[go: up one dir, main page]

JP6493305B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP6493305B2
JP6493305B2 JP2016106334A JP2016106334A JP6493305B2 JP 6493305 B2 JP6493305 B2 JP 6493305B2 JP 2016106334 A JP2016106334 A JP 2016106334A JP 2016106334 A JP2016106334 A JP 2016106334A JP 6493305 B2 JP6493305 B2 JP 6493305B2
Authority
JP
Japan
Prior art keywords
raw material
stirring
particle diameter
sintered
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016106334A
Other languages
Japanese (ja)
Other versions
JP2017210672A (en
Inventor
健太 竹原
健太 竹原
隆英 樋口
隆英 樋口
寿幸 廣澤
寿幸 廣澤
山本 哲也
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016106334A priority Critical patent/JP6493305B2/en
Publication of JP2017210672A publication Critical patent/JP2017210672A/en
Application granted granted Critical
Publication of JP6493305B2 publication Critical patent/JP6493305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ドワイト・ロイド式焼結機などで用いられる高炉原料の焼結鉱の製造方法に関する。   The present invention relates to a method for producing sintered ore of a blast furnace raw material used in a Dwight-Lloyd type sintering machine or the like.

焼結鉱は、複数銘柄の粉鉄鉱石(一般に、125〜1000μm程度のシンターフィードと呼ばれているもの)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、粉コークス等の固体燃料とを適量ずつ配合した焼結配合原料(以後、原料と称する場合がある)と、水分とを添加して混合−造粒し、得られた造粒粒子を焼結機に装入して焼成することによって製造される。その原料は、水分を含むことで造粒時に互いに凝集して擬似粒子になる。そして、この擬似粒子化した原料は、焼結機のパレット上に装入されたとき、原料装入層の良好な通気を確保するのに役立ち、焼結反応を円滑に進める。   Sintered ore consists of several brands of fine iron ore (generally called sinter feed of about 125 to 1000 μm), auxiliary raw material powders such as limestone, quartzite, and serpentine, and dust, scale, return ore, etc. Sintered blended raw material (hereinafter sometimes referred to as “raw material”) in which an appropriate amount of various raw material powders and solid fuel such as powdered coke are blended in an appropriate amount, and water are mixed and granulated. It is manufactured by charging the particles into a sintering machine and firing them. Since the raw materials contain moisture, they aggregate together to become pseudo particles during granulation. Then, when the pseudo-particulated raw material is charged on the pallet of the sintering machine, it helps to ensure good ventilation of the raw material charging layer, and smoothly advances the sintering reaction.

近年、鉄鉱石の微粉化が進行しており、造粒粒子が微粉鉱を含むと、造粒粒子の強度が低下する。特に、水が加わった際に造粒粒子の強度が大きく低下し、パレット上への装入時または焼成時に造粒粒子が崩壊して粉化し、原料装入層の通気性を悪化させる。また、微粉鉱は、造粒が困難であることも知られている。焼結用粉鉄鉱石を取り巻くこのような環境の中で、最近、難造粒性である微粉を多く含む鉄鉱石を使って、高品質の焼結鉱を製造するための技術が特許文献1〜6で提案されている。これらの技術は、造粒機で造粒する前に、付着力が高く凝集しやすい微粉鉱石を含む原料を撹拌機で解砕・造粒処理するプロセスに関するものである。   In recent years, pulverization of iron ore has progressed, and when granulated particles contain fine ore, the strength of the granulated particles decreases. In particular, when water is added, the strength of the granulated particles is greatly reduced, and the granulated particles are disintegrated and pulverized at the time of charging on the pallet or firing to deteriorate the air permeability of the raw material charging layer. It is also known that the fine ore is difficult to granulate. In such an environment surrounding sintered iron ore for sintering, a technique for producing high-quality sintered ore using iron ore containing a large amount of fine particles that are difficult to granulate has recently been disclosed in Patent Document 1. Proposed in ~ 6. These techniques relate to a process of crushing and granulating a raw material containing fine ore with high adhesion and easily agglomerating with a stirrer before granulating with a granulator.

特開平11−61282号公報Japanese Patent Laid-Open No. 11-61282 特開平7−331342号公報JP-A-7-331342 特開平7−48634号公報JP 7-48634 A 特開2005−194616号公報JP 2005-194616 A 特開2006−63350号公報JP 2006-63350 A 特開2007−247020号公報JP 2007-247020 A

上述したように、微粉のみの造粒粒子は、核鉱石を含む造粒粒子に比べて強度が低い。このため、強度が低い造粒粒子が原料中に存在すると、焼結パレットに装入時または焼成時に造粒粒子が軟化または崩壊して粉化し、原料装入層の通気性を悪化させる。また、微粉のみの造粒粒子が存在することで、凝結材である粉コークスが造粒粒子の内側に入りこみ、原料が燃焼しにくくなるといった問題も存在する。このため、微粉のみの造粒粒子が造粒されることを抑制したいという要請がある。   As described above, granulated particles containing only fine powder have lower strength than granulated particles containing nuclear ore. For this reason, if granulated particles having low strength are present in the raw material, the granulated particles are softened or disintegrated and powdered when charged into the sintered pallet or when fired, and the air permeability of the raw material charged layer is deteriorated. In addition, the presence of granulated particles of only fine powder causes a problem that powder coke, which is a coagulant, enters inside the granulated particles and makes it difficult for the raw material to burn. For this reason, there exists a request | requirement of suppressing the granulation particle | grains of only a fine powder being granulated.

造粒工程において、微粉のみの造粒粒子の造粒を抑制するには、原料に含まれる微粉凝集物を予め粉砕・解砕しておくことが有効である。このため、造粒工程の前に、撹拌装置を用いて原料を事前処理し、造粒前の原料に含まれる微粉凝集体を粉砕・解砕しておくことで、次の造粒工程における微粉のみの造粒粒子の造粒を抑制できる。しかしながら、従来、撹拌装置の事前処理条件を定める際に、実際に撹拌機で原料を種々の条件で事前処理し、事前処理後のそれぞれの原料の焼結性を評価し、その結果に基づいて事前処理条件を定めていた。このため、撹拌装置の事前処理条件を定めるのに大きな負荷が生じていた。本発明では、原料の性状等を測定することで、実際に撹拌装置を用いて事前処理することなく原料の事前処理条件を定めることができる焼結鉱の製造方法を提供することを目的とする。   In the granulation step, it is effective to previously pulverize and disintegrate the fine powder aggregates contained in the raw material in order to suppress the granulation of the granulated particles containing only the fine powder. For this reason, before the granulation step, the raw material is pre-treated using a stirrer, and the fine powder aggregates contained in the raw material before granulation are pulverized and crushed, so that the fine powder in the next granulation step Granulation of only granulated particles can be suppressed. However, conventionally, when pre-processing conditions of the stirring device are determined, the raw materials are actually pre-processed with various conditions with a stirrer, and the sinterability of each raw material after the pre-processing is evaluated, based on the results. Pre-processing conditions were defined. For this reason, the big load has arisen in defining the pre-processing conditions of a stirring apparatus. An object of the present invention is to provide a method for producing a sintered ore that can determine the pretreatment conditions of the raw material without actually performing the pretreatment using a stirring device by measuring the properties and the like of the raw material. .

