[go: up one dir, main page]

JP6271915B2 - 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関 - Google Patents

燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関 Download PDF

Info

Publication number
JP6271915B2
JP6271915B2 JP2013177068A JP2013177068A JP6271915B2 JP 6271915 B2 JP6271915 B2 JP 6271915B2 JP 2013177068 A JP2013177068 A JP 2013177068A JP 2013177068 A JP2013177068 A JP 2013177068A JP 6271915 B2 JP6271915 B2 JP 6271915B2
Authority
JP
Japan
Prior art keywords
voltage
temperature
heater
plug
regression line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013177068A
Other languages
English (en)
Other versions
JP2015045459A (ja
Inventor
貴之 大谷
貴之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013177068A priority Critical patent/JP6271915B2/ja
Priority to KR1020140104505A priority patent/KR101697817B1/ko
Priority to US14/465,234 priority patent/US9611827B2/en
Priority to EP14182250.2A priority patent/EP2863050B1/en
Publication of JP2015045459A publication Critical patent/JP2015045459A/ja
Application granted granted Critical
Publication of JP6271915B2 publication Critical patent/JP6271915B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/028Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/023Individual control of the glow plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/26Details or accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/002Glowing plugs for internal-combustion engines with sensing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Measuring Fluid Pressure (AREA)

Description

本発明は、エンジン本体の複数の気筒のうちの一部に燃焼圧センサ付きグロープラグを装着し、残りの気筒に圧力センサを有しないセンサ無しグロープラグを装着した内燃機関に関する。
ディーゼルエンジン等の内燃機関の始動を補助するグロープラグに、内燃機関の燃焼室内の燃焼圧を検知する圧力センサを一体に設けた燃焼圧センサ付きグロープラグが知られている(例えば、特許文献1参照)。この燃焼圧センサ付きグロープラグでは、ヒータ部が軸線方向に変位可能にハウジング内に配置されており、燃焼圧の変化に伴うヒータ部の軸線方向の変位を圧力センサに伝達して、内燃機関の燃焼室内の燃焼圧を検知する。
なお、内燃機関(エンジン本体)は、4気筒や6気筒などの複数の気筒を有している。このため、このような燃焼圧センサ付きグロープラグを内燃機関に用いるにあたっては、コスト面等を考慮して、複数の気筒のうちの一部の1又は複数の気筒に燃焼圧センサ付きグロープラグを装着する一方、残りの気筒に上記圧力センサ(燃焼圧センサ)を有しない通常のグロープラグ(以下、センサ無しグロープラグともいう)を装着する場合がある。
特開2012−177483号公報
しかしながら、車両のECU(電子制御ユニット)による各気筒のグロープラグのヒータ部の制御において、燃焼圧センサの有無によって気筒毎に制御を変えず、各気筒のグロープラグについて、同一のデューティ比でパルス通電して加熱するものがある。一方、燃焼圧センサ付きグロープラグとセンサ無しグロープラグとでは、その構造の違いから、ヒータ部の通電特性が互いに異なる。具体的には、グロープラグに印加する電圧を同じとしても、ヒータ部の発熱温度が両者で一致しない。このため、ECUにより、これらセンサ有りと無しの2種類のグロープラグについて、同一のデューティ比(実効印加電圧)による通電を行うと、センサ有りとセンサ無しのグロープラグとの間で、ヒータ温度が異なる場合があり、気筒間でグロープラグによる始動補助の作用に違いを生じやすい。
本発明は、かかる問題点に鑑みてなされたものであって、エンジン本体の複数の気筒のうちの一部に燃焼圧センサ付きグロープラグを装着し、残りの気筒に圧力センサを有しないセンサ無しグロープラグを装着した内燃機関において、ケーブル及び装着されたグロープラグに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関を提供することを目的とする。
その一態様は、複数の気筒を有するエンジン本体と、上記複数の気筒のうちの一部の気筒に装着され、通電により発熱する第1ヒータ部、及び、装着された気筒の燃焼圧を検知する圧力センサを有する燃焼圧センサ付きグロープラグと、上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、通電により発熱する第2ヒータ部を有し、上記圧力センサを有しないセンサ無しグロープラグと、上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える内燃機関であって、上記燃焼圧センサ付きグロープラグ全体に印加する第1プラグ電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線を第1プラグ回帰直線とし、上記センサ無しグロープラグ全体に印加する第2プラグ電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線を第2プラグ回帰直線とし、上記第1プラグ回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1プラグ電圧を、第1電圧とし、上記第2プラグ回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2プラグ電圧を、第2電圧とし、上記温度における上記第1電圧と上記第2電圧との差を、1−2プラグ電圧差としたとき、上記第1プラグ回帰直線と上記第2プラグ回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも低い関係を有し、上記第2給電線の抵抗値が、上記第1給電線の抵抗値よりも大きくされており、上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、上記温度における上記第3電圧と上記第4電圧との差の絶対値を、全体電圧偏差としたとき、上記第1部回帰直線と上記第2部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記1−2プラグ電圧差よりも小さい関係を有する内燃機関である。
この内燃機関では、燃焼圧センサ付きグロープラグとセンサ無しグロープラグに関し、上述の第1プラグ回帰直線と第2プラグ回帰直線とは、ヒータの温度が950℃〜1350℃の温度範囲内のいずれの温度である場合にも、第2電圧が第1電圧よりも低い関係を有している。
すなわち、燃焼圧センサ付きグロープラグとセンサ無しグロープラグとは、各グロープラグ全体に印加する電圧(第1プラグ電圧及び第2プラグ電圧)とヒータ部の発熱温度(第1ヒータ温度及び第2ヒータ温度)の関係で示されるヒータ部の通電特性が一致していない。かつ、第1ヒータ温度と第2ヒータ温度とを同じ温度にする場合、必要となる第2プラグ電圧は第1プラグ電圧よりも低い。換言すると、各グロープラグに印加する第1プラグ電圧と第2プラグ電圧とを等しくすると、第2ヒータ温度が第1ヒータ温度よりも高くなる。
そこで、この内燃機関では、第2給電ケーブルの第2給電線の抵抗値を、第1給電ケーブルの第1給電線の抵抗値よりも大きくしてある。これにより、前述の第1部回帰直線と第2部回帰直線とは、ヒータの温度が前述の温度範囲内のいずれの温度である場合にも、全体電圧偏差が、1−2プラグ電圧差よりも小さい関係にされている。つまり、第1ヒータ温度と第2ヒータ温度とを同じ温度とするときに要する第1部電圧と第2部電圧との偏差(両者の差の絶対値)は、第1プラグ電圧と第2プラグ電圧との差よりも小さくなっている。
このように、この内燃機関では、第2給電線の抵抗値を、第1給電線の抵抗値よりも大きくすることで、各グロープラグ単体についてのヒータ部の通電特性の関係に比べて、第1部(燃焼圧センサ付きグロープラグ及び第1給電ケーブル)全体についての通電特性(第1部電圧と第1ヒータ温度との関係)と、第2部(センサ無しグロープラグ及び第2給電ケーブル)全体についての通電特性(第2部電圧と第2ヒータ温度との関係)とを近付けている。かくして、ケーブル及び装着されたグロープラグに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関が得られる。
なお、第2給電線の抵抗値を、第1給電線の抵抗値よりも大きくする手法としては、第2給電線に、第1給電線よりも、比抵抗(電気抵抗率)(単位Ω・m)の高い材料を用いることが挙げられる。また、第2給電線の断面積を第1給電線の断面積よりも小さくしたり、第2給電線の全長を第1給電線の全長よりも長くする手法も挙げられる。特に、第1給電線(第1給電ケーブル)及び第2給電線(第2給電ケーブル)は、長さを変更することが容易であり、第2給電線の全長を第1給電線の全長よりも長くすることで、簡易に第2給電線の抵抗値を第1給電線の抵抗値よりも大きくすることができる。
また、他の態様は、複数の気筒を有するエンジン本体と、上記複数の気筒のうちの一部の気筒に装着され、通電により発熱する第1ヒータ部、及び、装着された気筒の燃焼圧を検知する圧力センサを有する燃焼圧センサ付きグロープラグと、上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、通電により発熱する第2ヒータ部を有し、上記圧力センサを有しないセンサ無しグロープラグと、上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える内燃機関であって、上記燃焼圧センサ付きグロープラグは、上記第1給電線に接続して、この第1給電線を上記第1ヒータ部に導通する第1導通部材を有し、上記センサ無しグロープラグは、上記第2給電線に接続して、この第2給電線を上記第2ヒータ部に導通する第2導通部材を有し、上記燃焼圧センサ付きグロープラグから上記第1導通部材を除いた、上記第1ヒータ部を含む第1残部に印加される第1残部電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線を第1残部回帰直線とし、上記センサ無しグロープラグから上記第2導通部材を除いた、上記第2ヒータ部を含む第2残部に印加される第2残部電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線を第2残部回帰直線とし、上記第1残部回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1残部電圧を、第1電圧とし、上記第2残部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2残部電圧を、第2電圧とし、上記温度における記第1電圧と上記第2電圧との差を、1−2残部電圧差としたとき、上記第1残部回帰直線と上記第2残部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも低い関係を有し、上記第2導通部材の抵抗値と上記第2給電線の抵抗値との和が、上記第1導通部材の抵抗値と上記第1給電線の抵抗値との和よりも大きくされており、上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、上記度における上記第3電圧と上記第4電圧との差の絶対値を、全体電圧偏差としたとき、上記第1部回帰直線と上記第2部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記1−2残部電圧差よりも小さい関係を有する内燃機関である。
この内燃機関では、燃焼圧センサ付きグロープラグとセンサ無しグロープラグに関し、上述の第1残部回帰直線と第2残部回帰直線とは、ヒータの温度が950℃〜1350℃の温度範囲内のいずれの温度である場合にも、第2電圧が第1電圧よりも低い関係を有している。
すなわち、燃焼圧センサ付きグロープラグとセンサ無しグロープラグとは、第1ヒータ部を含む第1残部と第2ヒータ部を含む第2残部とを比較したとき、第1残部についての第1ヒータ部の通電特性(第1残部電圧と第1ヒータ温度の関係)と第2残部についての第2ヒータ部の通電特性(第2残部電圧と第2ヒータ温度の関係)が一致していない。かつ、第1ヒータ温度と第2ヒータ温度とを同じ温度にする場合、必要となる第2残部電圧は第1残部電圧よりも低い。換言すると、第1残部電圧と第2残部電圧とを等しくすると、第2ヒータ温度が第1ヒータ温度よりも高くなる。
そこで、この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも大きくしてある。これにより、前述の第1部回帰直線と第2部回帰直線とは、ヒータの温度が前述の温度範囲内のいずれの温度である場合にも、全体電圧偏差が、1−2残部電圧差よりも小さい関係にされている。つまり、第1ヒータ温度と第2ヒータ温度とを同じ温度とするときに要する第1部電圧と第2部電圧との偏差(両者の差の絶対値)は、第1残部電圧と第2残部電圧との差よりも小さくなっている。
このように、この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも大きくすることで、第1残部及び第2残部についてのヒータ部の通電特性の関係に比べて、第1部(燃焼圧センサ付きグロープラグ及び第1給電ケーブル)全体についての通電特性(第1部電圧と第1ヒータ温度の関係)と、第2部(センサ無しグロープラグ及び第2給電ケーブル)全体についての通電特性(第2部電圧と第2ヒータ温度の関係)とを近付けている。かくして、ケーブル及び装着されたグロープラグに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関が得られる。
加えて、この内燃機関では、第2給電線の抵抗値を第1給電線の抵抗値よりも大きくするほか、第2導通部材の抵抗値を第1導通部材の抵抗値よりも大きくすることによっても、ケーブル及びグロープラグ全体についてのヒータ部の通電特性を近付けることができる。
なお、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも大きくする手法としては、第2給電線に、第1給電線よりも、比抵抗(電気抵抗率)の高い材料を用いることのほか、同様に、第2導通部材に、第1導通部材よりも、比抵抗(電気抵抗率)の高い材料を用いることが挙げられる。
また、第2給電線及び第2導通部材の断面積を小さくしたり、全長を長くして、第1給電線及び第1導通部材よりも抵抗値を大きくする手法が挙げられる。
このうち、第1給電線(第1給電ケーブル)及び第2給電線(第2給電ケーブル)は、長さを変更することが容易であり、第2給電線の全長を第1給電線の全長よりも長くすることで、簡易に第2給電線の抵抗値を第1給電線の抵抗値よりも大きくすることができる。
さらに、上述の内燃機関であって、前記燃焼圧センサ付きグロープラグは、前記第1ヒータ部の先端部を自身の先端から突出させた状態で上記第1ヒータ部を収容する筒状の第1ハウジングを有し、前記第1導通部材は、上記第1ハウジングの後端側に配置されて前記第1給電線に接続する第1外部端子と、上記第1ハウジング内に挿通されて上記第1ヒータ部と上記第1外部端子との間を導通する棒状の第1中軸とを含み、前記センサ無しグロープラグは、前記第2ヒータ部の先端部を自身の先端から突出させた状態で上記第2ヒータ部を収容する筒状の第2ハウジングを有し、前記第2導通部材は、上記第2ハウジングの後端側に配置されて前記第2給電線に接続する第2外部端子と、上記第2ハウジング内に挿通されて上記第2ヒータ部と上記第2外部端子との間を導通する棒状の第2中軸とを含み、上記第2中軸の抵抗値が上記第1中軸の抵抗値よりも大きい、及び、前記第2給電線の抵抗値が前記第1給電線の抵抗値よりも大きいの少なくともいずれかである内燃機関とすると良い。
この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも大きくするにあたり、第2中軸の抵抗値が第1中軸の抵抗値よりも大きいか、第2給電線の抵抗値が第1給電線の抵抗値よりも大きいかの少なくともいずれかとしている。つまり、第2給電線の抵抗値を第1給電線の抵抗値よりも大きくするのみの場合、第2中軸の抵抗値を第1中軸の抵抗値よりも大きくするのみの場合、及び、第2給電線の抵抗値を第1給電線の抵抗値よりも大きくし、かつ、第2中軸の抵抗値を第1中軸の抵抗値よりも大きくする場合の3通りのうちのいずれかとしている。
第1中軸及び第2中軸は、それぞれ第1導通部材及び第2導通部材の主要部分をなし、ある程度の長さと太さを有しているので、両者の抵抗値に差を設けることが比較的容易である。このため、第2給電線の抵抗値を第1給電線の抵抗値よりも大きくするほか、これに代えて、または、これに加えて、第2中軸の抵抗値を第1中軸の抵抗値よりも大きくすることでも、ケーブル及びグロープラグ全体についてのヒータ部の通電特性を近付けることができる。
また、他の一態様は、複数の気筒を有するエンジン本体と、上記複数の気筒のうちの一部の気筒に装着され、通電により発熱する第1ヒータ部、及び、装着された気筒の燃焼圧を検知する圧力センサを有する燃焼圧センサ付きグロープラグと、上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、通電により発熱する第2ヒータ部を有し、上記圧力センサを有しないセンサ無しグロープラグと、上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える内燃機関であって、上記燃焼圧センサ付きグロープラグ全体に印加する第1プラグ電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線を第1プラグ回帰直線とし、上記センサ無しグロープラグ全体に印加する第2プラグ電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線を第2プラグ回帰直線とし、上記第1プラグ回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1プラグ電圧を、第1電圧とし、上記第2プラグ回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2プラグ電圧を、第2電圧とし、上記温度における上記第2電圧と上記第1電圧との差を、2−1プラグ電圧差としたとき、上記第1プラグ回帰直線と上記第2プラグ回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも高い関係を有し、上記第2給電線の抵抗値が、上記第1給電線の抵抗値よりも小さくされており、上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、上記温度における上記第4電圧と上記第3電圧との差の絶対値を、全体電圧偏差としたとき、上記第1部回帰直線と上記第2部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記2−1プラグ電圧差よりも小さい関係を有する内燃機関である。
この内燃機関では、燃焼圧センサ付きグロープラグとセンサ無しグロープラグに関し、上述の第1プラグ回帰直線と第2プラグ回帰直線とは、ヒータの温度が950℃〜1350℃の温度範囲内のいずれの温度である場合にも、第2電圧が第1電圧よりも高い関係を有している。
すなわち、第1プラグ電圧と第1ヒータ温度の関係に対する、第2プラグ電圧と第2ヒータ温度の関係が、前述の内燃機関とは逆の関係にあり、第1ヒータ温度と第2ヒータ温度とを同じ温度にする場合、必要となる第2プラグ電圧は第1プラグ電圧よりも高い。換言すると、各グロープラグに印加する第1プラグ電圧と第2プラグ電圧とを等しくすると、第2ヒータ温度が第1ヒータ温度よりも低くなる。
そこで、この内燃機関では、第2給電ケーブルの第2給電線の抵抗値を、第1給電ケーブルの第1給電線の抵抗値よりも小さくしてある。これにより、前述の第1部回帰直線と第2部回帰直線とは、ヒータの温度が前述の温度範囲内のいずれの温度である場合にも、全体電圧偏差が、2−1プラグ電圧差よりも小さい関係にされている。つまり、第1ヒータ温度と第2ヒータ温度とを同じ温度とするときに要する第2部電圧と第1部電圧との偏差(両者の差の絶対値)は、第2プラグ電圧と第1プラグ電圧との差よりも小さくなっている。
このように、この内燃機関では、第2給電線の抵抗値を、第1給電線の抵抗値よりも小さくすることで、各グロープラグ単体についてのヒータ部の通電特性の関係に比べて、第1部(燃焼圧センサ付きグロープラグ及び第1給電ケーブル)全体についての通電特性(第1部電圧と第1ヒータ温度との関係)と、第2部(センサ無しグロープラグ及び第2給電ケーブル)全体についての通電特性(第2部電圧と第2ヒータ温度との関係)とを近付けている。かくして、ケーブル及び装着されたグロープラグに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関が得られる。
