-18 2015-03-18 Neutral solidifying material and solidifying method

Country Status (1)

Country Link
JP (1) JP6503812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497116B2 (en) 2019-07-10 2024-06-10 松田技研工業株式会社 Soil solidification agent
CN115058251A (en) * 2022-08-19 2022-09-16 北京高能时代环境技术股份有限公司 Composite agent for repairing heavy metal arsenic and cadmium in acid paddy field and repairing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069519B2 (en) * 1998-10-01 2008-04-02 宇部興産株式会社 Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP2003145120A (en) * 2001-11-12 2003-05-20 Tsukahara:Kk Method for recycling waste roof tile
JP3665770B2 (en) * 2002-04-11 2005-06-29 株式会社ホクコン Strength improving material for hardened cement body and hardened cement body containing the same
JP2008231389A (en) * 2007-03-20 2008-10-02 Nagara Bionics Kk Soil depurating and stabilizing agent
JP5366369B2 (en) * 2007-03-26 2013-12-11 新日鐵住金ステンレス株式会社 Soil-based solidified material and pavement method for soil-based solidified material
JP5599061B2 (en) * 2010-10-25 2014-10-01 太平洋セメント株式会社 Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP5648917B2 (en) * 2011-03-10 2015-01-07 住友大阪セメント株式会社 Heavy metal insolubilizing material and heavy metal insolubilizing method

Also Published As

Publication number Publication date
JP2016175966A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
Hornain et al. Diffusion of chloride ions in limestone filler blended cement pastes and mortars
Yan et al. Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction
Hashemi et al. Safe disposal of coal bottom ash by solidification and stabilization techniques
Rozière et al. Valorisation of sediments in self-consolidating concrete: Mix-design and microstructure
Lin et al. Waste brick’s potential for use as a pozzolan in blended Portland cement
JP5748015B1 (en) Insolubilizer and insolubilization method
KR101367790B1 (en) Echo-functional and low-alkali compositions for concrete forming
JP2002362949A (en) Method of manufacturing solidifying material utilizing oyster shell
KR20070008556A (en) Porous particulate material, cementitious composition, and preparation method thereof for fluid treatment
Chin et al. Characterization of sewage sludge ASH (SSA) in cement mortar
Liu et al. Binding of Cu (Ⅱ) and Zn (Ⅱ) in Portland cement immobilization systems: Effect of CASH composition
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
JP2004330018A (en) Solidification/insolubilization agents and solidification/insolubilization method for soil, incineration ash, coal ash and plaster board waste
JP6503812B2 (en) Neutral solidifying material and solidifying method
JP6323498B2 (en) Insolubilizer and insolubilization method
Su-Cadirci et al. Use of brick dust to optimise the dewatering process of hydrated lime mortars for conservation applications
JP6507825B2 (en) Solidification material for high water content soil and method for solidifying high water content soil
JP7059039B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP2002320952A (en) Method for treating contaminated soil and treated matter
JP3818802B2 (en) Cement admixture and cement composition
López-Uceda et al. Mechanical and durability performance of self-compacting mortars made with different industrial by-products as fillers
Nurhanim State of art reviews on physico-chemical properties of waste concrete aggregate from construction and demolition waste
Pani et al. In-situ stabilization of sedimented ash deposit by partial penetrating chemical columns
JP2005281064A (en) Cement admixture, cement composition, quick-hardening grout material, and quick-hardening grout
Kadhim et al. Using geopolymers materials for remediation of lead-contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250