このような課題を解決するための本発明の特徴は、以下の通りである。
[1]焼結原料の事前処理を攪拌装置で行う焼結鉱の製造方法において、前記事前処理後の目標とする前記焼結原料の加重平均粒径の最小値を定め、前記撹拌装置に装入される前記焼結原料が下記数式(1)を満たすように、前記事前処理を行うことを特徴とする焼結鉱の製造方法。
J×1−Σ[0.5×x(i)×f(i)×G×{P(i)/S(i)}]/d)+L<D/d・・・数式(1)
但し、上記数式(1)において、dは、前記焼結原料の前記事前処理前の加重平均粒径を表し、x(i)は、前記焼結原料のそれぞれの粒子径を表し、f(i)は、粒子径x(i)の質量比率を表し、P(i)は、前記撹拌装置の撹拌羽根が粒子径x(i)の粒子に及ぼす衝撃力を表し、S(i)は、粒子径x(i)の粒子強度を表し、G、H、J、Lは、定数を表し、Dは、前記事前処理後における目標とする前記焼結原料の加重平均粒径の最小値を表す。
[2]前記数式(1)において、Dは、3mm以下であることを特徴とする(1)に記載の焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
[1] In a method for producing a sintered ore in which a pretreatment of a sintered raw material is performed with a stirrer, a minimum value of a weighted average particle size of the sintered raw material targeted after the pretreatment is determined, and the stirrer The pre-treatment is performed so that the sintered raw material to be charged satisfies the following mathematical formula (1).
J × ( 1−Σ [0.5 × x (i) × f (i) × G × {P (i) / S (i)} H ] / d 0 ) + L <D T / d 0. Formula (1)
However, in the above mathematical formula (1), d 0 represents the weighted average particle diameter of the sintered raw material before the pretreatment, x (i) represents the respective particle diameter of the sintered raw material, and f (I) represents the mass ratio of the particle diameter x (i), P (i) represents the impact force exerted on the particles having the particle diameter x (i) by the stirring blade of the stirring device, and S (i) is , Represents the particle strength of the particle diameter x (i), G, H, J, L represent constants, DT represents the minimum of the weighted average particle diameter of the target sintered raw material after the pretreatment Represents a value.
[2] The method for producing a sintered ore according to (1), wherein DT is 3 mm or less in the mathematical formula (1).

数式(1)に目標とする事前処理後の原料の加重平均粒径の最小値を代入することで、実際に撹拌装置を用いて事前処理することなく、その後の焼結プロセスに適した事前処理条件を定めることができる。このように、本発明の焼結鉱の製造方法を実施することで、原料の事前処理条件を容易に適正化できる。   By substituting the minimum value of the weighted average particle size of the target raw material after pre-treatment into the mathematical formula (1), pre-treatment suitable for the subsequent sintering process without actually pre-treatment using the stirring device Conditions can be defined. Thus, by implementing the manufacturing method of the sintered ore of this invention, the pre-processing conditions of a raw material can be optimized easily.

撹拌装置10の内部斜視図である。3 is an internal perspective view of the stirring device 10. FIG. 図1を上から見た平面図である。It is the top view which looked at FIG. 1 from the top. 1−Σ{0.5×x(i)×f(i)×SDi}/dとDmin/dとの関係を示すグラフである。1-sigma is a graph showing the relationship between {0.5 × x (i) × f (i) × S Di} / d 0 and D min / d 0. P(i)/S(i)とSDiとの関係を示すグラフである。It is a graph which shows the relationship between P (i) / S (i) and SDi . 撹拌処理後の平均粒径の最小値(Dmin)と焼結生産率との関係を示すグラフである。It is a graph which shows the relationship between the minimum value ( Dmin ) of the average particle diameter after a stirring process, and a sintering production rate.

以下、発明の実施の形態を通じて本発明を説明する。図1は、撹拌装置10の内部斜視図である。また、図2は、図1を上から見た平面図を示す。まず、図1および図2を用いて、本実施形態の焼結鉱の製造方法に使用できる撹拌装置の一例である撹拌装置10の構成について説明する。   Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1 is an internal perspective view of the stirring device 10. FIG. 2 is a plan view of FIG. 1 viewed from above. First, the structure of the stirring apparatus 10 which is an example of the stirring apparatus which can be used for the manufacturing method of the sintered ore of this embodiment is demonstrated using FIG. 1 and FIG.

撹拌装置10は、事前処理として焼結原料12を撹拌処理する装置である。撹拌装置10は、焼結原料12が装入される円筒容器14と、撹拌羽根16と、堰18とを有する。円筒容器14は、円筒形状の円筒20と、円形状の底板22とを備える。また、円筒容器14には、焼結原料12を供給及び排出する開口(不図示)が設けられている。底板22は、円筒20と一体的に構成されており、底板22は、駆動力を受けて円筒20とともに回転する。   The stirring device 10 is a device that stirs the sintered raw material 12 as a pretreatment. The stirring device 10 includes a cylindrical container 14 in which the sintered raw material 12 is charged, a stirring blade 16, and a weir 18. The cylindrical container 14 includes a cylindrical cylinder 20 and a circular bottom plate 22. The cylindrical container 14 is provided with an opening (not shown) for supplying and discharging the sintered raw material 12. The bottom plate 22 is configured integrally with the cylinder 20, and the bottom plate 22 rotates with the cylinder 20 by receiving a driving force.

本実施形態において、焼結原料12は、粉鉄鉱石と、石灰石と、粉コークス等の固体燃料と、を含み、さらに、珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、バインダーとを含んでもよい。   In the present embodiment, the sintered raw material 12 includes fine iron ore, limestone, and solid fuel such as fine powder coke, and further, secondary raw material powder such as silica and serpentine, dust, scale, return mineral, and the like. The miscellaneous raw material powder and a binder may be included.

撹拌羽根16は、回転軸24と、複数の撹拌板26とを備える。撹拌羽根16は、円筒容器14の中心から偏心した位置に設けられている。回転軸24は、円筒容器14の上側に設けられた不図示の駆動部から駆動力を受けて回転する。このため、撹拌羽根16と、底板22とは、それぞれ独立して回転できる。なお、撹拌羽根16は、円筒容器14の中心に設けられていてもよい。   The stirring blade 16 includes a rotating shaft 24 and a plurality of stirring plates 26. The stirring blade 16 is provided at a position eccentric from the center of the cylindrical container 14. The rotating shaft 24 rotates by receiving a driving force from a driving unit (not shown) provided on the upper side of the cylindrical container 14. For this reason, the stirring blade 16 and the bottom plate 22 can rotate independently of each other. The stirring blade 16 may be provided at the center of the cylindrical container 14.

撹拌板26は、回転軸24から放射状に外側に突出して設けられている。図1および図2に示した例において、撹拌板26は、回転軸24における上下方向の2箇所において、60°間隔で6方向に設けられている。したがって、撹拌羽根16には、合計で12本の撹拌板26が設けられている。   The stirring plate 26 is provided to project radially outward from the rotating shaft 24. In the example shown in FIGS. 1 and 2, the stirring plate 26 is provided in six directions at 60 ° intervals at two locations in the vertical direction of the rotating shaft 24. Therefore, the stirring blade 16 is provided with a total of 12 stirring plates 26.

次に、撹拌装置10の動作について説明する。円筒容器14に焼結原料12が装入された状態で、底板22は、例えば、右周りに回転し、撹拌羽根16は左周りに回転する。底板22が右周りに回転することで、円筒容器14内に装入された焼結原料12は、底板22とともに右周りに回転する。右周りに回転された焼結原料12は、左周りに回転した撹拌羽根16に衝突することによって、焼結原料12の微粉凝集物は粉砕および解砕される。   Next, operation | movement of the stirring apparatus 10 is demonstrated. In a state where the sintering raw material 12 is charged in the cylindrical container 14, the bottom plate 22 rotates, for example, clockwise, and the stirring blade 16 rotates counterclockwise. As the bottom plate 22 rotates clockwise, the sintering raw material 12 charged in the cylindrical container 14 rotates clockwise together with the bottom plate 22. The sintered raw material 12 rotated clockwise is collided with the stirring blade 16 rotated counterclockwise, whereby the fine powder aggregates of the sintered raw material 12 are pulverized and crushed.

