JP6460440B2 - X-ray phosphor plate - Google Patents
X-ray phosphor plate Download PDFInfo
- Publication number
- JP6460440B2 JP6460440B2 JP2014086783A JP2014086783A JP6460440B2 JP 6460440 B2 JP6460440 B2 JP 6460440B2 JP 2014086783 A JP2014086783 A JP 2014086783A JP 2014086783 A JP2014086783 A JP 2014086783A JP 6460440 B2 JP6460440 B2 JP 6460440B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- phosphor plate
- ray
- hole
- pigment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
- Measurement Of Radiation (AREA)
Description
本発明は、X線検出に用いられる、高い解像度を有する蛍光体板に関する。 The present invention relates to a phosphor plate having high resolution used for X-ray detection.
X線を利用した検査装置は、医療用のX線診断装置等の他、産業用のIC検査装置等に広く使用されている。このような検査装置に使用されるX線検出器は、X線を蛍光体板で受け、これを光に変換し蛍光体板の背面に配置された光電変換装置(例えば、CCDイメージセンサや、CMOSイメージセンサなどの2次元イメージセンサ)で画像化された電気信号に変換される。このX線検出器には様々な性能の向上が求められるが、最も重要なものとして解像度の向上が求められる。 Inspection apparatuses using X-rays are widely used not only for medical X-ray diagnostic apparatuses but also for industrial IC inspection apparatuses. An X-ray detector used in such an inspection apparatus receives X-rays with a phosphor plate, converts this into light, and converts the light into a photoelectric conversion device (for example, a CCD image sensor, It is converted into an electrical signal imaged by a two-dimensional image sensor such as a CMOS image sensor. This X-ray detector is required to improve various performances, and most importantly, an improvement in resolution is required.
従来X線検出器に用いられる蛍光体板には通常1μm程度の微粒子状蛍光体を用いて、蛍光体懸濁液中の蛍光体粒子を基板上に沈降させ、基板上に均一な蛍光体板を作成する方法(沈降法)や、ヨウ化セシウム(CsI)等の蛍光体を基板上に蒸着して均一な蛍光体板を作成する方法(蒸着法)等が知られている。このように構成された蛍光体板において、X線画像は、可視光線画像に変換されるが、X線より変換された発光フォトンはすべての立体角方向に放射されるため、上記CCDイメージセンサ等の2次元イメージセンサの画素のうち、発光フォトンが発生した直近の位置にある画素だけでなく、近傍の画素にも到達してしまう。このため、発光フォトンの像が大きくなることで、電気信号画像は元のX線画像に比べて、解像度が劣るという問題がある。 Conventionally, the phosphor plate used in the X-ray detector is usually a particulate phosphor of about 1 μm, and the phosphor particles in the phosphor suspension are settled on the substrate, and the uniform phosphor plate on the substrate. And the like (precipitation method), and a method (vapor deposition method) for producing a uniform phosphor plate by vapor-depositing a phosphor such as cesium iodide (CsI) on a substrate. In the phosphor plate configured as described above, the X-ray image is converted into a visible light image, but the emitted photons converted from the X-rays are emitted in all solid angle directions. Among the pixels of the two-dimensional image sensor, the pixel reaches not only the pixel at the nearest position where the light emission photon is generated but also the neighboring pixel. For this reason, there is a problem that the resolution of the electric signal image is inferior to that of the original X-ray image because the image of the emitted photons becomes large.
この解像度の向上のために、例えば、横方向への光の影響を少なくするために、蛍光体板の充填率を高くして厚さを薄くすることや、例えば、基板に垂直な方向に柱状結晶を形成することで横方向への散乱が小さくなるようにする方法が知られている。しかしながらこの柱状構造でもまだ横方向散乱は起こり、十分な対策とはいえない。 In order to improve this resolution, for example, to reduce the influence of light in the lateral direction, the phosphor plate is increased in filling ratio to reduce the thickness, or, for example, a columnar shape in a direction perpendicular to the substrate A method is known in which the scattering in the lateral direction is reduced by forming crystals. However, this columnar structure still causes lateral scattering, which is not a sufficient countermeasure.
別の方法としてはMEMS(Micro Electro Mechanical Systems)法を用いて、図6中の6aに示すように基板61に微細な井戸型構造を作成して、その井戸型構造に図6中の6bに示すように蛍光体粒子62を充填した、蛍光体からの発光が水平方向に拡散しにくい蛍光体板が提案されている(例えば、非特許文献1参照。)。
しかし、この方法では、高アスペクト比(深い井戸型構造)の作成が難しく、井戸型構造への蛍光体粒子充填の充填率を大きくできない問題がある。非特許文献1では井戸型構造への蛍光体充填率は30%〜50%であり、高充填化が課題となっている。
As another method, using a micro electro mechanical systems (MEMS) method, a fine well-type structure is formed on the substrate 61 as shown in 6a in FIG. 6, and the well-type structure is formed in 6b in FIG. As shown, a phosphor plate that is filled with phosphor particles 62 and in which light emitted from the phosphor hardly diffuses in the horizontal direction has been proposed (see, for example, Non-Patent Document 1).
However, in this method, it is difficult to create a high aspect ratio (deep well structure), and there is a problem that the filling rate of the phosphor particles filling the well structure cannot be increased. In Non-Patent Document 1, the phosphor filling rate in the well-type structure is 30% to 50%, and high filling is an issue.
また別の方法として、次の構成要素からなるX線検出器が提案されている。すなわち、蛍光体単結晶等の固体蛍光体からなるX線蛍光基板に、表面から所定の深さまで溝掘りして網目状画素を形成し、画素間の溝には光反射性接着材料を充填する。そしてX線蛍光基板の裏面に可視光検出器アレイを設けている。上記固体蛍光体は、CdWO4、Bi4Ge3O12、Y3Al5O12:Eu、Y3Al5O12:Ce、LuTaO4:Nb、Y2O3、CsI:Tl、CsI:Na、CsI、NaI、CsF、CaF2:Eu、LiI:Eu、Gd2SiO5:Ceからなる群から選択されたX線蛍光体からなる。また別の形態として、X線蛍光基板は、既知のX線蛍光体粉末を光ガイドガラス基板の上に塗布して構成される。X線蛍光体粉末はGd2O2S:Tb、Gd2O2S:Pr,Ce,F、ZnCdS:Ag、Y2O2S:Euからなる群から選択される(例えば、特許文献1参照)。 As another method, an X-ray detector comprising the following components has been proposed. That is, a network pixel is formed by digging a groove from a surface to a predetermined depth on an X-ray fluorescent substrate made of a solid phosphor such as a phosphor single crystal, and a groove between the pixels is filled with a light reflective adhesive material. . A visible light detector array is provided on the back surface of the X-ray fluorescent substrate. The solid phosphors are CdWO 4 , Bi 4 Ge 3 O 12 , Y 3 Al 5 O 12 : Eu, Y 3 Al 5 O 12 : Ce, LuTaO 4 : Nb, Y 2 O 3 , CsI: Tl, CsI: Na, CsI, NaI, CsF, CaF 2: Eu, LiI: Eu, Gd 2 SiO 5: an X-ray phosphor selected from the group consisting of Ce. As another form, the X-ray fluorescent substrate is configured by applying a known X-ray phosphor powder on a light guide glass substrate. The X-ray phosphor powder is selected from the group consisting of Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, Ce, F, ZnCdS: Ag, Y 2 O 2 S: Eu (for example, Patent Document 1). reference).
特許文献1の固体蛍光体を用いる場合では上記充填率の問題は改善するが、X線用蛍光基板には(1)X線吸収係数を大きくするために高い原子番号の元素から構成されていること、(2)人体に有害元素を含まないこと、(3)発光効率が大きいこと、が要求される。これら三つの要求項目をすべて満たす材料はなかなか見つかっていない。さらに単結晶等の固体蛍光体製造は設備・コストの点で難点を持っている。また別の実施形態である粉末蛍光体を塗布したX線蛍光基板を用いた場合には、当然蛍光体充填率は小さく、低感度となり、粉末シンチレータ内の光散乱が避けられないことであり、分解能の劣化の原因となる。 このほか、レーザー等で溝掘り加工する際に、溝の深さの精度バラツキの問題も懸念される。深さの精度バラツキは、そのまま解像度のバラツキにつながる。 When the solid phosphor disclosed in Patent Document 1 is used, the problem of the filling rate is improved. However, the X-ray fluorescent substrate is composed of (1) an element having a high atomic number in order to increase the X-ray absorption coefficient. (2) The human body does not contain harmful elements, and (3) the luminous efficiency is high. It has been difficult to find a material that meets all three requirements. Furthermore, the production of solid phosphors such as single crystals has difficulties in terms of equipment and cost. In addition, when an X-ray fluorescent substrate coated with a powder phosphor according to another embodiment is used, the phosphor filling rate is naturally small, the sensitivity is low, and light scattering in the powder scintillator is unavoidable, It causes degradation of resolution. In addition, when grooving with a laser or the like, there is a concern about the problem of variation in the accuracy of the groove depth. Depth accuracy variation directly leads to resolution variation.
本発明は、光散乱を抑制し、高い解像度を有するX線検出器用の蛍光体板を提供することを目的とする。 An object of this invention is to provide the fluorescent substance plate for X-ray detectors which suppresses light scattering and has high resolution.
本発明者らは、蛍光体板に多結晶の蛍光体インゴットを用い、さらに光散乱を抑制するための格子形状等の繰り返し模様の形状でかつ不連続で互いに分離した貫通孔構造を有することで、蛍光体板に平行な横方向への光散乱を抑制し、結果高い解像度を有するX線検出器用の蛍光体板となることを見出した。 The present inventors use a polycrystalline phosphor ingot for the phosphor plate, and further have a through-hole structure that is discontinuous and separated from each other in a repetitive pattern shape such as a lattice shape for suppressing light scattering. The present inventors have found that the light scattering in the lateral direction parallel to the phosphor plate is suppressed, resulting in a phosphor plate for an X-ray detector having high resolution.
第1の発明に係るX線用蛍光体板は、蛍光体の多結晶体からなる蛍光体板であって、前記蛍光体板には貫通孔が設けられ、前記貫通孔は、所定の繰り返し模様の形状を有し、かつ前記形状が不連続であり、各々の貫通孔内面に光反射材を具備していることを特徴としている。蛍光体板が上記形状の貫通孔を有するため、機械的強度を保持しつつ光散乱を抑制し、高い解像度を有するX線用蛍光体板になる。 An X-ray phosphor plate according to a first aspect of the present invention is a phosphor plate made of a phosphor polycrystal, wherein the phosphor plate is provided with a through hole, and the through hole has a predetermined repeating pattern. Further, the shape is discontinuous, and a light reflecting material is provided on the inner surface of each through hole. Since the phosphor plate has the above-described through-holes, the X-ray phosphor plate has high resolution while suppressing the light scattering while maintaining the mechanical strength.
第2の発明に係るX線用蛍光体板は、第1の発明のX線用蛍光体板において、前記貫通孔の繰り返し模様の形状は、正方形格子、三角形格子、六角形格子のいずれかであることを特徴としている。貫通孔の繰り返し模様の形状をそれぞれ格子形状とすることにより、より高い解像度を有するX線用蛍光体板になる。 The X-ray phosphor plate according to the second invention is the X-ray phosphor plate according to the first invention, wherein the shape of the repeating pattern of the through holes is any one of a square lattice, a triangular lattice, and a hexagonal lattice. It is characterized by being. By making the shape of the repeated pattern of the through-holes into a lattice shape, an X-ray phosphor plate having higher resolution can be obtained.
第3の発明に係るX線用蛍光体板は、第1または第2の発明のX線用蛍光体板において、前記蛍光体は、希土類酸硫化物蛍光体であることを特徴としている。希土類酸硫化物蛍光体を選択することで、X線感度に優れたX線用蛍光体板になる。 An X-ray phosphor plate according to a third invention is the X-ray phosphor plate according to the first or second invention, wherein the phosphor is a rare earth oxysulfide phosphor. By selecting a rare earth oxysulfide phosphor, an X-ray phosphor plate having excellent X-ray sensitivity is obtained.
第4の発明に係るX線用蛍光体板は、第1ないし第3いずれかの発明のX線用蛍光体板において、前記光反射材が白色顔料であることを特徴としている。光反射材として白色顔料を選択することで、X線に対して高感度であり、かつ解像度の優れたX線用蛍光体板になる。
第5の発明に係るX線用蛍光体板は、第4の発明のX線用蛍光体板において、前記白色顔料が酸化チタン顔料、酸化亜鉛顔料、硫酸バリウム顔料、酸化マグネシウム顔料の群から選ばれた少なくとも1種類の顔料であることを特徴としている。これらの顔料を選択することで、X線に対して高感度であり、かつ解像度の優れたX線用蛍光体板になる。
An X-ray phosphor plate according to a fourth invention is the X-ray phosphor plate according to any one of the first to third inventions, wherein the light reflecting material is a white pigment. By selecting a white pigment as the light reflecting material, an X-ray phosphor plate having high sensitivity to X-rays and excellent resolution is obtained.
An X-ray phosphor plate according to a fifth invention is the X-ray phosphor plate according to the fourth invention, wherein the white pigment is selected from the group consisting of a titanium oxide pigment, a zinc oxide pigment, a barium sulfate pigment, and a magnesium oxide pigment. And at least one kind of pigment. By selecting these pigments, an X-ray phosphor plate having high sensitivity to X-rays and excellent resolution can be obtained.
第6の発明に係るX線用蛍光体板は、第1ないし第3いずれかの発明のX線用蛍光体板において、前記光反射材が金属膜であることを特徴としている。光反射材として金属膜を選択することで、X線に対して高感度であり、かつ解像度の優れたX線用蛍光体板になる。
第7の発明に係るX線用蛍光体板は、第6の発明のX線用蛍光体板において、前記金属膜がアルミニウム、銀、銅、金、亜鉛の群から選ばれた少なくとも1種類の金属であることを特徴としている。これらの金属を選択することで、X線に対して高感度であり、かつ解像度の優れたX線用蛍光体板になる。
An X-ray phosphor plate according to a sixth invention is the X-ray phosphor plate according to any one of the first to third inventions, wherein the light reflecting material is a metal film. By selecting a metal film as the light reflecting material, an X-ray phosphor plate having high sensitivity to X-rays and excellent resolution can be obtained.
An X-ray phosphor plate according to a seventh invention is the X-ray phosphor plate according to the sixth invention, wherein the metal film is selected from the group consisting of aluminum, silver, copper, gold, and zinc. It is characterized by being a metal. By selecting these metals, an X-ray phosphor plate having high sensitivity to X-rays and excellent resolution can be obtained.
本発明のX線用蛍光体板によれば、蛍光体板に多結晶の蛍光体インゴットを用いることで蛍光体を高密度化して高感度化をはかり、さらに光散乱を抑制するための格子形状等の繰り返し模様の形状でかつ不連続で互いに分離した貫通孔構造を有することで、機械的強度を保持しつつ、蛍光体板に平行な横方向への光散乱を抑制し、結果高い解像度を有するX線検出器用の蛍光体板の提供が可能となる。 According to the phosphor plate for X-rays of the present invention, a lattice shape for increasing the density of the phosphor by increasing the density of the phosphor by using a polycrystalline phosphor ingot for the phosphor plate and further suppressing light scattering. By having a through-hole structure that is discontinuous and separated from each other in a repetitive pattern shape, etc., it suppresses light scattering in the horizontal direction parallel to the phosphor plate while maintaining mechanical strength, resulting in high resolution It is possible to provide a phosphor plate for an X-ray detector.
以下、本発明の実施の形態にかかるX線用蛍光体板とその特性について説明する。以下に記載する実施の形態の要素および特徴の組み合わせは例示であって、本発明の範囲を限定するものではない。 Hereinafter, an X-ray phosphor plate and its characteristics according to an embodiment of the present invention will be described. The combinations of the elements and features of the embodiments described below are merely examples, and do not limit the scope of the present invention.
本発明のX線用蛍光体板は以下の工程を経て製造される。すなわち、
(1)蛍光体粉末合成工程と
(2)インゴット作成工程と
(3)蛍光体板形成工程と
(4)貫通孔作成工程と
(5)アニール工程と
(6)反射材具備工程、である。
The X-ray phosphor plate of the present invention is manufactured through the following steps. That is,
(1) phosphor powder synthesis step, (2) ingot creation step, (3) phosphor plate formation step, (4) through-hole creation step, (5) annealing step, and (6) reflector provision step.
蛍光体粉末合成工程ではフラックスを含む出発原料粉を混合して、焼成、洗浄処理等の通常の蛍光体合成工程を経て作成する。
本発明に用いられる蛍光体にはX線吸収の大きい、即ち蛍光体は原子番号の大きい原子で構成されていること、また吸収したX線エネルギーの可視光線変換効率の高いこと、CCD等の2次元撮像素子の分光感度特性にマッチングした発光スペクトルを有することが要求される。例えば、希土類付活希土類酸化硫化物蛍光体、ユウロピウム付活アルカリ土類ハロゲン化物蛍光体で形成されていることが好ましい。特にテルビウム付活酸硫化ガドリニウムGd2O2S:Tbが好ましい。このほか、BaFCl:Eu等のユウロピウム付活アルカリ土類ハロゲン化物蛍光体、LaOBr:Tb等の希土類賦活希土類オキシハライド蛍光体等も利用可能である。
In the phosphor powder synthesis step, the starting raw material powder containing the flux is mixed and prepared through a normal phosphor synthesis step such as firing and washing treatment.
The phosphor used in the present invention has a large X-ray absorption, that is, the phosphor is composed of atoms having a large atomic number, a high visible light conversion efficiency of the absorbed X-ray energy, and 2 such as a CCD. It is required to have an emission spectrum that matches the spectral sensitivity characteristics of the two-dimensional image sensor. For example, it is preferably formed of a rare earth activated rare earth oxysulfide phosphor or a europium activated alkaline earth halide phosphor. Terbium-activated gadolinium oxysulfide Gd 2 O 2 S: Tb is particularly preferable. In addition, europium activated alkaline earth halide phosphors such as BaFCl: Eu, rare earth activated rare earth oxyhalide phosphors such as LaOBr: Tb, and the like can be used.
インゴット作成工程では蛍光体粉末を高温高圧焼結法により、蛍光体インゴットを作成する。この高温高圧焼結としては、一軸方向に圧力印加するホットプレス(HP)法や、全方向から加圧する熱間静水圧プレス(HIP)法を用いることができる。 In the ingot creation step, a phosphor ingot is created from the phosphor powder by a high-temperature high-pressure sintering method. As this high-temperature and high-pressure sintering, a hot press (HP) method in which pressure is applied in a uniaxial direction or a hot isostatic press (HIP) method in which pressure is applied from all directions can be used.
蛍光体板作成工程では蛍光体インゴットを、ダイアモンドカッター等の通常のスライスマシーンを使用してスライスし、蛍光体板を得る。量産性を考慮するならば、マルチワイヤーソーが好ましい。スライスする厚さは厚さ数mm〜数十μmに用途に応じて適宜調整することができる。 In the phosphor plate creation step, the phosphor ingot is sliced using a normal slicing machine such as a diamond cutter to obtain a phosphor plate. In consideration of mass productivity, a multi-wire saw is preferable. The thickness to be sliced can be appropriately adjusted to a thickness of several mm to several tens of μm depending on the application.
貫通孔作成工程では、蛍光体板に対してレーザー加工装置を用い、所定の繰り返し模様のパターンに従って、貫通孔加工を行う。蛍光体板の強度を高めるために、図2に示すように貫通孔同士はたがい分離していることが必要である。図2中の図2aは正方格子、図2bは三角形格子、図2cは六角形格子を示したものである。図2dに実際に蛍光板に欠損した正方形状に貫通孔加工した例を示す。レーザー加工は数十ナノ秒以下のパルス時間幅を有するレーザーパルスを蛍光体板に照射して行った。典型的な貫通孔形状は、幅10〜50μmで、隣接する貫通孔との間隔は数十μm〜数百μmの規則格子状にすることが好ましい。 In the through-hole creating step, the through-hole processing is performed on the phosphor plate using a laser processing apparatus in accordance with a predetermined repetitive pattern. In order to increase the strength of the phosphor plate, it is necessary that the through holes are separated from each other as shown in FIG. 2a in FIG. 2 shows a square lattice, FIG. 2b shows a triangular lattice, and FIG. 2c shows a hexagonal lattice. FIG. 2d shows an example in which through holes are processed into a square shape actually missing from the fluorescent screen. Laser processing was performed by irradiating the phosphor plate with a laser pulse having a pulse time width of several tens of nanoseconds or less. It is preferable that the typical through hole shape has a width of 10 to 50 μm and an interval between adjacent through holes is a regular lattice shape of several tens μm to several hundred μm.
アニール工程では、前記貫通孔加工した蛍光体板を、レーザー加工のダメージから回復させるため、還元ないし中性雰囲気で高温加熱処理(アニール処理)を行う。 In the annealing step, a high-temperature heat treatment (annealing treatment) is performed in a reducing or neutral atmosphere in order to recover the phosphor plate that has undergone through-hole processing from damage caused by laser processing.
反射材具備工程では、前記アニール処理した蛍光体板の少なくとも貫通孔部分に反射材料として例えば白色顔料を充填塗布するか、または金属膜をめっき又は蒸着等で具備する。白色顔料としては、酸化チタン顔料、酸化亜鉛顔料、硫酸バリウム顔料、酸化マグネシウム顔料等を用いることができる。金属膜としては、アルミニウム、銀、金、亜鉛等を用いることができる。
このようにして得られた、本発明のX線用蛍光体板は、図3に模式的に示すような断面になっている。本発明のX線用蛍光体板10は、蛍光体粉末を高温高圧焼成して得られた多結晶体の蛍光体板11に貫通孔が設けられ、貫通孔内部に反射材料12が具備されている。
In the reflecting material providing step, for example, a white pigment as a reflecting material is filled and applied to at least the through hole portion of the annealed phosphor plate, or a metal film is provided by plating or vapor deposition. Examples of white pigments that can be used include titanium oxide pigments, zinc oxide pigments, barium sulfate pigments, and magnesium oxide pigments. As the metal film, aluminum, silver, gold, zinc, or the like can be used.
The X-ray phosphor plate of the present invention thus obtained has a cross section as schematically shown in FIG. The phosphor plate 10 for X-rays of the present invention is provided with a through hole in a polycrystalline phosphor plate 11 obtained by firing phosphor powder at high temperature and high pressure, and a reflective material 12 is provided inside the through hole. Yes.
なお、本発明の蛍光体板の機械的強度を高めるため、さらに補強のための支持基板として薄い板状の材料を貼り合わせてもよい。支持基板の材料としては、アルミニウムなどの薄い金属板や、ガラス、樹脂材料などを用いることができる。
次に、本発明の実施例として、蛍光体板の製造方法と特性の一例について図面を参照しながら詳細に説明する。
In order to increase the mechanical strength of the phosphor plate of the present invention, a thin plate-like material may be bonded as a support substrate for further reinforcement. As a material of the support substrate, a thin metal plate such as aluminum, glass, a resin material, or the like can be used.
Next, as an embodiment of the present invention, an example of a method and characteristics of a phosphor plate will be described in detail with reference to the drawings.
(蛍光体粉末合成工程)
本発明の蛍光体板に用いる蛍光体の合成の一例について説明する。酸化ガドリニウム(Gd2O3)を1000g、酸化テルビウム(Tb4O7)を3.1g秤量する。次に、5リットルの純水に撹拌分散した後、68%硝酸水溶液を270ml添加し、加熱して溶解する。次にシュウ酸を800g溶解して加熱を続け、シュウ酸塩を得る。このシュウ酸塩を水洗・乾燥後、大気中1000℃で焼成して共沈酸化物を得る。そして、この共沈酸化物1000gに、炭酸ナトリウム(Na2CO3)を260g、ホウ酸リチウム(Li2B4O7)を30g、リン酸カリウム(K3PO4・3H2O)を90g及び硫黄(S)を300g添加し、乾式混合した。次に、この素原料混合粉をアルミナルツボに入れ、アルミナの蓋をした後、電気炉にて1200℃で8時間焼成した。冷却後、アルミナルツボと焼成物を純水中に1時間放置した。その後純水中でほぐれた焼成物を、純水で良く洗浄し、次に撹拌機を用い、4Nの塩酸で2時間、90℃の温水で1時間の洗浄を行った。こうして、平均粒径20μmの(Gd0.997Tb0.003)2O2S蛍光体粉末を得た。
(Phosphor powder synthesis process)
An example of the synthesis of the phosphor used for the phosphor plate of the present invention will be described. 1000 g of gadolinium oxide (Gd 2 O 3 ) and 3.1 g of terbium oxide (Tb 4 O 7 ) are weighed. Next, after stirring and dispersing in 5 liters of pure water, 270 ml of 68% nitric acid aqueous solution is added and dissolved by heating. Next, 800 g of oxalic acid is dissolved and heating is continued to obtain oxalate. The oxalate is washed with water and dried, and then calcined at 1000 ° C. in the atmosphere to obtain a coprecipitated oxide. And 1000 g of this coprecipitated oxide, 260 g of sodium carbonate (Na 2 CO 3 ), 30 g of lithium borate (Li 2 B 4 O 7 ), and 90 g of potassium phosphate (K 3 PO 4 .3H 2 O) And 300g of sulfur (S) was added and dry-mixed. Next, this raw material mixed powder was put into an alumina crucible, covered with alumina, and then fired at 1200 ° C. for 8 hours in an electric furnace. After cooling, the alumina crucible and the fired product were left in pure water for 1 hour. Thereafter, the fired product loosened in pure water was thoroughly washed with pure water, and then washed with 4N hydrochloric acid for 2 hours and 90 ° C. warm water for 1 hour using a stirrer. Thus, (Gd 0.997 Tb 0.003 ) 2 O 2 S phosphor powder having an average particle diameter of 20 μm was obtained.
(インゴット作成工程)
インゴット作成は、前記(Gd0.997Tb0.003)2O2S蛍光体粉末を高温高圧処理して得られる。この高温高圧処理としては、一軸方向に圧力印加するホットプレスを用いた。ホットプレス装置内に前記蛍光体粉末をセットし、真空に引いた後にアルゴンガスを導入する。温度および圧力の条件は図1に示すとおり、まず温度は、昇温速度10℃/分で1460℃まで昇温し、その後、1460℃を3時間保持し、降温速度10℃/分で室温まで冷却する。圧力は加圧速度0.67MPa/分で40MPaまで加圧する。そして、上記1460℃3時間保持終了まで、加圧保持した後、減圧速度も0.67MPa/分で降温時に1気圧まで減圧する。このとき室温に冷却するまでの間、加圧保持してもよい。なお、インゴット作成工程において、蛍光体粉末に微量の焼結助剤を添加しても良い。焼結助剤としては、フッ化リチウム(LiF)、ヘキサフルオロゲルマニウム酸リチウム(Li2GeF6)等のフッ化物を選択でき、蛍光体粉末に対して1質量%以下の焼結助剤を添加することで、焼結効果を高めることができる。
(Ingot creation process)
Ingot preparation is obtained by subjecting the (Gd 0.997 Tb 0.003 ) 2 O 2 S phosphor powder to high-temperature and high-pressure treatment. As this high-temperature and high-pressure treatment, a hot press that applies pressure in a uniaxial direction was used. The phosphor powder is set in a hot press apparatus, and after evacuating, argon gas is introduced. As shown in FIG. 1, the temperature and pressure conditions are as follows. First, the temperature is raised to 1460 ° C. at a temperature rising rate of 10 ° C./min, then 1460 ° C. is maintained for 3 hours, and then the temperature is lowered to room temperature at 10 ° C./min Cooling. The pressure is increased to 40 MPa at a pressing rate of 0.67 MPa / min. And after hold | maintaining pressurization until completion | finish of said 1460 degreeC 3 hours holding | maintenance, it is pressure-reduced to 1 atmosphere at the time of temperature reduction at a pressure reduction speed of 0.67 MPa / min. At this time, pressure may be maintained until cooling to room temperature. In the ingot creation process, a small amount of sintering aid may be added to the phosphor powder. As a sintering aid, a fluoride such as lithium fluoride (LiF) or lithium hexafluorogermanate (Li 2 GeF 6 ) can be selected, and a sintering aid of 1% by mass or less is added to the phosphor powder. By doing so, the sintering effect can be enhanced.
(蛍光体板形成工程)
高温高圧処理して得られたインゴットに対して、マルチワイヤーソーを用いてスライス加工を行い、蛍光体板を得た。この時のスライス厚さは0.25mmとした。
(Phosphor plate forming process)
The ingot obtained by the high temperature and high pressure treatment was sliced using a multi-wire saw to obtain a phosphor plate. The slice thickness at this time was 0.25 mm.
(貫通孔作成工程)
貫通孔作成工程でのレーザー加工パターンは、1辺は100μmの正方形格子とし、蛍光体板の機械的強度を高めるために、辺の一部を欠損した形状(辺欠損率40%)とした。レーザー加工パターンの概略を図2aに示す。レーザー加工には、Nd:YVO4レーザーを使用した。加工条件は次のとおりである。レーザーパワー:3−4W、ビーム幅:20μm(貫通孔幅は約20μm)、レーザーパルス長:10ns、レーザースポット走査速度:毎秒60mm、パルス周波数:20kHz。
(Through-hole creation process)
The laser processing pattern in the through hole creation step was a square lattice with 100 μm on one side, and a shape with a part of the side missing (side defect rate 40%) was used to increase the mechanical strength of the phosphor plate. An outline of the laser processing pattern is shown in FIG. 2a. Nd: YVO 4 laser was used for laser processing. The processing conditions are as follows. Laser power: 3-4 W, beam width: 20 μm (through hole width is about 20 μm), laser pulse length: 10 ns, laser spot scanning speed: 60 mm / second, pulse frequency: 20 kHz.
(アニール工程)
レーザー加工により貫通孔加工をした蛍光体板に対して、微量の酸素を含むアルゴンガス中で1100℃、1時間の高温アニール処理を行った。
(Annealing process)
The phosphor plate subjected to through-hole processing by laser processing was subjected to high-temperature annealing at 1100 ° C. for 1 hour in an argon gas containing a small amount of oxygen.
(反射材具備工程)
反射材としての白色顔料は、顔料粒子径0.3μmの酸化チタン顔料を選択し、この白色顔料5質量部を脱イオン水47.5質量部と混合し、ポリビニルアルコール4質量部、イソプロピルアルコール42質量部および非イオン性界面活性剤(サーフィノール104S、日信化学工業株式会社製)を1.5質量部添加して白色顔料スラリー100質量部を調製し、プラスティック容器に入れる。この容器にアニール処理をした前記蛍光体板を浸漬し、超音波処理を10分程度行うことで、白色顔料スラリーを前記蛍光体板の貫通孔内部に充填する。その後、前記蛍光体板を容器から取り出し、残留したアルコール等の溶媒を蒸発させて、前記白色顔料を蛍光体板の貫通孔内部および蛍光板の表面に固定する。
次いで、前記蛍光体板の一方の面を研磨することにより白色顔料を除去して、本発明の蛍光体板を得た。これを蛍光体板試料1とした。
(Reflective material provision process)
As the white pigment as the reflective material, a titanium oxide pigment having a pigment particle diameter of 0.3 μm is selected, and 5 parts by mass of this white pigment is mixed with 47.5 parts by mass of deionized water, 4 parts by mass of polyvinyl alcohol, and isopropyl alcohol 42. 1.5 parts by mass of a part by weight and a nonionic surfactant (Surfinol 104S, manufactured by Nissin Chemical Industry Co., Ltd.) are added to prepare 100 parts by mass of a white pigment slurry, which is put into a plastic container. The phosphor plate subjected to the annealing treatment is immersed in this container, and ultrasonic treatment is performed for about 10 minutes, so that the white pigment slurry is filled into the through holes of the phosphor plate. Thereafter, the phosphor plate is taken out from the container, and the remaining solvent such as alcohol is evaporated to fix the white pigment in the through hole of the phosphor plate and the surface of the phosphor plate.
Next, the white pigment was removed by polishing one surface of the phosphor plate to obtain the phosphor plate of the present invention. This was designated as a phosphor plate sample 1.
得られた蛍光体板試料1の特性評価のために、前記蛍光体板試料1の白色顔料を除去した面に、2次元イメージセンサとして、CMOSフォトダイオードイメージセンサを重ね合わせた。 In order to evaluate the characteristics of the obtained phosphor plate sample 1, a CMOS photodiode image sensor was superimposed as a two-dimensional image sensor on the surface of the phosphor plate sample 1 from which the white pigment was removed.
解像度特性を確認するため、チャート法でMTFを測定した。比較のため、前記蛍光体板試料1の代わりに、従来タイプの例として、前記(Gd0.997Tb0.003)2O2S蛍光体粉末を用い、PETフィルム基板上に、前記蛍光体板試料1の蛍光体量と同等の塗布量として約180mg/cm2を塗布し蛍光体塗膜を作成し比較例1とした。各々のMTFの結果を図4に示す。図4から、本発明の蛍光体板は解像度特性が向上していることがわかる。 In order to confirm the resolution characteristics, MTF was measured by the chart method. For comparison, instead of the phosphor plate sample 1, as an example of a conventional type, the (Gd 0.997 Tb 0.003 ) 2 O 2 S phosphor powder is used, and the phosphor is placed on a PET film substrate. About 180 mg / cm 2 was applied as a coating amount equivalent to the phosphor amount of the plate sample 1 to prepare a phosphor coating film, which was referred to as Comparative Example 1. The result of each MTF is shown in FIG. FIG. 4 shows that the phosphor plate of the present invention has improved resolution characteristics.
次に、別の実施の形態として、蛍光体にBaFCl:Euを用いた例を説明する。 Next, as another embodiment, an example using BaFCl: Eu as a phosphor will be described.
(蛍光体粉末合成工程)
まず、塩化バリウム2水和物(BaCl2・2H2O)780gと塩化ユウロピウム(EuCl3)1.65gを1リットルの脱イオン水に加え、液温を80℃に加温して溶解しBaCl2とEuCl3の水溶液を調製する。この水溶液を室温に戻し、5M−NH4F水溶液を10ml/minの添加速度で200ml添加して沈殿を生成する。
(Phosphor powder synthesis process)
First, 780 g of barium chloride dihydrate (BaCl 2 .2H 2 O) and 1.65 g of europium chloride (EuCl 3 ) are added to 1 liter of deionized water, and the solution temperature is heated to 80 ° C. to dissolve. An aqueous solution of 2 and EuCl 3 is prepared. This aqueous solution is returned to room temperature, and 200 ml of 5M-NH 4 F aqueous solution is added at an addition rate of 10 ml / min to form a precipitate.
この生成した沈殿を80℃で1時間熟成した後、1μmのメンブランフィルターを用いて吸引濾過を行い、沈殿物を濾別後、エタノールを用いて洗浄し、BaFCl:Eu前駆体(Eu濃度0.2モル%)を得た。
得られたBaFCl:Eu前駆体を80℃のオーブンにて2時間乾燥後、電気炉にて1%のH2−N2混合ガス中において850℃で3時間焼成し、BaFCl:Eu蛍光体粉末(Eu濃度0.2モル%)を合成した。得られたBaFCl:Eu蛍光体粉末は、平均粒径4μmであった。
The resulting precipitate was aged at 80 ° C. for 1 hour, and then subjected to suction filtration using a 1 μm membrane filter. The precipitate was filtered off, washed with ethanol, and BaFCl: Eu precursor (Eu concentration 0. 0). 2 mol%) was obtained.
The obtained BaFCl: Eu precursor was dried in an oven at 80 ° C. for 2 hours and then baked in an electric furnace in a 1% H 2 —N 2 mixed gas at 850 ° C. for 3 hours to obtain a BaFCl: Eu phosphor powder. (Eu concentration 0.2 mol%) was synthesized. The obtained BaFCl: Eu phosphor powder had an average particle size of 4 μm.
(インゴット作成工程)
インゴット作成は、前記BaFCl:Eu蛍光体粉末を高温高圧処理して得られる。この高温高圧処理としては、全立体角度方向に均一に圧力印加する熱間静水圧プレス(HIP)を用いた。前記蛍光体粉末をタンタル製カプセルに充填後、真空封止した上で熱間静水圧プレス装置内にセットする。更に、800℃、150MPa、2時間の条件で熱間静水圧プレス焼結した。
(Ingot creation process)
Ingot production is obtained by subjecting the BaFCl: Eu phosphor powder to high-temperature and high-pressure treatment. As this high-temperature high-pressure treatment, a hot isostatic press (HIP) that applies pressure uniformly in all solid angle directions was used. The phosphor powder is filled into a tantalum capsule, vacuum-sealed, and set in a hot isostatic press. Furthermore, hot isostatic pressing was performed under conditions of 800 ° C. and 150 MPa for 2 hours.
(蛍光体板形成工程)
熱間静水圧プレス焼結によって得られたインゴットに対して、マルチワイヤーソーを用いてスライス加工を行い、蛍光体板を得た。この時のスライス厚さは0.25mmとした。
(Phosphor plate forming process)
The ingot obtained by hot isostatic pressing was sliced using a multi-wire saw to obtain a phosphor plate. The slice thickness at this time was 0.25 mm.
(貫通孔作成工程)
貫通孔作成工程でのレーザー加工パターンは、1辺は150μmの三角形格子とし、蛍光体板の機械的強度を高めるために、辺の一部を欠損した形状(辺欠損率40%)とした。レーザー加工パターンの概略を図2bに示す。レーザー加工には、Nd:YVO4レーザーを使用した。加工条件は次のとおりである。レーザーパワー:3−4W、ビーム幅:20μm(貫通孔幅は約20μm)、レーザーパルス長:10ns、レーザースポット走査速度:毎秒60mm、パルス周波数:20kHz。
(Through-hole creation process)
The laser processing pattern in the through-hole forming step was a triangular lattice with one side of 150 μm, and a shape with a part of the side missing (side defect rate 40%) in order to increase the mechanical strength of the phosphor plate. An outline of the laser processing pattern is shown in FIG. Nd: YVO 4 laser was used for laser processing. The processing conditions are as follows. Laser power: 3-4 W, beam width: 20 μm (through hole width is about 20 μm), laser pulse length: 10 ns, laser spot scanning speed: 60 mm / second, pulse frequency: 20 kHz.
(アニール工程)
レーザー加工により貫通孔加工をした蛍光体板に対して、1%H2−N2混合ガス中で750℃、1時間の高温アニール処理を行った。
(Annealing process)
The phosphor plate subjected to through-hole processing by laser processing was subjected to high-temperature annealing at 750 ° C. for 1 hour in a 1% H 2 —N 2 mixed gas.
(反射材具備工程)
反射材としてアルミニウムの金属膜を選択する。真空蒸着により前記高温アニール処理後の蛍光体板の表面と貫通孔内面にアルミニウムの金属膜を形成する。さらに蛍光体板の一方の面上に付着した金属膜のみを研磨工程で除去することにより、反射材を形成具備する。
(Reflective material provision process)
An aluminum metal film is selected as the reflector. An aluminum metal film is formed on the surface of the phosphor plate after the high-temperature annealing and the inner surface of the through hole by vacuum deposition. Further, only the metal film adhering to one surface of the phosphor plate is removed by a polishing process, thereby forming a reflecting material.
得られた蛍光体板試料2の特性評価のために、前記蛍光体板試料2の金属膜を除去した面に、2次元イメージセンサとして、CMOSフォトダイオードイメージセンサを重ね合わせた。 In order to evaluate the characteristics of the obtained phosphor plate sample 2, a CMOS photodiode image sensor was superimposed as a two-dimensional image sensor on the surface of the phosphor plate sample 2 from which the metal film was removed.
解像度特性を確認するため、チャート法でMTFを測定した。比較のため、前記蛍光体板試料2の代わりに、従来タイプの例として、前記BaFCl:Eu蛍光体粉末を用い、PETフィルム基板上に、前記蛍光体板試料2の蛍光体量と同等の塗布量として約145mg/cm2を塗布し蛍光体塗膜を作成し比較例2とした。各々のMTFの結果を図5に示す。図5から、本発明の蛍光体板は解像度特性が向上していることがわかる。 In order to confirm the resolution characteristics, MTF was measured by the chart method. For comparison, the BaFCl: Eu phosphor powder is used as an example of the conventional type instead of the phosphor plate sample 2, and the same amount of phosphor as the phosphor plate sample 2 is applied on a PET film substrate. About 145 mg / cm 2 was applied as an amount to prepare a phosphor coating film, which was designated as Comparative Example 2. The result of each MTF is shown in FIG. FIG. 5 shows that the phosphor plate of the present invention has improved resolution characteristics.
本発明のX線用蛍光体板は、例えば、CCDイメージセンサや、CMOSイメージセンサなどの2次元イメージセンサといった光電変換装置と組み合わせることで、解像度の高いX線画像イメージセンサとなり、医療用のX線診断装置や、産業用のX線検査装置に好適に利用可能である。 The X-ray phosphor plate of the present invention is combined with a photoelectric conversion device such as a CCD image sensor or a two-dimensional image sensor such as a CMOS image sensor to form a high-resolution X-ray image sensor. The present invention can be suitably used for X-ray diagnostic apparatuses and industrial X-ray inspection apparatuses.
10 本発明のX線用蛍光体板
11 多結晶体の蛍光体板
12 反射材料
10 X-ray phosphor plate 11 of the present invention Polycrystalline phosphor plate 12 Reflective material
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086783A JP6460440B2 (en) | 2014-04-18 | 2014-04-18 | X-ray phosphor plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086783A JP6460440B2 (en) | 2014-04-18 | 2014-04-18 | X-ray phosphor plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015206660A JP2015206660A (en) | 2015-11-19 |
JP6460440B2 true JP6460440B2 (en) | 2019-01-30 |
Family
ID=54603554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014086783A Expired - Fee Related JP6460440B2 (en) | 2014-04-18 | 2014-04-18 | X-ray phosphor plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6460440B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102067546B1 (en) * | 2017-02-24 | 2020-01-17 | 단국대학교 산학협력단 | Organic device for X-ray detect and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10110673A1 (en) * | 2001-03-06 | 2002-09-26 | Siemens Ag | X-ray scintillation detector array for use in computer tomography, etc. has improved detection efficiency through use of separation layers between detector elements that do not extend through the whole scintillator layer |
JP4725533B2 (en) * | 2007-02-23 | 2011-07-13 | コニカミノルタエムジー株式会社 | Scintillator panel |
JP2011027565A (en) * | 2009-07-27 | 2011-02-10 | Toshiba Corp | X-ray plane detector |
JP5505782B2 (en) * | 2010-01-27 | 2014-05-28 | 日立金属株式会社 | Fluorescent material, scintillator and radiation detector using the same |
JPWO2014021415A1 (en) * | 2012-08-03 | 2016-07-21 | 東レ株式会社 | Scintillator panel and method for manufacturing scintillator panel |
-
2014
- 2014-04-18 JP JP2014086783A patent/JP6460440B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015206660A (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5389328B2 (en) | Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus | |
JP6158167B2 (en) | Solid scintillator, radiation detector, and radiation inspection apparatus | |
US7655157B2 (en) | Doped cadmium tungstate scintillator with improved radiation hardness | |
KR102437581B1 (en) | Transparent ceramic garnet scintillator detector for positron emission tomography | |
JP5686724B2 (en) | Solid scintillator, radiation detector, and X-ray tomography apparatus | |
JP2001072968A (en) | Transparent solid scintillator material | |
CN101945974A (en) | Scintillator for neutron detection and neutron detector | |
WO2015166999A1 (en) | Illuminant and radiation detector | |
CN108350358B (en) | Scintillator, scintillator array, radiation detector, and radiation inspection apparatus | |
JP6948829B2 (en) | A scintillator array, a radiation detector using the scintillator array, a radiation inspection device, and a method for manufacturing the scintillator array. | |
JP5269634B2 (en) | Solid scintillator, radiation detector, radiation inspection apparatus, powder for producing solid scintillator, and method for producing solid scintillator | |
JP6037025B2 (en) | Scintillator material, radiation detector and radiation inspection apparatus | |
JP2022031767A (en) | Scintillator array, manufacturing method thereof, radiation detector and radiation inspection device | |
JP2006016251A (en) | METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION | |
JP5241979B2 (en) | Ceramic scintillator material and manufacturing method thereof, and radiation detector and radiation inspection apparatus using the same | |
JP6460440B2 (en) | X-ray phosphor plate | |
RU2613994C1 (en) | Method for producing alloyed yttrium aluminium garnet | |
JP6188024B2 (en) | Luminescent body and radiation detector | |
JP2009523689A (en) | Production method of GOS ceramic using uniaxial heating press and flux aid | |
JP6952314B1 (en) | Scintillator and radiation detector | |
KR20230038634A (en) | Scintillating glass ceramics for use in flat panel x-ray detectors, flat panel x-ray detectors and imaging systems | |
JP6046046B2 (en) | Solid scintillator and electron beam detector using the same | |
WO2021149670A1 (en) | Scintillator and radiation detector | |
JP2016160297A (en) | Scintillator material, radiation detector, and radiation inspection device | |
JP4768576B2 (en) | Method for manufacturing planar radiation image detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180427 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20180613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6460440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |