以下、本発明の実施の形態について、図面を参照しつつ説明する。全図を通じて同一の要素には同一の符号を付す。
実施の形態1.
本発明の実施の形態1に係る機器管理システム100は、図1に示すように、単相三線電源が有する3つの電圧系統のいずれかに接続された機器A101及び機器B102を管理するためのシステムである。本実施の形態に係る機器A101及び機器B102は、それぞれ、空調機及びテレビ受像器(テレビ)である。なお、3つの電圧系統のいずれかに接続される機器A101(機器B102)は、1つであってもよい。
単相三線電源は、同図に示すように、電圧線L1(L1配線)と電圧線L2(L2配線)と中性線N(N配線)とで構成される主幹回路103を通じて電力を供給する。電圧線L1と電圧線L2とは、機器A101及び機器B102に電圧を印加するための配線であって、例えば100Vの交流電圧を逆位相で印加する。
単相三線電源は、電圧線L1と中性線Nとで構成される第1電圧系統、電圧線L2と中性線Nとで構成される第2電圧系統、及び、電圧線L1と電圧線L2とで構成される第3電圧系統という3つの電圧系統を有する。
なお、単相三線電源は、複数の電圧線により構成される複数の電圧系統を有する電源の一例である。このような電源は、単相三線電源に限られず、例えば、三相三線電源などであってもよい。
主幹回路103には、同図に示すように、主幹回路103の接続と遮断とを切り替える主幹ブレーカ104と、電圧線L1及び電圧線L2の各々に流れる電流を測定するための電流センサ(カレントトランス)CT1,CT2とが設けられている。
電流センサCT1と電流センサCT2とは、電圧線L1及び電圧線L2のそれぞれに設けられる。詳細には、電流センサCT1は、電圧線L1に対応付けて配置されており、電圧線L1を流れる電流の大きさに応じた電流信号を出力する。電流センサCT2は、電圧線L2に対応付けて配置されており、電圧線L2を流れる電流の大きさに応じた電流信号を出力する。
また、主幹回路103からは、2つの分岐回路(第1分岐回路105a,第2分岐回路105b)が分岐している。分岐回路105a,105bの各々は、対をなす2本の配線から構成され、一方の配線が電圧線L1又は電圧線L2に電気的に接続され、他方の配線が中性線Nに電気的に接続される。
本実施の形態では、同図に示すように、第1分岐回路105aには、機器A101が接続しており、第1分岐回路105aの配線は、電圧線L1と中性線N(すなわち、第1電圧系統)に接続されている。第2分岐回路105bには、機器B102が接続しており、第2分岐回路105bの配線は、電圧線L2と中性線N(すなわち、第2電圧系統)に接続されている。
分岐回路105a,105bの各々には、同図に示すように、分岐回路105a,105bの各々の接続と遮断とを切り替える分岐ブレーカ106a,106bと、電流センサ(カレントトランス)CT3,CT4とが設けられている。
電流センサCT3と電流センサCT4とは、分岐回路105a,105bの各々を構成する配線の一方(電圧線L1又は電圧線L2に接続された配線)に設けられ、その配線を流れる電流の大きさに応じた電流信号を出力する。
詳細には、電流センサCT3は、第1分岐回路105aを構成する2本の配線のうち、電圧線L1に接続される配線に対応付けて配置されている。本実施の形態では、機器A101が第1分岐回路105aに接続されているので、電流センサCT3は、機器A101へ流れる電流の大きさに応じた電流信号を出力する。
電流センサCT4は、第2分岐回路105bを構成する2本の配線のうち、電圧線L2に接続される配線に対応付けて配置されている。本実施の形態では、機器B102が第1分岐回路105bに接続されているので、電流センサCT4は、機器B102へ流れる電流の大きさに応じた電流信号を出力する。
図示しないが、第3電圧系統に接続される分岐回路の場合、通常、分岐回路を構成する2本の配線の各々に流れる電流は等しくなるので、電流センサは、2本の配線のいずれか一方に(例えば、電圧線L1に接続される配線に)対応付けて配置されるとよい。なお、電流センサが、分岐回路を構成する2本の配線の両方に設けられてもよい。
なお、分岐回路の数は、2つに限られず、幾つであってもよい。また、機器A101及び機器B102は、複数の電圧系統のいずれかに分岐回路を介して接続される電気機器の例であって、空調機、テレビに限られない。電気機器は、例えば、照明機器、電気給湯器、洗濯機、電磁調理器などであってもよい。
機器管理システムは、同図に示すように、機器A101及び機器B102の各々の消費電力を測定するための電力計測装置107と、機器A101及び機器B102を管理するための機器管理装置108とを備える。
電力計測装置107と機器管理装置108とは、有線、無線又はそれらを組み合わせて構成される通信回線を介して通信可能に接続されている。機器管理装置108と、機器A101及び機器B102の各々とは、有線、無線又はそれらを組み合わせて構成される通信回線を介して通信可能に接続されている。
電力計測装置107は、機能的には図2に示すように、各種データを記憶する電力計測記憶部109と、電圧線L1と中性線Nとの間、及び、電圧線L2と中性線Nとの間の電圧(電圧値)を測定する電圧測定部110と、電流センサCT1〜CT4が配置された配線を流れる電流(電流値)を測定する電流測定部111と、消費電力を演算する電力演算部112と、機器管理装置108からデータを取得して電力計測記憶部109に記憶させる設定部113とを備える。
電力計測記憶部109は、例えば、機器A101及び機器B102の各々が接続された電圧系統を示す接続系統データ114と、電力演算部112によって演算された消費電力を示す電力データ115とを記憶する。
接続系統データ114は、例えば、図3に示すように、機器A101及び機器B102の各々を特定するための機器情報と、機器A101及び機器B102の各々が接続された電圧系統を示す接続系統情報と、機器A101及び機器B102の各々が接続された分岐回路を示す分岐回路情報とを、機器A101及び機器B102ごとに関連付けたデータである。
同図に示す接続系統データ114は、例えば、機器情報として、機器A101に付された固有の名称を示す「機器A」を含む。この接続系統データ114において、「機器A」に関連付けられた接続系統情報及び分岐回路情報は、それぞれ、「第1電圧系統」及び「第1分岐回路」を示す。
なお、機器情報には、機器A101及び機器B102の各々に付された固有の名称に限られず、機器管理システム100において機器A101及び機器B102の各々を特定することができるものであれば任意の情報が採用されてよい。例えば、機器情報は、機器管理システム100における通信に採用されるアドレスであってもよい。接続系統情報についても、機器管理システム100において、電圧系統の各々を特定することができるものであれば任意の情報(数字、文字、記号など)が採用されてよい。分岐回路情報についても、機器管理システム100において、分岐回路の各々を特定することができるものであれば任意の情報(数字、文字、記号など)が採用されてよい。
電力データ115は、機器A101及び機器B102の各々の消費電力と、電圧線L1及び電圧線L2の各々を介して供給される消費電力(電圧線L1の消費電力,電圧線L2の消費電力)とを含む。
図4では、機器A101の消費電力と電圧線L1の消費電力とを示す電力データ115の一例を示す。
同図の「機器A」が対応付けられた図は、機器A101が消費した電力を時系列(秒単位)で示しており、機器A101の消費電力の履歴を示す。同図では、機器A101は、時間T1から時間T2まで電力を消費しており、それ以外での消費電力は僅かである。このことから、機器A101は、時間T1から時間T2まで運転しており、それ以外では、停止していることが分かる。ここで停止とは、例えば、後述する機器管理装置108などからの指示を待つ状態である。
同図の「電圧線L1」が対応付けられた図は、電圧線L1の消費電力を時系列(秒単位)で示しており、電圧線L1の消費電力の履歴を示す。本実施の形態では、機器B102は、第2電圧系統に接続されているので、電圧線L1を介して供給される電力を消費しない。すなわち、電圧線L1を介して供給される電力を消費するのは、機器A101のみである。そのため、同図に示す例では、電圧線L1の消費電力と機器A101の消費電力とは、対応する各時間においてほぼ等しい。
図2を参照し、電圧測定部110は、電圧線L1、電圧線L2、中性線Nの各々の電圧(電圧値)を測定する。詳細には例えば、電圧測定部110には、電圧線L1、電圧線L2、中性線Nの各々が接続しており、それぞれにより印加される電圧の瞬時値を継続的に測定する。
電流測定部111は、電圧線L1及び電圧線L2の各々を流れる電流(電流値)と、機器A101及び機器B102の各々へ流れる電流(電流値)とを測定する。
詳細には例えば、電流測定部111は、電流センサCT1〜CT4の各々から電流信号を取得する。電流測定部111は、電流センサCT1及び電流センサCT2の各々から取得した電流信号に基づいて、電圧線L1及び電圧線L2を流れる電流の瞬時値を継続的に測定する。電流測定部111は、電流センサCT3及び電流センサCT4の各々から取得した電流信号に基づいて、機器A101及び機器B102の各々へ流れる電流の瞬時値を継続的に測定する。
電力演算部112は、電圧測定部110により測定された電圧線L1、電圧線L2の各々の電圧と、電流測定部111により測定された各電流と、接続系統データ114とに基づいて、消費電力を算出する。本実施の形態では、機器A101及び機器B102の各々の消費電力と、電圧線L1及び電圧線L2の各々の消費電力とが、電力演算部112により算出される。
例えば、電力演算部112は、以下の処理を実行することによって、機器A101の消費電力を算出する。
電力演算部112は、接続系統データ114を参照することにより、機器A101が接続された電圧系統及び分岐回路として、第1電圧系統及び第1分岐回路105aを特定する。電力演算部112は、電圧測定部110により測定された第1電圧系統の電圧、すなわち、電圧線L1の電圧を取得する。電力演算部112は、電流測定部111により測定された第1分岐回路105aの電流、すなわち、電流センサCT3からの電流信号に基づいて測定された電流を取得する。電力演算部112は、電圧線L1の電圧と第1分岐回路105aの電流との各々の瞬時値の積を求め、LPF(ローパスフィルタ)を通すことによって、機器A101の消費電力を算出する。
そして、算出した機器A101の消費電力が負の値となる場合、電力演算部112は、算出した消費電力の絶対値を機器A101の消費電力とする。絶対値を求める方法は、算出された負の値の符号を反転させる方法、算出された負の値に−1を乗じる方法、算出された負の値からマイナスの符号を削除する方法など任意の方法が採用されるとよい。
また例えば、電力演算部112は、以下の処理を実行することによって、電圧線L1の消費電力を算出する。
電力演算部112は、電圧測定部110により測定された電圧線L1の電圧を取得する。電力演算部112は、電流測定部111により測定された電圧線L1を流れる電流、すなわち、電流センサCT1からの電流信号に基づいて測定された電流を取得する。電力演算部112は、電圧線L1の電圧と電圧線L1を流れる電流との積を求めることによって、電圧線L1の消費電力を算出する。
設定部113は、機器管理装置108によって生成される接続系統データ114を機器管理装置108から取得する。設定部113は、機器管理装置108から取得した接続系統データ114を電力計測記憶部109に記憶させる。これにより、接続系統データ114が、電力計測装置107に設定される。
このような電力計測装置107は、物理的には、例えば、1つ又は複数のプロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、通信インタフェースなどを組み合わせて構成されるとよい。そして、電力計測装置107の機能は、例えば、物理的な各構成要素が予め組み込まれたソフトウェアプログラムを実行することによって実現されるとよい。
機器管理装置108は、機能的には図5に示すように、各種の指示、情報などが入力される入力部116と、機器A101及び機器B102の各々の動作状態を制御する機器制御部117と、電圧線L1及び電圧線L2の各々の消費電力が、機器A101及び機器B102の各々の動作状態が変化する前後で変動したか否かを判断する変動検出部118と、各種データを記憶する機器管理記憶部119と、変動検出部118による判断の結果に基づいて、機器A101及び機器B102の各々が接続された電圧系統を決定する接続系統決定部120と、各種情報を表示する表示部121とを備える。
入力部116は、設置業者、ユーザなどの操作によって、例えば、接続系統データ114を電力計測装置107に設定する指示(設定指示)が入力される。
機器制御部117は、機器A101及び機器B102の各々に対して動作制御を実行する。例えば、機器A101を制御対象としてその動作状態を停止から運転に変化させる場合、機器制御部117は、運転を開始させる指示を機器A101へ送信する。
なお、機器A101(機器B102)の動作状態の変化は、停止から運転に変化することに限られない。機器A101(機器B102)の変化は、制御対象となる機器A101(機器B102)の消費電力が通常変化するものであればよい。そのような動作状態の変化の他の例として、運転から停止に変化すること、異なる運転モード間で変化することなどを挙げることができる。空調機の運転モードとしては、例えば、冷房、暖房、送風などがある。テレビの運転モードとしては、例えば、表示画面の輝度が異なる高輝度モード及び低輝度モードなどがある。
変動検出部118は、機器A101(機器B102)に対する機器制御部117の動作制御によって機器A101(機器B102)の動作状態が停止から運転に変化する前後で、電圧線L1及び電圧線L2の各々の消費電力が変動したか否かを判断する。
すなわち、本実施の形態に係る変動検出部118は、変動検出手段の一例であるところ、電力演算部112によって算出された消費電力(有効電力)が、機器A101(機器B102)の動作状態が変化する前後で変動したか否かを判断する。
詳細には例えば、機器制御部117の動作制御によって機器A101が、その動作状態を停止から運転に変化させるとする。この場合、変動検出部118は、機器制御部117が動作制御を実行する前に、電圧線L1及び電圧線L2の各々の消費電力を電力計測装置107から取得する。この時には、機器A101が停止した状態での電圧線L1及び電圧線L2の各々の消費電力が取得される。また、変動検出部118は、機器制御部117が動作制御を実行した後に、電圧線L1及び電圧線L2の各々の消費電力を電力計測装置107から取得する。この時には、機器A101が運転した状態での電圧線L1及び電圧線L2の各々の消費電力が取得される。
ここで、一般的な空調機の場合、機器制御部117の動作制御による指示を取得してから、消費電力が大きいファンなどが動作するまでに、種々の処理が行われるため、ある程度の時間が掛かる。そのため、機器A101の動作状態が変化した後の電圧線L1及び電圧線L2の各々の消費電力には、機器制御部117が動作制御を実行してから、待機時間が経過した後のものが採用される。
変動検出部118は、電圧線L1の消費電力について、機器A101が停止した状態での値と、機器A101が運転した状態での値との差分を算出する。同様に、変動検出部118は、電圧線L2の消費電力について、機器A101が停止した状態での値と、機器A101が運転した状態での値との差分を算出する。
そして、変動検出部118は、電圧線L1及び電圧線L2の各々について、算出した差分と予め定められた閾値とを比較し、比較した結果に基づいて、電圧線L1及び電圧線L2の各々の消費電力が変動したか否かを判断する。
機器管理記憶部119は、同図に示すように、待機時間を示す待機時間データ122と、閾値を示す閾値データ123とを記憶している。すなわち、待機時間データ122を記憶する機器管理記憶部119は、待機時間記憶手段に相当し、閾値データ123を記憶する機器管理記憶部119は、閾値記憶手段に相当する。
待機時間データ122は、機器A101及び機器B102の各々の種別に応じた待機時間を示す。本実施の形態に係る待機時間データ122では、図6に示すように、機器A101及び機器B102の各々の種別を示す機器種別情報と、予め定められた待機時間を示す待機時間情報とが、関連づけられている。
閾値データ123は、機器A101及び機器B102の各々の種別に応じた閾値を示す。本実施の形態に係る閾値データ123では、図7に示すように、機器A101及び機器B102の各々の種別を示す機器種別情報と、予め定められた閾値を示す閾値情報とが、関連づけられている。
図5を参照して、接続系統決定部120は、変動検出部118によって電圧線L1及び電圧線L2の各々の消費電力が変動したと判断されたか否かに基づいて、機器A101(機器B102)が接続されている電圧系統(第1電圧系統、第2電圧系統又は第3電圧系統)を決定する。接続系統決定部120は、決定した内容を示す接続系統データ114を生成し、生成した接続系統データ114を電力計測装置107へ送信する。
詳細には、接続系統決定部120は、変動検出部118によって電圧線L1の消費電力のみが変動したと判断された場合に、電気機器(例えば、機器A101)が接続されている電圧系統を、第1電圧系統と決定する。
接続系統決定部120は、変動検出部118によって電圧線L2の消費電力のみが変動したと判断された場合に、電気機器(例えば、機器B102)が接続されている電圧系統を、第2電圧系統と決定する。
接続系統決定部120は、変動検出部118によって電圧線L1と電圧線L2との消費電力のいずれもが変動したと判断された場合に、電気機器が接続されている電圧系統を、第3電圧系統と決定する。
表示部121は、例えば、変動検出部118が取得する消費電力を表示する。詳細には、機器A101及び機器B102の各々の動作状態が変化する前後での電圧線L1及び電圧線L2の各々の消費電力などが表示される。例えば、図4に示すような時系列のグラフの形式で表示されてもよく、各時点での数値が表示されてもよい。また例えば、消費電力は、機器A101(機器B102)ごとに異なる画面に表示されてもよい。
表示部121は、また例えば、接続系統決定部120により決定された内容を表示する。これにより、設定者が、接続系統決定部120により決定された内容を知ることができる。そのため、設定者による設定を支援することができるので、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。ここで、設置者とは、機器A101及び機器B102の各々が接続された電圧系統設が、第1電圧系統、第2電圧系統及び第3電圧系統のいずれであるかを電力計測装置107に設定する者であって、典型的には、設置業者、ユーザなどである。
このような機器管理装置108は、物理的には、例えば、1つ又は複数のプロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、通信インタフェース、液晶パネル、タッチパネルなどを組み合わせて構成されるとよい。そして、機器管理装置108の機能は、例えば、物理的な各構成要素が予め組み込まれたソフトウェアプログラムを協働して実行することによって実現されるとよい。
これまで、本発明の実施の形態1に係る機器管理システム100の構成について説明した。ここから、実施の形態1に係る機器管理システム100の動作について説明する。
機器管理システム100は、例えば、図8に示す接続系統設定処理を実行する。接続系統設定処理は、処理対象となる電気機器(例えば、機器A101)が接続されている電源系統を電力計測装置107に設定するための処理である。接続系統設定処理は、設定指示が入力部116に入力されることによって開始される。
以下では、機器A101を処理対象とする接続系統設定処理を例に説明する。また、接続系統設定処理の開始時には、機器A101は停止しているとする。機器A101による消費電力の変動を正確に判断するために機器B102も停止していることが望ましい。
なお、例えば機器管理装置108が管理する機器A101及び機器B102のすべてについて、各々が接続されている電源系統が設定されてもよい。この場合、機器A101及び機器B102の各々について、同図に示す接続系統設定処理が繰り返し実行されるとよい。また例えば、接続系統設定処理は、機器A101及び機器B102のうち、接続先の電圧系統が電力計測装置107に設定されていない機器A101(機器B102)についてのみ実行されてもよい。
変動検出部118は、電圧線L1及び電圧線L2の各々の消費電力を示す電力データ115を電力計測装置107へ要求する。変動検出部118は、この要求に対する応答として電力計測装置107から電力データ115を取得する(ステップS101)。
機器制御部117は、変動検出部118からの指示を受けて、機器A101に対して動作制御を実行する(ステップS102)。これにより、機器A101は、運転を開始する。
変動検出部118は、機器制御部117から動作制御を実行した旨の通知を受けて、機器A101の種別に応じた待機時間データ122を機器管理記憶部119から取得する(ステップS103)。
例えば、待機時間データ122が図6に示す内容であるとする。機器A101は空調機であるため、変動検出部118は、ステップS103にて「WT1」を示す待機時間データ122を取得する。
変動検出部118は、ステップS103にて取得した待機時間データ122が示す待機時間が経過したか否かを判断する(ステップS104)。待機時間が経過していないと判断した場合(ステップS104;NO)、変動検出部118は、ステップS104を継続することで、待機時間の経過を待つ。
待機時間が経過したと判断した場合(ステップS104;YES)、変動検出部118は、電圧線L1及び電圧線L2の各々の消費電力を示す電力データ115を電力計測装置107へ要求する。変動検出部118は、この要求に対する応答として電力計測装置107から電力データ115を取得する(ステップS105)。
変動検出部118は、ステップS101及びステップS105で取得した電力データ115に基づいて、変動検出処理を実行する(ステップS106)。
変動検出処理では、例えば図9に示すように、変動検出部118は、機器A101の種別に応じた閾値データ123を機器管理記憶部119から取得する(ステップS111)。
例えば、閾値データ123が図7に示す内容であるとする。機器A101は空調機であるため、変動検出部118は、ステップS111にて「TH1」を示す閾値データ123を取得する。
変動検出部118は、電圧線L1及び電圧線L2の各々について、ステップS113〜ステップS116を繰り返す(ループA;ステップS112)。
変動検出部118は、電圧線L1について、ステップS101及びステップS105で取得した電力データ105が示す消費電力の差分を算出する(ステップS113)。
変動検出部118は、ステップS113にて算出した差分が、ステップS111にて取得した閾値以上であるか否かを判断する(ステップS114)。
本実施の形態では、機器A101は、第1分岐回路105aを介して電圧線L1に接続されている。また、待機時間データ122及び閾値データ123にて機器A101に対応付けられた待機時間及び閾値は、機器A101が運転を開始してから待機時間が経過した時に、電圧線L1の消費電力が閾値以上増加するように予め定められる。
そのため、機器A101が動作状態を運転に変化させた後の電圧線L1の消費電力は、機器A101が動作状態を変化させる前のものより、閾値以上増加する。その結果、変動検出部118は、電圧線L1について、差分が閾値以上であると判断する(ステップS114;YES)。
差分が閾値以上であると判断した場合(ステップS114;YES)、変動検出部118は、消費電力が変動したと判断する(ステップS115)。例えば、機器A101の動作状態を変化させた場合、電圧線L1について、変動検出部118は、消費電力が変動したと判断する。
続けて、変動検出部118は、電圧線L2について、同様に、ステップS113と、ステップS114とを実行する。機器A101は、電圧線L2に接続されていない。
そのため、電圧線L2の消費電力が、機器A101が運転を開始することで増加することはない。その結果、変動検出部118は、電圧線L2について、差分が閾値以上ではないと判断する(ステップS114;NO)。
差分が閾値以上ではないと判断した場合(ステップS114;NO)、変動検出部118は、消費電力が変動していないと判断する(ステップS116)。例えば、機器A101の動作状態を変化させた場合、電圧線L2について、変動検出部118は、消費電力が変動していないと判断する。
これにより、変動検出部118は、ループA(ステップS112)を終了するとともに変動検出処理を終了し、接続系統設定処理(図8参照)に戻る。
接続系統決定部120は、変動検出部118が上述の変動検出処理を実行した結果を受けて、接続系統決定処理を実行する(ステップS107)。本実施の形態では、機器A101の動作状態を変化させた場合、接続系統決定部120は、消費電力が電圧線L1で変動し、かつ、電圧線L1で変動していないことを示すデータを、変動検出部118から変動検出処理の結果(すなわち、変動検出部118による判断の結果)として取得する。
接続系統決定処理では、図10に示すように、接続系統決定部120は、消費電力が電圧線L1で変動したか否かを判断する(ステップS117)。
本実施の形態にて機器A101の動作状態を変化させた場合、上述の変動検出処理の結果を取得するので、接続系統決定部120は、消費電力が電圧線L1で変動したと判断する。
電圧線L1で変動したと判断した場合(ステップS117;YES)、接続系統決定部120は、消費電力が電圧線L2で変動したか否かを判断する(ステップS118)。
本実施の形態にて機器A101の動作状態を変化させた場合、上述の変動検出処理の結果を取得するので、接続系統決定部120は、消費電力が電圧線L2で変動していないと判断する。
電圧線L2で変動していないと判断した場合(ステップS118;NO)、接続系統決定部120は、処理対象である電気機器が第1電圧系統に接続されていると決定する(ステップS119)。例えば、本実施の形態にて処理対象である電気機器が機器A101である場合、接続系統決定部120は、機器A101が第1電圧系統に接続されていると決定する。
電圧線L2で変動すると判断した場合(ステップS118;YES)、接続系統決定部120は、処理対象である電気機器が第3電圧系統に接続されていると決定する(ステップS120)。
電圧線L1で変動しないと判断し(ステップS117;NO)、かつ、電圧線L2で変動しないと判断した場合(ステップS121;NO)、接続系統決定部120は、エラーと決定する(ステップS122)。
電圧線L1で変動しないと判断し(ステップS117;NO)、かつ、電圧線L2で変動したと判断した場合(ステップS121;YES)、接続系統決定部120は、処理対象である電気機器が第2電圧系統に接続されていると決定する(ステップS123)。例えば、本実施の形態にて処理対象である電気機器が機器B102である場合、接続系統決定部120は、機器B102が第2電圧系統に接続されていると決定する。
接続系統決定部120は、決定した内容を示す接続系統データ114を生成すると(ステップS124)、接続系統決定処理を終了し、接続系統設定処理(図8参照)に戻る。
接続系統決定部120は、生成した接続系統データ114を電力計測装置107へ送信する(ステップS108)。
設定部113は、接続系統決定部120から接続系統データ114を取得すると、取得した接続系統データ114を電力計測記憶部109に記憶させる。これによって、設定部113は、機器A101及び機器B102の各々が接続された電圧系統設が、第1電圧系統、第2電圧系統及び第3電圧系統のいずれであるかを電力計測装置107に設定する(ステップS109)。設定部113は、接続系統設定処理を終了する。
なお、ステップS109にて、取得した接続系統データ114がエラーと決定したことを示す場合、設定部113は、取得した接続系統データ114を電力計測記憶部109に記憶させずに、接続系統設定処理を終了してもよい。
このように、接続系統設定処理を実行することによって、機器A101が接続されている電圧系統が自動的に決定されて電力計測装置107に自動的に設定される。
電力計測装置107は、例えば図11に示す機器消費電力測定処理を実行する。機器消費電力測定処理は、機器A101(機器B102)の消費電力を測定するための処理である。機器消費電力測定処理は、消費電力を測定する機器A101(機器B102)に関する接続系統データ114が設定されると、継続的に繰り返し実行されるとよい。
以下では、機器A101に関する機器消費電力測定処理を例に説明するが、機器消費電力測定処理は、機器B102についても同様に実行されるとよい。
電力演算部112は、機器A101を含む接続系統データ114を電力計測記憶部109から取得する(ステップS131)。
電力演算部112は、ステップS131にて取得した接続系統データ114に応じた電圧線(電圧線L1及び電圧線L2の一方又は両方)の電圧を電圧測定部110から取得する(ステップS132)。
例えば、図3に示す接続系統データ114では、機器A101は、第1電圧系統に関連付けられているので、電力演算部112は、第1電圧系統を構成する電圧線L1の電圧を抽出する。なお、接続系統データ114にて電気機器が第2電圧系統に関連付けられている場合、電力演算部112は、電圧線L2の電圧を取得する。接続系統データ114にて電気機器が第3電圧系統に関連付けられている場合、電力演算部112は、電圧線L1及びL2の両方の電圧を取得する。
電力演算部112は、ステップS131にて取得した接続系統データ114に応じた配線の電流を電流測定部111から取得する(ステップS133)。
例えば、図3に示す接続系統データ114では、機器A101は、第1分岐回路105aに関連付けられているので、電力演算部112は、第1分岐回路105aの配線の電流を取得する。なお、電気機器が第2分岐回路105bに関連付けられている場合、電力演算部112は、第2分岐回路105bの配線の電流を取得する。
電力演算部112は、ステップS132で取得した電圧と、ステップS133で取得した電流とに基づいて、機器A101の消費電力を算出する(ステップS134)。
電力演算部112は、ステップS134にて算出した消費電力が負の値であるか否かを判断する(ステップS135)。
消費電力が負の値ではないと判断した場合(ステップS135;NO)、電力演算部112は、ステップS134にて算出した消費電力を示す電力データ115を生成する(ステップS136)。
消費電力が負の値であると判断した場合(ステップS135;YES)、電力演算部112は、ステップS134にて算出した消費電力の絶対値を求める(ステップS137)。電力演算部112は、ステップS137にて求めた値を消費電力として示す電力データ115を生成する(ステップS138)。
電力演算部112は、ステップS136又はステップS138で生成した電力データ115を電力計測記憶部109に記憶させ(ステップS139)、機器消費電力測定処理を終了する。
これによって、電流センサCT3,CT4の設置時の極性間違いによって誤った消費電力が算出された場合に、それを正しい消費電力に自動的に修正することができる。
本実施の形態によれば、変動検出部118が、機器A101及び機器B102の各々の動作状態が変化する前後で、電圧線L1及び電圧線L2の各々の消費電力が変動したか否かを判断する。そして、接続系統決定部120が、変動検出部118による判断の結果に基づいて、機器A101及び機器B102の各々が接続された電圧系統を決定する。
例えば、接続系統決定部120が決定した結果を表示部121に表示することによって、設定者による設定を支援することができる。また例えば、接続系統決定部120が決定した結果を用いることによって、機器A101及び機器B102の各々が接続された電圧系統の設定を自動化することができる。従って、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
本実施の形態では、動作制御を実行する機器制御部117が備えられる。そして、機器制御部117が動作制御を実行する前後で電圧線L1及び電圧線L2の各々の消費電力が変動したか否かが判断されて、機器A101及び機器B102の各々が接続された電圧系統が決定される。これにより、設定者が所望する時期に、機器A101及び機器B102の各々が接続された電圧系統を機器管理装置108に決定させることができる。従って、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
本実施の形態では、電圧線L1及び電圧線L2の各々の消費電力が、機器A101又は機器B102の動作状態の変化に伴って変動したか否かを判断するために、閾値が参照される。これにより、電圧線L1及び電圧線L2の各々の消費電力が、例えば接続系統設定処理の対象外の電気機器の動作、ノイズなどの影響により僅かに変動した場合に、変動したと誤って判断される可能性を低減することができる。従って、電圧線L1及び電圧線L2の各々の消費電力が、機器A101又は機器B102の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
一般的に、機器A101及び機器B102の種別によって消費電力は異なることがある。
本実施の形態では、機器A101及び機器B102の種別に応じた閾値が採用される。これによって、電圧線L1及び電圧線L2の各々の消費電力が、機器A101又は機器B102の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
一般的に、空調機では、機器制御部117が動作制御を実行してから、ある程度の電力を消費する運転状態になるまでには、ある程度の時間を要する。そのため、例えば機器A101に対して機器制御部117が動作制御を実行した直後の電圧線L1の消費電力は、動作制御を実行する前のものとあまり変わらず、動作制御の前後で電圧線L1の消費電力が変動したと判断されない可能性がある。
本実施の形態では、電圧線L1及び電圧線L2の各々の消費電力が、機器A101及び機器B102の動作状態の変化に伴って変動したか否かを判断するために、待機時間が参照される。これにより、機器制御部117が動作制御を実行することで機器A101又は機器B102の接続先の電圧線L1又は電圧線L2の消費電力が十分に変化する。従って、電圧線L1及び電圧線L2の各々の消費電力が、機器A101又は機器B102の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
一般的に、機器制御部117が動作制御を実行してから、ある程度の電力を消費する運転状態になるまでの時間は、電気機器の種別によって異なる。例えば、空調機は長く(例えば、約30秒)、テレビは短い(例えば、数秒)。
本実施の形態では、機器A101及び機器B102の種別に応じた待機時間が採用される。これによって、電圧線L1及び電圧線L2の各々の消費電力が、機器A101又は機器B102の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
本実施の形態では、接続系統決定部120により決定された結果が、接続系統データ114として機器管理装置108から電力計測装置107へ送信されて、電力計測装置107に自動的に設定される。これによって、設定者が設定する手間を省き、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
また、単相三線電源は、一般の家庭への電力供給に広く使われている。本実施の形態によれば、一般の家庭において、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
一般的に、電流センサは、極性があり、設置時に極性を誤って配線に設置されることがある。電流センサが極性を誤って設置されると、その電流センサにより検出される電流は、実電流に対して位相が180度ずれたものとなる。そのため、極性を誤って設置された電流センサからの電流信号を用いて算出された電気機器の消費電力は、絶対値が正しく、かつ、符号がマイナスの値となる。
また、一般的に、電気機器が接続された電圧系統を誤って設定した場合にも、その電気機器の消費電力は、符号がマイナスになる。例えば、機器A101の接続先が第2電圧系統と設定されていると、機器A101の消費電力は、電圧線L2の(電圧線L1とは位相が180度ずれた)電圧と、電流センサCT3に基づく電流とから算出される。そのため、この場合に算出される機器A101の消費電力は、符号がマイナスになる。そして、この場合、絶対値が誤っている。
このように、従来、電気機器の消費電力の符号がマイナスとなる場合には、電流センサの設置時に極性を間違える第1ケースと、電気機器が接続された電圧系統の設定を間違える第2ケースとの2つのケースが想定される。そして、第2ケースの場合、算出された消費電力の絶対値を求めても、電気機器の正しい消費電力を得ることはできない。そのため、従来、電気機器の消費電力が負となる場合に、単にその絶対値を求めることで、電気機器の正しい消費電力を得ることはできなかった。
本実施の形態によれば、機器A101及び機器B102の各々が接続された電圧系統をほぼ正しく決定して電力計測装置107に設定することができる。そのため、機器A101(機器B102)の消費電力が負の値となった場合、極性を間違えて電流センサが設置されていると考えることができ、その絶対値を求めることで、機器A101(機器B102)の正しい消費電力を得ることができる。従って、電流センサCT3(CT4)の設置時の極性間違いを検知し、正しい消費電力に自動的に修正することが可能になる。
以上、本発明の実施の形態1について説明したが、実施の形態1は、以下のように変形されてもよい。
変形例1.
電力計測装置107及び機器管理装置108が備える機能は、電力計測装置107及び機器管理装置108のいずれに備えられていてもよい。例えば、電力演算部112が機器管理装置108に備えられてもよい。例えば、入力部116、変動検出部118、接続系統決定部120、機器管理記憶部119及び表示部121の一部又は全部が、電力計測装置107に備えられてもよい。これによっても、機器管理システム100として、実施の形態1と同様の効果を奏する。
変形例2.
機器管理装置108は、タブレット端末、スマートホンなどの端末装置がそれにインストールされたソフトウェアプログラムを実行することによって実現されてもよい。これによっても、機器管理システム100として、実施の形態1と同様の効果を奏する。
変形例3.
変動検出部118は、機器A101(機器B102)の動作状態が変化する前と後とのそれぞれで、電圧線L1及び電圧線L2の各々の消費電力を複数回測定した結果を電力計測装置107から取得してもよい。この場合、変動検出部118は、この取得した結果に基づいて、電圧線L1及び電圧線L2の各々の消費電力が変動したか否かを判断するとよい。
例えば、変動検出部118は、機器A101が停止した状態での電圧線L1の消費電力をN1(2以上の整数)回測定した結果を取得し、その平均値を算出する。この平均値が、機器A101の動作状態が変化する前での電圧線L1の消費電力として、採用される。また、機器A101が運転した状態での電圧線L1の消費電力をN2(2以上の整数)回測定した結果を取得し、その平均値を算出する。この平均値が、機器A101の動作状態が変化した後での電圧線L1の消費電力として、採用されるとよい。
これによれば、測定値に基づき算出される消費電力が、測定値に含まれるノイズなどから受ける影響を低減することができる。従って、電圧線L1及び電圧線L2の各々の消費電力が、機器A101(機器B102)の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
変形例4.
変動検出部118は、機器A101(機器B102)の動作状態が変化する前後で電圧線L1及び電圧線L2の各々の消費電力が変動したか否かを複数回判断してもよい。この場合、接続系統決定部120は、変動検出部118による複数回の判断の結果に基づいて、機器A101(機器B102)が接続された電圧系統を決定するとよい。
例えば、変動検出部118は、機器A101の動作状態が変化する前後で電圧線L1の消費電力が変動したか否かの判断を、N3(2以上の整数)回実行する。また、変動検出部118は、機器A101の動作状態が変化する前後で電圧線L2の消費電力が変動したか否かの判断を、N4(2以上の整数)回実行する。
そして、例えば、接続系統決定部120は、電圧線L1について変動したとN5(N3の半分以上の整数)回以上判断され、かつ、電圧線L2について変動していないとN6(N4の半分以上の整数)回以上判断された場合、機器A101が第1電圧系統に接続されていると決定するとよい。また例えば、接続系統決定部120は、電圧線L1について変動していないとN5回以上判断され、かつ、電圧線L2について変動したとN6回以上判断された場合、機器A101が第2電圧系統に接続されていると決定するとよい。さらに例えば、接続系統決定部120は、電圧線L1について変動したとN5回以上判断され、かつ、電圧線L2について変動したとN6回以上判断された場合、機器A101は、第3電圧系統に接続されていると決定するとよい。
これによれば、測定値に基づき算出される消費電力が、測定値に含まれるノイズなどから受ける影響を低減することができる。従って、電圧線L1及び電圧線L2の各々の消費電力が、機器A101(機器B102)の動作状態の変化に伴って変動したか否かを正確に判断することが可能になる。
実施の形態2.
実施の形態1では、例えば機器A101の接続先の電圧系統を判断する場合、機器A101の動作状態が変化する前後で、電圧線L1及び電圧線L2の各々の消費電力の変動を検出した。本実施の形態では、この消費電力に代えて、無効電力を採用する。すなわち、本実施の形態では、機器A101が接続されている電圧系統は、機器A101の動作状態が変化する前後で、電圧線L1及び電圧線L2の各々の無効電力が変動したか否かに基づいて、決定される。
本実施の形態に係る機器管理システム200は、図12に示すように、実施の形態1に係る電力計測装置107に代わる電力計測装置207と、実施の形態1と概ね同様の構成を備える機器管理装置108とを備える。
また、同図に示すように、主幹回路103からは、太陽光を受けて発電した電力を供給する太陽光発電システム224が接続された第3分岐回路205cがさらに分岐している。第3分岐回路205cは、電圧線L1、電圧線L2及び中性線Nの各々に接続する3本の配線から構成される。
第3分岐回路205cには、同図に示すように、分岐ブレーカ206cと、電流センサCT5とが設けられている。電流センサCT5は、第3分岐回路205cを構成する3本の配線のうち、電圧線L1に接続される配線に対応付けて配置されている。電流センサCT5は、太陽光発電システム224から主幹回路103へ流れる電流の大きさに応じた電流信号を出力する。なお、太陽光発電システム224が発電した電力は、中性線Nに接続された配線を介して供給されることはなく、電圧線L1及び電圧線L2のそれぞれに接続される配線を介して供給される。
本実施の形態に係る電力計測装置207は、図13に示すように、実施の形態1に係る電力計測装置107とは異なる電力計測記憶部209、電流測定部211、及び、電力演算部212を備える。
電力計測記憶部209は、実施の形態1と同様の接続系統データ114と、実施の形態1とは異なる電力データ215とを記憶する。
電力データ215は、消費電力(有効電力)に関するデータとして、機器A101及び機器B102の各々の消費電力と、太陽光発電システム224の発電電力と、電圧線L1及び電圧線L2の各々の消費電力又は回生電力とを含む。
図14Aは、実施の形態1と同様の機器A101の消費電力と、太陽光発電システム224による発電電力と、電圧線L1の消費電力又は回生電力とを示す電力データ115との例を示す。
同図に示す例では、実施の形態1と同様に、機器A101が時間T1から時間T2まで運転して電力を消費している。また、太陽光発電システム224が随時発電している。電圧線L1の消費電力又は回生電力は、機器A101の消費電力から太陽光発電システム224による発電電力を差し引いたものとなる。従って、太陽光発電システム224が時間T1までに発電した電力は、ほぼすべて、電圧線L1の回生電力となっている。また、太陽光発電システム224が時間T1から時間T2までに発電した電力のうち、機器A101により消費された余剰分が、電圧線L1の回生電力となっている。
また、電力データ215は、無効電力に関するデータとして、機器A101及び機器B102の各々の運転に伴う無効電力(機器A101の無効電力,機器B102の無効電力)と、電圧線L1及び電圧線L2の各々を介して供給される無効電力(電圧線L1の無効電力,電圧線L2の無効電力)と、太陽光発電システム224の運転に伴う無効電力(太陽光発電システム224の無効電力)とを含む。
図14Bは、機器A101の無効電力と、太陽光発電システム224の無効電力と、電圧線L1の無効電力とを示す電力データ215の例を示す。
同図に示す例では、図14Aの例と同様に、機器A101は、時間T1から時間T2まで運転している。電圧線L1の無効電力は、機器A101の無効電力から太陽光発電システム224の無効電力を差し引いたものとなる。また、太陽光発電システム224の無効電力は、通常、系統連係時にはほとんどない。そのため、図14Bを見ると分かるように、電圧線L1の無効電力は、機器A101の動作状態の変化に伴って大きく変化している。
電流測定部211は、実施の形態1に係る電流測定部111が備える機能に加えて、第3分岐回路205cに設けられた電流センサCT5から電流信号を取得する。これにより、電流測定部211は、第3分岐回路105cの電流(電圧線L1及び電圧線L2に接続された配線の各々を流れる電流)を測定する。なお、第3分岐回路105cの配線のうち、電圧線L2に接続された配線を流れる電流は、電圧線L1に接続された配線を流れる電流と逆位相のものとして測定されるとよい。
電力演算部212は、実施の形態1に係る電力演算部112と同様の機能を備えて動作する消費電力演算部225と、無効電力を演算する無効電力演算部226とを備える。
無効電力演算部226は、電圧測定部110により測定された電圧線L1、電圧線L2の各々の電圧と、電流測定部111により測定された各電流と、接続系統データ114とに基づいて、無効電力を算出する。本実施の形態では、機器A101及び機器B102の各々の無効電力と、電圧線L1及び電圧線L2の各々の無効電力と、太陽光発電システム224の無効電力とが、無効電力演算部226により算出される。
例えば、無効電力演算部226は、以下の処理を実行することによって、機器A101の無効電力を算出する。
無効電力演算部226は、接続系統データ114を参照することにより、機器A101が接続された電圧系統及び分岐回路として、第1電圧系統及び第1分岐回路105aを特定する。無効電力演算部226は、電圧測定部110により測定された第1電圧系統の電圧、すなわち、電圧線L1の電圧を取得する。無効電力演算部226は、電流測定部111により測定された第1分岐回路105aの電流、すなわち、電流センサCT3からの電流信号に基づいて測定された電流を取得する。無効電力演算部226は、電圧線L1の電圧と、第1分岐回路105aの電流の位相を90度シフトさせた電流との積を求めることによって、機器A101の無効電力を算出する。なお、無効電力は、皮相電力と消費電力との差として、簡易的に算出されてもよい。
また例えば、無効電力演算部226は、以下の処理を実行することによって、電圧線L1の無効電力を算出する。
詳細には、無効電力演算部226は、電圧測定部110により測定された電圧線L1の電圧を取得する。無効電力演算部226は、電流測定部111により測定された電圧線L1を流れる電流、すなわち、電流センサCT1からの電流信号に基づいて測定された電流を取得する。無効電力演算部226は、電圧線L1の電圧と、電圧線L1を流れる電流の位相を90度シフトさせた電流との積を求めることによって、電圧線L1の無効電力を算出する。
本実施の形態に係る機器管理装置108が備える変動検出部118は、実施の形態1に係る変動検出部118が電圧線L1及び電圧線L2の各々の消費電力の変動を検出することに代えて、電圧線L1及び電圧線L2の各々の無効電力の変動を検出する。
すなわち、本実施の形態に係る変動検出部118の機能及び動作は、概ね、実施の形態1での変動検出部118の機能及び動作の説明において、消費電力を無効電力に置き換えたものとなる。
また、本実施の形態に係る変動検出部118は、変動検出手段の一例であるところ、電力演算部212が有する無効電力演算部226によって算出された無効電力が、機器A101(機器B102)の動作状態が変化する前後で変動したか否かを判断する。
本実施の形態に係る接続系統決定部120は、変動検出部118による判断の結果として、変動検出部118によって電圧線L1及び電圧線L2の各々の無効電力が変動したと判断されたか否かを採用する。
すなわち、本実施の形態に係る接続系統決定部120の機能及び動作は、概ね、実施の形態1での接続系統決定部120の機能及び動作の説明において、消費電力を無効電力に置き換えたものとなる。
本実施の形態によれば、実施の形態1と同様の効果に加えて、以下の効果を奏する。
例えば、電圧線L1に接続された機器A101の動作状態を停止から運転に変化させたとする。この場合において、機器A101の消費電力が太陽光発電システム224の発電電力とほとんど等しいとき、電圧線L1の消費電力は、ほとんど増加しない。このように、機器A101の動作状態が変化しても、電圧線L1の消費電力が変動しないことがあるため、実施の形態1で説明した方法では、機器A101が接続されている電圧系統を正しく決定できない可能性がある。
これは、蓄電池が、太陽光発電システム224に代えて、第3分岐回路205cを介して家庭に電力を供給する場合も同様である。蓄電池は通常、機器A101の消費電力に応じた電力を供給する。そのため、電圧線L1に接続された機器A101の動作状態が変化しても、電圧線L1の消費電力は、ほとんど変化しない。その結果、家庭に蓄電池が設置されている場合も、機器A101が接続されている電圧系統を正しく決定できない可能性がある。
また、太陽光発電システム224の発電電力は、日射などの状況に応じて時々刻々変化する。そのため、例えば図14Aを参照すると分かるように、機器A101の動作状態の変化に伴う電圧線L1の消費電力の変化は、太陽光発電システム224の発電に伴う電圧線L1の消費電力又は回生電力の変化に埋もれてしまう。そのため、実施の形態1で説明した方法では、機器A101の動作状態の変化に伴う電圧線L1の消費電力又は回生電力の変動を正しく検出できないことがある。その結果、機器A101が接続されている電圧系統を正しく決定できないことがある。
これに対して、太陽光発電システム224が主幹回路103に接続されている場合であっても、電圧線L1の無効電力は、それに接続された機器A101の動作状態の変化に伴って大きく変化する(図14B参照)。
本実施の形態では、機器A101(機器B102)の動作状態が変化する前後で、電圧線L1及び電圧線L2の各々の無効電力が変動したか否かを判断する。そして、機器A101(機器B102)の動作状態に伴う電圧線L1及び電圧線L2の各々の無効電力の変動を検出することができる。そのため、太陽光発電システム224、蓄電池などの給電設備が家庭に設置されていても、接続系統決定部120は、変動検出部118による判断の結果に基づいて、機器A101及び機器B102の各々が接続された電圧系統を決定することができる。
従って、本実施の形態によれば、太陽光発電システム224などの給電設備が家庭などの需要家に設置されている場合であっても、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
変形例5.
表示部121は、機器A101(機器B102)の動作状態が変化する前後に無効電力演算部226によって算出された無効電力を表示するとよい。例えば、図14Bに示すグラフの形式で表示されてもよく、算出された無効電力の値が時系列で表示されてもよい。また例えば、無効電力は、機器A101(機器B102)ごとに異なる画面に表示されてもよい。表示部121に無効電力を表示させることによって、設定者による設定を支援することができる。従って、機器A101(機器B102)が接続された電圧系統の設定を容易にすることが可能になる。
変形例6.
実施の形態2では、例えば機器A101の動作状態の変化に伴う無効電力の変動に基づいて、機器A101が接続された電圧系統を決定する例を説明した。上述の通り、給電設備は通常、無効電力がほとんどなく、力率1で運転するため、実施の形態2によれば、給電設備が家庭に設置されていても、例えば機器A101が接続された電圧系統を決定することができる。
しかしながら、太陽光発電システム224は、一定の力率で運転する定力率運転において、通常時は力率1で運転しながらも、稀に、系統電圧の上昇を防止するため、力率が1よりも小さい一定の力率で運転することがある。
本変形例では、太陽光発電システム224が、1よりも小さい力率で運転している場合、例えば機器A101の動作状態の変化に伴う直交電力の変動に基づいて、機器A101が接続された電圧系統を決定する。
ここで、直交電力とは、電圧線の各々に接続された太陽光発電システム224から流れる電流波形の位相が、太陽光発電システム224により印加される電圧波形の位相よりθ度進んでいる場合に、電流の位相を90度−θ度シフトさせた電流と、電圧とを掛けることにより求められる電力である。例えば機器A101の直交電力は、機器A101に流れる電流の位相を90度−θ度シフトさせた電流と、電圧線L1の電圧との積として求められる。
本変形例に係る機器管理システム300は、図15に示すように、実施の形態2に係る電力計測装置207に代わる電力計測装置307と、実施の形態1と概ね同様の構成を備える機器管理装置108とを備える。
本変形例に係る電力計測装置307は、図16に示すように、実施の形態2に係る電力計測装置207とは異なる電力計測記憶部309、及び、電力演算部312を備える。
電力計測記憶部309は、実施の形態2と同様の接続系統データ114と、実施の形態2とは異なる電力データ315とを記憶する。
電力データ315は、実施の形態2に係る電力データ215と同様の消費電力に関するデータを含む。電力データ315は、実施の形態2に係る電力データ215の無効電力に関するデータに代えて、直交電力に関するデータを含む。
この直交電力に関するデータは、機器A101及び機器B102の各々の運転に伴う直交電力(機器A101の直交電力,機器B102の直交電力)と、電圧線L1及び電圧線L2の各々を介して供給される直交電力(電圧線L1の直交電力,電圧線L2の直交電力)と、太陽光発電システム224の運転に伴う直交電力(太陽光発電システム224の直交電力)とを含む。
機器A101の直交電力は、上述の通りである。機器B102の直交電力は、機器B102に流れる電流の位相を90度−θ度シフトさせた電流と、電圧線L1と電圧線L2との間の電圧との積として求められる。
電圧線L1の直交電力は、電圧線L1に流れる電流の位相を90度−θ度シフトさせた電流と、電圧線L1の電圧との積として求められる。電圧線L2の直交電力は、電圧線L2に流れる電流の位相を90度−θ度シフトさせた電流と、電圧線L2の電圧との積として求められる。
θは、上述の通り、太陽光発電システム224により印加される電圧の波形に対する、太陽光発電システム224から流れる電流の波形の進み度合いを位相(角度)で表したものである。そのため、太陽光発電システム224の直交電力は、ほとんどない。その結果、例えば機器A101の動作状態が変化すると、その変化に伴って、電圧線L1の直交電力は大きく変化する。
電力演算部312は、実施の形態2に係る消費電力演算部225と、直交電力を演算する直交電力演算部326とを備える。
直交電力演算部326は、太陽光発電システム224が定力率運転をしている場合、太陽光発電システム224の力率を演算する。太陽光発電システム224の力率は、太陽光発電システム224の消費電力(有効電力)を皮相電力で割ることによって演算される。太陽光発電システム224の消費電力及び皮相電力は、それぞれ、電流センサCT5から出力される電流信号が示す電流に基づいて、演算される。
太陽光発電システム224の力率が1である場合、直交電力演算部326は、実施の形態2に係る無効電力演算部226と同様の機能を発揮するとともに動作し、それによって、直交電力を算出する。すなわち、この場合に算出される直交電力は、無効電力に相当する。
太陽光発電システム224の力率が1でない場合、直交電力演算部326は、力率に基づいて、太陽光発電システム224により印加される電圧波形の位相に対して、太陽光発電システム224から流れる電流波形の位相が何度進んでいるか、すなわち、θを決定する。そして、直交電力演算部326は、決定したθに基づいて、上述の直交電力の各々を算出する。
例えば、太陽光発電システム224の力率が0.8である場合、直交電力演算部326は、進み位相θが37度であると決定する。このような力率とθとの関係は、直交電力演算部326に予め記憶されているとよい。直交電力演算部326は、例えば機器A101の直交電力を、第1分岐回路105aの電流の位相を53度(90度−37度)遅らせるようにシフトさせた電流と、電圧線L1との積を演算することによって求める。
本変形例に係る変動検出部118は、実施の形態2に係る変動検出部118が電圧線L1及び電圧線L2の各々の無効電力の変動を検出することに代えて、電圧線L1及び電圧線L2の各々の直交電力の変動を検出する。
すなわち、本変形例に係る変動検出部118の機能及び動作は、概ね、実施の形態2での変動検出部118の機能及び動作において、無効電力を直交電力に置き換えたものとなる。
また、本変形例に係る変動検出部118は、変動検出手段の一例であるところ、電力演算部312が有する直交電力演算部326によって算出された直交電力が、機器A101(機器B102)の動作状態が変化する前後で変動したか否かを判断する。
本変形例に係る接続系統決定部120は、変動検出部118による判断の結果として、変動検出部118によって電圧線L1及び電圧線L2の各々の直交電力が変動したと判断されたか否かを採用する。
すなわち、本変形例に係る接続系統決定部120の機能及び動作は、概ね、実施の形態2での接続系統決定部120の機能及び動作において、無効電力を直交電力に置き換えたものとなる。
本変形例によれば、実施の形態2と同様の効果に加えて、以下の効果を奏する。
太陽光発電システム224が主幹回路103に接続されており、かつ、力率1で運転していない場合であっても、電圧線L1の直交電力は、それに接続された機器A101の動作状態の変化に伴って大きく変化する。
本変形例では、機器A101(機器B102)の動作状態が変化する前後で、電圧線L1及び電圧線L2の各々の直交電力が変動したか否かを判断する。そして、機器A101(機器B102)の動作状態に伴う電圧線L1及び電圧線L2の各々の直交電力の変動を検出することができる。そのため、太陽光発電システム224、蓄電池などの給電設備が家庭に設置され、かつ、給電設備が力率1で運転していない場合であっても、接続系統決定部120は、変動検出部118による判断の結果に基づいて、機器A101及び機器B102の各々が接続された電圧系統を決定することができる。
従って、本変形例によれば、太陽光発電システム224などの給電設備が家庭などの需要家に設置され、かつ、給電設備が力率1で運転していない場合であっても、機器A101及び機器B102の各々が接続された電圧系統の設定を容易にすることが可能になる。
本変形例に係る表示部121は、機器A101(機器B102)の動作状態が変化する前後に直交電力演算部326によって算出された直交電力を表示するとよい。
表示部121に直交電力を表示させることによって、設定者による設定を支援することができる。従って、機器A101(機器B102)が接続された電圧系統の設定を容易にすることが可能になる。
以上、本発明の実施の形態及び変形例について説明したが、本発明は、これらの実施の形態及び変形例に限定されない。本発明は、各実施の形態と各変形例とを適宜組み合わせた形態、それに種々の変更を加えた形態を含む。