このような撹拌装置10を用いて、焼結原料12を撹拌処理することで、焼結原料12の微粉凝集物は解砕され、当該微粉を焼結原料12中に分散させることができる。撹拌装置10にて撹拌処理された焼結原料12は、ドラムミキサーなどの造粒装置を用いて造粒された後、ドワイト・ロイド式焼結機で焼結される。このようにして、焼結原料12から焼結鉱が製造される。   By using the stirring device 10 to stir the sintered raw material 12, the fine powder aggregates of the sintered raw material 12 can be crushed and the fine powder can be dispersed in the sintered raw material 12. The sintered raw material 12 stirred by the stirring device 10 is granulated using a granulating device such as a drum mixer and then sintered by a Dwight-Lloyd type sintering machine. In this way, sintered ore is produced from the sintered raw material 12.

次に、撹拌装置の撹拌処理による焼結原料12の造粒性および解砕性について説明する。撹拌装置の有する造粒性能および解砕性能を包括的に評価するために、実験で得られる撹拌処理による粒度分布の経時変化を、行列モデルを用いて解析した。本実験系が単純なマルコフ過程に従うものとし、撹拌処理前の粒度分布をベクトルF、造粒および崩壊確率をθ、造粒および崩壊マトリックスをB、単位ベクトルをE、撹拌ステップ数をNとすると、撹拌処理後の焼結原料12の粒度分布ベクトルGは、数式(2)で表される。 Next, the granulation property and pulverization property of the sintered raw material 12 by the stirring process of the stirring device will be described. In order to comprehensively evaluate the granulation performance and crushing performance of the stirrer, the time-dependent changes in the particle size distribution due to the stirring process obtained in the experiment were analyzed using a matrix model. Assume that this experimental system follows a simple Markov process, the particle size distribution before stirring treatment is the vector F N , the granulation and disintegration probability is θ, the granulation and disintegration matrix is B, the unit vector is E, and the number of stirring steps is N Then, the particle size distribution vector G N of the sintering material 12 after stirring process is represented by equation (2).

={(1−θ)×E+θ×B}×F・・・数式(2) G N = {(1−θ) × E + θ × B} × F N Formula (2)

ここで、撹拌処理後の焼結原料12の各篩目区間における質量比率を細粒側からg、g・・・gとし、撹拌処理前の焼結原料12の各篩目区間における質量比率を細粒側からf、f・・・fとすると、Gベクトルは下記数式(3)および数式(4)、Fベクトルは下記数式(5)および数式(6)で表される。 Here, the mass ratio in each sieve section of the sintered raw material 12 after the stirring treatment is defined as g 1 , g 2 ... Gn from the fine grain side, and in each sieve section of the sintered raw material 12 before the stirring treatment. When the mass ratio to f 1, f 2 ··· f n from the fine particle side, G n vectors following equation (3) and equation (4), F n vector by the following equation (5) and equation (6) expressed.

また、造粒マトリックスBは、下記数式(7)および数式(8)で表される。   Moreover, the granulation matrix B is represented by the following numerical formula (7) and numerical formula (8).

ここで、qijは0または正の数である。マトリックスBは、下記数式(9)に示すように、BマトリックスとBマトリックスの和で表される。ここで、Bマトリックスの各係数は、同一粒度への残留および細粒成分からの付着粉の移行度合い(造粒要素)を示しており、Bマトリックスの各係数は、同一粒度への残留および粗粒成分からの崩壊粉の移行度合い(崩壊要素)を示している。ここでは、同一粒度への残留確率は等しいとしてBとBとに均等分配し、対角成分の係数を0.5にしている。Bマトリックスを下記数式(10)、Bマトリックスを下記数式(11)に示す。 Here, q ij is 0 or a positive number. Matrix B, as shown in the following equation (9), is expressed by the sum of B G matrix and B D matrix. Here, each coefficient of the BG matrix indicates the residual to the same particle size and the degree of migration of the adhering powder from the fine particle component (granulation factor), and each coefficient of the BD matrix indicates the residual to the same particle size. And the transition degree (disintegration factor) of the disintegrated powder from the coarse-grained component is shown. Here, it is assumed that the residual probabilities for the same granularity are equal, and B G and B D are equally distributed, and the coefficient of the diagonal component is 0.5. The BG matrix is shown in the following formula (10), and the BD matrix is shown in the following formula (11).

B=B+B・・・数式(9) B = B G + B D (9)

造粒要素Bの各要素の値が大きい程平均粒子径は、増加する。また、同一行の成分は、対象とする粒度領域への崩壊粉および付着粉の流入確率を表し、行成分の和が大きい程その粒度への収束度が大きいことを意味する。また、同一列の成分は、対象とする粒度が他の粒度に移行する確率を示しており、これにより造粒および崩壊の優先度を評価できる。 The average particle diameter of the larger the value of each element of the granulated components B G increases. Moreover, the component of the same line represents the inflow probability of the decay | disintegrating powder and adhesion powder to the target particle size area | region, and means that the convergence degree to the particle size is so large that the sum of a line component is large. Moreover, the component of the same row | line has shown the probability that the target particle size will transfer to another particle size, and, thereby, the priority of granulation and disintegration can be evaluated.

次に、各パラメータと焼結原料12の性状との関係について考察する。行列要素である造粒マトリックスBは、崩壊マトリックスBと、造粒マトリックスBとの和である。対象とする粒度領域の列要素jに対して造粒度SGj(単位:−)を下記数式(12)と定義した。 Next, the relationship between each parameter and the properties of the sintered raw material 12 will be considered. The granulation matrix B, which is a matrix element, is the sum of the collapse matrix B D and the granulation matrix B G. The granulation granularity S Gj (unit: −) is defined as the following formula (12) for the column element j of the target granularity region.

また、数式(8)より、崩壊度SDj(単位:−)は、下記数式(13)で表される。 From Equation (8), the degree of decay S Dj (unit: −) is expressed by Equation (13) below.

Dj=1−SGj・・・数式(13) S Dj = 1−S Gj ... (13)

造粒度SGjは、対象とする粒度がより粒径の大きい粒度域に移行する割合を表し、崩壊度SDjは、より粒径の小さい粒度域に移行する割合を表す。すなわち、SDjが0.5よりも大きければ崩壊が優先して進行することを意味し、0.5未満であれば造粒が優先的に進行することを意味する。 The granulation particle size S Gj represents the rate at which the target particle size shifts to a larger particle size range, and the disintegration degree S Dj represents the rate at which the particle size shifts to a smaller particle size range. That is, if SDj is larger than 0.5, it means that disintegration proceeds with priority, and if it is less than 0.5, it means that granulation proceeds preferentially.

次に、撹拌装置10の撹拌羽根16が微粉凝集体に及ぼす衝撃力について説明する。衝撃力は、焼結原料12の粒子半径および粒子質量に影響を受けるので、本実施形態において、焼結原料12の粒子径x(i)ごとに算出している。なお、本実施形態において、粒子径x(i)とは、例えば、篩目の異なる複数の篩いを用いて焼結原料12を篩い分けた場合におけるそれぞれの篩目の加重平均値である。撹拌羽根16が粒子径x(i)の粒子に及ぼす衝撃力P(i)(単位:Pa)は、従来のモデルに基づいて、焼結原料12の微粉凝集体および撹拌羽根16の性状等と、下記数式(14)とを用いて算出できる。   Next, the impact force exerted on the fine powder aggregate by the stirring blade 16 of the stirring device 10 will be described. Since the impact force is affected by the particle radius and particle mass of the sintered raw material 12, it is calculated for each particle diameter x (i) of the sintered raw material 12 in this embodiment. In the present embodiment, the particle diameter x (i) is, for example, a weighted average value of each sieve when the sintered raw material 12 is sieved using a plurality of sieves having different sieves. The impact force P (i) (unit: Pa) exerted on the particles having the particle diameter x (i) by the stirring blade 16 is based on the conventional model and the fine powder aggregates of the sintered raw material 12 and the properties of the stirring blade 16. And can be calculated using the following mathematical formula (14).

上記数式(14)において、πは円周率を表し、rは、粒子径x(i)の粒子半径(単位:m)を表し、Mは、粒子径x(i)の粒子の粒子質量(単位:kg)を表し、Vは、撹拌板26の周速(単位:m/s)を表す。なお、Vは、下記数式(15)で算出でき、Kは、下記数式(16)で算出できる。 In the above mathematical formula (14), π represents the circularity ratio, r represents the particle radius (unit: m) of the particle diameter x (i), and M represents the particle mass of the particle having the particle diameter x (i) ( (Unit: kg), and V 0 represents the peripheral speed (unit: m / s) of the stirring plate 26. V 0 can be calculated by the following formula (15), and K can be calculated by the following formula (16).

上記数式(15)において、πは、円周率を表し、Rは、撹拌羽根16の半径(単位:m)を表し、Nは、撹拌羽根16の回転数(単位:rpm)を表す。   In the above mathematical formula (15), π represents the circular ratio, R represents the radius (unit: m) of the stirring blade 16, and N represents the rotational speed (unit: rpm) of the stirring blade 16.

上記数式(16)において、rは、粒子半径(m)を表し、νは、粒子のポアソン比(単位:−)を表し、νは、撹拌板26のポアソン比(単位:−)を表し、Eは、粒子のヤング率(単位:Pa)を表し、Eは、撹拌板26のヤング率(単位:Pa)を表す。なお、本実施形態において、焼結原料12の微粉凝集体のヤング率Eは、ロードセルを備えた圧壊強度測定装置を用いて測定した。また、焼結原料12の微粉凝集体のポアソン比νは、微粉凝集体の圧壊強度測定時における縦方向の変位と横方向の変位を測定することで算出した。さらに、撹拌板26のヤング率Eおよびポアソン比Eは、普通鋼の値を用いて、ヤング率Eを210GPaとし、ポアソン比νを0.3とした。 In the above formula (16), r represents the particle radius (m), ν S represents the Poisson ratio (unit: −) of the particle, and ν W represents the Poisson ratio (unit: −) of the stirring plate 26. E S represents the Young's modulus (unit: Pa) of the particles, and E W represents the Young's modulus (unit: Pa) of the stirring plate 26. In the present embodiment, the Young's modulus E S of the fine aggregate of the sintering material 12 was measured using a crushing strength measuring apparatus equipped with a load cell. Further, the Poisson's ratio ν S of the fine powder aggregate of the sintering raw material 12 was calculated by measuring the longitudinal displacement and the lateral displacement when measuring the crushing strength of the fine powder aggregate. Furthermore, the Young's modulus E W and Poisson's ratio E W of the stirring plate 26, using the value of ordinary steel, the Young's modulus E W and 210 GPa, and Poisson's ratio [nu W of 0.3.

次に、焼結原料12の粒子強度について説明する。焼結原料12における微粉凝集体の粒子が半径rの球体であると仮定すると、粒子強度S(i)(単位:MPa)は、以下の数式(17)を用いて算出できる。なお、焼結原料12において、微粉凝集体は水分によって凝集するので、当該粒子は、水分を含む湿潤粒子である。   Next, the particle strength of the sintered raw material 12 will be described. Assuming that the particles of the fine powder aggregate in the sintered raw material 12 are spheres having a radius r, the particle strength S (i) (unit: MPa) can be calculated using the following formula (17). In the sintered raw material 12, since the fine powder aggregates are aggregated by moisture, the particles are wet particles containing moisture.

上記数式(17)において、πは、円周率を表し、rは、粒子半径(単位:m)を表し、Pは、粒子の圧壊強度(単位:kgf/piece)を表す。なお、圧壊強度は、例えば、ロードセルおよびロードセルの位置を計測する変位計を備えた圧縮強度測定装置を用いて測定する。   In the above mathematical formula (17), π represents the circumference, r represents the particle radius (unit: m), and P represents the crushing strength of the particle (unit: kgf / piece). The crushing strength is measured using, for example, a compressive strength measuring device provided with a load cell and a displacement meter that measures the position of the load cell.

焼結原料12中の微粉凝集体は、理想的な核粉の二層構造のものや、その形態をとらずに粒子単体で存在しているものもある。このような微粉凝集体の崩壊過程を厳密に議論するには全ての過渡期における強度、すなわち、撹拌処理前の強度、撹拌処理中における微粉凝集体の強度を測定すべきである。しかしながら、これらの微粉凝集体の強度を測定するのは困難である。このため、焼結原料12をドラムミキサーなどの造粒装置を用いて造粒させた後であって、焼結原料12の粒度が安定した状態の粒子の圧壊強度を測定したところ、後述するDmin/dに対して高い相関が確認された。このことから、造粒装置を用いて造粒させた後の粒子の圧壊強度を撹拌処理前の圧壊強度および撹拌処理中の圧壊強度と見なしてよいことがわかった。 The fine powder aggregates in the sintering raw material 12 may be of an ideal two-layer structure of core powder, or may exist as a single particle without taking its form. In order to strictly discuss the disintegration process of such fine powder aggregates, the strength in all transition periods, that is, the strength before the stirring treatment and the strength of the fine powder aggregate during the stirring treatment should be measured. However, it is difficult to measure the strength of these fine powder aggregates. For this reason, after crushing the sintered raw material 12 using a granulator such as a drum mixer, the crushing strength of the particles in a state where the particle size of the sintered raw material 12 is stable was measured. high correlation to the min / d 0 has been confirmed. From this, it was found that the crushing strength of the particles after granulation using the granulator may be regarded as the crushing strength before the stirring treatment and the crushing strength during the stirring treatment.

本実施形態において、発明者らは、加重平均粒径と崩壊度との関係を直接的に示すために、粒子径x(i)と、粒子径x(i)の質量比率であるf(i)(単位:−)と、崩壊度SDiと、撹拌処理前の焼結原料12の平均粒径d(単位:mm)を用いて算出される下記数式(18)を焼結原料12の粒子の造粒性指数と定義した。なお、本実施形態において、特に他の粒径である旨の記載がない場合、平均粒径とは加重平均粒径を意味する。 In this embodiment, in order to directly show the relationship between the weighted average particle diameter and the degree of disintegration, the inventors have expressed the mass ratio of the particle diameter x (i) and the particle diameter x (i), f (i ) (Unit: −), disintegration degree S Di, and average particle diameter d 0 (unit: mm) of the sintered raw material 12 before the stirring treatment, It was defined as the granulation index of particles. In the present embodiment, the average particle diameter means a weighted average particle diameter unless there is a description that the particle diameter is other than that.

造粒性指数=1−Σ[0.5×x(i)×f(i)×SDi]/d・・・数式(18) Granulation index = 1-Σ [0.5 × x (i) × f (i) × S Di ] / d 0 Formula (18)

数式(18)で示した造粒性指数は、質量比率f(i)の粒子径x(i)の粒子が撹拌装置10の撹拌処理によって解砕・崩壊された後の粒径を表しており、これを積算することで、撹拌装置10の撹拌処理によって解砕および崩壊された後の焼結原料12の加重平均粒子径を算出している。なお、数式(18)における0.5は、崩壊に伴って粒子径が半分になることを想定して0.5を乗じている。この値を、撹拌処理前の加重平均粒径dで除した無次元数が崩壊性指数であり、撹拌処理前の焼結原料12の加重平均粒子径が撹拌装置10の撹拌処理によって解砕および崩壊され、どの程度小さくなるかを表している。そして、当該崩壊性指数を1から減ずることで、造粒性指数を算出している。 The granulation index represented by the mathematical formula (18) represents the particle size after the particles of the mass ratio f (i) having the particle size x (i) are crushed and disintegrated by the stirring process of the stirring device 10. By integrating this, the weighted average particle diameter of the sintered raw material 12 after being crushed and disintegrated by the stirring process of the stirring device 10 is calculated. In addition, 0.5 in Formula (18) is multiplied by 0.5 assuming that the particle diameter is halved with the collapse. The dimensionless number obtained by dividing this value by the weighted average particle diameter d 0 before the stirring treatment is the disintegration index, and the weighted average particle size of the sintered raw material 12 before the stirring treatment is crushed by the stirring treatment of the stirring device 10. It shows how much it has collapsed and becomes smaller. And the granulation property index is calculated by subtracting the disintegration index from 1.

撹拌装置10を用いて焼結原料12を撹拌処理した場合、焼結原料12の平均粒径は下がり、その後、ほぼ一定、または増加する。その平均粒径の最小値をDmin(単位:mm)とし、当該Dminを撹拌処理前の焼結原料12の平均粒径dで除した値をDmin/dとする。後述する実験により、数式(18)に示した造粒性指数とDmin/dとの相関を確認した所、造粒性指数が増加するとDmin/dも増加し、造粒性指数とDmin/dとの間に高い相関が確認された。これにより、下記数式(19)を導くことができる。 When the sintering raw material 12 is stirred using the stirring device 10, the average particle diameter of the sintering raw material 12 decreases, and then becomes substantially constant or increases. Minimum value D min (unit: mm) of the average particle size and then, a value obtained by dividing the D min in average particle size d 0 of the stirring process before sintering material 12 and D min / d 0. As a result of experiments described later, the correlation between the granulation index shown in Formula (18) and D min / d 0 was confirmed. As the granulation index increased, D min / d 0 also increased, and the granulation index increased. And a high correlation between D min / d 0 was confirmed. Thereby, the following numerical formula (19) can be derived.

1−Σ{0.5×x(i)×f(i)×SDi}/d=Dmin/d・・・数式(19) 1−Σ {0.5 × x (i) × f (i) × S Di } / d 0 = D min / d 0 (Equation 19)

数式(19)を用いることによって、予め、焼結原料のx(i)、f(i)およびSDiを把握しておくことで、実際に撹拌装置10を用いて撹拌処理を行うことなく、撹拌処理後の焼結原料12の平均粒径の最小値であるDminを算出できる。また、目標とする撹拌処理後の焼結原料12の平均粒径の最小値が定められている場合には、撹拌装置10を用いて撹拌処理を行うことなく、当該目標値にできる焼結原料12の撹拌条件を容易に定めることができる。 By using Formula (19), it is possible to grasp the x (i), f (i) and S Di of the sintering raw material in advance without actually performing the stirring process using the stirring device 10. D min that is the minimum value of the average particle diameter of the sintered raw material 12 after the stirring treatment can be calculated. Moreover, when the minimum value of the average particle diameter of the sintering raw material 12 after the target stirring process is determined, the sintering raw material that can be set to the target value without performing the stirring process using the stirring device 10 Twelve stirring conditions can be easily determined.

さらに、発明者らは、崩壊度SDiと、衝撃力P(i)と粒子強度S(i)との比であるP(i)/S(i)とに相関関係があることを見出した。後述する実験を行い、SDiP(i)/S(i)との関係を示したプロットを得た。そして、当該プロットを累乗近似曲線にフッティングさせることで、下記数式(20)を導くことができる。 Furthermore, the inventors have found that there is a correlation between the disintegration degree S Di and P (i) / S (i), which is the ratio of the impact force P (i) and the particle strength S (i). . Performed an experiment described below, to obtain the S Di, a plot showing the relationship between P (i) / S (i ). Then, the following formula (20) can be derived by fitting the plot to a power approximation curve.

1.32×(1−Σ[0.30×x(i)×f(i)×{P(i)/S(i)}0.14]/d)−0.23=Dmin/d・・・数式(20) 1.32 × (1-Σ [0.30 × x (i) × f (i) × {P (i) / S (i)} 0.14 ] / d 0 ) −0.23 = D min / d 0 Formula (20)

今回の結果では、上記数式(20)のような結果が得られたが、例えば、使用する撹拌装置10の構成等で崩壊度SDiと、P(i)/S(i)との関係は変わり得るので、数式(20)を定数G、H、J、Lを用いて一般化した下記数式(21)を導くことができる。 In this result, the result of the above formula (20) was obtained. For example, the relationship between the disintegration degree S Di and P (i) / S (i) depends on the configuration of the stirring device 10 used. Since it can change, the following formula (21) can be derived by generalizing the formula (20) using the constants G, H, J, and L.

J×(1−Σ[0.5×x(i)×f(i)×G×{P(i)/S(i)}]/d)+L=Dmin/d・・・数式(21) J × (1−Σ [0.5 × x (i) × f (i) × G × {P (i) / S (i)} H ] / d 0 ) + L = D min / d 0. Formula (21)

撹拌処理後の焼結原料12の平均粒径の最小値を小さくすると焼結鉱の生産率は維持・向上する。このため、目標とする焼結原料12の平均粒径の最小値をDと定めた場合に、下記数式(1)を満たすように撹拌装置10の撹拌条件を定める。これにより、撹拌処理後の焼結原料12の平均粒径の最小値をDより小さい粒径にできる。 When the minimum value of the average particle diameter of the sintered raw material 12 after the stirring treatment is reduced, the production rate of the sintered ore is maintained and improved. For this reason, when the minimum value of the average particle diameter of the target sintering raw material 12 is defined as DT , the stirring condition of the stirring device 10 is determined so as to satisfy the following formula (1). Thereby, the minimum value of the average particle diameter of the sintered raw material 12 after the stirring treatment can be made smaller than DT .

J×(1−Σ[0.5×x(i)×f(i)×G×{P(i)/S(i)}]/d)+L<D/d・・・数式(1) J × (1-Σ [0.5 × x (i) × f (i) × G × {P (i) / S (i)} H ] / d 0 ) + L <D T / d 0. Formula (1)

このように、本実施形態における焼結鉱の製造方法を実施することにより、目標値とする焼結原料12の平均粒径の最小値よりも平均粒径が小さくなるように撹拌装置10の撹拌条件を定めることができる。これにより、実際に、撹拌装置10を用いて焼結原料12を撹拌処理することなく、その後の焼結プロセスにより適した撹拌条件を容易に定めることができる。そして、当該撹拌条件によって、撹拌処理後の焼結原料12の平均粒径の最小値を小さくでき、これにより、焼結鉱の生産性を維持・向上できる。   Thus, by carrying out the method for producing sintered ore according to the present embodiment, the stirring device 10 is stirred so that the average particle size becomes smaller than the minimum value of the average particle size of the sintered raw material 12 as the target value. Conditions can be defined. Thereby, actually, stirring conditions suitable for the subsequent sintering process can be easily determined without stirring the sintered raw material 12 using the stirring device 10. And by the said stirring conditions, the minimum value of the average particle diameter of the sintering raw material 12 after a stirring process can be made small, and, thereby, the productivity of sintered ore can be maintained and improved.

また、焼結原料12の平均粒径の最小値と、焼結鉱の生産率との関係を確認した所、焼結鉱の生産率を維持・向上させるためには、焼結原料12の平均粒径の最小値を3mm以下にすることが好ましいことがわかった。このように、本実施形態においては、目標とする焼結原料12の平均粒径の最小値が3mm以下になるように、撹拌装置10の撹拌条件を定めることが好ましい。これにより、当該撹拌処理を行った焼結原料12の焼結鉱の生産性を維持・向上できる。   In addition, when the relationship between the minimum value of the average particle size of the sintered raw material 12 and the production rate of the sintered ore was confirmed, in order to maintain and improve the production rate of the sintered ore, It was found that the minimum value of the particle size is preferably 3 mm or less. Thus, in this embodiment, it is preferable to determine the stirring conditions of the stirring apparatus 10 so that the minimum value of the average particle diameter of the target sintering raw material 12 is 3 mm or less. Thereby, productivity of the sintered ore of the sintering raw material 12 which performed the said stirring process can be maintained and improved.

次に、数式(19)に示した1−Σ{0.5×x(i)×f(i)×SDi}/dとDmin/dとの相関関係を確認した実験について説明する。本実験では、下記表1に示す原料を、表2に示すT1〜T3で配合し、水分比率を5.2質量%に調湿したサンプルを用いた。なお、表2に示したT1〜T3の値は、乾燥された各原料の質量%比である。また、サンプルの水分比率は、水質量/(乾燥原料質量+水質量)で算出した。 Next, an experiment in which the correlation between 1−Σ {0.5 × x (i) × f (i) × S Di } / d 0 and D min / d 0 shown in Expression (19) is confirmed will be described. To do. In this experiment, a sample in which the raw materials shown in Table 1 below were blended at T1 to T3 shown in Table 2 and the moisture ratio was adjusted to 5.2 mass% was used. In addition, the value of T1-T3 shown in Table 2 is the mass% ratio of each dried raw material. Moreover, the moisture ratio of the sample was calculated by water mass / (dry raw material mass + water mass).

本実験では、T1〜T3のサンプルを撹拌装置10に投入し、撹拌羽根16の回転数を変えた条件(60〜1000rpm)で撹拌処理を加えた後、装置内の試料をサンプリングした。また、T1については水分比率を3.5、7.5質量%とした場合についても実験した。サンプリング方法は、撹拌装置10の底部に設置された排出口から連続的に焼結原料12が排出される連続式運転を想定し、排出口の近傍に滞留した焼結原料12の表面から約1kg採取した。   In this experiment, samples T1 to T3 were put into the stirring device 10, and after stirring processing was performed under the conditions (60 to 1000 rpm) with the rotation speed of the stirring blade 16 changed, the sample in the device was sampled. In addition, for T1, experiments were also performed in the case where the moisture ratio was 3.5 and 7.5% by mass. The sampling method assumes a continuous operation in which the sintering raw material 12 is continuously discharged from the discharge port installed at the bottom of the stirring device 10 and is about 1 kg from the surface of the sintering raw material 12 staying in the vicinity of the discharge port. Collected.

採取後のサンプルを湿状態で篩い分け、粒度分布および粒度毎の水分を測定した。篩目は、目開き11.2mm、9.52mm、8.0mm、4.75mm、2.8mm、1.0mm、0.5mmを用いた。篩目11.2mmより大きい粒子は存在せず、代表粒径には目開き径の算術平均値を用いて、それぞれ10.4mm、8.8mm、6.4mm、3.8mm、1.9mm、0.75mm、0.25mmとした。これらの代表粒径と各粒度の質量比率を加重平均したものを平均粒径とした。乾燥前後の質量差を乾燥前の全水分質量(全粒度)で除した値を水分比率とした。   The sample after collection was sieved in a wet state, and the particle size distribution and moisture for each particle size were measured. The meshes used were 11.2 mm, 9.52 mm, 8.0 mm, 4.75 mm, 2.8 mm, 1.0 mm, and 0.5 mm. There are no particles larger than the mesh size of 11.2 mm, and the arithmetic average value of the aperture diameter is used as the representative particle size, and 10.4 mm, 8.8 mm, 6.4 mm, 3.8 mm, 1.9 mm, They were 0.75 mm and 0.25 mm. A weighted average of these representative particle sizes and the mass ratio of each particle size was defined as the average particle size. A value obtained by dividing the mass difference before and after drying by the total moisture mass (total particle size) before drying was defined as the moisture ratio.

図3は、1−Σ{0.5×x(i)×f(i)×SDi}/dとDmin/dとの関係を示すグラフである。図3に示したグラフの横軸は、1−Σ{0.5×x(i)×f(i)×SDi}/dである。横軸は、粒径x(i)、初期質量比率f(i)および崩壊度SDiの積を全粒度に渡って積算し、この積算値を撹拌処理前の平均粒径dで除した値である。なお、SDiは、粒径が3.8mm以上の粒子を用いて、撹拌処理前における焼結原料12の平均粒径と、撹拌処理後における焼結原料12の平均粒径とを用いて算出した。また、縦軸は、焼結原料12の撹拌処理後の平均粒径の最小値であるDminを撹拌処理前の平均粒径dで除した値である。 FIG. 3 is a graph showing the relationship between 1−Σ {0.5 × x (i) × f (i) × S Di } / d 0 and D min / d 0 . The horizontal axis of the graph shown in FIG. 3 is 1−Σ {0.5 × x (i) × f (i) × S Di } / d 0 . The horizontal axis represents the product of particle size x (i), initial mass ratio f (i) and disintegration degree S Di over all particle sizes, and this integrated value was divided by the average particle size d 0 before the stirring treatment. Value. S Di is calculated using particles having a particle size of 3.8 mm or more, using the average particle size of the sintered raw material 12 before the stirring treatment and the average particle size of the sintered raw material 12 after the stirring treatment. did. The vertical axis is a value obtained by dividing the average particle diameter d 0 of the pre-stirring treatment of D min is the minimum value of the average particle size after stirring treatment of the sintered material 12.

図3に示すように、1−Σ{0.5×x(i)×f(i)×SDi}/dが増加するとDmin/dも増加する傾向が見られ、これらの間には、一定の関係があることを見出した。 As shown in FIG. 3, when 1−Σ {0.5 × x (i) × f (i) × S Di } / d 0 increases, D min / d 0 tends to increase. Has found a certain relationship.

図4は、P(i)/S(i)とSDiとの関係を示すグラフである。図4に示したグラフの横軸は、撹拌装置10の撹拌羽根16が粒子径x(i)の粒子に及ぼす衝撃力であるP(i)と、T1〜T3の粒子強度であるS(i)との比である。また、縦軸は、崩壊度SDiである。図4に示すように、衝撃力と粒子強度の比であるP(i)/S(i)(単位:−)と、崩壊度SDi(単位:−)とには、一定の関係があることを見出した。図4に示したプロットを累乗近似曲線にフィッティングした結果、下記数式(20)が導かれた。 FIG. 4 is a graph showing the relationship between P (i) / S (i) and S Di. The horizontal axis of the graph shown in FIG. 4 is P (i), which is the impact force exerted on the particles having the particle diameter x (i) by the stirring blade 16 of the stirring device 10, and S (i), which is the particle strength of T1 to T3. ). The vertical axis represents the degree of decay S Di. As shown in FIG. 4, there is a certain relationship between P (i) / S (i) (unit: −), which is the ratio of impact force to particle strength, and the degree of disintegration S Di (unit: −). I found out. As a result of fitting the plot shown in FIG. 4 to a power approximation curve, the following formula (20) was derived.

1.32×(1−Σ[0.30×x(i)×f(i)×{P(i)/S(i)}0.14]/d)−0.23=Dmin/d・・・数式(20) 1.32 × (1-Σ [0.30 × x (i) × f (i) × {P (i) / S (i)} 0.14 ] / d 0 ) −0.23 = D min / d 0 Formula (20)

今回の実験で用いた撹拌装置10および撹拌条件では、上記数式(20)に示す関係が導かれたが、撹拌装置10の装置構成および撹拌条件によって、図3および図4に示した関係は変わり得る。このため、数式(20)を一般式化した下記数式(21)を導くことができる。なお、数式(21)に示した場合において、G、H、J、Lの各値は、下記表3に示す値を用いていることになる。   In the stirring device 10 and the stirring conditions used in this experiment, the relationship shown in the above formula (20) was derived. However, the relationship shown in FIGS. 3 and 4 varies depending on the configuration of the stirring device 10 and the stirring conditions. obtain. For this reason, the following numerical formula (21) which generalized numerical formula (20) can be derived. In addition, in the case shown in Formula (21), the values shown in Table 3 below are used for the values of G, H, J, and L.

J×1−Σ[0.5×x(i)×f(i)×G×{P(i)/S(i)}]/d)+L=Dmin/d・・・数式(21) J × ( 1−Σ [0.5 × x (i) × f (i) × G × {P (i) / S (i)} H ] / d 0 ) + L = D min / d 0. Formula (21)

次に、撹拌処理後の焼結原料12の平均粒径の最小値と、焼結鉱の生産率との関係を確認した実験について説明する。実験例1〜実験例4および比較実験例1、2では、表4に示したそれぞれの試料を、表4に示した撹拌条件で撹拌処理した。   Next, an experiment that confirms the relationship between the minimum value of the average particle diameter of the sintered raw material 12 after the stirring treatment and the production rate of the sintered ore will be described. In Experimental Examples 1 to 4 and Comparative Experimental Examples 1 and 2, each sample shown in Table 4 was stirred under the stirring conditions shown in Table 4.

撹拌処理後の撹拌装置10内の試料をサンプリングし、サンプリングした試料の平均粒径の最小値をそれぞれ測定した。また、この試料を、ドラムミキサーを用いて5分造粒を行い、その後、鍋試験機を用いて焼成した。焼結後のシンターケーキを2mの高さから1回落とし、10mm以上の粒径を維持したものを成品とし、成品質量を焼成時間および試験鍋の断面積で除して焼結生産率[t/(h×m)]を算出した。 The sample in the stirring apparatus 10 after the stirring treatment was sampled, and the minimum value of the average particle diameter of the sampled samples was measured. Moreover, this sample was granulated for 5 minutes using a drum mixer, and then baked using a pan tester. The sintered sinter cake is dropped once from a height of 2 m, and a product maintaining a particle size of 10 mm or more is made into a product, and the product quality is divided by the firing time and the cross-sectional area of the test pan to obtain a sintered production rate [t / (H × m 2 )] was calculated.

図5は、撹拌処理後の平均粒径の最小値(Dmin)と焼結生産率との関係を示すグラフである。図5に示すように、撹拌処理後の平均粒径の最小値が3mmより大きい場合と比較して、撹拌処理後の平均粒径の最小値を3mm以下にすることで、焼結生産率を向上できることがわかる。なお、撹拌処理後の平均粒径の最小値を小さくするということは、焼結原料12中の微粉同士が凝集した微粉凝集体を粉砕および解砕することを意味する。図5から、撹拌処理後の焼結原料12の平均粒径の最小値を3mm以下にする撹拌装置10の撹拌条件を、上記数式(1)を用いて定めることにより、焼結鉱の焼結生産率を維持・向上できることがわかる。 FIG. 5 is a graph showing the relationship between the minimum value (D min ) of the average particle diameter after the stirring treatment and the sintering production rate. As shown in FIG. 5, compared with the case where the minimum value of the average particle diameter after the stirring treatment is larger than 3 mm, the minimum value of the average particle diameter after the stirring treatment is set to 3 mm or less, thereby reducing the sintering production rate. It can be seen that it can be improved. In addition, reducing the minimum value of the average particle diameter after the stirring treatment means that the fine powder aggregate in which the fine powder in the sintering raw material 12 is aggregated is pulverized and crushed. From FIG. 5, by determining the stirring condition of the stirring device 10 that makes the minimum value of the average particle diameter of the sintered raw material 12 after the stirring treatment 3 mm or less using the above formula (1), sintering of the sintered ore is performed. It can be seen that the production rate can be maintained and improved.

以上説明したように、数式(1)に目標とする撹拌処理後の焼結原料の平均粒径の最小値を代入することで、実際に撹拌装置を用いて撹拌することなく、その後の焼結プロセスに適した撹拌処理条件を定めることができる。これにより、焼結原料12の撹拌条件を容易に適正化できる。また、目標とする撹拌処理後の焼結原料の平均粒径の最小値を3mm以下にし、上記数式(1)を用いて焼結原料の撹拌条件を定めることにより、焼結鉱の焼結生産率を維持・向上できる。また、焼結原料12の平均粒径の最小値は小さい方が好ましいが、撹拌処理後の平均粒径の最小値を小さくするには、撹拌処理前の平均粒径が小さい焼結原料12を用いたり、撹拌装置10の撹拌能力を向上させることが必要になる。また、図5に示すように、平均粒径の最小値を2mmより小さくしても焼結鉱の焼結生産率はほとんど向上しないことから、平均粒径の最小値を1mmより小さくしても焼結生産率は向上しないことが予測される。このため、撹拌処理後の焼結原料の平均粒径の最小値は1mm以上であることが好ましい。   As described above, by substituting the minimum value of the average particle diameter of the sintered raw material after the target stirring treatment into the mathematical formula (1), the subsequent sintering can be performed without actually using the stirring device. Stirring conditions suitable for the process can be determined. Thereby, the stirring conditions of the sintering raw material 12 can be easily optimized. In addition, the minimum value of the average particle diameter of the sintered raw material after the target stirring treatment is set to 3 mm or less, and the stirring condition of the sintered raw material is determined using the above formula (1). The rate can be maintained and improved. Further, the minimum value of the average particle diameter of the sintered raw material 12 is preferably small. However, in order to reduce the minimum value of the average particle diameter after the stirring treatment, the sintered raw material 12 having a small average particle diameter before the stirring treatment is used. It is necessary to use or improve the stirring ability of the stirring device 10. Moreover, as shown in FIG. 5, even if the minimum value of the average particle size is made smaller than 2 mm, the sintered production rate of the sintered ore is hardly improved. Therefore, even if the minimum value of the average particle size is made smaller than 1 mm, It is predicted that the sintering production rate will not improve. For this reason, it is preferable that the minimum value of the average particle diameter of the sintered raw material after the stirring treatment is 1 mm or more.

なお、本実施形態において、撹拌装置10は堰18を設けた例を示したが、これに限られない。堰18は、焼結原料12を掻き取るために設けることが好ましいが、設けなくてもよい。さらに、本実施形態において、円筒容器14の上側が開放された例を示したが、これに限られず、円筒容器14の上側を封止する天板を備えていてもよい。   In addition, in this embodiment, although the stirring apparatus 10 showed the example which provided the weir 18, it is not restricted to this. The weir 18 is preferably provided for scraping the sintered raw material 12, but may not be provided. Furthermore, in this embodiment, although the example in which the upper side of the cylindrical container 14 was opened was shown, it is not restricted to this, You may provide the top plate which seals the upper side of the cylindrical container 14. FIG.

また、本実施形態において、撹拌装置10の撹拌板26の枚数が12枚の例を示したが、これに限られず、撹拌板26の形状、撹拌羽根16の回転数または底板22の回転数等に応じて任意の枚数の撹拌板26を設けてよい。例えば、撹拌板26を回転軸24の上下方向の4〜8箇所に8〜16枚設けてもよい。また、撹拌板26の角度および撹拌板26同士の上下方向の間隔も任意に定めてよい。   In the present embodiment, the example in which the number of the stirring plates 26 of the stirring device 10 is 12 has been shown, but the present invention is not limited to this, and the shape of the stirring plate 26, the rotational speed of the stirring blade 16, the rotational speed of the bottom plate 22, etc. Depending on the, an arbitrary number of stirring plates 26 may be provided. For example, 8 to 16 stirring plates 26 may be provided at 4 to 8 positions in the vertical direction of the rotating shaft 24. Further, the angle of the stirring plate 26 and the interval between the stirring plates 26 may be arbitrarily determined.

また、本実施形態において、底板22および撹拌羽根16は、ともに右周りに回転する例を示したが、これに限られず、左周りであってもよい。さらに、底板22の回転方向と撹拌羽根16の回転方向とが同じ例を示したが、これに限られず、互いに異なっていてもよい。   In the present embodiment, the bottom plate 22 and the stirring blade 16 both rotate clockwise. However, the present invention is not limited to this, and may be counterclockwise. Furthermore, although the rotation direction of the baseplate 22 and the rotation direction of the stirring blade 16 showed the same example, it is not restricted to this, You may mutually differ.

また、本実施形態において、撹拌装置10を水平に設置して焼結原料12を撹拌処理する例を示したが、これに限られず、撹拌装置10を傾けて使用してもよい。また、撹拌羽根16を鉛直方向に軸支させたままにし、円筒容器14のみを傾けるとしてもよい。このように撹拌装置10の装置構成等を変更しても、当該撹拌装置等に対応した数式(1)の定数G、H、J、Lを算出しておくことで、同様に、数式(1)を用いて、実際に撹拌装置を用いて撹拌することなく、その後の焼結プロセスに適した撹拌条件を定めることができる。   Moreover, in this embodiment, although the stirring apparatus 10 was installed horizontally and the example which stir-processes the sintering raw material 12 was shown, it is not restricted to this, You may use the stirring apparatus 10 inclining. Alternatively, the stirring blade 16 may be supported in the vertical direction, and only the cylindrical container 14 may be tilted. In this way, even if the configuration of the stirring device 10 is changed, by calculating the constants G, H, J, and L of the formula (1) corresponding to the stirring device and the like, similarly, the formula (1) ), The stirring conditions suitable for the subsequent sintering process can be determined without actually stirring using the stirring device.

10 撹拌装置
12 焼結原料
14 円筒容器
16 撹拌羽根
18 堰
20 円筒
22 底板
24 回転軸
26 撹拌板
DESCRIPTION OF SYMBOLS 10 Stirring device 12 Sintering raw material 14 Cylindrical container 16 Stirring blade 18 Weir 20 Cylinder 22 Bottom plate 24 Rotating shaft 26 Stirring plate

Claims (1)

焼結原料の事前処理を撹拌装置で行う焼結鉱の製造方法において、
前記撹拌装置の撹拌処理による粒度分布の経時変化を、行列モデルを用いて解析し、より粒径の小さい粒度域に移行する割合である崩壊度S Di を求め、
前記焼結原料の事前処理後の目標とす加重平均粒径の最小値 3mm以下に定め、前記撹拌装置に装入される前記焼結原料が下記数式(1)を満たすように、前記事前処理を行うことを特徴とする焼結鉱の製造方法。
J×(1−Σ[0.5×x(i)×f(i)×G×{P(i)/S(i)}]/d)+L<D/d・・・数式(1)
但し、上記数式(1)において、dは、前記焼結原料の前記事前処理前の加重平均粒径を表し、x(i)は、前記焼結原料のそれぞれの粒子径を表し、f(i)は、粒子径x(i)の質量比率を表し、P(i)は、前記撹拌装置の撹拌羽根が粒子径x(i)の粒子に及ぼす衝撃力を表し、S(i)は、粒子径x(i)の粒子強度を表し、G、Hは、崩壊度S Di と、衝撃力P(i)と粒子強度S(i)との比であるP(i)/S(i)との相関関係から求まる定数を表し、J、Lは、1−Σ{0.5×x(i)×f(i)×S Di }/d とD min /d との相関関係から求まる定数表す。
In the manufacturing method of the sintered ore where the pretreatment of the sintering raw material is performed with a stirring device,
Analyzing the change over time in the particle size distribution due to the stirring process of the stirring device using a matrix model, the degree of disintegration S Di that is the ratio of shifting to a smaller particle size region is obtained,
Determines the minimum value D T Weighted average particle diameter shall be the target after pre-treatment of the sintered material to 3mm or less, the sintering raw material charged to the stirring device so as to satisfy the following formula (1) The method for producing sintered ore, wherein the pretreatment is performed.
J × (1−Σ [0.5 × x (i) × f (i) × G × {P (i) / S (i)} H ] / d 0 ) + L <D T / d 0. Formula (1)
However, in the above mathematical formula (1), d 0 represents the weighted average particle diameter of the sintered raw material before the pretreatment, x (i) represents the respective particle diameter of the sintered raw material, and f (I) represents the mass ratio of the particle diameter x (i), P (i) represents the impact force exerted on the particles having the particle diameter x (i) by the stirring blade of the stirring device, and S (i) is , Represents the particle strength of the particle diameter x (i), and G and H are P (i) / S (i, which is the ratio of the disintegration degree S Di and the impact force P (i) to the particle strength S (i). ) represents a constant obtained from the correlation with, J, L is, 1-Σ {0.5 × x (i) × f (i) × S Di} / d 0 and correlation of D min / d 0 It represents a constant obtained from.
JP2016106334A 2016-05-27 2016-05-27 Method for producing sintered ore Active JP6493305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106334A JP6493305B2 (en) 2016-05-27 2016-05-27 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106334A JP6493305B2 (en) 2016-05-27 2016-05-27 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2017210672A JP2017210672A (en) 2017-11-30
JP6493305B2 true JP6493305B2 (en) 2019-04-03

Family

ID=60474542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106334A Active JP6493305B2 (en) 2016-05-27 2016-05-27 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP6493305B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953308B2 (en) * 1994-06-06 1999-09-27 住友金属工業株式会社 Sinter production method
JP3252646B2 (en) * 1995-04-11 2002-02-04 住友金属工業株式会社 Sinter production method
JP4568243B2 (en) * 2006-03-17 2010-10-27 新日本製鐵株式会社 Method of kneading fine powder material
JP5326592B2 (en) * 2008-03-11 2013-10-30 新日鐵住金株式会社 Granulation method of sintering raw material
JP6156305B2 (en) * 2014-09-22 2017-07-05 Jfeスチール株式会社 Manufacturing equipment for sintering raw material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017210672A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Cleary et al. DEM prediction of particle flows in grinding processes
Beke The process of fine grinding
JP6508500B2 (en) Method of producing sintered ore
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
US9968941B2 (en) Method of ball milling aluminum metaphosphate
TWI509081B (en) Method for producing granulation material for sintering
JP6493305B2 (en) Method for producing sintered ore
JP6468367B2 (en) Method for producing sintered ore
JP6747232B2 (en) Blast furnace raw material mixing ratio estimation method
Andrade et al. Impact of key parameters on the iron ore pellets roller screening performance
US7093782B2 (en) Method and device for fine grinding of mineral particles
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP5910831B2 (en) Method for producing granulated raw material for sintering
CN102378821A (en) Method of crushing iron ore material
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
You et al. Effects of operation parameters on particle mixing performance in a horizontal high shear mixer
WO2015152112A1 (en) Device for manufacturing pelletized sinter feed
JP4677040B2 (en) Granulation method of fine powder raw material
JP7024647B2 (en) Granulation method of raw material for sintering
TWI468522B (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP7574771B2 (en) Method for treating raw materials for sintering and method for producing sintered ore
JP2014173165A (en) Manufacturing device and method of granulation or particle size regulation
Nyembwe Modelling of the characteristics of iron ore granules formed during the granulation process of mixtures that contain concentrate and micropellets
JP6102826B2 (en) Sinter ore granulation equipment
JP3840967B2 (en) Granulation method of sinter raw material for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6493305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250