また、他の一態様は、複数の気筒を有するエンジン本体と、上記複数の気筒のうちの一部の気筒に装着され、通電により発熱する第1ヒータ部、及び、装着された気筒の燃焼圧を検知する圧力センサを有する燃焼圧センサ付きグロープラグと、上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、通電により発熱する第2ヒータ部を有し、上記圧力センサを有しないセンサ無しグロープラグと、上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える内燃機関であって、上記燃焼圧センサ付きグロープラグは、上記第1給電線に接続し、この第1給電線を上記第1ヒータ部に導通する第1導通部材を有し、上記センサ無しグロープラグは、上記第2給電線に接続し、この第2給電線を上記第2ヒータ部に導通する第2導通部材を有し、上記燃焼圧センサ付きグロープラグから上記第1導通部材を除いた、上記第1ヒータ部を含む第1残部に印加される第1残部電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線を第1残部回帰直線とし、上記センサ無しグロープラグから上記第2導通部材を除いた、上記第2ヒータ部を含む第2残部に印加される第2残部電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線を第2残部回帰直線とし、上記第1残部回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1残部電圧を、第1電圧とし、上記第2残部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2残部電圧を、第2電圧とし、上記温度における上記第2電圧と上記第1電圧との差を、2−1残部電圧差としたとき、上記第1残部回帰直線と上記第2残部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも高い関係を有し、上記第2導通部材の抵抗値と上記第2給電線の抵抗値との和が、上記第1導通部材の抵抗値と上記第1給電線の抵抗値との和よりも小さくされており、上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、上記温度における上記第4電圧と上記第3電圧との差の絶対値を、全体電圧偏差としたとき、上記第1部回帰直線と上記第2部回帰直線とは、上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記2−1残部電圧差よりも小さい関係を有する内燃機関である。
この内燃機関では、燃焼圧センサ付きグロープラグとセンサ無しグロープラグに関し、上述の第1残部回帰直線と第2残部回帰直線とは、ヒータの温度が950℃〜1350℃の温度範囲内のいずれの温度である場合にも、第2電圧が第1電圧よりも高い関係を有している。
すなわち、第1残部電圧と第1ヒータ温度の関係に対する、第2残部電圧と第2ヒータ温度の関係が、前述の内燃機関とは逆の関係にあり、第1ヒータ温度と第2ヒータ温度とを同じ温度にする場合、必要となる第2残部電圧は第1残部電圧よりも高い。換言すると、第1残部電圧と第2残部電圧とを等しくすると、第2ヒータ温度が第1ヒータ温度よりも低くなる。
そこで、この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも小さくしてある。これにより、前述の第1部回帰直線と第2部回帰直線とは、ヒータの温度が前述の温度範囲内のいずれの温度である場合にも、全体電圧偏差が、2−1残部電圧差よりも小さい関係にされている。つまり、第1ヒータ温度と第2ヒータ温度とを同じ温度とするときに要する第2部電圧と第1部電圧との偏差(両者の差の絶対値)は、第2残部電圧と第1残部電圧との差よりも小さくなっている。
このように、この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも小さくすることで、第1残部及び第2残部についてのヒータ部の通電特性の関係に比べて、第1部(燃焼圧センサ付きグロープラグ及び第1給電ケーブル)全体についての通電特性(第1部電圧と第1ヒータ温度の関係)と、第2部(センサ無しグロープラグ及び第2給電ケーブル)全体についての通電特性(第2部電圧と第2ヒータ温度の関係)とを近付けている。かくして、ケーブル及び装着されたグロープラグに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関が得られる。
加えて、この内燃機関では、第2給電線の抵抗値を第1給電線の抵抗値よりも小さくするほか、第2導通部材の抵抗値を第1導通部材の抵抗値よりも小さくすることによっても、ケーブル及びグロープラグ全体についてのヒータ部の通電特性を近付けることができる。
さらに、上述の内燃機関であって、前記燃焼圧センサ付きグロープラグは、前記第1ヒータ部の先端部を自身の先端から突出させた状態で上記第1ヒータ部を収容する筒状の第1ハウジングを有し、前記第1導通部材は、上記第1ハウジングの後端側に配置されて前記第1給電線に接続する第1外部端子と、上記第1ハウジング内に挿通されて上記第1ヒータ部と上記第1外部端子との間を導通する棒状の第1中軸とを含み、前記センサ無しグロープラグは、前記第2ヒータ部の先端部を自身の先端から突出させた状態で上記第2ヒータ部を収容する筒状の第2ハウジングを有し、前記第2導通部材は、上記第2ハウジングの後端側に配置されて前記第2給電線に接続する第2外部端子と、上記第2ハウジング内に挿通され、上記第2ヒータ部と上記第2外部端子との間を導通する棒状の第2中軸とを含み、上記第2中軸の抵抗値が上記第1中軸の抵抗値よりも小さい、及び、前記第2給電線の抵抗値が前記第1給電線の抵抗値よりも小さいの少なくともいずれかである内燃機関とすると良い。
この内燃機関では、第2導通部材の抵抗値と第2給電線の抵抗値との和を、第1導通部材の抵抗値と第1給電線の抵抗値との和よりも小さくするにあたり、第2中軸の抵抗値が第1中軸の抵抗値よりも小さいか、第2給電線の抵抗値が第1給電線の抵抗値よりも小さいかの少なくともいずれかとしている。つまり、第2給電線の抵抗値を第1給電線の抵抗値よりも小さくするのみの場合、第2中軸の抵抗値を第1中軸の抵抗値よりも小さくするのみの場合、及び、第2給電線の抵抗値を第1給電線の抵抗値よりも小さくし、かつ、第2中軸の抵抗値を第1中軸の抵抗値よりも小さくする場合の3通りのうちのいずれかとしている。
第1中軸及び第2中軸は、それぞれ第1導通部材及び第2導通部材の主要部分をなし、ある程度の長さと太さを有しているので、両者の抵抗値に差を設けることが比較的容易である。このため、第2給電線の抵抗値を第1給電線の抵抗値よりも小さくするほか、これに代えて、または、これに加えて、第2中軸の抵抗値を第1中軸の抵抗値よりも小さくすることでも、ケーブル及びグロープラグ全体についてのヒータ部の通電特性を近付けることができる。
実施形態1〜4に係る内燃機関における、グロープラグの取り付け構造を示す概略断面図である。 燃焼圧センサ付きグロープラグの全体を示す部分破断断面図である。 燃焼圧センサ付きグロープラグの部分拡大断面図である。 センサ無しグロープラグの全体を示す縦断面図である。 実施形態1〜4に係る内燃機関における、各グロープラグと、これらを駆動する駆動回路を含むグロープラグ制御ユニットとの接続構成を説明する説明図である。 実施形態1に係り、各グロープラグ及びケーブルの各部の抵抗値及び印加電圧を説明する説明図である。 実施形態1に係り、各グロープラグ全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態1に係り、各グロープラグ及び給電ケーブルからなる構造体全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態2に係り、各グロープラグ及びケーブルの各部の抵抗値及び印加電圧を説明する説明図である。 実施形態2に係り、各グロープラグから導通部材を除いた残部全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態2に係り、各グロープラグ及び給電ケーブルからなる構造体全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態3に係り、各グロープラグ及びケーブルの各部の抵抗値及び印加電圧を説明する説明図である。 実施形態3に係り、各グロープラグ全体に印加する電圧と、各ヒータ部の発明温度の関係を示すグラフである。 実施形態3に係り、各グロープラグ及び給電ケーブルからなる構造体全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態4に係り、各グロープラグ及びケーブルの各部の抵抗値及び印加電圧を説明する説明図である。 実施形態4に係り、各グロープラグから導通部材を除いた残部全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。 実施形態4に係り、各グロープラグ及び給電ケーブルからなる構造体全体に印加する電圧と、各ヒータ部の発熱温度の関係を示すグラフである。
(実施形態1)
以下、本発明の第1の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係る内燃機関1における、グロープラグの取り付け構造を示す。内燃機関1は、4つの気筒11A,11B,11C,11Dを有するエンジン本体10を備える4気筒のディーゼルエンジンである。そして、このエンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aには、装着された気筒11Aの燃焼圧を検知する圧力センサ200(図2及び図3参照)を有する燃焼圧センサ付きグロープラグ20Aが装着されている。また、エンジン本体10の4つの気筒11A〜11Dのうち、燃焼圧センサ付きグロープラグ20Aが装着されていない残りの3つの気筒11B〜11Dには、圧力センサを有しないセンサ無しグロープラグ20Bがそれぞれ装着されている。
図2に、気筒11Aに装着する燃焼圧センサ付きグロープラグ20A(以下、単にセンサ付きプラグ20Aという)の全体図を示し、図3にその部分拡大断面図を示す。また、図4に、気筒11B〜11Dに装着するセンサ無しグロープラグ20B(以下、単にプラグ20Bという)の全体図を示す。
これらセンサ付きプラグ20A及びプラグ20Bは、図1に示すように、それぞれのヒータ部130A,130Bのヒータ先端部130As,130Bsを、燃焼室10a〜10d内に露出した状態で、各気筒11A〜11Dに装着されており、エンジン始動時の点火を補助する熱源として利用される。また、これと共に、センサ付きプラグ20Aは、装着された気筒11Aの燃焼室10a内の燃焼圧を検知する。
まず、センサ付きプラグ20A及びプラグ20Bのうち、圧力センサを有しないプラグ20Bの全体構造について、図4を参照しつつ説明する。
プラグ20Bは、主として、主体金具110B、ヒータ部130B、中軸120B、リング部材140、外筒150B、ピン端子160Bから構成されている。なお、このうち、主体金具110B及び外筒150Bは一体とされて、プラグ20Bのハウジング100Bをなしている。
以下では、プラグ20Bの軸線AX2に沿う軸線方向HJ2のうち、ヒータ部130Bが配置された側(図中下側)をプラグ20Bの先端側GS2とし、これと反対側(図中上側)をプラグ20Bの後端側GK2として説明する。
ハウジング100Bの主要部分をなす主体金具110Bは、金属材からなり、軸線方向HJ2に自身の金具先端部110Bsから金具後端部110Bkまで延びる筒状をなす。この主体金具110B内には、軸孔110Bhが形成されている。また、主体金具110Bのうち後端側GK2の外周面には、取り付け用の雄ネジ部111Bが形成されている。
中軸120Bは、炭素鋼からなり、軸線方向HJ2に自身の中軸先端部120Bsから中軸後端部120Bkまで延びる棒状をなす。そして、中軸120Bは、中軸後端部120Bkを金具後端部110Bkから後端側GK2に向けて突出させた状態で、主体金具110B内に挿通されている。また、中軸先端部120Bsは、後述するリング部材140のリング後端部140k内に嵌合している。
ヒータ部130Bは、軸線方向HJ2に自身のヒータ先端部130Bsからヒータ後端部130Bkまで延びる棒状をなし、通電により発熱するヒータ先端部130Bsを金具先端部110Bsから先端側GS2に向けて突出させた状態で、主体金具110B内に挿通されている。このヒータ部130Bは、絶縁性セラミック(具体的には、窒化珪素質セラミック)からなる棒状の絶縁基体131Bの内部に、導電性セラミック(具体的には、導電成分として炭化タングステンを含有する窒化珪素質セラミック)からなる発熱抵抗体132Bが埋設された構造をなすセラミックヒータである。
発熱抵抗体132Bは、発熱部133B及び一対のリード部135B,136Bを有する。このうち発熱部133Bは、U字状に曲げ返された形状をなし、ヒータ先端部130Bs内に配置されている。また、このU字状に曲げ返された発熱部133Bの両端には、一対のリード部135B,136Bが繋がり、それぞれヒータ後端部130Bkの後端面まで延びている。また、各々のリード部135B,136Bには、電極取出部137B,138Bが形成されている。即ち、リード部135Bには、ヒータ後端部130Bkにおいて電極取出部137Bが形成され、ヒータ後端部130Bkの外周に露出して、次述するリング部材140と電気的に接続されている。また、リード部136Bには、電極取出部137Bよりも先端側GS2において電極取出部138Bが形成され、ヒータ部130Bの外周に露出して、後述する外筒150Bと接続されている。
リング部材140は、ステンレスからなり、軸線方向HJ2に自身のリング先端部140sからリング後端部140kまで延びる薄肉の円筒状をなす。そして、主体金具110B内に配置されて、中軸120Bとヒータ部130Bとの間を接続している。
このリング部材140のリング先端部140s内には、ヒータ部130Bのヒータ後端部130Bkが圧入され、ヒータ部130Bに設けられた電極取出部137Bがリング部材140に内側から当接して、両者が電気的に接続している。
一方、リング部材140のリング後端部140k内には、中軸120Bの中軸先端部120Bsが圧入され、リング部材140と中軸120Bとが電気的に接続している。さらに、リング部材140と中軸120Bとは、溶接により互いに固着されている。
外筒150Bは、ステンレスからなり、軸線方向HJ2に自身の外筒先端部150Bsから外筒後端部150Bkまで延びる筒状をなす。この外筒150Bには、ヒータ先端部130Bsを外筒先端部150Bsから先端側GS2に向かって突出させると共に、ヒータ後端部130Bkを外筒後端部150Bkから後端側GK2に向かって突出させた状態で、ヒータ部130Bが圧入されている。ヒータ部130Bに設けられた電極取出部138Bは、外筒150Bに内側から当接して、外筒150Bと電極取出部138Bとが電気的に接続している。
また、外筒150Bの外筒後端部150Bkは、径小とされて、主体金具110Bの金具先端部110Bs内に嵌合している。そして、外筒150Bと主体金具110Bとは、溶接により互いに固着されている。これにより、主体金具110B及び外筒150Bが一体とされて、ハウジング100Bをなし、主体金具110Bの金具先端部110Bsに、外筒150Bを介してヒータ部130Bが保持される。
ピン端子160Bは、中軸120Bの中軸後端部120Bkに円周加締めにより固定されている。このピン端子160Bには、図1に示すように、給電線310Bを含む給電ケーブル300Bが接続したコネクタキャップ80が装着され、これにより、ピン端子160Bは、給電ケーブル300Bの給電線310Bに接続する。
なお、本実施形態1及び後述する実施形態2〜4において、ヒータ部130Bが、本発明における第2ヒータ部に相当し、ハウジング100Bが第2ハウジングに相当する。また、ピン端子160Bが第2外部端子に相当し、中軸120Bが第2中軸に相当する。さらに、給電線310Bが第2給電線に相当し、給電ケーブル300Bが第2給電ケーブルに相当する。
また、ピン端子160B(第2外部端子)、中軸120B(第2中軸)及びリング部材140で、給電線310B(第2給電線)をヒータ部130B(第2ヒータ部)に導通する第2導通部材40Bをなしている(図6,図9,図12,図15参照)。また、プラグ20Bから第2導通部材40Bを除いた、ヒータ部130B(第2ヒータ部)を含む部分(具体的には、ヒータ部130Bの他に、ハウジング100Bを含む)を、第2残部50Bとする。
次いで、センサ付きプラグ20Aの全体構造について、図2及び図3を参照しつつ説明する。センサ付きプラグ20Aは、主として、主体金具110A、中軸120A、ヒータ部130A、第1リング部材141、第2リング部材142、ヒータ外筒155、先端キャップ150A、内筒190、メンブレン170、圧力センサ200、端子アセンブリ250、外部接続端子160Aから構成されている。なお、このうち、主体金具110A、内筒190のフランジ部191及び先端部190s並びに先端キャップ150Aは一体とされて、センサ付きプラグ20Aのハウジング100Aをなす。また、圧力センサ200は、センサ本体210のほか、伝達スリーブ220及び、センサ本体210をハウジング100A(主体金具110A)の内側に固定する内筒190の内筒本体192を含む。
以下では、センサ付きプラグ20Aの軸線AX1に沿う軸線方向HJ1のうち、ヒータ部130Aが配置された側(図中下側)をセンサ付きプラグ20Aの先端側GS1とし、これと反対側(図中上側)をセンサ付きプラグ20Aの後端側GK1として説明する。
ハウジング100Aの主要部分をなす主体金具110Aは、金属材からなり、軸線方向HJ1に自身の金具先端部110Asから金具後端部110Akまで延びる筒状をなす。この主体金具110A内には軸孔110Ahが形成されている。また、主体金具110Aのうち後端側GK1の外周面には、取り付け用の雄ネジ部111Aが形成されている。
内筒190のうち、内筒本体192は、略円筒状をなし、主体金具110Aの軸孔110Ah内のうち軸線方向HJ1先端側GS1に、同心状に配置されている。この内筒本体192の軸線方向HJ1先端側GS1には、径方向外側に突出して、主体金具110Aの金具先端部110Asと同外径でハウジング100Aの一部をなす鍔状のフランジ部191が形成されており、このフランジ部191は、主体金具110Aの金具先端部110Asに溶接されている。また、内筒190の後端部190kには、環状をなすセンサ本体210の外周部212が溶接されている。
先端キャップ150Aは、金属材からなり、その後端側GK1には、円筒状の円筒部151が設けられている。この円筒部151は、内筒190の先端部190sに外嵌され、内筒190のフランジ部191に溶接されている。
なお、円筒部151の内側には、内筒190の先端部190sとヒータ部130Aとを連結するメンブレン170が収容されている。
中軸120Aは、炭素鋼からなり、自身の中軸先端部120Asから軸線方向HJ1後端側GK1に延びる棒状をなす。このうち、中軸先端部120Asは、太径とされ、後述する第1リング部材141のリング後端部141k内に嵌合している。
ヒータ部130Aは、軸線方向HJ1に自身のヒータ後端部130Akからヒータ先端部130Asまで延びる棒状をなし、通電により発熱するヒータ先端部130Asを先端キャップ150Aの先端150Asから先端側GS1に向けて突出させた状態で、先端キャップ150A、内筒190及び主体金具110A内に挿通されている。このヒータ部130Aは、絶縁性セラミック(具体的には、窒化珪素質セラミック)からなる棒状の絶縁基体131Aの内部に、導電性セラミック(具体的には、導電成分として炭化タングステンを含有する窒化珪素質セラミック)からなる発熱抵抗体132Aが埋設された構造をなすセラミックヒータである。
発熱抵抗体132Aは、発熱部133A及び一対のリード部135A,136Aを有する。このうち発熱部133Aは、U字状に曲げ返された形状をなし、ヒータ先端部130As内に配置されている。また、このU字状に曲げ返された発熱部133Aの両端には、一対のリード部135A,136Aが繋がり、それぞれヒータ後端部130Akの後端面まで延びている。また、各々のリード部135A,136Aには、電極取出部137A,138Aが形成されている。即ち、リード部135Aには、ヒータ後端部130Akにおいて電極取出部137Aが形成され、ヒータ後端部130Akの外周に露出して、次述する第1リング部材141と電気的に接続されている。また、リード部136Aには、電極取出部137Aよりも先端側GS1において電極取出部138Aが形成され、ヒータ部130Aの外周に露出して、後述する第2リング部材142と接続されている。
第1リング部材141は、ステンレスからなり、軸線方向HJ1に自身のリング先端部141sからリング後端部141kまで延びる薄肉の円筒状をなす。そして、主体金具110A内に配置されて、中軸120Aとヒータ部130Aとの間を接続している。
この第1リング部材141のリング先端部141s内には、ヒータ部130Aのヒータ後端部130Akが圧入され、ヒータ部130Aに設けられた電極取出部137Aが第1リング部材141に内側から当接して、両者が電気的に接続している。
一方、第1リング部材141のリング後端部141k内には、中軸120Aの中軸先端部120Asが圧入され、第1リング部材141と中軸120Aとが電気的に接続している。さらに、第1リング部材141と中軸120Aとは、溶接により互いに固着されている。
第2リング部材142は、ステンレスからなり、軸線方向HJ1に自身のリング先端部142sからリング後端部142kまで延びる筒状をなす。このうち、リング先端部142sは、薄肉の円筒状とされ、リング後端部142kは、これよりも厚肉で外径が径大とされている。
そして、この第2リング部材142内には、ヒータ部130Aのうち、電極取出部138Aが露出する部位が、第2リング部材142のリング先端部142sに位置するように圧入され、この電極取出部138Aが第2リング部材142に内側から当接して、両者が電気的に接続している。
一方、第2リング部材142の径大とされたリング後端部142kは、後述する伝達スリーブ220のスリーブ先端部220sに溶接され、伝達スリーブに結合されている。
また、ヒータ部130Aは、その先端側GS1の部位が、ステンレスからなる円筒状のヒータ外筒155内に圧入されている。このヒータ外筒155は、ヒータ部130Aに外嵌して、このヒータ部130Aを保持すると共に、外表面がセラミックにより形成されているヒータ部130Aを、次述するメンブレン170に接合するための部材である。
メンブレン170は、ステンレス鋼やニッケル合金等によって形成された軸線方向HJ1に弾性を有する部材であり、その先端部170sが径小とされ、後端部170kが径大とされた二段円筒状をなす。この径大の後端部170kは、内筒190の先端部190sに溶接され、一方、径小の先端部170sは、ヒータ部130Aに外嵌するヒータ外筒155の外周面に溶接されている。
これにより、ヒータ部130Aに外嵌したヒータ外筒155と内筒190の先端部190sが、メンブレン170で弾性的に連結されることで、ヒータ部130Aは、ハウジング100Aに保持され、かつ、このメンブレン170の弾性によって、軸線方向HJ1の変位が許容されている。そして、次述するように、ヒータ部130Aの軸線方向HJ1の変位は、ヒータ部130Aと一体とされた伝達スリーブ220によってセンサ本体210に伝達される。
圧力センサ200のうち、伝達スリーブ220は、金属材によって形成された略円筒状をなし、その先端のスリーブ先端部220sで、ヒータ部130Aに外嵌する第2リング部材142に溶接されて、この第2リング部材142と一体とされている。これにより、伝達スリーブ220は、ヒータ部130Aと共に、ハウジング100Aの内筒190内に収容され、第2リング部材142を介して、ヒータ部130Aの電極取出部138Aに導通している。また、伝達スリーブ220の後端部220kは、環状をなすセンサ本体210の内周部211に結合されている。ヒータ部130Aの軸線方向HJ1の変位は、この伝達スリーブ220によってセンサ本体210の内周部211に伝達される。
なお、第2リング部材142並びに、圧力センサ200の伝達スリーブ220、センサ本体210及び内筒本体192を介して、ハウジング100Aとヒータ部130Aの電極取出部138Aとが電気的に導通している。
センサ本体210は、ピエゾ抵抗型素子からなる圧力検知素子215を、金属材からなる環状のダイアフラム体214のダイアフラム部213上に配設してなる。このセンサ本体210は、伝達スリーブ220によって伝達されたヒータ部130Aの軸線方向HJ1の変位によってダイアフラム体214のダイアフラム部213を撓ませることにより燃焼圧の検知を行う。
センサ本体210のダイアフラム体214は、略円筒状をなす内周部211及び外周部212とこれらの間に架け渡され薄肉とされた環状のダイアフラム部213とからなり、内周部211の内側には、中軸120Aが環状の隙間を介して挿通されている。また、外周部212は内筒190の後端部190kに結合され、内周部211は伝達スリーブ220の後端部220kに結合されている。
また、環状のダイアフラム部213上には、複数の圧力検知素子215が配設されている。この圧力検知素子215は、ダイアフラム部213が撓むことにより歪み、その歪みの度合いによって自身の抵抗値が変化する。
また、ハウジング100Aのうち主体金具110Aの金具後端部110Akには、筒状をなす金属製の端子カバー260が溶接され、この端子カバー260の内側には、端子アセンブリ250が、その一部を端子カバー260の後端部260kから軸線方向HJ1後端側GK1に突出させた状態で収容されている。
端子アセンブリ250の内側には、ヒータ部130A及び中軸120Aに導通する外部接続端子160Aが配置されている。この外部接続端子160Aには、接続孔160Ahが形成されており、図1に示すように、給電線310Aを含む給電ケーブル300Aが接続される。
なお、本実施形態1及び後述する実施形態2〜4において、ヒータ部130Aが、本発明における第1ヒータ部に相当し、ハウジング100Aが第1ハウジングに相当する。また、外部接続端子160Aが第1外部端子に相当し、中軸120Aが第1中軸に相当する。さらに、給電線310Aが第1給電線に相当し、給電ケーブル300Aが第1給電ケーブルに相当する。
また、外部接続端子160A(第1外部端子)、中軸120A(第1中軸)及び第1リング部材141で、給電線310A(第1給電線)をヒータ部130A(第1ヒータ部)に導通する第1導通部材40Aをなしている(図6,図9,図12,図15参照)。また、センサ付きプラグ20Aから第1導通部材40Aを除いた、ヒータ部130A(第1ヒータ部)を含む部分(具体的には、ヒータ部130Aの他に、ハウジング100A、圧力センサ200等を含む)を、第1残部50Aとする。
前述したように、図1に示す本実施形態1の内燃機関1では、エンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aに燃焼圧を検知する圧力センサ200を有するセンサ付きプラグ20Aが装着され、残りの3つの気筒11B〜11Dに圧力センサを有しないプラグ20Bが装着されている。
そして、これらセンサ付きプラグ20A及びプラグ20Bは、図5に示すように、給電線310A,310Bを含む給電ケーブル300A,300Bを介して、グロープラグ制御ユニット(GCU)の4つの駆動回路DV1〜4にそれぞれ接続されている。また、GCUは、車両に搭載された外部電源BT(バッテリ)に接続されており、外部電源BTからの電圧が、駆動回路DV1〜4によってパルス駆動されて、GCUの外部に出力される。さらに、センサ付きプラグ20A及びプラグ20Bのハウジング100A,100Bは、エンジン本体10を通じて、基準電位GNDに接続されている。
これにより、外部電源BTからの電力が、駆動回路DV1〜4及び給電ケーブル300A,300Bの給電線310A,310Bを通じて、センサ付きプラグ20A及びプラグ20Bのヒータ部130A,130Bに供給される。
なお、図1及び図5に示すように、センサ付きプラグ20Aと、これに接続された給電ケーブル300Aと合わせたものを第1構造体30Aとし、また、プラグ20Bと、これに接続された給電ケーブル300Bとを合わせたものを第2構造体30Bとする。第1構造体30A及び第2構造体30Bは、それぞれ本発明における第1部及び第2部に相当する。
また、GCUは、図5に示すように、電子制御ユニット(ECU)に接続されており、このECUからの指令に基づいて、各グロープラグへの通電を制御する。ただし、ECUからの指令は1つであるため、GCUは、4つの駆動回路DV1〜4について、それぞれの制御を変えず、これら4つの駆動回路DV1〜4を同一のデューティ比で、パルス駆動する。このため、4つの気筒11A〜11Dに装着されたセンサ付きプラグ20A及びプラグ20Bと、これらに接続された給電ケーブル300A,300Bとを合わせた第1構造体30A及び第2構造体30Bには、駆動回路DV1〜4から、同一のデューティ比(実効印加電圧)による通電が行われる。
なお、図6,図9,図12及び図15に示すように、センサ付きプラグ20A及びプラグ20Bと、これらに接続された給電ケーブル300A,300B(給電線310A,310B)は、電気的には、複数の抵抗が直列接続されたものであり、駆動回路DV1〜4により、これら各部の抵抗に電圧が印加される。
本実施形態1及び後述する実施形態2〜4において、駆動回路DV1により、センサ付きプラグ20A及び給電ケーブル300Aからなる第1構造体30A(第1部)全体に印加する電圧を第1部電圧Vc1とする。また、駆動回路DV2(DV3,DV4)により、プラグ20B及び給電ケーブル300Bからなる第2構造体30B(第2部)全体に印加する電圧を第2部電圧Vc2とする。
なお、第1部電圧Vc1は、センサ付きプラグ20Aのハウジング100Aが接続される基準電位GNDから見た、給電線310Aに接続する駆動回路DV1の出力端の電圧である。また、第2部電圧Vc2は、プラグ20Bのハウジング100Bが接続される基準電位GNDから見た、給電線310Bに接続する駆動回路DV2(DV3,DV4)の出力端の電圧である。
また、センサ付きプラグ20A全体に印加する電圧を第1プラグ電圧Vp1とし、プラグ20B全体に印加する電圧を第2プラグ電圧Vp2とする。
なお、第1プラグ電圧Vp1は、センサ付きプラグ20Aのハウジング100Aが接続される基準電位GNDから見た、外部接続端子160Aに印加する電圧である。また、第2プラグ電圧Vp2は、プラグ20Bのハウジング100Bが接続される基準電位GNDから見た、ピン端子160Bに印加する電圧である。
さらに、センサ付きプラグ20A全体に第1プラグ電圧Vp1を印加したときに、センサ付きプラグ20Aから第1導通部材40Aを除いた、第1残部50Aに印加される電圧を第1残部電圧Vz1とする。また、プラグ20B全体に第2プラグ電圧Vp2を印加したときに、プラグ20Bから第2導通部材40Bを除いた、第2残部50Bに印加される電圧を第2残部電圧Vz2とする。
なお、第1残部電圧Vz1は、センサ付きプラグ20Aのハウジング100Aが接続される基準電位GNDに対して、外部接続端子160Aに第1プラグ電圧Vp1を印加したときに、第1リング部材141で見た電圧に相当する。また、第2残部電圧Vz2は、プラグ20Bのハウジング100Bが接続される基準電位GNDに対して、ピン端子160Bに第2プラグ電圧Vp2を印加したときに、リング部材140で見た電圧に相当する。第1残部電圧Vz1及び第2残部電圧Vz2は、第1プラグ電圧Vp1及び第2プラグ電圧Vp2と予め測定した各部の抵抗値との関係から理論的に求めることができるほか、例えば、ハウジング100A,100Bに穴を空けて、基準電位GNDに対する第1リング部材141及びリング部材140の電圧を測定することで、実測が可能である。
また、本実施形態1では、図6に示すように、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値をRB1aとし、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値をRB2aとする。
また、センサ付きプラグ20Aのうち、外部接続端子160A(第1外部端子)、中軸120A(第1中軸)及び第1リング部材141からなる第1導通部材40Aの抵抗値をRA1aとし、プラグ20Bのうち、ピン端子160B(第2外部端子)、中軸120B(第2中軸)及びリング部材140からなる第2導通部材40Bの抵抗値をRA2aとする。
また、第1導通部材40Aの抵抗値RA1aのうち、中軸120A(第1中軸)の抵抗値をRA1aaとし、それ以外の外部接続端子160A及び第1リング部材141の抵抗値をRA1abとする。また、第2導通部材40Bの抵抗値RA2aのうち、中軸120B(第2中軸)の抵抗値をRA2aaとし、それ以外のピン端子160B及びリング部材140の抵抗値をRAabとする。
ところで、センサ付きプラグ20Aとプラグ20Bとの構造の違いから、センサ付きプラグ20Aのヒータ部130A(第1ヒータ部)と、プラグ20Bのヒータ部130B(第2ヒータ部)は、いずれもセラミックヒータである点では共通しているが、それぞれの通電特性が互いに異なっている。
具体的には、センサ付きプラグ20Aとプラグ20Bとは、これらに印加する第1プラグ電圧Vp1及び第2プラグ電圧Vp2(図6参照)とヒータ部130A,130Bの発熱温度である第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図7のグラフに示す関係を有する。なお、この図7における第1ヒータ温度T1及び第2ヒータ温度T2は、放射温度計を用いて測定する。
図7において実線で示す第1プラグ回帰直線Lp1は、センサ付きプラグ20A全体に印加する第1プラグ電圧Vp1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線である。また、図7において破線で示す第2プラグ回帰直線Lp2は、プラグ20B全体に印加する第2プラグ電圧Vp2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図7に示すように、第1プラグ回帰直線Lp1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1プラグ電圧Vp1を、第1電圧Vp1xとする。また、第2プラグ回帰直線Lp2上において、第2ヒータ温度T2が同一の温度Txとなる第2プラグ電圧Vp2を、第2電圧Vp2xとする。そして、温度Txにおける第1電圧Vp1xと第2電圧Vp2xとの差を、1−2プラグ電圧差(Vp1x−Vp2x)とする。すると、第1プラグ回帰直線Lp1と第2プラグ回帰直線Lp2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、第2電圧Vp2xが第1電圧Vp1xよりも低い関係(Vp2x<Vp1x)を有している。
すなわち、センサ付きプラグ20Aとプラグ20Bとは、図7の第1プラグ回帰直線Lp1及び第2プラグ回帰直線Lp2に示すように、各グロープラグに印加する電圧(第1プラグ電圧Vp1及び第2プラグ電圧Vp2)とヒータ部の発熱温度(第1ヒータ温度T1及び第2ヒータ温度T2)との関係で示されるヒータ部の通電特性が一致していない。かつ、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度にする場合、必要となる第2プラグ電圧Vp2は第1プラグ電圧Vp1よりも低い。換言すると、各グロープラグに印加する第1プラグ電圧Vp1と第2プラグ電圧Vp2とを等しくすると、第2ヒータ温度T2が第1ヒータ温度T1よりも高くなる。
このため、駆動回路DV1〜4(図5参照)により、センサ付きプラグ20A及びプラグ20Bに同一のデューティ比(実効電圧)を印加して通電を行うと、センサ付きプラグ20Aのヒータ部130A(第1ヒータ部)と、プラグ20Bのヒータ部130B(第2ヒータ部)の通電特性の違いによって、第1ヒータ温度T1と第2ヒータ温度T2とに差異が生じ(T2>T1となり)、気筒間でグロープラグ20A,20Bによる始動補助の作用に違いを生じやすい。
そこで、本実施形態1の内燃機関1では、図6に示すように、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値RB2aを、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値RB1aよりも大きくしてある(RB2a>RB1a)。
具体的には、給電線310A(第1給電線)の材料が銅線であるのに対し、給電線310B(第2給電線)の材料は、銅線よりも比抵抗(電気抵抗率)が高いニッケル線を用いている。さらに、給電線310B(第2給電線)は、給電線310A(第1給電線)よりも断面積が小さく、かつ、全長が長くされている。
なお、本実施形態1では、中軸120A(第1中軸)及び中軸120B(第2中軸)の材料は、いずれも炭素鋼であり、後述する実施形態2とは異なり、中軸120Aの抵抗値RA1aaと中軸120Bの抵抗値RA2aa、及び、第1導通部材40Aの抵抗値RA1aと第2導通部材40Bの抵抗値RA2aは、いずれもほぼ同じである。
これにより、本実施形態1の内燃機関1では、第1構造体30A(第1部)と第2構造体30B(第2部)とは、これら全体に印加する第1部電圧Vc1及び第2部電圧Vc2(図6参照)と第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図8のグラフに示す関係となっている。
図8において実線で示す第1部回帰直線Lc1は、第1構造体30A(第1部)全体に印加する第1部電圧Vc1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線である。また、図8において破線で示す第2部回帰直線Lc2は、第2構造体30B(第2部)全体に印加する第2部電圧Vc2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図8に示すように、第1部回帰直線Lc1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1部電圧Vc1を、第3電圧Vc1xとする。また、第2部回帰直線Lc2上において、第2ヒータ温度T2が同一の温度Txとなる第2部電圧Vc2を、第4電圧Vc2xとする。そして、温度Txにおける第3電圧Vc1xと第4電圧Vc2xとの差の絶対値を、全体電圧偏差|Vc1x−Vc2x|とする。
すると、第1部回帰直線Lc1と第2部回帰直線Lc2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、全体電圧偏差|Vc1x−Vc2x|が、図7の1−2プラグ電圧差(Vp1x−Vp2x)よりも小さい関係にされている。
つまり、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度とするときに要する第1部電圧Vc1と第2部電圧Vc2との偏差(両者の差の絶対値)は、第1プラグ電圧Vp1と第2プラグ電圧Vp2との差よりも小さくなっている。
このように、本実施形態1の内燃機関1では、給電線310B(第2給電線)の抵抗値RB2aを、給電線310A(第1給電線)の抵抗値RB1aよりも大きくしている。そして、これにより、各グロープラグ20A,20B単体についてのヒータ部130A,130Bの通電特性の関係に比べて、センサ付きプラグ20A及び給電ケーブル300A(第1給電ケーブル)からなる第1構造体30A(第1部)全体についての通電特性(第1部電圧Vc1と第1ヒータ温度T1との関係)と、プラグ20B及び給電ケーブル300B(第2給電ケーブル)からなる第2構造体30B(第2部)全体についての通電特性(第2部電圧Vc2と第2ヒータ温度T2との関係)とを近付けている。
かくして、駆動回路DV1〜4により、給電ケーブル300A,300B及び装着されたグロープラグ20A,20Bに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関1が得られる。
(実施形態2)
次いで、本発明の第2の実施の形態を、図面を参照しつつ説明する。図1及び図5に示すように、本実施形態2に係る内燃機関1Aも、上述の実施形態1の内燃機関1と同様に、エンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aにセンサ付きプラグ20Aが装着され、残りの3つの気筒11B〜11Dに圧力センサを有しないプラグ20Bが装着されている。そして、これらセンサ付きプラグ20A及びプラグ20Bは、給電線310A,310Bを含む給電ケーブル300A,300Bを介して、GCUの4つの駆動回路DV1〜4にそれぞれ接続されている。
そして、実施形態1と同様、センサ付きプラグ20A及びプラグ20Bと、これらに接続された給電ケーブル300A,300Bとを合わせた第1構造体30A及び第2構造体30Bには、駆動回路DV1〜4から、同一のデューティ比(実効印加電圧)による通電が行われる。
なお、本実施形態2では、図9に示すように、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値をRB1bとし、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値をRB2bとする。
また、センサ付きプラグ20Aのうち、外部接続端子160A(第1外部端子)、中軸120A(第1中軸)及び第1リング部材141からなる第1導通部材40Aの抵抗値をRA1bとし、プラグ20Bのうち、ピン端子160B(第2外部端子)、中軸120B(第2中軸)及びリング部材140からなる第2導通部材40Bの抵抗値をRA2bとする。
また、第1導通部材40Aの抵抗値RA1bのうち、中軸120A(第1中軸)の抵抗値をRA1baとし、それ以外の外部接続端子160A及び第1リング部材141の抵抗値をRA1bbとする。また、第2導通部材40Bの抵抗値RA2bのうち、中軸120B(第2中軸)の抵抗値をRA2baとし、それ以外のピン端子160B及びリング部材140の抵抗値をRA2bbとする。
そして、本実施形態2の内燃機関1Aでは、センサ付きプラグ20Aとプラグ20Bとは、第1残部50A及び第2残部50Bに印加される第1残部電圧Vz1及び第2残部電圧Vz2(図9参照)とヒータ部130A,130Bの発熱温度である第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図10のグラフに示す関係を有する。なお、この図10における第1残部電圧Vz1及び第2残部電圧Vz2は、ハウジング100A,100Bに実験用に穴を空け、基準電位GNDに対する第1リング部材141及びリング部材140の電位を測定して得る。また、第1ヒータ温度T1及び第2ヒータ温度T2は、ヒータ部130A,130Bの温度を放射温度計を用いて測定したものである。
図10において実線で示す第1残部回帰直線Lz1は、第1残部電圧Vz1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線である。また、図10において破線で示す第2残部回帰直線Lz2は、第2残部電圧Vz2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図10に示すように、第1残部回帰直線Lz1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1残部電圧Vz1を、第1電圧Vz1xとする。また、第2残部回帰直線Lz2上において、第2ヒータ温度T2が同一の温度Txとなる第2残部電圧Vz2を、第2電圧Vz2xとする。そして、温度Txにおける第1電圧Vz1xと第2電圧Vz2xとの差を、1−2残部電圧差(Vz1x−Vz2x)とする。すると、第1残部回帰直線Lz1と第2残部回帰直線Lz2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、第2電圧Vz2xが第1電圧Vz1xよりも低い関係(Vz2x<Vz1x)を有している。
すなわち、センサ付きプラグ20Aとプラグ20Bとは、図10の第1残部回帰直線Lz1及び第2残部回帰直線Lz2に示すように、第1残部50Aと第2残部50Bとを比較したとき、第1残部50Aについてのヒータ部130A(第1ヒータ部)の通電特性(第1残部電圧Vz1と第1ヒータ温度T1との関係)と第2残部50Bについてのヒータ部130B(第2ヒータ部)の通電特性(第2残部電圧Vz2と第2ヒータ温度T2との関係)が一致していない。かつ、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度にする場合、必要となる第2残部電圧Vz2は第1残部電圧Vz1よりも低い。換言すると、第1残部電圧Vz1と第2残部電圧Vz2とを等しくすると、第2ヒータ温度T2が第1ヒータ温度T1よりも高くなる。
このため、駆動回路DV1〜4(図5参照)により、センサ付きプラグ20A及びプラグ20Bに同一のデューティ比(実効電圧)を印加して通電を行うと、センサ付きプラグ20Aのヒータ部130A(第1ヒータ部)と、プラグ20Bのヒータ部130B(第2ヒータ部)の通電特性の違いによって、第1ヒータ温度T1と第2ヒータ温度T2とに差異が生じ(T2>T1となり)、気筒間でグロープラグ20A,20Bによる始動補助の作用に違いを生じやすい。
そこで、本実施形態2の内燃機関1Aでは、図9に示すように、第2導通部材40Bの抵抗値RA2bと給電線310B(第2給電線)の抵抗値RB2bとの和(=RA2b+RB2b)を、第1導通部材40Aの抵抗値RA1bと給電線310A(第1給電線)の抵抗値RB1bとの和(=RA1b+RB1b)よりも大きくしてある(RA2b+RB2b>RA1b+RB1b)。具体的には、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくする(RB2b>RB1b)ほか、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくしてある(RA2ba>RA1ba)。つまり、第2導通部材40Bの抵抗値RA2bも、第1導通部材40Aの抵抗値RA1bよりも大きくしてある(RA2b>RA1b)。
さらに具体的には、給電線310A(第1給電線)の材料が銅線であるのに対し、給電線310B(第2給電線)の材料は、実施形態1と同様に、銅線よりも比抵抗(電気抵抗率)が高いニッケル線を用いている。さらに、給電線310B(第2給電線)は、給電線310A(第1給電線)よりも断面積が小さく、かつ、全長が長くされている。
また、実施形態1では、中軸120A(第1中軸)及び中軸120B(第2中軸)の材料は、いずれも炭素鋼であったが、本実施形態2では、中軸120A(第1中軸)の材料が炭素鋼であるのに対し、中軸120B(第2中軸)の材料は、炭素鋼よりも比抵抗(電気抵抗率)が高いステンレス鋼を用いている。
これにより、本実施形態2の内燃機関1Aでは、第1構造体30A(第1部)と第2構造体30B(第2部)とは、これら全体に印加する第1部電圧Vc1及び第2部電圧Vc2(図9参照)と第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図11のグラフに示す関係となっている。
図11において実線で示す第1部回帰直線Lc1は、第1構造体30A(第1部)全体に印加する第1部電圧Vc1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線である。また、図11において破線で示す第2部回帰直線Lc2は、第2構造体30B(第2部)全体に印加する第2部電圧Vc2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図11に示すように、第1部回帰直線Lc1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1部電圧Vc1を、第3電圧Vc1xとする。また、第2部回帰直線Lc2上において、第2ヒータ温度T2が同一の温度Txとなる第2部電圧Vc2を、第4電圧Vc2xとする。そして、温度Txにおける第3電圧Vc1xと第4電圧Vc2xとの差の絶対値を、全体電圧偏差|Vc1x−Vc2x|とする。
すると、第1部回帰直線Lc1と第2部回帰直線Lc2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、全体電圧偏差|Vc1x−Vc2x|が、図10の1−2残部電圧差(Vz1x−Vz2x)よりも小さい関係にされている。
つまり、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度とするときに要する第1部電圧Vc1と第2部電圧Vc2との偏差(両者の差の絶対値)は、第1残部電圧Vz1と第2残部電圧Vz2との差よりも小さくなっている。
このように、本実施形態2の内燃機関1Aでは、第2導通部材40Bの抵抗値RA2bと給電線310B(第2給電線)の抵抗値RB2bとの和(=RA2b+RB2b)を、第1導通部材40Aの抵抗値RA1bと給電線310A(第1給電線)の抵抗値RB1bとの和(=RA1b+RB1b)よりも大きくしている。そして、これにより、第1残部50A及び第2残部50Bについてのヒータ部130A,130Bの通電特性の関係に比べて、センサ付きプラグ20A及び給電ケーブル300A(第1給電ケーブル)からなる第1構造体30A(第1部)の全体についての通電特性(第1部電圧Vc1と第1ヒータ温度T1との関係)と、プラグ20B及び給電ケーブル300B(第2給電ケーブル)からなる第2構造体30B(第2部)の全体についての通電特性(第2部電圧Vc2と第2ヒータ温度T2との関係)とを近付けている。
かくして、駆動回路DV1〜4により、給電ケーブル300A,300B及び装着されたグロープラグ20A,20Bに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関1Aが得られる。
加えて、本実施形態2の内燃機関1Aでは、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくするほか、第2導通部材40Bの抵抗値RA2bを第1導通部材40Aの抵抗値RA1bよりも大きくすることによっても、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けることができる。
具体的には、本実施形態2の内燃機関1Aでは、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくするほか、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくしている。
中軸120A及び中軸120Bは、それぞれ第1導通部材40A及び第2導通部材40Bの主要部分をなし、ある程度の長さと太さを有しているので、両者の抵抗値RA1ba,RA2baに差を設けることが比較的容易である。
このため、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けるにあたって、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくするだけでは十分でない場合に、これに加えて、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくすることで、通電特性をより近付けることができる。
なお、本実施形態2の内燃機関1Aでは、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくするほか、さらに、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくした。
しかし、第2導通部材40Bの抵抗値RA2bと給電線310B(第2給電線)の抵抗値RB2bとの和(=RA2b+RB2b)を、第1導通部材40Aの抵抗値RA1bと給電線310A(第1給電線)の抵抗値RB1bとの和(=RA1b+RB1b)よりも大きくする手法は、これに限られない。具体的には、上述のようにするほか、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくする(RA2ba>RA1ba)、及び、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくする(RB2b>RB1b)手法が挙げられる。
したがって、給電線310B(第2給電線)の抵抗値RB2bを給電線310A(第1給電線)の抵抗値RB1bよりも大きくするほか、これに代えて、または、これに加えて、中軸120B(第2中軸)の抵抗値RA2baを中軸120A(第1中軸)の抵抗値RA1baよりも大きくすることでも、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けることができる。
なお、このうち、給電線310B(第2給電線)の抵抗値RB2bを、給電線310A(第1給電線)の抵抗値RB1bよりも大きくすることのみ行った場合は、図6に示した実施形態1と同様の構成となる。
(実施形態3)
次いで、本発明の第3の実施の形態を、図面を参照しつつ説明する。図1及び図5に示すように、本実施形態3に係る内燃機関1Bも、実施形態1,2の内燃機関1,1Aと同様に、エンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aにセンサ付きプラグ20Aが装着され、残りの3つの気筒11B〜11Dに圧力センサを有しないプラグ20Bが装着されている。そして、これらセンサ付きプラグ20A及びプラグ20Bは、給電線310A,310Bを含む給電ケーブル300A,300Bを介して、GCUの4つの駆動回路DV1〜4にそれぞれ接続されている。
そして、実施形態1,2と同様、センサ付きプラグ20A及びプラグ20Bと、これらに接続された給電ケーブル300A,300Bとを合わせた第1構造体30A及び第2構造体30Bには、駆動回路DV1〜4から、同一のデューティ比(実効印加電圧)による通電が行われる。
なお、本実施形態3では、図12に示すように、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値をRB1cとし、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値をRB2cとする。
また、センサ付きプラグ20Aのうち、外部接続端子160A(第1外部端子)、中軸120A(第1中軸)及び第1リング部材141からなる第1導通部材40Aの抵抗値をRA1cとし、プラグ20Bのうち、ピン端子160B(第2外部端子)、中軸120B(第2中軸)及びリング部材140からなる第2導通部材40Bの抵抗値をRA2cとする。
また、第1導通部材40Aの抵抗値RA1cのうち、中軸120A(第1中軸)の抵抗値をRA1caとし、それ以外の外部接続端子160A及び第1リング部材141の抵抗値をRA1cbとする。また、第2導通部材40Bの抵抗値RA2cのうち、中軸120B(第2中軸)の抵抗値をRA2caとし、それ以外のピン端子160B及びリング部材140の抵抗値をRA2cbとする。
そして、本実施形態3の内燃機関1Bでは、センサ付きプラグ20Aとプラグ20Bとは、これらに印加する第1プラグ電圧Vp1及び第2プラグ電圧Vp2(図12参照)とヒータ部130A,130Bの発熱温度である第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図13のグラフに示す関係を有する。
図13において実線で示す第1プラグ回帰直線Lp1は、センサ付きプラグ20A全体に印加する第1プラグ電圧Vp1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線である。また、図13において破線で示す第2プラグ回帰直線Lp2は、プラグ20B全体に印加する第2プラグ電圧Vp2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図13に示すように、第1プラグ回帰直線Lp1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1プラグ電圧Vp1を、第1電圧Vp1xとする。また、第2プラグ回帰直線Lp2上において、第2ヒータ温度T2が同一の温度Txとなる第2プラグ電圧Vp2を、第2電圧Vp2xとする。そして、温度Txにおける第2電圧Vp2xと第1電圧Vp1xとの差を、2−1プラグ電圧差(Vp2x−Vp1x)とする。すると、第1プラグ回帰直線Lp1と第2プラグ回帰直線Lp2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、第2電圧Vp2xが第1電圧Vp1xよりも高い関係(Vp2x>Vp1x)を有している。
すなわち、センサ付きプラグ20Aとプラグ20Bとは、図13の第1プラグ回帰直線Lp1及び第2プラグ回帰直線Lp2に示すように、各グロープラグに印加する電圧(第1プラグ電圧Vp1及び第2プラグ電圧Vp2)とヒータ部の発熱温度(第1ヒータ温度T1及び第2ヒータ温度T2)との関係で示されるヒータ部の通電特性が一致していない。かつ、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度にする場合、必要となる第2プラグ電圧Vp2は第1プラグ電圧Vp1よりも高い。換言すると、各グロープラグに印加する第1プラグ電圧Vp1と第2プラグ電圧Vp2とを等しくすると、第2ヒータ温度T2が第1ヒータ温度T1よりも低くなる。
このため、駆動回路DV1〜4(図5参照)により、センサ付きプラグ20A及びプラグ20Bに同一のデューティ比(実効電圧)を印加して通電を行うと、センサ付きプラグ20Aのヒータ部130A(第1ヒータ部)と、プラグ20Bのヒータ部130B(第2ヒータ部)の通電特性の違いによって、第1ヒータ温度T1と第2ヒータ温度T2とに差異が生じ(T2<T1となり)、気筒間でグロープラグ20A,20Bによる始動補助の作用に違いを生じやすい。
そこで、本実施形態3の内燃機関1Bでは、図12に示すように、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値RB2cを、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値RB1cよりも小さくしてある(RB2c<RB1c)。
具体的には、給電線310B(第2給電線)の材料が銅線であるのに対し、給電線310A(第1給電線)の材料は、銅線よりも比抵抗(電気抵抗率)が高いニッケル線を用いている。さらに、給電線310A(第1給電線)は、給電線310B(第2給電線)よりも断面積が小さく、かつ、全長が長くされている。
なお、本実施形態3では、中軸120A(第1中軸)及び中軸120B(第2中軸)の材料は、いずれも炭素鋼であり、後述する実施形態4とは異なり、中軸120Aの抵抗値RA1caと中軸120Bの抵抗値RA2ca、及び、第1導通部材40Aの抵抗値RA1cと第2導通部材40Bの抵抗値RA2cは、いずれもほぼ同じである。
これにより、本実施形態3の内燃機関1Bでは、第1構造体30A(第1部)と第2構造体30B(第2部)とは、これら全体に印加する第1部電圧Vc1及び第2部電圧Vc2(図12参照)と第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図14のグラフに示す関係となっている。
図14において実線で示す第1部回帰直線Lc1は、第1構造体30A(第1部)全体に印加する第1部電圧Vc1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線である。また、図14において破線で示す第2部回帰直線Lc2は、第2構造体30B(第2部)全体に印加する第2部電圧Vc2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図14に示すように、第1部回帰直線Lc1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1部電圧Vc1を、第3電圧Vc1xとする。また、第2部回帰直線Lc2上において、第2ヒータ温度T2が同一の温度Txとなる第2部電圧Vc2を、第4電圧Vc2xとする。そして、温度Txにおける第4電圧Vc2xと第3電圧Vc1xとの差の絶対値を、全体電圧偏差|Vc2x−Vc1x|とする。
すると、第1部回帰直線Lc1と第2部回帰直線Lc2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、全体電圧偏差|Vc2x−Vc1x|が、図13の2−1プラグ電圧差(Vp2x−Vp1x)よりも小さい関係にされている。
つまり、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度とするときに要する第2部電圧Vc2と第1部電圧Vc1との偏差(両者の差の絶対値)は、第2プラグ電圧Vp2と第1プラグ電圧Vp1との差よりも小さくなっている。
このように、本実施形態3の内燃機関1Bでは、給電線310B(第2給電線)の抵抗値RB2cを、給電線310A(第1給電線)の抵抗値RB1cよりも小さくしている。そして、これにより、各グロープラグ20A,20B単体についてのヒータ部130A,130Bの通電特性の関係に比べて、センサ付きプラグ20A及び給電ケーブル300A(第1給電ケーブル)からなる第1構造体30A(第1部)全体についての通電特性(第1部電圧Vc1と第1ヒータ温度T1との関係)と、プラグ20B及び給電ケーブル300B(第2給電ケーブル)からなる第2構造体30B(第2部)全体についての通電特性(第2部電圧Vc2と第2ヒータ温度T2との関係)とを近付けている。
かくして、駆動回路DV1〜4により、給電ケーブル300A,300B及び装着されたグロープラグ20A,20Bに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関1Bが得られる。
(実施形態4)
次いで、本発明の第4の実施の形態を、図面を参照しつつ説明する。図1及び図5に示すように、本実施形態4に係る内燃機関1Cも、実施形態1〜3の内燃機関1,1A,1Bと同様に、エンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aにセンサ付きプラグ20Aが装着され、残りの3つの気筒11B〜11Dに圧力センサを有しないプラグ20Bが装着されている。そして、これらセンサ付きプラグ20A及びプラグ20Bは、給電線310A,310Bを含む給電ケーブル300A,300Bを介して、GCUの4つの駆動回路DV1〜4にそれぞれ接続されている。
そして、実施形態1〜3と同様、センサ付きプラグ20A及びプラグ20Bと、これらに接続された給電ケーブル300A,300Bとを合わせた第1構造体30A及び第2構造体30Bには、駆動回路DV1〜4から、同一のデューティ比(実効印加電圧)による通電が行われる。
なお、本実施形態4では、図15に示すように、センサ付きプラグ20Aに接続される給電線310A(第1給電線)の抵抗値をRB1dとし、プラグ20Bに接続される給電線310B(第2給電線)の抵抗値をRB2dとする。
また、センサ付きプラグ20Aのうち、外部接続端子160A(第1外部端子)、中軸120A(第1中軸)及び第1リング部材141からなる第1導通部材40Aの抵抗値をRA1dとし、プラグ20Bのうち、ピン端子160B(第2外部端子)、中軸120B(第2中軸)及びリング部材140からなる第2導通部材40Bの抵抗値をRA2dとする。
また、第1導通部材40Aの抵抗値RA1dのうち、中軸120A(第1中軸)の抵抗値をRA1daとし、それ以外の外部接続端子160A及び第1リング部材141の抵抗値をRA1dbとする。また、第2導通部材40Bの抵抗値RA2dのうち、中軸120B(第2中軸)の抵抗値をRA2daとし、それ以外のピン端子160B及びリング部材140の抵抗値をRA2dbとする。
そして、本実施形態4の内燃機関1Cでは、センサ付きプラグ20Aとプラグ20Bとは、第1残部50A及び第2残部50Bに印加される第1残部電圧Vz1及び第2残部電圧Vz2(図15参照)とヒータ部130A,130Bの発熱温度である第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図16のグラフに示す関係を有する。なお、この図16における第1残部電圧Vz1及び第2残部電圧Vz2は、ハウジング100A,100Bに実験用に穴を空け、基準電位GNDに対する第1リング部材141及びリング部材140の電位を測定して得たものである。
図16において実線で示す第1残部回帰直線Lz1は、第1残部電圧Vz1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線である。また、図16において破線で示す第2残部回帰直線Lz2は、第2残部電圧Vz2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図16に示すように、第1残部回帰直線Lz1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1残部電圧Vz1を、第1電圧Vz1xとする。また、第2残部回帰直線Lz2上において、第2ヒータ温度T2が同一の温度Txとなる第2残部電圧Vz2を、第2電圧Vz2xとする。そして、温度Txにおける第2電圧Vz2xと第1電圧Vz1xとの差を、2−1残部電圧差(Vz2x−Vz1x)とする。すると、第1残部回帰直線Lz1と第2残部回帰直線Lz2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、第2電圧Vz2xが第1電圧Vz1xよりも高い関係(Vz2x>Vz1x)を有している。
すなわち、センサ付きプラグ20Aとプラグ20Bとは、図16の第1残部回帰直線Lz1及び第2残部回帰直線Lz2に示すように、第1残部50Aと第2残部50Bとを比較したとき、第1残部50Aについてのヒータ部130A(第1ヒータ部)の通電特性(第1残部電圧Vz1と第1ヒータ温度T1との関係)と第2残部50Bについてのヒータ部130B(第2ヒータ部)の通電特性(第2残部電圧Vz2と第2ヒータ温度T2との関係)が一致していない。かつ、第1ヒータ温度T1と第2ヒータ温度T2とを同じ温度にする場合、必要となる第2残部電圧Vz2は第1残部電圧Vz1よりも高い。換言すると、第1残部電圧Vz1と第2残部電圧Vz2とを等しくすると、第2ヒータ温度T2が第1ヒータ温度T1よりも低くなる。
このため、駆動回路DV1〜4(図5参照)により、センサ付きプラグ20A及びプラグ20Bに同一のデューティ比(実効電圧)を印加して通電を行うと、センサ付きプラグ20Aのヒータ部130A(第1ヒータ部)と、プラグ20Bのヒータ部130B(第2ヒータ部)の通電特性の違いによって、第1ヒータ温度T1と第2ヒータ温度T2とに差異が生じ(T2<T1となり)、気筒間でグロープラグ20A,20Bによる始動補助の作用に違いを生じやすい。
そこで、本実施形態4の内燃機関1Cでは、図15に示すように、第2導通部材40Bの抵抗値RA2dと給電線310B(第2給電線)の抵抗値RB2dとの和(=RA2d+RB2d)を、第1導通部材40Aの抵抗値RA1dと給電線310A(第1給電線)の抵抗値RB1dとの和(=RA1d+RB1d)よりも小さくしてある(RA2d+RB2d<RA1d+RB1d)。具体的には、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくする(RB2d<RB1d)ほか、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくしてある(RA2da<RA1da)。つまり、第2導通部材40Bの抵抗値RA2dも、第1導通部材40Aの抵抗値RA1dよりも小さくしてある(RA2d<RA1d)。
さらに具体的には、給電線310B(第2給電線)の材料が銅線であるのに対し、給電線310A(第1給電線)の材料は、実施形態3と同様に、銅線よりも比抵抗(電気抵抗率)が高いニッケル線を用いている。さらに、給電線310A(第1給電線)は、給電線310B(第2給電線)よりも断面積が小さく、かつ、全長が長くされている。
また、実施形態3では、中軸120A(第1中軸)及び中軸120B(第2中軸)の材料は、いずれも炭素鋼であったが、本実施形態4では、中軸120B(第2中軸)の材料が炭素鋼であるのに対し、中軸120A(第1中軸)の材料は、炭素鋼よりも比抵抗(電気抵抗率)が高いステンレス鋼を用いている。
これにより、本実施形態4の内燃機関1Cでは、第1構造体30A(第1部)と第2構造体30B(第2部)とは、これら全体に印加する第1部電圧Vc1及び第2部電圧Vc2(図15参照)と第1ヒータ温度T1及び第2ヒータ温度T2の関係を示す特性が、図17のグラフに示す関係となっている。
図17において実線で示す第1部回帰直線Lc1は、第1構造体30A(第1部)全体に印加する第1部電圧Vc1とヒータ部130A(第1ヒータ部)の発熱温度である第1ヒータ温度T1との、950℃〜1350℃の温度範囲Tr内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線である。また、図17において破線で示す第2部回帰直線Lc2は、第2構造体30B(第2部)全体に印加する第2部電圧Vc2とヒータ部130B(第2ヒータ部)の発熱温度である第2ヒータ温度T2との、同じく温度範囲Tr内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線である。
さらに、図17に示すように、第1部回帰直線Lc1上において、第1ヒータ温度T1が温度範囲Tr内で定めた温度Txとなる第1部電圧Vc1を、第3電圧Vc1xとする。また、第2部回帰直線Lc2上において、第2ヒータ温度T2が同一の温度Txとなる第2部電圧Vc2を、第4電圧Vc2xとする。そして、温度Txにおける第4電圧Vc2xと第3電圧Vc1xとの差の絶対値を、全体電圧偏差|Vc2x−Vc1x|とする。
すると、第1部回帰直線Lc1と第2部回帰直線Lc2とは、温度Txが温度範囲Tr内のいずれの温度である場合にも、全体電圧偏差|Vc2x−Vc1x|が、図16の2−1残部電圧差(Vz2x−Vz1x)よりも小さい関係にされている。
つまり、第1ヒータ温度T1と第2ヒータ温度とを同じ温度とするときに要する第2部電圧Vc2と第1部電圧Vc1との偏差(両者の差の絶対値)は、第2残部電圧Vz2と第1残部電圧Vz1との差よりも小さくなっている。
このように、本実施形態4の内燃機関1Cでは、第2導通部材40Bの抵抗値RA2dと給電線310B(第2給電線)の抵抗値RB2dとの和(=RA2d+RB2d)を、第1導通部材40Aの抵抗値RA1dと給電線310A(第1給電線)の抵抗値RB1dとの和(=RA1d+RB1d)よりも小さくしている。そして、これにより、第1残部50A及び第2残部50Bについてのヒータ部130A,130Bの通電特性の関係に比べて、センサ付きプラグ20A及び給電ケーブル300A(第1給電ケーブル)からなる第1構造体30A(第1部)全体についての通電特性(第1部電圧Vc1と第1ヒータ温度T1との関係)と、プラグ20B及び給電ケーブル300B(第2給電ケーブル)からなる第2構造体30B(第2部)全体についての通電特性(第2部電圧Vc2と第2ヒータ温度T2との関係)とを近付けている。
かくして、駆動回路DV1〜4により、給電ケーブル300A,300B及び装着されたグロープラグ20A,20Bに同一の実効電圧を印加した場合に、気筒間で生じるヒータ温度の差異を抑制した内燃機関1Cが得られる。
加えて、本実施形態4の内燃機関1Cでは、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくするほか、第2導通部材40Bの抵抗値RA2dを第1導通部材40Aの抵抗値RA1dよりも小さくすることによっても、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けることができる。
具体的には、本実施形態4の内燃機関1Cでは、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくするほか、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくしている。
中軸120A及び中軸120Bは、それぞれ第1導通部材40A及び第2導通部材40Bの主要部分をなし、ある程度の長さと太さを有しているので、両者の抵抗値RA1da,RA2daに差を設けることが比較的容易である。このため、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けるにあたって、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくするだけでは十分でない場合に、これに加えて、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくすることで、通電特性をより近付けることができる。
なお、本実施形態4の内燃機関1Cでは、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくするほか、さらに、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくした。
しかし、第2導通部材40Bの抵抗値RA2dと給電線310B(第2給電線)の抵抗値RB2dとの和(=RA2d+RB2d)を、第1導通部材40Aの抵抗値RA1dと給電線310A(第1給電線)の抵抗値RB1dとの和(=RA1d+RB1d)よりも小さくする手法は、これに限られない。具体的には、上述のようにするほか、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくする(RA2da<RA1da)及び、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくする(RB2d<RB1d)手法が挙げられる。
したがって、給電線310B(第2給電線)の抵抗値RB2dを給電線310A(第1給電線)の抵抗値RB1dよりも小さくするほか、これに代えて、または、これに加えて、中軸120B(第2中軸)の抵抗値RA2daを中軸120A(第1中軸)の抵抗値RA1daよりも小さくすることでも、ケーブル300A,300B及びグロープラグ20A,20B全体についてのヒータ部130A,130Bの通電特性を近付けることができる。
なお、このうち、給電線310B(第2給電線)の抵抗値RB2dを、給電線310A(第1給電線)の抵抗値RB1dよりも小さくすることのみ行った場合は、図12に示した実施形態3と同様の構成となる。
以上において、本発明を実施形態1〜4に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態1〜4では、センサ付きプラグ20A及びプラグ20Bは、それぞれヒータ部130A(第1ヒータ部)及びヒータ部130B(第2ヒータ部)として、セラミックヒータを備えたいわゆるセラミックグロープラグを例示した。しかし、燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグとしては、これに限られず、シースヒータを備えたいわゆるメタルグロープラグを用いても良い。
なお、実施形態1〜4では、図7,図8等に示したように、950℃〜1350℃の温度範囲Tr内における各電圧−温度特性を得て、これについて各回帰直線を引いた。しかし、メタルグロープラグの場合には、ヒータの最高温度を、セラミックグロープラグの場合よりも低くして用いることが多い。そこで、上述の950℃〜1350℃の範囲のうち、例えば、950℃〜1100℃の範囲で電圧と温度の関係を得、これを用いて回帰直線を引くこともできる。
また、実施形態1〜4では、エンジン本体10の4つの気筒11A〜11Dのうち、1つの気筒11Aに、センサ付きプラグ20Aが装着され、残りの3つの気筒11B〜11Dに、圧力センサを有しないプラグ20Bが装着された内燃機関1,1A,1B,1Cを例示した。しかし、例えば、6気筒のエンジンの6つの気筒のうち、2つの気筒に、燃焼圧センサ付きグロープラグを装着し、残りの4つの気筒に、センサ無しグロープラグを装着する場合など、気筒の数や、燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグの数が、その他の組み合わせとなる内燃機関に、本発明を適用しても良い。
1,1A,1B,1C 内燃機関
10 エンジン本体
11A,11B,11C,11D 気筒
20A センサ付きプラグ(燃焼圧センサ付きグロープラグ)
20B プラグ(センサ無しグロープラグ)
300A 給電ケーブル(第1給電ケーブル)
300B 給電ケーブル(第2給電ケーブル)
310A 給電線(第1給電線)
310B 給電線(第2給電線)
30A 第1構造体(第1部)
30B 第2構造体(第2部)
100A ハウジング(第1ハウジング)
100B ハウジング(第2ハウジング)
110A,110B 主体金具(ハウジング)
120A 中軸(第1中軸)
120B 中軸(第2中軸)
130A ヒータ部(第1ヒータ部)
130B ヒータ部(第2ヒータ部)
150A 先端キャップ(ハウジング)
150B 外筒(ハウジング)
160A 外部接続端子(第1外部端子)
160B ピン端子(第2外部端子)
170 メンブレン
190 内筒
200 圧力センサ
210 センサ本体(圧力センサ)
220 伝達スリーブ(圧力センサ)
ECU 電子制御ユニット
GCU グロープラグ制御ユニット
DV1〜4 駆動回路
BT 外部電源(バッテリ)
40A 第1導通部材
40B 第2導通部材
50A 第1残部
50B 第2残部
Lp1 第1プラグ回帰直線
Lp2 第2プラグ回帰直線
Lc1 第1部回帰直線
Lc2 第2部回帰直線
Lz1 第1残部回帰直線
Lz2 第2残部回帰直線
T1 第1ヒータ温度
T2 第2ヒータ温度
Tr 温度範囲
Tx 温度
Vp1 第1プラグ電圧
Vp2 第2プラグ電圧
Vc1 第1部電圧
Vc2 第2部電圧
Vz1 第1残部電圧
Vz2 第2残部電圧
Vp1x,Vz1x 第1電圧
Vp2x,Vz2x 第2電圧
Vc1x 第3電圧
Vc2x 第4電圧
RB1a,RB1b,RB1c,RB1d (第1給電線の)抵抗値
RB2a,RB2b,RB2c,RB2d (第2給電線の)抵抗値
RA1a,RA1b,RA1c,RA1d (第1導通部材の)抵抗値
RA2a,RA2b,RA2c,RA2d (第2導通部材の)抵抗値
RA1aa,RA1ba,RA1ca,RA1da (第1中軸の)抵抗値
RA2aa,RA2ba,RA2ca,RA2da (第2中軸の)抵抗値

Claims (6)

  1. 複数の気筒を有するエンジン本体と、
    上記複数の気筒のうちの一部の気筒に装着され、
    通電により発熱する第1ヒータ部、及び、
    装着された気筒の燃焼圧を検知する圧力センサを有する
    燃焼圧センサ付きグロープラグと、
    上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、
    上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、
    通電により発熱する第2ヒータ部を有し、
    上記圧力センサを有しない
    センサ無しグロープラグと、
    上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える
    内燃機関であって、
    上記燃焼圧センサ付きグロープラグ全体に印加する第1プラグ電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線を第1プラグ回帰直線とし、
    上記センサ無しグロープラグ全体に印加する第2プラグ電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線を第2プラグ回帰直線とし、
    上記第1プラグ回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1プラグ電圧を、第1電圧とし、
    上記第2プラグ回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2プラグ電圧を、第2電圧とし、
    上記温度における上記第1電圧と上記第2電圧との差を、1−2プラグ電圧差としたとき、
    上記第1プラグ回帰直線と上記第2プラグ回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも低い関係を有し、
    上記第2給電線の抵抗値が、上記第1給電線の抵抗値よりも大きくされており、
    上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、
    上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、
    上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、
    上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、
    上記温度における上記第3電圧と上記第4電圧との差の絶対値を、全体電圧偏差としたとき、
    上記第1部回帰直線と上記第2部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記1−2プラグ電圧差よりも小さい関係を有する
    内燃機関。
  2. 複数の気筒を有するエンジン本体と、
    上記複数の気筒のうちの一部の気筒に装着され、
    通電により発熱する第1ヒータ部、及び、
    装着された気筒の燃焼圧を検知する圧力センサを有する
    燃焼圧センサ付きグロープラグと、
    上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、
    上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、
    通電により発熱する第2ヒータ部を有し、
    上記圧力センサを有しない
    センサ無しグロープラグと、
    上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える
    内燃機関であって、
    上記燃焼圧センサ付きグロープラグは、
    上記第1給電線に接続して、この第1給電線を上記第1ヒータ部に導通する第1導通部材を有し、
    上記センサ無しグロープラグは、
    上記第2給電線に接続して、この第2給電線を上記第2ヒータ部に導通する第2導通部材を有し、
    上記燃焼圧センサ付きグロープラグから上記第1導通部材を除いた、上記第1ヒータ部を含む第1残部に印加される第1残部電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線を第1残部回帰直線とし、
    上記センサ無しグロープラグから上記第2導通部材を除いた、上記第2ヒータ部を含む第2残部に印加される第2残部電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線を第2残部回帰直線とし、
    上記第1残部回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1残部電圧を、第1電圧とし、
    上記第2残部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2残部電圧を、第2電圧とし、
    上記温度における上記第1電圧と上記第2電圧との差を、1−2残部電圧差としたとき、
    上記第1残部回帰直線と上記第2残部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも低い関係を有し、
    上記第2導通部材の抵抗値と上記第2給電線の抵抗値との和が、上記第1導通部材の抵抗値と上記第1給電線の抵抗値との和よりも大きくされており、
    上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、
    上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、
    上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、
    上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、
    上記温度における上記第3電圧と上記第4電圧との差の絶対値を、全体電圧偏差としたとき、
    上記第1部回帰直線と上記第2部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記1−2残部電圧差よりも小さい関係を有する
    内燃機関。
  3. 請求項2に記載の内燃機関であって、
    前記燃焼圧センサ付きグロープラグは、
    前記第1ヒータ部の先端部を自身の先端から突出させた状態で上記第1ヒータ部を収容する筒状の第1ハウジングを有し、
    前記第1導通部材は、
    上記第1ハウジングの後端側に配置されて前記第1給電線に接続する第1外部端子と、
    上記第1ハウジング内に挿通されて上記第1ヒータ部と上記第1外部端子との間を導通する棒状の第1中軸とを含み、
    前記センサ無しグロープラグは、
    前記第2ヒータ部の先端部を自身の先端から突出させた状態で上記第2ヒータ部を収容する筒状の第2ハウジングを有し、
    前記第2導通部材は、
    上記第2ハウジングの後端側に配置されて前記第2給電線に接続する第2外部端子と、
    上記第2ハウジング内に挿通されて上記第2ヒータ部と上記第2外部端子との間を導通する棒状の第2中軸とを含み、
    上記第2中軸の抵抗値が上記第1中軸の抵抗値よりも大きい、及び、前記第2給電線の抵抗値が前記第1給電線の抵抗値よりも大きいの少なくともいずれかである
    内燃機関。
  4. 複数の気筒を有するエンジン本体と、
    上記複数の気筒のうちの一部の気筒に装着され、
    通電により発熱する第1ヒータ部、及び、
    装着された気筒の燃焼圧を検知する圧力センサを有する
    燃焼圧センサ付きグロープラグと、
    上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、
    上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、
    通電により発熱する第2ヒータ部を有し、
    上記圧力センサを有しない
    センサ無しグロープラグと、
    上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える
    内燃機関であって、
    上記燃焼圧センサ付きグロープラグ全体に印加する第1プラグ電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1プラグ電圧−温度特性を得て、これについて引いた回帰直線を第1プラグ回帰直線とし、
    上記センサ無しグロープラグ全体に印加する第2プラグ電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2プラグ電圧−温度特性を得て、これについて引いた回帰直線を第2プラグ回帰直線とし、
    上記第1プラグ回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1プラグ電圧を、第1電圧とし、
    上記第2プラグ回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2プラグ電圧を、第2電圧とし、
    上記温度における上記第2電圧と上記第1電圧との差を、2−1プラグ電圧差としたとき、
    上記第1プラグ回帰直線と上記第2プラグ回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも高い関係を有し、
    上記第2給電線の抵抗値が、上記第1給電線の抵抗値よりも小さくされており、
    上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、
    上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、
    上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、
    上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、
    上記温度における上記第4電圧と上記第3電圧との差の絶対値を、全体電圧偏差としたとき、
    上記第1部回帰直線と上記第2部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記2−1プラグ電圧差よりも小さい関係を有する
    内燃機関。
  5. 複数の気筒を有するエンジン本体と、
    上記複数の気筒のうちの一部の気筒に装着され、
    通電により発熱する第1ヒータ部、及び、
    装着された気筒の燃焼圧を検知する圧力センサを有する
    燃焼圧センサ付きグロープラグと、
    上記燃焼圧センサ付きグロープラグの上記第1ヒータ部に外部電源からの電力を供給する第1給電線を含む第1給電ケーブルと、
    上記複数の気筒のうち上記燃焼圧センサ付きグロープラグが装着されていない残りの気筒に装着され、
    通電により発熱する第2ヒータ部を有し、
    上記圧力センサを有しない
    センサ無しグロープラグと、
    上記センサ無しグロープラグの上記第2ヒータ部に上記外部電源からの電力を供給する第2給電線を含む第2給電ケーブルと、を備える
    内燃機関であって、
    上記燃焼圧センサ付きグロープラグは、
    上記第1給電線に接続し、この第1給電線を上記第1ヒータ部に導通する第1導通部材を有し、
    上記センサ無しグロープラグは、
    上記第2給電線に接続し、この第2給電線を上記第2ヒータ部に導通する第2導通部材を有し、
    上記燃焼圧センサ付きグロープラグから上記第1導通部材を除いた、上記第1ヒータ部を含む第1残部に印加される第1残部電圧と上記第1ヒータ部の発熱温度である第1ヒータ温度との、950℃〜1350℃の温度範囲内における関係を示す第1残部電圧−温度特性を得て、これについて引いた回帰直線を第1残部回帰直線とし、
    上記センサ無しグロープラグから上記第2導通部材を除いた、上記第2ヒータ部を含む第2残部に印加される第2残部電圧と上記第2ヒータ部の発熱温度である第2ヒータ温度との、上記温度範囲内における関係を示す第2残部電圧−温度特性を得て、これについて引いた回帰直線を第2残部回帰直線とし、
    上記第1残部回帰直線上において、上記第1ヒータ温度が上記温度範囲内で定めた温度となる上記第1残部電圧を、第1電圧とし、
    上記第2残部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2残部電圧を、第2電圧とし、
    上記温度における上記第2電圧と上記第1電圧との差を、2−1残部電圧差としたとき、
    上記第1残部回帰直線と上記第2残部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記第2電圧が上記第1電圧よりも高い関係を有し、
    上記第2導通部材の抵抗値と上記第2給電線の抵抗値との和が、上記第1導通部材の抵抗値と上記第1給電線の抵抗値との和よりも小さくされており、
    上記燃焼圧センサ付きグロープラグ及び上記第1給電ケーブルからなる第1部全体に印加する第1部電圧と上記第1ヒータ温度との、上記温度範囲内における関係を示す第1部電圧−温度特性を得て、これについて引いた回帰直線を第1部回帰直線とし、
    上記センサ無しグロープラグ及び上記第2給電ケーブルからなる第2部全体に印加する第2部電圧と上記第2ヒータ温度との、上記温度範囲内における関係を示す第2部電圧−温度特性を得て、これについて引いた回帰直線を第2部回帰直線とし、
    上記第1部回帰直線上において、上記第1ヒータ温度が上記温度となる上記第1部電圧を、第3電圧とし、
    上記第2部回帰直線上において、上記第2ヒータ温度が同一の上記温度となる上記第2部電圧を、第4電圧とし、
    上記温度における上記第4電圧と上記第3電圧との差の絶対値を、全体電圧偏差としたとき、
    上記第1部回帰直線と上記第2部回帰直線とは、
    上記温度が上記温度範囲内のいずれの温度である場合にも、上記全体電圧偏差が、上記2−1残部電圧差よりも小さい関係を有する
    内燃機関。
  6. 請求項5に記載の内燃機関であって、
    前記燃焼圧センサ付きグロープラグは、
    前記第1ヒータ部の先端部を自身の先端から突出させた状態で上記第1ヒータ部を収容する筒状の第1ハウジングを有し、
    前記第1導通部材は、
    上記第1ハウジングの後端側に配置されて前記第1給電線に接続する第1外部端子と、
    上記第1ハウジング内に挿通されて上記第1ヒータ部と上記第1外部端子との間を導通する棒状の第1中軸とを含み、
    前記センサ無しグロープラグは、
    前記第2ヒータ部の先端部を自身の先端から突出させた状態で上記第2ヒータ部を収容する筒状の第2ハウジングを有し、
    前記第2導通部材は、
    上記第2ハウジングの後端側に配置されて前記第2給電線に接続する第2外部端子と、
    上記第2ハウジング内に挿通されて上記第2ヒータ部と上記第2外部端子との間を導通する棒状の第2中軸とを含み、
    上記第2中軸の抵抗値が上記第1中軸の抵抗値よりも小さい、及び、前記第2給電線の抵抗値が前記第1給電線の抵抗値よりも小さいの少なくともいずれかである
    内燃機関。
JP2013177068A 2013-08-28 2013-08-28 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関 Expired - Fee Related JP6271915B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013177068A JP6271915B2 (ja) 2013-08-28 2013-08-28 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関
KR1020140104505A KR101697817B1 (ko) 2013-08-28 2014-08-12 연소압 센서 부착 글로 플러그 및 센서 미부착 글로 플러그를 장착한 내연기관
US14/465,234 US9611827B2 (en) 2013-08-28 2014-08-21 Internal combustion engine mounted with combustion pressure sensor incorporated glow plug and sensor nonincorporated glow plug
EP14182250.2A EP2863050B1 (en) 2013-08-28 2014-08-26 Internal Combustion Engine Mounted with Combustion Pressure Sensor Incorporated Glow Plug and Sensor Nonincorporated Glow Plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177068A JP6271915B2 (ja) 2013-08-28 2013-08-28 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関

Publications (2)

Publication Number Publication Date
JP2015045459A JP2015045459A (ja) 2015-03-12
JP6271915B2 true JP6271915B2 (ja) 2018-01-31

Family

ID=51398534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177068A Expired - Fee Related JP6271915B2 (ja) 2013-08-28 2013-08-28 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関

Country Status (4)

Country Link
US (1) US9611827B2 (ja)
EP (1) EP2863050B1 (ja)
JP (1) JP6271915B2 (ja)
KR (1) KR101697817B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370754B2 (ja) * 2015-09-10 2018-08-08 日本特殊陶業株式会社 セラミックヒータおよびグロープラグ
CN109931708B (zh) * 2019-02-27 2020-06-02 珠海格力电器股份有限公司 供水系统及其加热控制方法、计算机可读存储介质
WO2021201234A1 (ja) * 2020-04-03 2021-10-07 京セラ株式会社 ヒータ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399781A (en) * 1980-01-31 1983-08-23 Nippondenso Co., Ltd. Engine preheating control system having automatic control of glow plug current
JPS63266172A (ja) * 1987-04-22 1988-11-02 Mitsubishi Electric Corp デイ−ゼルエンジンのグロ−プラグ制御装置
JPH05157238A (ja) * 1991-12-10 1993-06-22 Matsushita Electric Ind Co Ltd 点火装置
US5724932A (en) * 1996-10-18 1998-03-10 Caterpillar Inc. Alternating current control apparatus and method for glow plugs
JP3627560B2 (ja) * 1999-02-22 2005-03-09 トヨタ自動車株式会社 燃焼圧検出装置
JP2001123930A (ja) * 1999-10-27 2001-05-08 Denso Corp グロープラグの取付構造
JP2001336468A (ja) * 2000-03-22 2001-12-07 Ngk Spark Plug Co Ltd グロープラグ制御装置、グロープラグ、及びエンジンの燃焼室内のイオン検出方法
DE10028073C2 (de) * 2000-06-07 2003-04-10 Beru Ag Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze
JP4821060B2 (ja) * 2001-06-29 2011-11-24 いすゞ自動車株式会社 グロープラグ通電制御装置
DE10147675A1 (de) * 2001-09-27 2003-04-30 Beru Ag Verfahren zum Aufheizen eines elektrischen Heizelementes, insbesondere einer Glühkerze für eine Brennkraftmaschine
JP3810744B2 (ja) * 2003-01-29 2006-08-16 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御方法
JP2004278934A (ja) * 2003-03-17 2004-10-07 Ngk Spark Plug Co Ltd 燃焼圧検知機能付きグロープラグ
JP3942176B2 (ja) * 2003-03-17 2007-07-11 日本特殊陶業株式会社 燃焼圧検知機能付きグロープラグ及びその製造方法
FR2869391B1 (fr) * 2004-04-27 2006-07-14 Siemens Vdo Automotive Sas Bougie de prechauffage comportant un capteur de pression
FR2869393B1 (fr) * 2004-04-27 2006-07-14 Siemens Vdo Automotive Sas Dispositif pour agir sur un capteur de pression monte sur une bougie de prechauffage
JP2006300046A (ja) * 2004-08-05 2006-11-02 Ngk Spark Plug Co Ltd 燃焼圧検知機能付グロープラグ
JP4419880B2 (ja) * 2005-03-17 2010-02-24 株式会社デンソー グロープラグの通電制御方法及び装置
DE102005044359A1 (de) * 2005-09-16 2007-03-29 Beru Ag Verfahren zum Ansteuern von Glühkerzen in Dieselmotoren
US7631625B2 (en) * 2006-12-11 2009-12-15 Gm Global Technology Operations, Inc. Glow plug learn and control system
JP5179887B2 (ja) * 2008-01-15 2013-04-10 株式会社オートネットワーク技術研究所 グロープラグ制御装置及び制御方法
JP5161121B2 (ja) * 2008-03-28 2013-03-13 日本特殊陶業株式会社 グロープラグ
JP4972035B2 (ja) * 2008-05-30 2012-07-11 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御システム
JP4956486B2 (ja) * 2008-05-30 2012-06-20 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御システム
JP5037465B2 (ja) * 2008-09-12 2012-09-26 株式会社オートネットワーク技術研究所 グロープラグ制御装置、制御方法及びコンピュータプログラム
JP5037464B2 (ja) * 2008-09-12 2012-09-26 株式会社オートネットワーク技術研究所 グロープラグ制御装置、制御方法及びコンピュータプログラム
US20100082219A1 (en) * 2008-09-30 2010-04-01 Gm Global Technology Operations, Inc. Engine Using Glow Plug Resistance For Estimating Combustion Temperature
JP2010107500A (ja) * 2008-09-30 2010-05-13 Ngk Spark Plug Co Ltd 圧力検出装置
GB2466273B (en) * 2008-12-18 2013-01-09 Gm Global Tech Operations Inc A method for controlling glow plugs in a diesel engine particularly for motor-vehicles
DE102010011044B4 (de) * 2010-03-11 2012-12-27 Borgwarner Beru Systems Gmbh Verfahren zum Regeln einer Glühkerze
JP5838033B2 (ja) 2011-02-25 2015-12-24 日本特殊陶業株式会社 燃焼圧力センサ付きグロープラグ
JP5852644B2 (ja) * 2011-05-19 2016-02-03 ボッシュ株式会社 グロープラグの駆動制御方法及びグロープラグ駆動制御装置
CN202693175U (zh) * 2012-05-23 2013-01-23 北京市路兴公路新技术有限公司 预应力张拉监测设备

Also Published As

Publication number Publication date
EP2863050A2 (en) 2015-04-22
KR20150026832A (ko) 2015-03-11
US9611827B2 (en) 2017-04-04
KR101697817B1 (ko) 2017-01-18
US20150059679A1 (en) 2015-03-05
EP2863050B1 (en) 2020-07-29
EP2863050A3 (en) 2015-08-26
JP2015045459A (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
US7635826B2 (en) Glow plug having built-in sensor
US9422913B2 (en) Ceramic glow plug equipped with pressure sensor
US9784450B2 (en) Glow plug with combustion pressure sensor
JP2009058156A (ja) 燃焼圧センサ付きグロープラグ
US9347854B2 (en) Glow plug with pressure sensor
JP6271915B2 (ja) 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関
JP2016048233A (ja) 圧力センサ
EP3045817B1 (en) Glow plug with combustion pressure sensor
JP2008157485A (ja) グロープラグ
US9829197B2 (en) Pressure-sensor-integrated glow plug and manufacturing method thereof
JP6166093B2 (ja) 圧力センサ付きグロープラグ
JP6214932B2 (ja) 圧力センサ付きグロープラグ
US20160061683A1 (en) Pressure sensor
JP6059503B2 (ja) 圧力センサ付きセラミックグロープラグ
JP4268596B2 (ja) 燃焼圧検知機構付きグロープラグ及びグロープラグ接続構造体
JP6997731B2 (ja) グロープラグ
JP2007078330A (ja) 燃焼圧センサ付きグロープラグ
JP2009092279A (ja) グロープラグ
JP6251578B2 (ja) グロープラグ
JP2007085578A (ja) 燃焼圧センサ付きグロープラグ
JP6154651B2 (ja) 燃焼圧センサ付きグロープラグ及びその製造方法
JP2019002644A (ja) 圧力センサ付きグロープラグ
JP2019032246A (ja) 圧力センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6271915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees