JP6382201B2 - 三次元内部超音波使用のための装置 - Google Patents
三次元内部超音波使用のための装置 Download PDFInfo
- Publication number
- JP6382201B2 JP6382201B2 JP2015536943A JP2015536943A JP6382201B2 JP 6382201 B2 JP6382201 B2 JP 6382201B2 JP 2015536943 A JP2015536943 A JP 2015536943A JP 2015536943 A JP2015536943 A JP 2015536943A JP 6382201 B2 JP6382201 B2 JP 6382201B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- transducer
- pivot
- shaft
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
- A61B8/4466—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe involving deflection of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/445—Details of catheter construction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8934—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
- G01S15/8938—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
- G01S15/894—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8934—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
- G01S15/8938—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
- G01S15/894—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
- G01S15/8943—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis co-operating with reflectors
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/004—Mounting transducers, e.g. provided with mechanical moving or orienting device
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/35—Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
- G10K11/352—Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0891—Clinical applications for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/8918—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Acoustics & Sound (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Multimedia (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Gynecology & Obstetrics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
血管内の超音波撮像を使用して血管の状態および/または血管に入れた装置の配置もしくは状態を見るための装置が提案されている。しかし、そのような装置には多数の問題が残っている。たとえば、多くのそのような装置は、せいぜい対象の組織または他の要素の断面の画像、すなわち血管の内部の円盤状の薄片を提供するのみであり、中心の一部は超音波ビームの範囲内にない。ゆえに、現在の超音波撮像では二次元断面しか観察しない。他の装置では、超音波ビームは、縦軸に実質的に垂直ではない固定角度で(たとえば45度で)方向付けられる。この場合、撮像領域は円錐の表面の一部の形態で静止しており、やはり中心部は超音波ビームの範囲内にない。いずれの場合も、体内のかなりの長さ(たとえば組織の、または装置の表面または一部)の全体を視覚化するためには、装置を当該長さに沿って動かし、特定の場所における断面のそれぞれの画像を撮影する必要がある。そのような動きは不正確である場合があり、脈管を介した装置の盲目的な挿入に関連付けられるリスクを含み得る。これはさらに、遅い。典型的なプルバック画像は、(約0.1mm/sの速度で)実行するのに30s程度かかる。
とりわけ、患者の体内に制御可能な2自由度を有する超音波ビームを提供するための装置および方法が開示される。たとえば、そのような装置は、超音波信号を発するおよび/または受信するためのトランスデューサと、回転軸に実質的に沿って延在する回転シャフトを含む回転モータとを含んでもよく、回転モータが動作すると回転シャフトが回転軸の周りを回転する。ジンバルマウントなどの旋回機構が、回転モータの回転シャフトに作動的に接続される。旋回機構は回転シャフトとともに回転し、ベースと、旋回軸の周りをベースに対して旋回可能な旋回部材とを有し、旋回軸は回転軸に実質的に垂直である。強制部材が旋回部材に作動的に接続され、強制部材にまたは強制部材を介して印加される力(縦方向の力であってもよい)が、旋回軸の周りの旋回部材の旋回を制御する。特定の例では、強制部材は、縦方向部材であり、および/または回転シャフトに対して可動である。そのような強制部材の例にはフィラメントがあり、フィラメントを引張ると旋回部材が旋回軸の周りを旋回する。超音波走査線の密度がより均一であるように自身の角速度が制御されるジンバルマウント装置または他の旋回機構が考えられる。
本開示の原理の理解を促進するために、図面に示される実施形態をここで参照し、特定の用語を用いてそれらを説明する。しかし、それによる特許請求の範囲の限定は意図されておらず、図示される実施形態におけるそのような変更およびさらなる修正、ならびに図面に示される本開示の原理のそのようなさらなる用途は、本開示が関連する分野の当業者が普通に思い付くと考えられることが理解されるであろう。
Claims (18)
- 超音波処置のための装置であって、
超音波信号を発するおよび/または受信するためのトランスデューサと、
第1および第2のモータとを備え、前記第1のモータは、前記第1のモータが動作すると前記トランスデューサが前記装置の回転軸の周りを回るように前記トランスデューサに作動的に接続され、前記第1のモータと前記第2のモータとは同心に配置され、
前記第2のモータは、前記装置の前記回転軸を横切る旋回軸の周りの前記トランスデューサの旋回運動が前記第2のモータの動作の関数であるように前記トランスデューサに作動的に接続され、
前記第1のモータは第1のシャフトを回し、前記第1のシャフトは内腔を有し、かつ前記トランスデューサに作動的に接続され、前記第2のモータは第2のシャフトを動作させ、前記第2のシャフトは前記第1のシャフトの前記内腔を通って延在し、かつ前記トランスデューサに作動的に接続される、装置。 - 前記第1のモータは回転モータであり、前記第2のモータはリニアモータおよび回転モータの一方である、請求項1に記載の装置。
- 前記第1のモータの動作に応答して回転するように前記第1のモータに作動的に接続される旋回機構をさらに備え、前記旋回機構は、ベースと、前記旋回軸の周りを前記ベースに対して旋回可能な旋回部材とを有し、前記旋回軸は前記回転軸に実質的に垂直であり、
前記旋回部材に作動的に接続される強制部材をさらに備え、前記強制部材を介して印加される力が、前記旋回軸の周りの前記旋回部材の旋回を制御する、請求項1または2に記載の装置。 - 前記トランスデューサは、前記旋回部材の少なくとも一部である、請求項3に記載の装置。
- 前記旋回機構は、前記ベースから延在する1対のアームと、前記アームに沿って摺動するように適合され、かつ前記強制部材に接続される摺動プレートとを含み、前記摺動プレートは前記第2のシャフトにねじ接続される、請求項3に記載の装置。
- 前記第2のモータはリニアモータであり、前記強制部材は前記第2のシャフトを含み、前記第2のシャフトは前記回転軸に実質的に沿って延在しており、前記第2のモータが動作すると前記第2のシャフトが前記回転軸に沿って動き、前記第2のシャフトは、前記旋回軸の周りの前記トランスデューサの旋回を制御するように前記トランスデューサに作動的に接続される、請求項3に記載の装置。
- 前記第2のシャフトは前記旋回部材に直接接続される、請求項3に記載の装置。
- 前記第2のシャフトは旋回コネクタによって前記旋回部材に接続される、請求項3に記載の装置。
- 前記強制部材は、前記第2のモータの動作によって前記回転軸に沿って2方向に可動であり、前記強制部材が第1の直線方向に動くと前記トランスデューサが第1の旋回方向に旋回し、前記強制部材が第2の直線方向に動くと前記トランスデューサが反対の第2の旋回方向に旋回する、請求項3から8のいずれか1項に記載の装置。
- 前記第1および第2のモータは1つ以上の速度で別個に動作可能であり、それによって所望の超音波走査パターンを得ることができる、請求項1から9のいずれか1項に記載の装置。
- 前記第1のモータは、前記超音波信号が前記第1のモータの回転軸に近づく方向に向いているような状態に前記旋回機構があるときは前記第1のモータが速く回転するように、かつ前記超音波信号が前記第1のモータの回転軸から離れる方向に向いているような状態に前記旋回機構があるときは前記第1のモータが遅く回転するように構成される、請求項3に記載の装置。
- 前記トランスデューサは、前記ベースに対して最初の向きにばね付勢され、前記強制部材を介して印加される力が除かれると、前記旋回部材は前記最初の向きに向かって戻る、請求項3〜9、および11のいずれか1項に記載の装置。
- 前記旋回機構はジンバルマウント装置である、請求項3から12のいずれか1項に記載の装置。
- 前記トランスデューサならびに前記第1および第2のモータを収容するための管状部材をさらに備え、前記管状部材は、前記管状部材の壁部によって少なくとも部分的に規定される遠位チャンバを有し、前記遠位チャンバは少なくとも前記トランスデューサおよび媒質を収容し、前記壁部および前記媒質は、前記管状部材が挿入される身体部位と同様の超音波通過特性を有するため、前記媒質と前記壁部との境界における、および前記壁部と身体環境との境界における超音波の反射が、前記境界を通る撮像に許容可能なレベルまで低下する、請求項1から13のいずれか1項に記載の装置。
- 前記第1および第2のモータの両方が回転モータであり、前記トランスデューサの旋回運動は、前記第1および第2のモータの回転速度の差の関数である、請求項1から5、7、8、および11のいずれか1項に記載の装置。
- 前記強制部材は、フラットバーおよび成形ワイヤの一方である、請求項5に記載の装置。
- 前記アームの各々は少なくとも1つのリミットストップを含み、前記リミットストップを越える前記摺動プレートの動きを阻止する、請求項16に記載の装置。
- 前記旋回機構は、前記ベースから延在する1対のアームを含み、前記旋回機構は、各アームと前記ベースとの間のそれぞれの角度の各々が90度未満である無応力状態を有し、前記アームの各々はそれぞれの圧痕を有し、前記旋回部材および前記トランスデューサの少なくとも一方は対向する対応の圧痕を含み、前記装置はさらに1対のインサートを備え、各インサートは、前記アームおよび旋回部材またはトランスデューサのそれぞれの対応する圧痕の内部に配置されるため、前記旋回機構は、各アームと前記ベースとの間のそれぞれの角度が増加し、前記旋回機構およびインサートを前記アームに対して所定位置に維持するのに十分なばね力が生成される応力状態を取る、請求項3に記載の装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261713172P | 2012-10-12 | 2012-10-12 | |
US61/713,172 | 2012-10-12 | ||
US201261727680P | 2012-11-17 | 2012-11-17 | |
US61/727,680 | 2012-11-17 | ||
PCT/US2013/064570 WO2014059292A1 (en) | 2012-10-12 | 2013-10-11 | Devices and methods for three-dimensional internal ultrasound usage |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015534841A JP2015534841A (ja) | 2015-12-07 |
JP6382201B2 true JP6382201B2 (ja) | 2018-08-29 |
Family
ID=50475973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015536943A Expired - Fee Related JP6382201B2 (ja) | 2012-10-12 | 2013-10-11 | 三次元内部超音波使用のための装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9649092B2 (ja) |
EP (1) | EP2906126B1 (ja) |
JP (1) | JP6382201B2 (ja) |
CN (1) | CN104837412B (ja) |
AU (1) | AU2013329043B2 (ja) |
WO (1) | WO2014059292A1 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014059299A1 (en) | 2012-10-12 | 2014-04-17 | Muffin Incorporated | Substantially acoustically transparent and conductive window |
CN104918556B (zh) | 2012-10-16 | 2018-07-17 | 玛芬股份有限公司 | 具有滑动环的体内换能器组件 |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US10693053B2 (en) * | 2014-01-29 | 2020-06-23 | Sogang University Research Foundation | Method for producing intravascular ultrasonic transducers and structure thereof |
WO2016046710A1 (en) * | 2014-09-24 | 2016-03-31 | Koninklijke Philips N.V. | Endoluminal filter having enhanced echogenic properties |
US10695026B2 (en) | 2015-08-12 | 2020-06-30 | Muffin Incorporated | Device for three-dimensional, internal ultrasound with rotating transducer and rotating reflector |
US11317892B2 (en) | 2015-08-12 | 2022-05-03 | Muffin Incorporated | Over-the-wire ultrasound system with torque-cable driven rotary transducer |
US10856837B2 (en) * | 2016-09-30 | 2020-12-08 | Robert Bosch Gmbh | Micro-mechanical adjustment system for piezoelectric transducers |
KR102189176B1 (ko) * | 2016-10-10 | 2020-12-10 | 에스지 디제이아이 오스모 테크놀러지 코., 엘티디 | 3축 짐벌 및 3축 짐벌 촬영장치 |
KR101808605B1 (ko) * | 2016-12-22 | 2018-01-18 | 김재범 | 전파 전달이 가능하거나 방열특성을 가지는 전도층이 코팅된 비전도성 프레임 |
US10813620B2 (en) * | 2017-08-24 | 2020-10-27 | General Electric Company | Method and system for enhanced ultrasound image acquisition using ultrasound patch probes with interchangeable brackets |
US11564656B2 (en) * | 2018-03-13 | 2023-01-31 | Verathon Inc. | Generalized interlaced scanning with an ultrasound probe |
KR20210139350A (ko) * | 2019-03-14 | 2021-11-22 | 소닉 인사이츠 메디컬 코포레이션 | 초음파 트랜스듀서용 피봇 가이드 |
CN112075954B (zh) * | 2019-06-14 | 2024-11-29 | 深圳迈瑞生物医疗电子股份有限公司 | 超声探头及声头组件 |
US11612379B2 (en) * | 2019-09-25 | 2023-03-28 | Rivanna Medical, Inc. | Imaging scan head apparatus having a fluid chamber with an inductive position sensor and a gearless voice-coil motor mechanism |
JP7577734B2 (ja) | 2020-03-30 | 2024-11-05 | テルモ株式会社 | プログラム、情報処理方法および情報処理装置 |
CN111398898B (zh) * | 2020-04-08 | 2022-02-11 | 中国科学院长春光学精密机械与物理研究所 | 用于大视场三维运动探测的神经拟态仿生曲面复眼系统 |
CN111419286A (zh) * | 2020-04-28 | 2020-07-17 | 深圳英美达医疗技术有限公司 | 一种超声成像导管 |
CN111419285B (zh) * | 2020-04-28 | 2023-07-28 | 深圳英美达医疗技术有限公司 | 一种超声三维成像导管及其三维扫描方法 |
CN117322919B (zh) * | 2023-12-01 | 2024-02-27 | 北京唯迈医疗设备有限公司 | 一种介入手术冠脉开口微型探测装置 |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421118A (en) * | 1981-08-12 | 1983-12-20 | Smithkline Instruments, Inc. | Ultrasonic transducer |
US4785816A (en) * | 1985-01-14 | 1988-11-22 | Johnson & Johnson Ultrasound Inc. | Ultrasonic transducer probe assembly |
JPH0698128B2 (ja) * | 1986-07-15 | 1994-12-07 | 松下電器産業株式会社 | 機械式走査型超音波探触子 |
EP0460711B1 (en) * | 1986-07-07 | 1995-03-01 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe |
US4913155A (en) * | 1987-05-11 | 1990-04-03 | Capistrano Labs, Inc. | Ultrasonic transducer probe assembly |
US4930515A (en) * | 1988-10-04 | 1990-06-05 | Diasonics, Inc. | Ultrasound probe with multi-orientation tip-mounted transducer |
JPH03215252A (ja) * | 1990-01-22 | 1991-09-20 | Toshiba Corp | メカニカル超音波診断装置 |
JPH05237113A (ja) * | 1992-02-28 | 1993-09-17 | Fujitsu Ltd | 超音波探触子 |
JPH05269133A (ja) * | 1992-03-26 | 1993-10-19 | Toshiba Corp | 超音波プローブ |
US5373845A (en) * | 1992-05-22 | 1994-12-20 | Echo Cath, Ltd. | Apparatus and method for forward looking volume imaging |
US5377685A (en) * | 1993-12-17 | 1995-01-03 | Baylis Medical Company, Inc. | Ultrasound catheter with mechanically steerable beam |
EP0671221B1 (en) | 1994-03-11 | 2000-04-26 | Intravascular Research Limited | Ultrasonic transducer array and method of manufacturing the same |
US5740804A (en) * | 1996-10-18 | 1998-04-21 | Esaote, S.P.A | Multipanoramic ultrasonic probe |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
JPH11192224A (ja) * | 1998-01-05 | 1999-07-21 | Aloka Co Ltd | 超音波探触子 |
JP3696000B2 (ja) * | 1999-08-04 | 2005-09-14 | オリンパス株式会社 | 超音波プローブ |
US6371915B1 (en) | 1999-11-02 | 2002-04-16 | Scimed Life Systems, Inc. | One-twelfth wavelength impedence matching transformer |
JP2001149372A (ja) * | 1999-11-26 | 2001-06-05 | Matsushita Electric Ind Co Ltd | 超音波探触子 |
US6394956B1 (en) * | 2000-02-29 | 2002-05-28 | Scimed Life Systems, Inc. | RF ablation and ultrasound catheter for crossing chronic total occlusions |
US6626834B2 (en) * | 2001-01-25 | 2003-09-30 | Shane Dunne | Spiral scanner with electronic control |
US6709397B2 (en) * | 2001-10-16 | 2004-03-23 | Envisioneering, L.L.C. | Scanning probe |
JP2003116853A (ja) * | 2001-10-16 | 2003-04-22 | Aloka Co Ltd | 超音波プローブ |
ATE333923T1 (de) | 2001-12-03 | 2006-08-15 | Ekos Corp | Ultraschallkatheter für kleine gefässe |
JP2003339697A (ja) * | 2002-05-22 | 2003-12-02 | Aloka Co Ltd | 超音波探触子及び超音波診断装置 |
JP2004129697A (ja) | 2002-10-08 | 2004-04-30 | Aloka Co Ltd | 超音波探触子 |
JP2005040204A (ja) * | 2003-07-23 | 2005-02-17 | Olympus Corp | 超音波内視鏡装置 |
US7077808B2 (en) | 2003-07-31 | 2006-07-18 | Boston Scientific Scimed. Inc. | Ultrasonic imaging catheter |
CN100394897C (zh) | 2004-08-03 | 2008-06-18 | 张毓笠 | 复合振动的超声骨骼手术仪 |
US7666143B2 (en) | 2004-12-14 | 2010-02-23 | Siemens Medical Solutions Usa, Inc. | Array rotation for ultrasound catheters |
US8211025B2 (en) | 2006-10-20 | 2012-07-03 | General Electric Company | Four-way steerable catheter system and method of use |
US20120046553A9 (en) | 2007-01-18 | 2012-02-23 | General Electric Company | Ultrasound catheter housing with electromagnetic shielding properties and methods of manufacture |
CA2941213A1 (en) * | 2007-01-19 | 2008-07-24 | Sunnybrook Health Sciences Centre | Imaging probe with combined ultrasound and optical means of imaging |
US20110021924A1 (en) | 2007-02-09 | 2011-01-27 | Shriram Sethuraman | Intravascular photoacoustic and utrasound echo imaging |
EP2296553B1 (en) * | 2008-05-16 | 2018-09-26 | Volcano Corporation | Miniature forward-looking ultrasound imaging mechanism enabled by local shape memory alloy actuator |
CA2725357C (en) | 2008-05-30 | 2014-02-18 | Gore Enterprise Holdings, Inc. | Real time ultrasound catheter probe |
US8197413B2 (en) | 2008-06-06 | 2012-06-12 | Boston Scientific Scimed, Inc. | Transducers, devices and systems containing the transducers, and methods of manufacture |
US8876720B2 (en) | 2008-08-05 | 2014-11-04 | Guardsman Scientific, Inc. | Peripheral ultrasound device providing pivotal adjustment of an imaging mechanism about two axes |
US8465686B2 (en) | 2008-12-19 | 2013-06-18 | Volcano Corporation | Method of manufacturing a rotational intravascular ultrasound probe |
US10058718B2 (en) | 2009-03-02 | 2018-08-28 | Koninklijke Philips N.V. | Transurethral ultrasound probe for treatment of prostate |
US8403856B2 (en) | 2009-03-11 | 2013-03-26 | Volcano Corporation | Rotational intravascular ultrasound probe with an active spinning element |
US20100249604A1 (en) | 2009-03-31 | 2010-09-30 | Boston Scientific Corporation | Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system |
US20110071401A1 (en) * | 2009-09-24 | 2011-03-24 | Boston Scientific Scimed, Inc. | Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8206307B2 (en) | 2010-03-10 | 2012-06-26 | Dbmedx Inc. | Ultrasound imaging probe and method |
US20120116261A1 (en) | 2010-11-05 | 2012-05-10 | Mumaw Daniel J | Surgical instrument with slip ring assembly to power ultrasonic transducer |
WO2012091903A1 (en) | 2010-12-30 | 2012-07-05 | Boston Scientific Scimed, Inc. | Imaging assembly combining intravascular ultrasound and optical coherence tomography |
-
2013
- 2013-10-11 JP JP2015536943A patent/JP6382201B2/ja not_active Expired - Fee Related
- 2013-10-11 WO PCT/US2013/064570 patent/WO2014059292A1/en active Application Filing
- 2013-10-11 AU AU2013329043A patent/AU2013329043B2/en not_active Ceased
- 2013-10-11 US US14/051,868 patent/US9649092B2/en active Active
- 2013-10-11 EP EP13846061.3A patent/EP2906126B1/en active Active
- 2013-10-11 CN CN201380065049.9A patent/CN104837412B/zh not_active Expired - Fee Related
-
2015
- 2015-05-22 US US14/719,367 patent/US10231703B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2014059292A1 (en) | 2014-04-17 |
US10231703B2 (en) | 2019-03-19 |
CN104837412A (zh) | 2015-08-12 |
AU2013329043B2 (en) | 2018-01-18 |
JP2015534841A (ja) | 2015-12-07 |
EP2906126B1 (en) | 2020-07-08 |
EP2906126A4 (en) | 2016-07-13 |
US20140107491A1 (en) | 2014-04-17 |
US9649092B2 (en) | 2017-05-16 |
EP2906126A1 (en) | 2015-08-19 |
US20150250451A1 (en) | 2015-09-10 |
CN104837412B (zh) | 2018-06-29 |
AU2013329043A1 (en) | 2015-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6382201B2 (ja) | 三次元内部超音波使用のための装置 | |
JP6154027B2 (ja) | 超音波トランスデューサ方向制御 | |
JP6526640B2 (ja) | ワイヤ外挿式超音波システム | |
US10154830B2 (en) | 3D catheter-based ultrasound assembly with gimbal-mount transducer and single coil drive | |
US8647281B2 (en) | Systems and methods for making and using an imaging core of an intravascular ultrasound imaging system | |
JP6625433B2 (ja) | スリップリングを有する内部トランスデューサアセンブリ | |
US9980701B2 (en) | Reciprocating internal ultrasound transducer assembly | |
US11317892B2 (en) | Over-the-wire ultrasound system with torque-cable driven rotary transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170704 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171219 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6382201 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |