[go: up one dir, main page]

JP6201513B2 - 積層体の製造方法及びそれを用いたデバイス構造体の製造方法 - Google Patents

積層体の製造方法及びそれを用いたデバイス構造体の製造方法 Download PDF

Info

Publication number
JP6201513B2
JP6201513B2 JP2013169371A JP2013169371A JP6201513B2 JP 6201513 B2 JP6201513 B2 JP 6201513B2 JP 2013169371 A JP2013169371 A JP 2013169371A JP 2013169371 A JP2013169371 A JP 2013169371A JP 6201513 B2 JP6201513 B2 JP 6201513B2
Authority
JP
Japan
Prior art keywords
polyimide film
treatment
film
layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013169371A
Other languages
English (en)
Other versions
JP2015037841A (ja
Inventor
奥山 哲雄
哲雄 奥山
勝貴 中▲瀬▼
勝貴 中▲瀬▼
一成 小林
一成 小林
渡辺 直樹
直樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013169371A priority Critical patent/JP6201513B2/ja
Publication of JP2015037841A publication Critical patent/JP2015037841A/ja
Application granted granted Critical
Publication of JP6201513B2 publication Critical patent/JP6201513B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、ポリイミドフィルムと無機基板等の支持体との積層体であって、必要に応じて支持体からポリイミドフィルムを容易に分離できる積層体の製造方法と、該積層体を利用したデバイス構造体の製造方法とに関するものである。
近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムを基材としている。
半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・ツー・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業界では、これまでウエハベースないしガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そのため、現実的な選択としては、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせ、その上に所望の素子を形成した後に支持体から剥離することが考えられ、これにより既存インフラを利用して高分子フィルム上に形成した機能素子からなるデバイス構造体を得ることが可能となる。
従来、無機物からなる支持体への高分子フィルムの貼り合わせは、粘着剤や接着剤を用いて広く行われてきた。このようにして得られた高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の機能素子を形成する場合、機能素子の形成を行う上で支障ないレベルの表面平滑性、寸法安定性、クリーン性、プロセス温度への耐性、微細加工に用いられる薬液への耐性等が当該積層体に求められる。しかしながら、従来の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していなかったため、機能素子の形成温度が高い場合には適用できないのが現状であった。
よって、耐熱性の観点から融点の低い高分子フィルムは適しておらず、無機物からなる支持体へ貼り合せる高分子フィルムとしては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレンなどの高分子フィルム、ガラス繊維強化エポキシ等が用いられる。特にポリイミドからなるフィルムは、耐熱性に優れ、しかも強靭であるので薄膜化が可能になるという長所を備えている。
このポリイミドフィルムを用いた製造方法として、特許文献1には、支持体とポリイミドフィルムとから構成されてなる積層体の製造方法が記載されている。具体的には、ポリイミドフィルムとして、少なくとも上記支持体に対向させる面にプラズマ処理が施されたフィルムを用いており、支持体とポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を塗布してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施してパターン化処理を施しており、その後、支持体とポリイミドフィルムとを重ね合わせて加圧加熱処理を行っている。
しかし、上記製法では、カップリング処理層を形成し、カップリング処理層に対してパターン化処理を行った後に、支持体とポリイミドフィルムとを重ね合わせている。このように、カップリング処理層形成から支持体とポリイミドフィルムとを重ね合わせるまでに、カップリング処理層のパターン化処理という工程が入ることによって、カップリング処理層表面が汚れ、デバイス作製時に支持体とポリイミドフィルムとが重ね合っている面(デバイス作製面)に気泡が発生するおそれがある。カップリング処理層表面が汚れることによって、支持体とポリイミドフィルムとの剥離強度が低下するおそれがある。そして、カップリング処理層の表面には汚染しやすかったり、異物が吸着しやすいにもかかわらず、その表面の汚染除去や異物除去は困難である。また、デバイス作製面に気泡が発生すると、デバイス作製面に凹凸が生じるおそれがあり、その凹凸が生じた面にデバイスを作製すると、デバイスのパターン位置ずれが生じる、薄膜に斑ができてデバイスの特性にばらつきが生じる、デバイスに欠線が生じるなどの問題が生じやすい。
特開2013−010342号公報
本発明は、カップリング処理層表面の汚れを低減させることができる積層体の製造方法及びそれを用いたデバイス構造体の製造方法の提供を課題として掲げた。
本発明者等は、ポリイミドフィルムに対してパターン化処理を行い、その後、支持体とポリイミドフィルムとを重ね合わせる製造方法を採用することによって、カップリング剤表面に対する作業工程を減らした本発明を完成するに至った。
本発明は、支持体とポリイミドフィルムとの積層体の製造方法であって、上記支持体の上記ポリイミドフィルムに対向する側の面に対して、カップリング処理層を形成するカップリング処理層形成工程と、上記ポリイミドフィルムの上記支持体に対向する側の面の一部に、パターン化処理を施して所定のパターンを形成するパターン形成工程と、上記カップリング処理層形成工程及び上記パターン形成工程の後に、上記支持体と上記ポリイミドフィルムとを重ね合わせて加圧加熱処理する加圧加熱処理工程とを備えることを特徴とする。
上記パターン化処理が不活性化処理であり、該不活性化処理が、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、及び薬液処理からなる群より選択される少なくとも1種を行うことが好ましく、上記不活性化処理として少なくともUV照射処理を施すことがより好ましい。
上記パターン形成工程の前に、上記ポリイミドフィルムの上記支持体に対向する側の面に対して、プラズマ処理を施すプラズマ処理工程を備えることが好ましい。
上記プラズマ処理工程と上記加圧加熱処理工程との間に、上記ポリイミドフィルムに酸処理を施す酸処理工程を備えることが好ましい。
また、本発明には、デバイス構造体の製造方法も包含され、この方法はポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法であって、支持体とポリイミドフィルムとカップリング処理層とを有する上記記載の製法で作製された積層体を用い、該積層体のポリイミドフィルム上にデバイスを形成した後、上記ポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを上記支持体から剥離することを特徴とする。
本発明に係る支持体とポリイミドフィルムとの積層体の製造方法は、支持体上にカップリング処理層を形成し、ポリイミドフィルムに対してパターン化処理を行い、その後、支持体とポリイミドフィルムとを重ね合わせており、その結果、カップリング剤表面に対する作業工程を減らすことができ、すなわち、カップリング処理層表面が汚れるおそれを低減することができるものである。
図1は、本発明の積層体の製造方法の一実施態様を示す模式図である。 図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図である。 図3は、本発明のデバイス構造体の製造方法の他の一実施態様を示す模式図である。 図4は、パターン例を示す模式図である。 図5は、クレーター部を示すAFM像である。 図6は、図5に示すクレーター部の直線部分における断面AFM像である。 図7は、クレーター部を含むAFM像(10μm四方)である。 図8は、クレーター部の直径の測定方法を説明するための説明図である。 図9は、クレーター数の測定方法を説明するための説明図である。
本発明の積層体の製造方法は、少なくとも支持体とポリイミドフィルムとを用いて、これらから構成される積層体を製造する方法である。
(積層体の製造方法)
本発明の積層体の製造方法は、支持体とポリイミドフィルムとの積層体を製造する方法である。
<支持体>
本発明における支持体は、無機物からなり基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、シリコンウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
上記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/℃以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
上記セラミック板としては、Al23、Mullite、AlN、SiC、Si34、BN、結晶化ガラス、Cordierite、Spodumene、Pb−BSG+CaZrO3+Al23、Crystallized glass+Al23、Crystallized Ca−BSG、BSG+Quartz、BSG+Al23、Pb+BSG+Al23、Glass−ceramic、ゼロデュア材などの基板用セラミックス、TiO、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、MgO、ステアタイト、BaTi49、BaTiO3、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN−PTやPFN−PFWなどのキャパシター材料、PbNb26、Pb0.5Be0.5Nb26、PbTiO3、BaTiO3、PZT、0.855PZT−95PT−0.5BT、0.873PZT−0.97PT−0.3BT、PLZTなどの圧電材料が含まれる。
上記シリコンウエハとしては、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハのほか、ゲルマニウム、シリコン−ゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモンがよく用いられている。さらに、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などの汎用の半導体ウエハも含まれる。
上記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe−Ni系インバー合金、スーパーインバー合金といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTE(線膨張係数)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にすること、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。
上記支持体の平面部分は、充分に平坦であることが望ましい。具体的には、表面粗さのP−V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、ポリイミドフィルムと支持体との剥離強度が不充分となるおそれがある。
<ポリイミドフィルム>
一般にポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体(ここで言う支持体は、本発明の積層体の構成部材として上述した「支持体」とは異なる)に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし2種以上を併用してもよい。
ベンゾオキサゾール構造を有する芳香族ジアミン類の分子構造は特に限定されるものではないが、具体的には以下のものが挙げられる。
これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基の配位位置が異なるものを意味する(例えば、上記5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールと、6−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールと、5−アミノ−2−(m−アミノフェニル)ベンゾオキサゾールと、6−アミノ−2−(m−アミノフェニル)ベンゾオキサゾールとが異性体に相当する)。
ジアミン類としては、上述したベンゾオキサゾール構造を有するジアミン類のほかに、下記に例示されるその他のジアミン類を用いることもできる。その他のジアミン類としては、例えば、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2’−ジメチル−4,4’−ジアミノビフェニル、ビスアニリン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリル、2,2’−ビス(ビフェニル)ベンジジンおよび上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1〜3のアルキル基またはアルコキシ基、シアノ基、またはアルキル基またはアルコキシ基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシ基で置換された芳香族ジアミン等が挙げられる。また、4,4’−メチレンビス(2,6−ジメチルシクロヘキシルアミン)等の脂環式ジアミンを用いることもできる。
その他のジアミン類を用いる場合、その使用量は全ジアミン類の30モル%以下とすることが好ましく、25モル%以下とすることがより好ましい。
ポリアミド酸を構成するテトラカルボン酸類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類、脂肪族テトラカルボン酸類、脂環族テトラカルボン酸類、またはこれらの酸無水物等を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、芳香族テトラカルボン酸無水物類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環族テトラカルボン酸無水物としては、例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物等が挙げられる。
芳香族テトラカルボン酸無水物類としては、具体的には、以下のものが好ましく挙げられる。
ポリアミド酸は、特に、下記の組み合わせのジアミン類とテトラカルボン酸類とから構成されることが好ましい。
A.ピロメリット酸残基を有する芳香族テトラカルボン酸類と、ベンゾオキサゾール構造(骨格)を有する芳香族ジアミン類との組み合わせ。
B.フェニレンジアミン骨格を有する芳香族ジアミン類と、ビフェニルテトラカルボン酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
またポリアミド酸は、上述したジアミン類およびテトラカルボン酸類のほかに、例えばシクロヘキサン−1,2,4−トリカルボン酸無水物等のトリカルボン酸類を含んで構成されていてもよい。
ジアミン類とテトラカルボン酸類とを反応(重合)させてポリアミド酸を得る際に用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等が挙げられる。これらの溶媒は、単独で用いてもよいし二種以上を併用してもよい。これら溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、反応液(モノマーを溶解した溶液)に占める全モノマーの量が、通常5〜40質量%、好ましくは7〜30質量%となるような量が挙げられる。
ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は、従来公知の条件を適用すればよく、例えば、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割して行ったり、反応温度を上下させてもかまわない。モノマーの添加順序には特に制限はないが、ジアミン類の溶液中にテトラカルボン酸類を添加するのが好ましい。
また重合反応中に真空脱泡することも、良質なポリアミド酸溶液を製造するのに有効である。さらに重合反応の前にジアミン類に少量の末端封止剤を添加して重合を制御してもよい。末端封止剤としては、ジカルボン酸無水物、トリカルボン酸無水物、アニリン誘導体などが挙げられる。これらの中でも具体的には、無水フタル酸、無水マレイン酸、4−エチニル無水フタル酸、4−フェニルエチニル無水フタル酸、エチニルアニリンが好ましく、特に好ましくは無水マレイン酸がよい。末端封止剤を使用する場合の使用量は、ジアミン類1モルに対して、好ましくは0.001〜1.0モルである。
重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の質量は、好ましくは5〜40質量%、より好ましくは10〜30質量%である。上記ポリアミド酸溶液の粘度は、送液の安定性の点から、ブルックフィールド粘度計による測定(25℃)において、10〜2000Pa・sであることが好ましく、より好ましくは100〜1000Pa・sである。
重合反応によって得られるポリアミド酸溶液には、さらにポリイミドフィルムの性能向上を目的として、消泡剤、レベリング剤、難燃剤などの各種添加物を加えてもよい。これらの添加方法、添加時期は特に限定されるものではない。
重合反応により得られるポリアミド酸溶液からポリイミドフィルムを形成するには、ポリアミド酸溶液をポリイミドフィルム作製用支持体上に塗布して乾燥することによりグリーンフィルム(自己支持性の前駆体フィルム)を得、次いでグリーンフィルムを熱処理に供することでイミド化反応させる方法が採用できる。支持体へのポリアミド酸溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート等のほか、スリット付き口金からの流延、押出機による押出し等を含むが、これらに限られず、従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液の塗布量は、所望するポリイミドフィルムの膜厚に応じて適宜設定すればよい。塗布したポリアミド酸溶液を乾燥する際の加熱温度は、50℃〜120℃が好ましく、90℃〜110℃がさらに好ましい。乾燥時間は5分〜3時間が好ましく、15分〜2時間がさらに好ましい。乾燥後のグリーンフィルム中の残溶媒量は25〜50質量%が好ましく、35〜45質量%がさらに好ましい。グリーンフィルムを熱処理する際の温度は、例えば150〜550℃が好ましく、より好ましくは280〜520℃である。熱処理時間は、0.05〜10時間が望ましい。
ポリイミドフィルムは、ガラス転移温度が250℃以上、好ましくは300℃以上、さらに好ましくは350℃以上であり、あるいは500℃以下の領域においてガラス転移点が観測されないことが好ましい。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。
ポリイミドフィルムの30℃から300℃の間の平均の線膨張係数(CTE)は、好ましくは、−5ppm/℃〜+20ppm/℃であり、より好ましくは−5ppm/℃〜+15ppm/℃であり、さらに好ましくは1ppm/℃〜+10ppm/℃である。CTEが上記範囲であると、一般的な支持体との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもポリイミドフィルムと無機物からなる支持体とが剥がれることを回避できる。
本発明におけるポリイミドフィルムの厚さは、特に限定されるものではないが、1μm〜200μmが好ましく、より好ましくは3μm〜120μm、さらに好ましくは3μm〜60μmである。狭小部への適用が容易になり、センサーなどの素子の高性能化や電子部品の軽小短薄化に大きく貢献できる。ポリイミドフィルムの厚さが1μm未満では、厳密に厚さを制御することが難しく、また支持体からの剥離が困難になり、一方、200μmを超えると、支持体から剥がす際にポリイミドフィルムの折れ曲がりなどが起こり易くなる。
本発明におけるポリイミドフィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
フィルムの厚さ斑(%)
=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
ポリイミドフィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺ポリイミドフィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。
ポリイミドフィルムにおいては、ハンドリング性および生産性を確保する為、フィルムを構成するポリイミド中に滑材(粒子)を添加・含有させて、ポリイミドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。
上記滑材(粒子)とは、無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物、等からなる粒子を用いることができる。好ましくは、シリカ(酸化珪素)、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。
上記滑材(粒子)の体積平均粒子径は、通常0.001〜10μmであり、好ましくは0.03〜2.5μm、より好ましくは0.05〜0.7μm、さらに好ましくは0.05〜0.3μmである。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいとポリイミドフィルムの工業的生産が困難となり、また上限を超えると表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出るおそれがある。
上記滑材の添加量は、ポリアミド酸溶液中のポリマー固形分に対する添加量として、0.05〜50質量%であり、好ましくは0.07〜6質量%、より好ましくは0.1〜0.3質量%である。滑材の添加量が少なすぎると滑材添加の効果が期待し難く、滑り性の確保がそれほどなくポリイミドフィルム製造に支障をきたす場合があり、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、ポリイミドフィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招くおそれがある。
ポリイミドフィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層のポリイミドフィルムとしてもよいが、例えば、一方の面が滑材を含有させたポリイミドフィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量であるポリイミドフィルムで構成された多層のポリイミドフィルムとしてもよい。このような多層ポリイミドのフィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。以下、かかる多層のポリイミドフィルムの製造について説明する。
多層のポリイミドフィルムは、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材(好ましくは平均粒子径0.05〜2.5μm程度)をポリアミド酸溶液中のポリマー固形分に対して0.05〜50質量%、好ましくは0.07〜6質量%、より好ましくは0.1〜0.3質量%含有したものと、滑材を含有しないか又はその含有量が少量(好ましくはポリアミド酸溶液中のポリマー固形分に対して0.3質量%以下、より好ましくは0.01質量%以下)である2つのポリアミド酸溶液を用いて製造することが好ましい。
多層ポリイミドフィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布した後、イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などが挙げられる。好ましくは、上記i)や上記ii)の方法がよい。
多層のポリイミドフィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有するポリアミド酸溶液で形成されたフィルム(層)を(a)層、滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成されたフィルム(層)を(b)層とすると、(a)層/(b)層は0.05〜0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われがちとなり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が失われることがある。
上記ポリイミドフィルムには、少なくともポリイミドフィルムの支持体に対向する側の面(以下、ポリイミドフィルムの対向面という)に、後述のパターン化処理工程の前にプラズマ処理を施すプラズマ処理工程を行うことが好ましく、後述のパターン形成工程及び後述のパターン化処理工程の前にプラズマ処理工程を行うのがより好ましい。プラズマ処理を施すことにより、ポリイミドフィルム表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、支持体に対する接着が向上する。
プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、フレーム処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
プラズマ処理の適当な条件としては、酸素プラズマ、CF4、C26などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーをポリイミド表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などのプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。
プラズマ処理の持つ効果としては、上述した表面官能基の付加、およびこれに伴う接触角の変化、接着性の向上、表面汚染の除去などのほか、デスミアと呼ばれる、加工に伴う不規則形状物の除去などの表面のエッチング効果がある。特に高分子とセラミックではエッチングされやすさが全く異なる為、セラミックに比べて結合エネルギーの低い高分子のみが選択的にエッチングされることになる。このため、エッチング作用のあるガス種や放電条件では、選択的に高分子のみがエッチングされて滑材(粒子、フィラーともいう)を露出させるという作用も生じる。なお、上記プラズマ処理以外にフィルム表面のエッチング作用を得られる手段として、薬液を併用した場合も含めたパッドによる研磨、ブラシ研磨、薬液をしみこませたスポンジによる研磨、研磨パッド中に研磨粒子を入れたものによる研磨、サンドブラスト、ウェットブラストなどが挙げられ、これら手段をプラズマ処理とともに採用してもよい。
上記プラズマ処理は、ポリイミドフィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上にポリイミドフィルムを接して置くことにより、ポリイミドフィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態でポリイミドフィルムを置くようにすれば、両面にプラズマ処理が行える。また、ポリイミドフィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
上記プラズマ処理を施したポリイミドフィルムには、上記プラズマ処理工程と後述の加圧加熱処理工程との間に、上記ポリイミドフィルムに酸処理を施す酸処理工程を行うことが好ましい。滑材(粒子)を含有したポリイミドフィルム表面では、滑材は表面付近で凸形状を形成していても、その表面にはごく薄いポリイミド層が存在する。ポリイミドは酸に対する耐性が強い為、極薄い層でもポリイミドが滑材表面にあると、酸処理を施した際に酸は滑材表面と直接接することはなく酸によって侵食されないが、プラズマ処理によるエッチング効果により選択的に高分子(ポリイミド)のみがエッチングされた後では、酸は滑材表面と直接接するため、適切な酸の種類を選んで酸処理を行えば、ごく短時間で滑材のみの溶解除去を行うことができ、クレーターが形成される。
このクレーターは、プラズマ処理によってポリイミドフィルム表面から露出した滑材が酸によって溶出された残部と考えられ、単なる凹みではなく、その縁部が盛り上がった状態の窪みである。参考として、図5に、クレーター部を示すAFM像を、図6に、図5に示すクレーター部の直線部分における断面像を、図7に、クレーター部を含むAFM像(10μm四方)を示す。クレーターの縁部分は、中に滑材粒子が内包された状態の突起に比較して柔らかく、ポリイミドフィルムと支持体とを加圧密着させる際に比較的弱い力で変形する。滑材を内包した突起は変形しがたく、ポリイミドフィルムと支持体との密着を阻害するが、滑材部分をこのようなクレーター様の形状にすることにより、ポリイミドフィルムと支持体との密着性が高まり、ポリイミドフィルムと支持体との剥離強度をより向上させることができる。
上記酸処理は、酸を含む薬液中にプラズマ処理を施したポリイミドフィルムを浸漬するか、もしくはプラズマ処理を施したポリイミドフィルムに該薬液を塗布またはスプレーすることにより行うことができる、このとき超音波洗浄などを併用しても良い。またポリイミドフィルムの片面に保護フィルムを貼った状態で酸処理を行うことで片面のみの酸処理も可能となる。保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
上記酸処理に用いる酸としては、滑材のみをエッチングできるものが好ましく、例えばSiO2やガラスを溶解する作用があるHFやBHF等が好ましく挙げられ、これらは通常水溶液として用いられる。例えば、10質量%のHF水溶液に対するSiO2のエッチング溶解の速度は常温で12Å/sec程度であるので、80nm程度のSiO2滑材は1分程度の薬液との接触で充分に処理できる事になる。したがって、HF水溶液やBHF水溶液による酸処理を行う場合には、SiO2を滑材とすることが好ましいが、勿論、滑材の種類はSiO2に限られたものではない。
薬液中の酸濃度は、20質量%以下が好ましく、より好ましくは3〜10質量%である。薬液中の酸濃度が薄すぎると溶解速度が低下するため、エッチングに時間がかかり、生産性が落ち、濃すぎるとエッチングの時間が短すぎて必要以上に薬液に曝すことになる。
ポリイミドフィルム(原反)にプラズマ処理と酸処理を加える工程は、処理の効率化の点からはロール・ツー・ロールで行うことが好ましい。プラズマ処理を行なったポリイミドフィルムロールにも滑材が存在するので、ロールとしてのハンドリング性はプラズマ処理前と同等である。また、ロールでプラズマ処理を行った後、カットシートにしてから酸処理を行うことも、簡便な実施が可能となる点で有用である。
以上のようにプラズマ処理および酸処理を施したポリイミドフィルムの表面形態は、表面を後述するAFM法で観察したときに、その一面には直径10〜500nmのクレーターを有することが好ましく、他の一面のRaは0.3〜0.95nmであることが好ましく、これにより、接着性が向上し、支持体との接着剤なしでの接合・積層により適した平滑度合いが付与された面を有するものとなる。
片面に直径10〜500nmのクレーターを有しているポリイミドフィルムは、支持体との接着剤なしでの接合積層において、より適正な剥離強度を有するものとなる。好ましくはクレーターの直径は30〜150nmである。クレーターの直径が10nmに満たない場合は、接着性向上効果が小さくなり、500nmを超える場合は、過度なエッチングをすることとなり、ポリイミドフィルム強度に悪影響を及ぼしたり、接着性向上にも効果が現れにくくなる。
ポリイミドフィルムの他の一面のRaが0.3〜0.95nmの平滑面であることは、精緻な電気回路や半導体デバイスを作製するうえで特に好ましく、例えばRaが2.0nmを超える場合には、必要な平滑度合いを有さないことになり、その上に形成された金属箔膜などに接着性、平滑性などの点で悪影響を及ぼすことがある。このような表面が平滑なポリイミドフィルムは、ポリイミド形成用ポリアミド酸溶液(ポリイミド前駆体溶液)として、滑材を添加したものと、添加しないか極めて少量のみ添加したものとを併用使用することで製造することができ、ポリイミドフィルム作製時のロール巻き取り性や適宜のすべり性も付与されポリイミドフィルム製造も容易となる。
<カップリング剤処理>
本発明の積層体の製造方法においては、支持体の上記ポリイミドフィルムに対向する側の面に対して、カップリング剤を塗布してカップリング処理層を形成するカップリング処理層形成工程を行う。
本発明においてカップリング剤とは、支持体とポリイミドフィルムとの間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を意味し、一般的にはシラン系カップリング剤、リン系カップリング剤、チタネート系カップリング剤等として知られている化合物を含む。
カップリング剤は、特に限定されるものではないが、特に、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3―トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。
本発明で用いられるカップリング剤としては、上記のほかにも、例えば、1−メルカプト−2−プロパノール、3−メルカプトプロピオン酸メチル、3−メルカプト−2−ブタノール、3−メルカプトプロピオン酸ブチル、3−(ジメトキシメチルシリル)−1−プロパンチオール、4−(6−メルカプトヘキサロイル)ベンジルアルコール、11−アミノ−1−ウンデセンチオール、11−メルカプトウンデシルホスホン酸、11−メルカプトウンデシルトリフルオロ酢酸、2,2’−(エチレンジオキシ)ジエタンチオール、11−メルカプトウンデシルトリ(エチレングリコール)、(1−メルカプトウンデイック−11−イル)テトラ(エチレングリコール)、1−(メチルカルボキシ)ウンデック−11−イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2−エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレートなどを使用することもできる。
特に好ましいカップリング剤としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
カップリング剤処理を施してカップリング処理層を形成する方法としては、カップリング剤を直接もしくは溶剤などで希釈して、支持体に塗布乾燥し熱処理する方法、カップリング剤そのものもしくは溶剤などで希釈した溶液中に支持体を浸漬した後に乾燥し熱処理する方法、ポリイミドフィルム作製時に添加し、ポリイミドフィルム作製と同時にカップリング剤処理する方法等を採用することができる。カップリング剤の塗布量(付着量または含有量)は、形成されるカップリング処理層の膜厚が後述する厚さになるよう適宜設定すればよい。熱処理の際の条件は、50〜250℃が好ましく、より好ましくは75〜165℃、さらに好ましくは95〜155℃程度の温度で、好ましくは30秒以上、より好ましくは1分以上加熱すればよい。加熱温度が高すぎると、カップリング剤の分解ないし不活性化が生じる場合があり、低すぎると定着が不十分となる。また加熱時間が長すぎても同様の問題が生じる場合があり、加熱時間の上限は好ましくは5時間、さらに好ましくは2時間程度である。なお、カップリング剤処理を行う際には、処理中のpHが性能に大きく影響する事が知られているので、適宜pHを調整することが望ましい。
<パターン形成>
本発明の積層体の製造方法においては、後述の加圧加熱処理工程の前に、エッチングによりポリイミドフィルムの対向面にパターン化処理を行い、所定のパターンを形成するパターン形成工程を行う。これにより、支持体とポリイミドフィルムの間の剥離強度が強い部分と弱い部分を意図的に作り出すことができる。パターン化処理とは、例えば、不活性化処理、部分被覆、部分除去、部分活性化などであり、好ましくは不活性化処理であり、具体的には、ポリイミドフィルムの対向面の一部を不活性化して所定のパターンを形成するのが好ましい。なお、ポリイミドフィルムをパターン化処理するとは、物理的にポリイミドフィルムを部分的に除去する(いわゆるエッチングする)こと、物理的にポリイミドフィルムを微視的にマスキングすること、ポリイミドフィルムを化学的に変性することを包含する。
ポリイミドフィルムの対向面の一部に、選択的に不活性化処理して所定のパターンを形成する手段としては、所定のパターンに応じた部分をマスクで一時的に被覆ないし遮蔽したうえで全面にエッチング等を施し、その後マスクを取り去るようにしてもよいし、可能であれば直描方式で所定のパターンに応じてエッチング等を行うようにしてもよい。マスクとしては、一般的にレジスト、フォトマスク、メタルマスクなどとして使われている物をエッチング方法に応じて適宜選択して用いればよい。
パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されない。一例を挙げると図4に示す通りであり、図4の(1)に示すように、積層体の外周部のみに良好接着部分11が配置され、積層体の内部に易剥離部分12が配置されているパターンや、図4の(2)や(3)に示すように、積層体の外周部とともに内部にも線状に良好接着部分11が配置されたパターンや、図4の(4)に示すように、積層体の外周部のみに環状の良好接着部分11が配置され、積層体の内部に円形状の易剥離部分12が配置されているパターンが挙げられる。
上記不活性化処理としては、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、及び薬液処理からなる群より選択される少なくとも1種を行うことが好ましい。
上記ブラスト処理とは、平均粒子径が0.1〜1000μmの粒子を、気体ないし液体と共に対象物に吹き付ける処理を云う。本発明では、可能な範囲で平均粒子径が小さい粒子を用いたブラスト処理を使用することが好ましい。
上記真空プラズマ処理とは、減圧されたガス中での放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。ガスとしては、ネオン、アルゴン、窒素、酸素、フッ化炭素、二酸化炭素、水素等の単独、ないし混合ガスを用いることができる。
上記大気圧プラズマ処理とは、概ね大気圧雰囲気下におかれた気体中で生じる放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。気体としてはネオン、アルゴン、窒素、酸素、二酸化炭素、水素等の単独ないし混合ガスを用いることができる。
上記コロナ処理とは概ね大気圧雰囲気下におかれた気体中で生じるコロナ放電雰囲気に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。
上記活性放射線照射処理とは、電子線、アルファ線、X線、ベータ線、赤外線、可視光線、紫外線、レーザー光照射処理などの放射線を照射する処理を云う。なお、レーザー光照射処理を行う場合には、特に直描方式で処理を行うことが容易になる。なおこの場合、可視光レーザーであっても、一般の可視光線と比較して遙かに大きなエネルギーを有するため、本発明では活性放射線の一種として扱うことができる。
上記活性ガス処理とは、少なくともポリイミドフィルムの対向面に化学的ないし物理的変化を生じせしめる活性を有する気体、例えばハロゲンガス、ハロゲン化水素ガス、オゾン、高濃度の酸素ガス、アンモニア、有機アルカリ、有機酸などのガスに対象物を曝露する処理をいう。
上記薬液処理とは、少なくともポリイミドフィルムの対向面に化学的ないし物理的変化を生じせしめる活性を有する液体、例えばアルカリ溶液、酸溶液、還元剤溶液、酸化剤溶液、などの液体、ないし溶液に対象物を曝露する処理をいう。
特に、生産性の観点からは、上記不活性化処理としては、活性放射線とマスクを組み合わせた方法を、または大気圧プラズマ処理とマスクを組み合わせた方法が好ましく用いられる。活性放射線処理としては経済性、安全性の観点から、紫外線照射処理、すなわちUV照射処理が好ましく、以下詳細に説明する。
本発明におけるUV照射処理とは、400nm以下の波長の紫外線(UV光)を発生する装置中に、ポリイミドフィルムを入れてUV照射する処理であり、UV光波長は、好ましくは260nm以下であり、さらに好ましくは200nm以下の短波長であるのがよい。かかる短波長のUV光を酸素が存在する環境下で照射すると、ポリイミドフィルムにUV光のエネルギーが加わるとともに、試料近傍に励起状態にある活性な酸素やオゾンが発生することとなり、本発明におけるポリイミドフィルムの対向面の不活性化処理をより効果的に行うことができる。ただし170nm以下の波長では、酸素によるUV光の吸収が著しいため、ポリイミドフィルムにUV光を到達させるための考慮が必要となる。完全に酸素の無い雰囲気での照射では、活性酸素やオゾンによる表面改質(不活性化)の効果が現れないため、UV光が通過しつつ、活性酸素やオゾンも到達するような工夫を要する。例えば、窒素雰囲気中にUV光源を置き、石英ガラスを透過させてUV光を当てるといった装置上の工夫により、石英ガラスからポリイミドフィルムまでの距離を短くして、UV光の吸収を抑えるといった工夫のほか、雰囲気を通常の大気ではなく酸素量をコントロールしたものとしてUV光の酸素吸収をコントロールする方法、UV光源、カップリング処理層間の気体の流れを制御することなども、UV光の透過とオゾンの発生量を制御する方法として有効である。
UV光の照射強度は、少なくとも150nm〜400nmの波長範囲に感度のピークを持つ紫外線光量計を用いて測定した際に5mW/cm2以上が好ましく、200mW/cm2以下が支持体の変質防止のため望ましい。UV光の照射時間は、0.1分以上、30分以下が好ましく、より好ましくは0.5分以上、さらに好ましくは1分以上、特に好ましくは2分以上であり、より好ましくは10分以下、さらに好ましくは5分以下、特に好ましくは4分以下である。積算光量に換算すると、30mJ/cm2〜360000mJ/cm2が好ましく、より好ましくは300mJ/cm2〜120000mJ/cm2であり、さらに好ましくは600mJ/cm2〜60000mJ/cm2である。
UV照射処理時のパターン形成は、光を照射する部分と、照射しない部分を意図的に作ることによって行う。パターンを形成する方法としてはUV光を遮蔽する部分と遮蔽しない部分を作るか、UV光をスキャンさせる方法などが挙げられる。パターンの端部を明確にするためには、UV光を遮断するとともにマスクでポリイミドフィルムを覆うことが有効である。また、UVレーザーの平行光線によってスキャンすることも有効である。
UV照射処理に使える光源としては、特に制限はないが、例えば、エキシマランプ、低圧水銀ランプ、高圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザー、Xeランプ、XeClエキシマレーザー、XeFエキシマレーザー、Arレーザー、D2ランプなどが挙げられる。中でも、エキシマランプ、低圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザーなどが好ましい。
なお、本発明の積層体の製造方法においては、後述の加圧加熱処理工程の前に、ポリイミドフィルムの対向面へのパターン形成工程に併せて、エッチングによりカップリング処理層におけるポリイミドフィルムと対向する側の面に所定のパターンを形成することもできる。上記所定のパターンの形成とは、意図的にカップリング剤の塗布量や表面活性化処理の活性度等を操作した領域を作ることをいう。これにより、カップリング処理層のパターン形成を行い、カップリング処理層表面を処理することによって、通常の洗浄とは異なり、シランカップリング処理層表面の汚染除去を行うこともできる。カップリング剤層表面の汚れによる貼付け不良が起こりにくくなり、カップリング剤層表面に凹凸がないため、フィルムとうまく貼付けることができる。
パターン形成の方法として、カップリング剤塗布を行う際に、あらかじめ所定のパターンで準備されたマスクを用いて、カップリング剤の塗布量を操作する方法を例示できる。またカップリング剤の塗布面に活性エネルギー線照射を行い、その際に、マスキングないしスキャン操作などの手法を併用することによりパターン化することも可能である。ここに活性エネルギー線照射とは、紫外線、電子線、X線等のエネルギー線を照射する操作、さらには極短波長の紫外線照射処理のように紫外線照射光効果と同時に照射面近傍で発生するオゾンガスガス暴露の効果を併せ持つものを含める。さらにこれらの他に、コロナ処理、真空プラズマ処理、常圧プラズマ処理、サンドブラスト処理等によってパターン化処理を行うことも可能である。
以上のように不活性化処理されたポリイミドフィルムには、不活性化(エッチング)されているか否かによって、支持体とポリイミドフィルムとの剥離強度が強い部分である良好接着部分と、支持体とポリイミドフィルムとの剥離強度が弱い部分である易剥離部分とからなるパターンが形成される。UV照射部ではパターン化処理を行うことによってポリイミドが却って不安定な状態となり、ポリイミドフィルム全体とカップリング処理層との接着強度がむしろ低下する。例えばポリイミド表面にUV/O3処理を行うと、UV/O3処理は酸化が進む表面処理であるために、酸化の進行によってポリイミドの結合は破壊され、不安定でポリイミドフィルム全体とは結合の弱い層が形成され、一部は除去されていくことになる。このため、この層の上に接着しても、ポリイミドフィルム全体との接着力は低い。よって、ポリイミドフィルム表面にUV/O3処理を行った場合、UV照射部が易剥離部分となる反面、UV未照射部が剥離強度の強い良好接着部分となる。また、カップリング処理層表面にUV/O3処理を行うと、カップリング処理層がシランカップリング処理層である場合には、酸化が進むため、接着機能を有する有機物成分は除去されるがSiO2は残留すると考えられる。そして、OH基も生成されるため、この層は水素結合を行いうる表面となる。そのため、カップリング処理層表面にUV/O3処理を行った場合も、UV照射部が易剥離部分となり、UV未照射部が剥離強度の強い良好接着部分となる。
なお、シランカップリング剤層にUV照射した場合、耐熱剥離強度の方がUV照射部の剥離強度よりも高くなるが、ポリイミドフィルムにUV照射した場合、耐熱剥離強度の方がUV照射部の剥離強度よりも低くすることができる。耐熱剥離強度およびUV照射部の剥離強度については実施例に測定方法を詳述する。
支持体としてはガラスを基板とすることが工業的に有利であり、この場合、UV照射によって剥離強度を低下させることがより実用的であるが、用途、使用基板、必要とする剥離強度によっては、UV光照射部分を良好接着部分とすることも考えられる。
<加圧加熱処理>
本発明の積層体は、上記カップリング処理層形成工程及び上記パターン形成工程の後に、カップリング処理層を設けた支持体とポリイミドフィルムとを重ね合わせて加圧加熱処理する加圧加熱処理工程を行うことにより作製される。
加圧加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
加圧加熱処理の際の圧力としては、1MPa〜20MPaが好ましく、さらに好ましくは3MPa〜10MPaである。圧力が高すぎると、支持体を破損するおそれがあり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。加圧加熱処理の際の温度としては、150℃〜400℃、さらに好ましくは250℃〜350℃である。温度が高すぎると、ポリイミドフィルムにダメージを与えるおそれがあり、温度が低すぎると、密着力が弱くなる傾向がある。
また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した剥離強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所社製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所社製の「MVLP」等を使用できる。
上記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)でポリイミドフィルムと支持体とを加圧(好ましくは0.2〜50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120〜250℃、さらに好ましくは150〜230℃)で加熱することにより、密着界面の化学反応が促進されてポリイミドフィルムと支持体とを積層できる。
なお一般に、支持体とポリイミドフィルムとの積層体を得る方法としては、支持体の上にポリイミドワニス(上述したポリアミド酸溶液)を直接塗布しイミド化させて製膜する方法も考えられるが、本発明では、ポリイミドをフィルム化した後、支持体に積層する。これは、ポリアミド酸溶液を支持体上で加熱してイミド化すると、例えば、支持体にもよるが同心円状の膜厚分布ができやすくなったり、ポリイミドフィルムの表と裏の状態(熱の伝わり方等)が異なるために反りや支持体からの浮きがあるフィルムになりやすいのに対して、予めフィルム化しておけば、これらの問題を回避できるからである。さらに、支持体にフィルムを重ね合わせるようにすることで、加圧加熱処理を行い得る範囲において、重ね合わせる前にフィルムにデバイス(回路等)を形成しておくことも可能になる。
<応用>
本発明の積層体の製造方法においては、応用例として、必要に応じて、積層体中のポリイミドフィルムまたは積層体全体の膜厚方向に貫通する孔部分を設けることにより、非ポリイミド部分を設けてもよい。該部分としては、特に限定はされるものではないが、好ましくは、Cu、Al、Ag、Auなどの金属を主たる成分としている金属で充填されているもの、機械式のドリルやレーザー穴あけによって形成された空孔、および、空孔の壁面に金属膜がスパッタリングや無電解めっきシード層形成などにより形成されているもの等が挙げられる。
(積層体)
本発明の積層体は、支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であり、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成している。これにより、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体となる。本発明の積層体は、本発明の積層体の製造方法により得ることができ、支持体、ポリイミドフィルム、カップリング処理層等の詳細については、上述した通りである。
本発明において、良好接着部分と易剥離部分は、例えばUV光照射等の不活性化処理の有無によって表面の性質を変えることで、形成される。つまり、本発明における良好接着部分とは、UV光照射等の不活性化処理が施されていない部分であり、支持体とポリイミドフィルムの剥離強度が強い部分を指す。本発明における易剥離部分とは、UV光照射等の不活性化処理が施された部分であり、支持体とポリイミドフィルムの剥離強度が弱い部分を指す。
本発明において、支持体とポリイミドフィルムとの間の180度剥離強度は、この上に積層するデバイスの種類やプロセスに応じて適宜設定すればよく、特に制限されないが、少なくとも、上記易剥離部の180度剥離強度は、良好接着部の180度剥離強度の1/2以下であることが好ましく、より好ましくは、1/5以下である。一般論としては、良好接着部の180度剥離強度は、0.5N/cm以上、5N/cm以下であることが好ましく、より好ましくは0.8N/cm以上、2N/cm以下である。上記易剥離部の180度剥離強度は、0.01N/cm以上、0.4N/cm以下であることが好ましく、より好ましくは0.01N/cm以上、0.2N/cm以下である。ここで易剥離部の180度剥離強度の下限は、ポリイミドフィルムの曲げエネルギーなども加味された値となっている。本発明における180度剥離強度は、実施例で後述する方法で測定することができる。また、実施例で後述する耐熱剥離強度、耐酸剥離強度、および耐アルカリ剥離強度についても、それぞれ0.5N/cm以上、5N/cm以下であることが望ましいが、プロセスによってこの要請の数字は変わることがありえる。
(デバイス構造体の製造方法)
本発明のデバイス構造体の製造方法は、支持体とポリイミドフィルムとを有する本発明の積層体を用いて、基材であるポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法である。
本発明のデバイス構造体の製造方法においては、上述した方法で作製された積層体のポリイミドフィルム上にデバイスを形成した後、上記積層体の易剥離部のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを上記支持体から剥離する。
上記積層体の易剥離部のポリイミドフィルムに切り込みを入れる方法としては、刃物などの切削具によってポリイミドフィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつポリイミドフィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
上記積層体の易剥離部のポリイミドフィルムに切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部の一部を含んでいればよく、基本的にはパターンに従って切断するのが通常である。ただし、正確にパターンに従い良好接着部と易剥離部の境で切断しようとすると誤差も生じることから、パターンより若干易剥離部側に切り込むことが生産性を上げる点で好ましい。また、剥離させるまでに勝手に剥離してしまうことを防ぐうえでは、該パターンより若干良好接着部に切り込む生産方式もありえる。更には、良好接着部の巾を狭く設定するようにすれば、剥離時に良好接着部に残存するポリイミドフィルムを減らすことができ、フィルムの利用効率が向上し、該積層体面積に対するデバイス面積が多くなり、生産性が向上する。更には、積層体の外周部の一部に易剥離部を設けるようにしておき、該外周部を切断位置として、実際には切り込みを入れずに剥がす方式も、本発明の極端な一形式となりえる。
ポリイミドフィルムを支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、デバイス付きのポリイミドフィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
なお、本発明のデバイス構造体(デバイス付きのポリイミドフィルム)は、最終製品とするまでに補強部材を固定しておくことができる。この場合、支持体から剥離した後に補強部材を固定してもよいが、補強部材を固定させた後にポリイミドフィルムに切り込みを入れて支持体から剥離するか、もしくはポリイミドフィルムに切り込みを入れた後に該切り込み部分に補強部材を固定させ、その後剥離することが好ましい。剥離する前に補強部材を固定させる場合には、ポリイミドフィルムおよび補強部材の弾性率や膜厚を考慮することにより、デバイス部分に極力応力が加わりにくい構成とすることが可能となる。例えば、本発明の積層体の易剥離部のみに補強部材として粘着剤付きPETフィルムを貼り付けておき、この粘着剤付きPETフィルムが貼りついた状態で易剥離部に切り込みを入れてデバイス付きのポリイミドフィルムを剥がすようにしてもよいし、本発明の積層体全体に補強部材として粘着剤付きPETフィルムを貼り付けておき、該積層体の易剥離部に切り込みを入れて粘着剤付きPETフィルムが貼りついた状態でデバイス付きのポリイミドフィルムを剥がすようにしてもよい。
剥離する前に補強部材を固定させる場合には、補強部材としては、高分子フィルム、極薄ガラス、SUSなどが好ましく用いられる。高分子フィルムには、デバイスの軽量性が保たれる利点があり、さらに透明性、各種加工性、割れ難さも利点として挙げられる。極薄ガラスには、ガスバリア性、対薬品安定性、透明性が得られるという利点がある。SUSには、電気的にシールドできる点、割れ難さといった利点がある。なお、高分子フィルムとしては、既に高温を必要とするプロセスを通過した後であるため、耐熱性の制約は少なく、さまざまな高分子フィルムを選択しうる。これら補強部材の固定は、接着あるいは粘着により行うことができる。
本発明において、基材であるポリイミドフィルム上にデバイスを形成する方法は、従来公知の方法に従い適宜行えばよい。また、デバイスの作製の前にポリイミドフィルムを貼り付けたガラスは洗浄を行ってもよく、デバイス作製の直前におけるウェット洗浄や、大気圧プラズマ処理、真空プラズマ処理、前出のUV/O3処理による洗浄などの従来公知の方法に従い適宜行えばよい。
本発明におけるデバイスとしては、特に制限はなく、例えば、電子回路用配線のみ、電気抵抗のほか、コイル、コンデンサーといった受動デバイス、半導体素子などを含む能動デバイス、およびそれらを組み合わせてなる電子回路システムがある。半導体素子としては、太陽電池、薄膜トランジスター、MEMS素子、センサー、論理回路等が挙げられる。
例えば、本発明の積層体を使用したフィルム状太陽電池は、本発明の積層体のポリイミドフィルムを基材とし、該基材上に半導体からなる光電変換層を含む積層体Xが形成されてなる。この積層体Xは、太陽光のエネルギーを電気エネルギーに変換する光電変換層を必須の構成として有し、通常、得られた電気エネルギーを取出すための電極層などをさらに有するものである。
以下、フィルム状太陽電池を構成するよう形成される上記積層体Xの典型例として、光電変換層を一対の電極層で挟んでなる積層構造を説明する。しかし、光電変換層を何層か積み重ねた構成なども、PVDやCVDでの作製ならば、本発明の太陽電池といえる。勿論、積層体Xの積層構造は、以下に記載される態様に限定されず、従来技術の太陽電池が有する積層体の構成を適宜参照してよく、保護層や公知補助手段を付加してもよいものである。
上記一対の電極層における一方の電極層(以下、裏面電極層とも記載する)は、好ましくは、ポリイミドフィルム基材の一主面上に形成される。裏面電極層は従来公知の方法、例えばCVD(ケミカル・ベーパー・デポジション)法やスパッタ法によって導電性無機材料を積層することによって得られる。導電性無機材料としては、Al、Au、Ag、Cu、Ni、ステンレス鋼などの金属薄膜や、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSn23を添加したもの)などの酸化物半導体系の導電材料などが挙げられる。好ましくは、裏面電極層は金属薄膜であるのがよい。裏面電極層の厚さは特に限定はなく、通常、30〜1000nm程度である。また、一部の電極引き出しで、Agペーストといった真空を利用しない膜形成法を採用してもよい。
太陽光のエネルギーを電気エネルギーに変換する光電変換層は、半導体からなる層であり、I族元素とIII族元素とVI族元素とからなる化合物半導体薄膜(カルコパイライト構造半導体薄膜)であるCuInSe2(CIS)膜、またはこれにGaを固溶したCu(In,Ga)Se2(CIGS)膜(以下、両者をまとめてCIS系膜ともいう)、シリコン系半導体からなる層である。シリコン系半導体には、薄膜シリコン層、無定形シリコン層、多結晶シリコン層などが挙げられる。光電変換層は、異なる半導体からなる複数の層を有する積層体であってもよい。また、色素を用いた光電変換層であってもよい。さらに導電性ポリマーやフラーレンなどの有機化合物よる有機薄膜半導体を用いるものでもよい。
薄膜シリコン層は、プラズマCVD法、熱CVD法、スパッタリング法、クラスタイオンビーム法、蒸着法などによって得られるシリコン層である。
無定形シリコン層は、実質的に結晶性をもたないシリコンからなる層である。実質的に結晶性をもたないことは、X線を照射しても回折ピークを与えないことによって確かめることができる。無定形シリコン層を得る手段は公知であり、そのような手段には、例えば、プラズマCVD法や熱CVD法などが含まれる。
多結晶シリコン層は、シリコンからなる微小結晶の集合体からなる層である。上述の無定形シリコン層とは、X線の照射により回折ピークを与えることによって区別される。多結晶シリコン層を得る手段は公知であり、そのような手段には、無定形シリコンを熱処理する手段などが含まれる。
光電変換層は、シリコン系半導体層に限られず、例えば、厚膜半導体層であってもよい。厚膜半導体層とは、酸化チタン、酸化亜鉛、ヨウ化銅などのペーストから形成される半導体層である。
半導体材料を光電変換層として構成する手段としては、公知の方法を適宜採用すればよい。例えば、200〜500℃の温度下で、SiH4にフォスフィン(PH3)を添加したガス中で高周波プラズマ放電を行うことにより約20nmのa−Si(n層)を形成し、続いてSiH4ガスのみで約500nmのa−Si(i層)を形成し、続いてSiH4にジボラン(B26)を添加して約10nmのp−Si(p層)を形成することができる。
光電変換層を挟む一対の電極層のうち、ポリイミドフィルム基材とは反対側に設けられる電極層(以下、集電電極層ともいう)は、導電フィラーとバインダー樹脂を含む導電性ペーストを固めてなる電極層であってもよいし、透明電極層であってもよい。透明電極層としては、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の材料を好ましく用いることができる。
かくして、本発明の好適な態様例である、透明電極/p型a−Si/i型a−Si/n型a−Si/金属電極/ポリイミドフィルムの順で積層されてなるフィルム状太陽電池が得られる。また、p層をa−Si、n層を多結晶シリコンとして、両者の間に薄いアンドープa−Si層を挿入した構造にしてもよい。特に、a−Si/多結晶シリコン系のハイブリッド型にすると、太陽光スペクトルに対する感度が改善される。太陽電池の作製においては、上記構成に加えて、反射防止層、表面保護層などを付加せしめてもよい。
上記薄膜トランジスター(TFT)は、トランジスターを構成する半導体層および素子を構成する絶縁膜、電極、保護絶縁膜などが、薄膜を堆積させて作製されているものをいう。通常シリコンウエハのシリコンを半導体層として使用するものとは区別する。通常薄膜を真空蒸着などのPVD(物理的蒸着)、プラズマCVDなどのCVD(化学的蒸着)といった真空を利用する手法によって作製する。このため、シリコンウエハのように単結晶ではないものを含む。Siを使っても、微結晶シリコンTFT、高温ポリシリコンTFT、低温ポリシリコンTFT、そして酸化物半導体TFT、有機半導体TFTなどを含む。
上記MEMS素子とは、MEMS技術を利用して作製した物を意味し、インクジェットプリンターヘッド、走査型プローブ顕微鏡用プローブ、LSIプローバー用コンタクタ、マスクレス露光用光空間変調器、光集積化素子、赤外線センサー、流量センサー、加速度センサー、MEMSジャイロセンサー、RF MEMS スイッチ、体内・体外血圧センサーそして、グレーティングライトバルブ、デジタルマイクロミラーデバイスなどを使ったビデオプロジェクターなどを含む。
上記センサーとしては、ストレインゲージ(ひずみゲージ)、ロードセル、半導体圧力センサー、光センサー、光電素子、フォトダイオード、磁気センサー、接触式温度センサー、サーミスタ温度センサー、抵抗測温体温度センサー、熱電対温度センサー、非接触式温度センサー、放射温度計、マイクロフォン、イオン濃度センサー、ガス濃度センサー、変位センサー、ポテンショメータ、差動トランス変位センサー、回転角センサー、リニアエンコーダ、タコジェネレータ、ロータリエンコーダ、光位置センサー(PSD)、超音波距離計、静電容量変位計、レーザードップラー振動速度計、レーザードップラー流速計、ジャイロセンサー、加速度センサー、地震センサー、一次元画像・リニアイメージセンサー、二次元画像・CCDイメージセンサー、CMOSイメージセンサー、液・漏液センサー(リークセンサー)、液検知センサー(レベルセンサー)、硬度センサー、電場センサー、電流センサー、電圧センサー、電力センサー、赤外線センサー、放射線センサー、湿度センサー、においセンサー、流量センサー、傾斜センサー、振動センサー、時間センサー、およびこれらのセンサーを複合した複合センサーや、これらのセンサーで検出した値から何らかの計算式に基づき別の物理量や感性値などを出力するセンサーなどを含む。
上記論理回路としては、NAND、ORを基本とした論理回路および、クロックにより、同期が取られたものも含む。
以上に詳述した本発明の積層体の製造方法および本発明のデバイス構造体の製造方法について、各々の一実施態様の例を図面を用いて説明すると、図1〜図3に示す通りである。
図1は、本発明の積層体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3をポリイミドフィルム4上に設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでポリイミドフィルム4のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部6となっている。(5)はポリイミドフィルム4をカップリング処理層2上に貼り付けした段階を示し、(6)はUV照射部5上のポリイミドフィルム4に切り込みを入れ、ポリイミドフィルムの一部分7をガラス基板1から剥離した段階を示す。
図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図であり、(1)〜(5)は図1と同様である。(6)はポリイミドフィルム4上のUVを照射した面と反対側の面にガスバリア層8を積層した段階を示し、(7)はUV照射部上のガスバリア層8表面へデバイス9を作製した段階を示し、(8)はUV照射部5上のポリイミドフィルム4に切り込みを入れ、ポリイミドフィルムの一部分7’をガラス基板1から剥離した段階を示す。
図3は、本発明のデバイス構造体の製造方法の他の一実施態様を示す模式図であり、(1)〜(4)は図1と同様である。(5)はUV光遮断マスク3’をカップリング処理層2上に設置した後にUV光を照射した段階を示し、(6)はUV光を照射後に、UV光遮断マスク3’を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5’となり、残りの部分はUV未照射部6’となっている。(7)はポリイミドフィルム4をカップリング処理層2上に貼り付けした段階を示し、(8)はポリイミドフィルム4上のUVを照射した面と反対側の面にガスバリア層8を積層した段階を示し、(9)はUV照射部上のガスバリア層8表面へデバイス9を作製した段階を示し、(10)はUV照射部5上のポリイミドフィルム4に切り込みを入れ、ポリイミドフィルムの一部分7’’をガラス基板1から剥離した段階を示す。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
以下の実施例における物性の評価方法は下記の通りである。
<ポリイミドフィルムの厚さ>
ポリイミドフィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
<ポリイミドフィルムの引張弾性率、引張強度および引張破断伸度>
測定対象とするポリイミドフィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG−5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度および引張破断伸度を測定した。
<剥離強度>
剥離強度(180度剥離強度)は、JIS C6471に記載の180度剥離法に従い、下記条件で測定した。なお、この測定に供するサンプルには、□100mmの支持体(ガラス)に対してポリイミドフィルムのサイズを110mm×200mmに設計することにより片側にポリイミドフィルムの未接着部分を設け、この部分を“つかみしろ”とした。
装置名 ; 島津製作所社製「オートグラフAG−IS」
測定温度 ; 室温
剥離速度 ; 50mm/分
雰囲気 ; 大気
測定サンプル幅 ; 1cm
(1)UV未照射部の剥離強度
UV未照射部の剥離強度の測定には、UV照射を行わないこと以外は各実施例・比較例と同様にして別途作製した積層体を用いた。
(2)UV照射部の剥離強度
UV照射部の剥離強度の測定は、UV照射を行った積層体のUV照射部について行った。
(3)耐熱剥離強度
耐熱剥離強度の測定は、UV処理を行った積層体を窒素雰囲気としたマッフル炉に入れ、これを昇温速度10℃/分で400℃まで加熱し、そのまま400℃で1時間保持した後、マッフル炉の扉を開放して大気中で放冷することにより得たサンプルを用いて行った。
(4)PCT(飽和加圧蒸気試験)後剥離強度
飽和水蒸気、2気圧、121℃の環境で96時間置いた積層体を大気中に取り出し、室温、大気圧の環境で剥離強度の測定を行い、PCT後剥離強度とした。
(5)IPA(イソプロピルアルコール)後剥離強度
IPA後剥離強度の測定は、イソプロピルアルコール中に室温(23℃)にて30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
(6)耐酸性剥離強度
耐酸性剥離強度の測定は、積層体(UV照射を行った積層体)を18質量%の塩酸溶液中に室温(23℃)にて30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
(7)耐アルカリ性剥離強度
耐アルカリ性剥離強度の測定は、積層体(UV照射を行った積層体)を2.38質量%の水酸化テトラメチルアンモニウム(TMAH)水溶液(室温(23℃))中に30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
<滑材粒子径>
各製造例で用いた滑材(シリカ)の粒子径は、溶媒(ジメチルアセトアミド)に分散させた分散体の状態で、堀場製作所社製のレーザー散乱式粒度分布計「LB−500」を用いて粒子径分布を求め、体積平均粒子径を算出した。
<ポリイミドフィルムの線膨張係数(CTE)>
測定対象とするポリイミドフィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃〜45℃、45℃〜60℃、…)での伸縮率/温度を測定し、この測定を300℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
機器名 ; MACサイエンス社製「TMA4000S」
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 30℃
昇温終了温度 ; 300℃
昇温速度 ; 5℃/分
雰囲気 ; アルゴン
初荷重 ; 34.5g/mm2
<ポリイミドフィルム表面のRa値>
ポリイミドフィルム表面のRa値(表面形態)の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー社製「FS−20A」を使用し、走査範囲は10μm四方とし、測定分解能は512×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、測定に伴うノイズが含まれる場合には適宜その他の平坦化処理(例えばフラット処理)を使用し、装置付属のソフトウエアでRa値を算出した。任意の3箇所について計測を行ってRa値を求め、それらの平均値を採用した。
<ポリイミドフィルム表面のクレーター数およびクレーター直径>
以下のAFM法により測定した。すなわち、ポリイミドフィルム表面のクレーター数の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー社製「FS−20A」を使用し、走査範囲は10μm四方とし、測定分解能は1024×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、クレーター部を観測した。図8に示すように、クレーターは平坦部から盛り上がった凸状部の中心が窪んだ形状をしている。よって、盛り上がりの最大高さの位置における断面の直径(最大高さ間の距離)をクレーター直径とした(図8において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図(白が高い位置、黒が低い位置)であり、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例であり、(3)はクレーター直径を示す)。そして任意の3個のクレーター部について計測を行ってクレーター直径を求め、それらの平均値を採用した。
クレーター数は、得られた10μm四方の計測像(AFM像)を画像処理ソフト「ImageJ」にて粒子解析することにより測定した。なお「ImageJ」はアメリカ国立衛生研究所(NIH)で開発されたオープンソースでパブリックドメインの画像処理ソフトウェアである。詳しくは、まず、ある閾値によってそれより位置の高い部分と低い部分の2つに分別する2値化操作を行った(図9の(2)、(3)参照)。このとき閾値としては、AFM像の高さ方向の情報について分布の最大点を基準に、そこから使用した滑材の粒径の12%高い位置(滑材直径が80nmの場合10nm高い位置)を閾値とした。この2値化により白黒のみの画像(図9の(3)参照)を得、この中の円環形状の部分の数を画像処理によって求めた。すなわち、円環形状の認識は、取り囲まれた円環内を塗りつぶす操作を行い、円環内を塗りつぶした画像(図9の(4)参照)と塗りつぶさない画像を反転したもの(図9の(5)参照)との画像論理積(図9の(6)参照)を求めることで、円環内のみが抽出できる(図9において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図(白が高い位置、黒が低い位置)であり、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例(直線は閾値)であり、(3)は閾値にて2値化した例であり、(4)は、円環部を塗りつぶした例であり、(5)は、(3)を反転した例であり、(6)は、(4)と(5)の論理積である)。この操作で得た画像論理積の画像から直径が10〜500nmのクレーターを数えてクレーター数を算出した。そして任意の3箇所について計測を行ってクレーター数を求め、それらの平均値を採用した。
<カップリング処理層の厚さ>
カップリング処理層(SC層)の厚さ(nm)は、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でカップリング剤を塗布乾燥させて得たサンプルを作製し、このSiウエハ上に形成したカップリング処理層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE−5000」)を用いて下記の条件で測定した。
反射角度範囲 ; 45°から80°
波長範囲 ; 250nmから800nm
波長分解能 ; 1.25nm
スポット径 ; 1mm
tanΨ ; 測定精度±0.01
cosΔ ; 測定精度±0.01
測定 ; 方式回転検光子法
偏向子角度 ; 45°
入射角度 ; 70°固定
検光子 ; 11.25°刻みで0〜360°
波長 ; 250nm〜800nm
非線形最小2乗法によるフィッティングで膜厚を算出した。このとき、モデルとしては、Air/薄膜/Siのモデルで、
n=C3/λ4+C2/λ2+C1
k=C6/λ4+C5/λ2+C4
の式で波長依存C1〜C6を求めた。
<ポリイミドフィルムの評価:滑り性>
ポリイミドフィルム2枚を、異なる面同士で重ね合わせ(すなわち、同じ面同士ではなく、フィルムロールとして巻いた場合の巻き外面と巻き内面とを重ね合わせ)、重ねたポリイミドフィルムを親指と人差し指で挟み、軽く摺り合わせたときに、ポリイミドフィルムとポリイミドフィルムが滑る場合を「○」、滑らない場合を「×」と評価した。なお、巻き外面同士あるいは巻き内面同士では滑らない場合もあるが、これは評価項目とはしない。
<ポリイミドフィルムの評価:ロール巻取り性>
長尺状のポリイミドフィルムを巻取りロ−ル(心棒の外径:15cm)に2m/分の速度で巻取る際に、皺が生じず円滑に巻取りが可能である場合を「○」、部分的に皺が発生する場合を「△」、皺が発生する場合やロ−ルに巻きついて円滑に巻取りができない場合を「×」と評価した。
<ガラス転移温度>
DSC示差熱分析装置を用いて、室温から500℃までの範囲での構造変化に起因する吸放熱の有無からポリイミドフィルムのガラス転移温度を求めた。いずれのポリイミドフィルムにおいてもガラス転移温度は観察されなかった。
<積層体における浮き密度>
200×200mmのサンプルを作製し、100×100mmの4領域について浮きの個数を数えた。具体的には、ガラス面側から見たガラス−ポリイミドフィルムの間の浮きのうちで長径1mm以上の浮きの個数を4領域で各々数えた。そして、その4領域の浮きの個数を平均して(200×200mmのサンプルにおける浮きの総数を4で割って)、積層体における浮き密度とした。
(ポリアミド酸溶液A1の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸無水物(PMDA)217質量部とともに、滑材として体積平均粒子径80nmのコロイダルシリカをN,N−ジメチルアセトアミドに分散してなる分散体(日産化学工業社製「スノーテックス(登録商標)DMAC−ST30」)とをシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.1質量%になるように加え、25℃の反応温度で24時間攪拌して、還元粘度を有する褐色で粘調なポリアミド酸溶液A1を得た。
(ポリアミド酸溶液A2の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸無水物(PMDA)217質量部を加え、25℃の反応温度で24時間攪拌して、還元粘度を有する褐色で粘調なポリアミド酸溶液A2を得た。
(ポリアミド酸溶液B1の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ピロメリット酸無水物545質量部、4,4'−ジアミノジフェニルエーテル500質量部を8000質量部のN,N−ジメチルアセトアミドに溶解させ、次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N−ジメチルアセトアミドに分散してなる分散体(日産化学工業社製「スノーテックス(登録商標)DMAC−ST30」)とをシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対し0.15質量%になるように加え、温度を20℃以下に保ちながら24時間攪拌して、ポリアミド酸溶液B1を得た。
(ポリアミド酸溶液B2の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ピロメリット酸無水物545質量部、4,4'−ジアミノジフェニルエーテル500質量部を8000質量部のN,N−ジメチルアセトアミドに溶解させ、温度を20℃以下に保ちながら24時間攪拌して、ポリアミド酸溶液B2を得た。
(ポリアミド酸溶液C1の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸無水物398質量部、パラフェニレンジアミン147質量部を4600質量部のN、N−ジメチルアセトアミドに溶解させ、次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N−ジメチルアセトアミドに分散してなる分散体(日産化学工業社製「スノーテックス(登録商標)DMAC−ST30」)とをシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対し0.12質量%になるように加え、25℃の反応温度で24時間攪拌して、還元粘度を有する褐色で粘調なポリアミド酸溶液C1を得た。
(ポリアミド酸溶液C2の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸無水物398質量部、パラフェニレンジアミン147質量部を4600質量部のN、N−ジメチルアセトアミドに溶解させ、25℃の反応温度で24時間攪拌して、還元粘度を有する褐色で粘調なポリアミド酸溶液C2を得た。
(ポリアミド酸溶液Dの調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、2,2’−ビス(トリフルオロメチル)ベンジジン16.1g(0.05mol)と、N−メチル−2−ピロリドン109gとを仕込んで溶解させ、次いで、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物11.2g(0.05mol)を室温にて固体のまま分割添加し、室温下で12時間攪拌した。次に、共沸溶媒としてキシレン40.0gを添加し、180℃に昇温して3時間反応を行い、共沸してくる生成水を分離した。水の留去が終わったことを確認した後、1時間かけて190℃に昇温することによりキシレンを除去して反応溶液を得た。この反応溶液に、滑材として体積平均粒子径80nmのコロイダルシリカをN、N−ジメチルアセトアミドに分散してなる分散体(日産化学工業社製「スノーテックス(登録商標)DMAC−ST30」)とをシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対し0.2質量%になるように加え、ポリアミド酸溶液Dを得た。
《フィルム作製例1》
ポリアミド酸溶液A1を、製膜支持体としてのポリエチレンテレフタレート(PET)製フィルム(東洋紡社製「A−4100」)の無滑材面上に、表1中「(b層)厚さ」として示す乾燥膜厚となるようにコンマコーターを用いてコーティングし、110℃にて5分間乾燥した後、PET製フィルムとともに(PET製フィルムから剥がさずに)単層ポリアミド酸フィルムを巻き取った。
製膜支持体のPET製フィルムとともに巻き取られた単層ポリアミド酸フィルムを製膜機の巻きだし部に取り付け、ポリアミド酸溶液A2を、表1中「(a層)厚さ」として示す乾燥膜厚となるように、コンマコーターを用いて単層ポリアミド酸フィルム面にコーティングし、110℃にて20分間乾燥して、製膜支持体のPET製フィルム上に2層構成の多層ポリアミド酸フィルムを得た。
次に、得られた2層構成の多層ポリアミド酸フィルムを製膜支持体のPET製フィルムから剥離し、3つの熱処理ゾーンを有するピンテンターに通し、1段目150℃×2分間、2段目220℃×2分間、3段目475℃×4分間の熱処理を行い、500mm幅にスリットして、多層構造のポリイミドフィルムを得た。なお、熱処理後、剥離可能な非ポリイミド保護フィルムとして、片面に微粘着層を備えたPETフィルム(保護フィルム)をa層側(本実施例ではポリアミド酸溶液A2側)にラミネートしてから巻き取った。得られたポリイミドフィルムの特性を表1に示す。
なお、上記保護フィルムは、フィルム表面への異物付着や傷付き等を防止する目的で貼着しているものであり、比較的低温でロールトゥロールにて搬送する際や、人手によるハンドリングを行う際には、保護フィルムは貼着した状態で操作を行った。しかしながら、例えば130℃を超える条件下でプレスやラミネートなどを行う際、または、保護フィルムを貼着した面に各処理を施す際には、かかる保護フィルムを剥がした後に各操作を行った。
《フィルム作製例2》
ポリアミド酸溶液A1、A2の塗布量を、それぞれ表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム2を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例3》
ポリアミド酸溶液A1とA2の塗布順番を入れ替える(すなわち、b層をポリアミド酸溶液A2で形成し、a層をポリアミド酸溶液A1で形成する)とともに、ポリアミド酸溶液A1、A2の塗布量を、それぞれ表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム3を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例4》
ポリアミド酸溶液A1、A2の塗布量を、それぞれ表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム4を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例5》
ポリアミド酸溶液A2を塗布しない(すなわち、a層を形成しない)ようにし、ポリアミド酸溶液A1の塗布量を、表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム5を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例6》
ポリアミド酸溶液A1をB1に変更し、ポリアミド酸溶液A2をB2に変更するとともに、ポリアミド酸溶液B1、B2の塗布量を、それぞれ表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム6を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例7》
ポリアミド酸溶液A1をC1に変更し、ポリアミド酸溶液A2をC2に変更するとともに、ポリアミド酸溶液C1、C2の塗布量を、それぞれ表1に示す乾燥膜厚となるように変更したこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム7を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム作製例8》
ポリアミド酸溶液A1をDに変更するとともに、ポリアミド酸溶液A2を塗布しない(すなわち、a層を形成しない)ようにし、ポリアミド酸溶液Dの塗布量を表1に示す乾燥膜厚となるように変更し、さらに3段目の熱処理における温度を280℃としたこと以外は、フィルム作製例1と同様にして、ポリイミドフィルム8を得た。得られたポリイミドフィルムの特性を表1に示す。
《フィルム9、10》
市販の東レデュポン社製「カプトン(登録商標)100H」をフィルム9とし、市販の宇部興産社製「ユーピレックス(登録商標)25S」をフィルム10とした。
《フィルム処理例1〜4》
フィルム1〜4に対し、各ポリイミドフィルムの滑材を含有していない層側(ポリアミド酸溶液A2で形成された層側)の面に真空プラズマ処理を施した。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内に、Arガスを10sccm、H2ガスを5sccm導入し、13.56MHzの高周波電力を導入するようにし、処理時間は3分間とした。得られた処理後の各ポリイミドフィルムの特性を表2に示す。なお、ここで得られた処理後の各ポリイミドフィルムには、酸処理(HF処理)を施していないので、クレーターは観察されなかった。
《フィルム処理例5〜7》
フィルム3〜5に対し、各ポリイミドフィルムの滑材を含有している層側(ポリアミド酸溶液A1で形成された層側)の面に真空プラズマ処理を施し、続いて同面を後述のように酸処理した後、風乾し、110℃のホットプレート上に1時間載置することにより脱水処理を行った。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内にArガスを10sccm、H2ガスを5sccmを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。酸処理は、10質量%のHF水溶液中に1分間浸漬した後、洗浄し、乾燥することにより行った。得られた処理後の各ポリイミドフィルムの特性を表2に示す。
《フィルム処理例8、9》
フィルム6、7に対し、上記フィルム処理例1と同様にして真空プラズマ処理を施した。得られた処理後の各ポリイミドフィルムの特性を表2に示す。なお、ここで得られた処理後の各ポリイミドフィルムには、酸処理(HF処理)を施していないので、クレーターは観察されなかった。
《フィルム処理例10、11》
フィルム8、9に対し、上記フィルム処理例1と同様にして真空プラズマ処理を施した。得られた処理後の各ポリイミドフィルムの特性を表2に示す。なお、ここで得られた処理後の各ポリイミドフィルムには、酸処理(HF処理)を施していないので、クレーターは観察されなかった。
《フィルム処理例12〜15》
フィルム7〜10に対し、上記フィルム処理例5と同様にして真空プラズマ処理、酸処理、風乾および脱水処理を施した。得られた処理後の各ポリイミドフィルムの特性を表2に示す。
(実施例1)
窒素置換したグローブボックス内で窒素ガスを流しながら、シランカップリング剤(SC剤)である3−アミノプロピルトリメトキシシランをイソプロピルアルコールによって0.5質量%に希釈した後、無機物からなる支持体(基板)として予め別途洗浄、乾燥しておいたガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)をスピンコーターに設置して、シランカップリング剤(SC剤)を回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱して、厚さ11nmのカップリング処理層を備えた支持体を得た。
次に、上記フィルム処理例1で得られたポリイミドフィルムを100mm×100mm(□100mm)に切り取り、ポリイミドフィルムの滑材を含有していない層側(本実施例ではポリアミド酸溶液A2で形成された層側)の面に、70mm×70mm(□70mm)のパターンに切り抜いたポリイミドフィルムをマスクとして載置し、積層体の周辺15mmずつを残して70mm×70mm(□70mm)の範囲内にUV照射処理を行った。
なお、UV照射は、ランテクニカルサービス社製のUV/O3洗浄改質装置(「SKB1102N−01」)とUVランプ(「SE−1103G05」)とを用い、該UVランプから3cm程度離れた距離から2分間行った。照射時にはUV/O3洗浄改質装置内には特別な気体は入れず、UV照射は、大気雰囲気、室温で行った。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は20mW/cm2程度(照度計(「ORC UV−M03AUV」)にて254nmの波長で測定)であった。
次に、支持体のカップリング処理層の面と、フィルム処理例1で得られた表面処理ポリイミドフィルムのUV照射処理面(本実施例ではポリアミド酸溶液A2側)とが対向するように重ね合わせ、ジャパンクリエイツ社製の自動塗布式スピンコーター「MSC800−C−AD型」を用いて、ローラー圧力を増圧弁によって0.9MPaとして加圧処理を行った後に、熱風オーブンにて180℃、50分間加熱処理を行い、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
また、別途、上記で得たカップリング処理層を備えた支持体におけるカップリング処理層の面と、フィルム処理例1で得られたポリイミドフィルムの滑材を含有していない層側(本実施例ではポリアミド酸溶液A2で形成された層側の面)とが対向するように重ね合わせ、上記と同様の加圧加熱処理(ロールを用いたラミネートおよび大気圧中でのプレス)を行い、UV未照射部の剥離強度測定用サンプルを作製した。なお、以下の各実施例でも実施例1と同様にUV未照射部の剥離強度を測定している。
得られた積層体の評価結果を表3に示す。
(実施例2〜4)
実施例1において使用したポリイミドフィルムをフィルム処理例2〜4で得られたフィルムに変更したこと以外は、実施例1と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
(実施例5)
無機物からなる支持体(基板)として、厚さ0.725μmのシリコンウエハ(Siウエハ)を用いたこと以外は、実施例2と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
なお、この実施例2以外の各実施例についても、無機物からなる支持体としてガラスの代わりにシリコンウエハを使用する以外は同様に行って積層体を得たが、得られた積層体の評価結果はいずれも、それぞれガラスを支持体とした時とほぼ同一であった。
(実施例6〜16)
支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例5〜15で得られた処理後ポリイミドフィルムを用い、カップリング剤処理済ガラスのカップリング剤処理面と、各処理後ポリイミドフィルムの各処理面とが対向するように重ね合わせたこと以外、実施例1と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
(実施例17〜19)
支持体と重ね合わせるポリイミドフィルムとして処理を行っていないポリイミドフィルムを用い、カップリング剤処理済ガラスのカップリング剤処理面と、ポリイミドフィルムの滑材を含有していない層側とが対向するように重ね合わせたこと以外、実施例3、実施例10、または実施例11と同様にして、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
(実施例20〜21)
加圧処理を、30℃でロールラミネートを行った後、ロータリーポンプにて真空プレス機内を真空として、真空中150℃で8MPaにて5分間プレス後に、真空中200℃で8MPaの圧力にて20分間プレスすることにより行ったこと以外は、実施例2または実施例10と同様にして、本発明の積層体を得た。このとき使用した真空プレスは井元製作所社製の「11FD」であった。
得られた積層体の評価結果を表3に示す。
(実施例22〜24)
ロータリーポンプにて真空プレス機内を真空として、300℃で大気圧にてプレスすることにより加圧加熱処理を行ったこと以外は、実施例2、実施例9または実施例10と同様にして、本発明の積層体を得た。このとき使用した真空プレスは井元製作所社製の「11FD」であった。
得られた積層体の評価結果を表3に示す。
(実施例25)
ジャパンクリエイツ社製の自動塗布式スピンコーター「MSC800−C−AD型」を用い、ガラス板(コーニング社製「コーニングEAGLE XG」:370×470mm×0.7mm厚)上に、N−2−アミノエチル−3−アミノプロピルトリメトキシシランの0.5質量%イソプロパノール溶液を塗布し、2000回転で溶液を振りきった後に回転を止め、取り出したガラス板を乾燥窒素置換した120℃のホットプレート中に3分間入れることにより、シランカップリング剤処理を行い、厚さ30nmのシランカップリング処理層を形成した。
次に、フィルム処理例9で得られた処理フィルムを350mm×450mmにカットし、カットされた処理フィルムにステンレススチール製のメタルマスク(68mm×110mmの長方形の開口部が5mm幅の遮蔽部を介してアレイ状に配列されたパターンを有するものであって、表面に絶縁コートが施されたものである)を重ね、メタルマスクとガラス板との間に隙間がないことを確認して、実施例1と同様の方法でUV照射を行った。
続いて、UV処理を行ったフィルム処理面とシランカップリング処理層が施されたガラス板とが対向するように、ガラス板とともに、MCK社製のロールラミネーターにセットし、ガラス板を50℃に加熱した状態で、線圧50N/cm(実効推定圧1MPa程度)ラミネートを行い、フィルム/ガラスの仮積層体を得た。このフィルム/ガラス仮積層体を125℃のドライオーブン中で10分間予備加熱した後、180℃のオーブン中で30分間加熱して、本発明の積層体を得た。
得られた積層体の評価結果を表3に示す。
(実施例26)
不活性化処理を、以下の大気圧プラズマ処理に変更したこと以外は、実施例25と同様にして、本発明の積層板を得た。
大気圧プラズマ処理は、ダイレクト型でスリット状の横に長いヘッドが自動式にワーク上を移動するタイプの機構を持つ大気圧プラズマ処理装置を用い、流量比が窒素/酸素=95/5(常圧体積比)の混合ガスを処理ガスとし、放電出力を2kWとして行った。ガラス板がプラズマに曝露されている時間は概ね60秒程度であった。
得られた積層体の評価結果を表3に示す。
(実施例27)
不活性化処理を、以下のコロナ処理に変更したこと以外は、実施例25と同様にして、本発明の積層板を得た。
コロナ処理は、春日電機社製のコンベア式処理装置を用い、大気中にて40w/m2にて3分間行った。
得られた積層体の評価結果を表3に示す。
(実施例28)
実施例26において、使用したポリイミドフィルムをフィルム処理例15で得られたフィルムに変更したこと以外は、実施例26と同様にして、本発明の積層板を得た。
得られた積層体の評価結果を表3に示す。
(実施例29) 実施例27において、使用したポリイミドフィルムをフィルム処理例15で得られたフィルムに変更したこと以外は、実施例27と同様にして、本発明の積層板を得た。
得られた積層体の評価結果を表3に示す。
(比較例1〜3)
加圧加熱処理を行わずに得たポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較例1の積層体を得た。
また、加圧加熱処理を行わずに得たポリイミドフィルムを用いたこと、および支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例2または処理例9で得られた処理後ポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較例2および比較例3の積層体を得た。
得られた積層体の評価結果を表4に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
(比較例4〜5)
支持体にカップリング剤処理を施さないこと、および支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例2または処理例9で得られた処理後ポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較例4および比較例5の積層体を得た。 得られた積層体の評価結果を表4に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
(比較例6〜7)
UV照射処理を行わずに得たポリイミドフィルムを用いたこと、および支持体と重ね合わせるフィルム処理後のポリイミドフィルムとして処理例2または処理例8で得られた処理後ポリイミドフィルムを用いたこと以外は、実施例1と同様にして、比較例6および比較例7の積層体を得た。
得られた積層体の評価結果を表4に示す。測定結果は不活性化未照射部と同様の値であった。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。また、不活性化照射部は定義されないため、表4には結果を記載していない。
この積層体について、ポリイミドフィルムに切り込みを入れ、該フィルムを支持体から剥がそうとしたが、上手く剥がすことができず、無理に剥がそうとしたらフィルムが破れてしまった。
(応用例)
各実施例および各比較例で得られた積層体の各々を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと積層体の支持体とを密着するように固定して、基板ホルダー内に冷媒を流すことによって、積層体のフィルムの温度を設定できるようにし、積層体のフィルムの温度を2℃に設定した。まず、フィルム表面にプラズマ処理を施した。プラズマ処理条件は、アルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10-2Torrの条件とし、処理時の温度は2℃、処理時間は2分間とした。次いで、周波数13.56MHz、出力450W、ガス圧3×10-3Torrの条件で、ニッケル−クロム(クロム10質量%)合金のターゲットを用いて、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ11nmのニッケル−クロム合金被膜(下地層)を形成した。次いで、基板のスパッタ面の裏面が、3℃に温度コントロールした冷媒を中に流した基板ホルダーのSUSプレートと接する状態とすることで、積層体のフィルムの温度を2℃に設定し、スパッタリングを行った。そして、10nm/秒のレートで銅を蒸着させ、厚さ0.22μmの銅薄膜を形成した。このようにして、各フィルムから下地金属薄膜形成フィルム付きの積層板を得た。なお、銅およびNiCr層の厚さは蛍光X線法によって確認した。
次に、各フィルムからの下地金属薄膜形成フィルム付きの積層板をCu製の枠に固定し、硫酸銅めっき浴を用い、電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬し、電気を1.5Adm2流すことにより、厚さ4μmの厚付け銅メッキ層(厚付け層)を形成した。引き続き120℃で10分間熱処理して乾燥し、金属化ポリイミドフィルム・支持体積層体を得た。
得られた各金属化ポリイミドフィルム・支持体積層体に対して、フォトレジスト(シプレー社製「FR−200」)を塗布乾燥した後に、ガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClおよび過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成した。次いで、0.5μm厚に無電解スズメッキを施した後、125℃で1時間のアニール処理を行った。そして、形成したパターンを光学顕微鏡で観察し、だれ、パターン残り、パターン剥がれなどの有無を評価した。
実施例1〜15の積層体において、だれ、パターン残り、パターン剥がれなどの無い良好なパターンが得られた。また、この後、さらに窒素置換したマッフル炉内で昇温速度10℃/分で400℃まで昇温した後、400℃で1時間保持し、その後自然降温させても、膨れ、剥がれなど発生することは無かった。
これに対して、比較例1〜7の積層体を用いた場合は、いずれもフィルム剥がれが生じて、良好なパターンが得られなかった。
以上の応用例の結果から、本発明の製造方法により、支持体とポリイミドフィルムとの剥離強度が適正に調整された積層体は、金属化などの各工程に耐え得るものであり、その後のパターン作製においても良好なパターンを形成し得ることが確認できた。
本発明に係る積層体の製造方法によって、ポリイミドフィルムに対してパターン化処理を行い、その後、支持体とポリイミドフィルムとを重ね合わせる製造方法を採用することによって、カップリング剤表面に対する作業工程を減らすことができ、カップリング処理層表面の汚れを抑制できる。したがって、本発明の積層体は、極小薄のポリイミドフィルム上のデバイス構造体などの製造過程に有効に使用でき、極薄の絶縁性、耐熱性、寸法安定性に優れた高分子フィルム上に、精度よく回路やデバイス形成ができる。それ故に、センサー、表示デバイス、プローブ、集積回路、およびこれらの複合デバイス、アモルファスSi薄膜太陽電池、SeやCIGS系化合物半導体薄膜太陽電池基板およびこれらを使った太陽電池などのデバイス構造体の製造に有用であり、産業界への寄与は大きい。
1 ガラス基板
2 カップリング処理層
3、3’ UV光遮断マスク
4 ポリイミドフィルム
5、5’ UV照射部
6、6’ UV未照射部
7、7’、7’’ ポリイミドフィルムの一部分
8 ガスバリア層
9 デバイス

Claims (5)

  1. 支持体とポリイミドフィルムとの積層体の製造方法であって、
    上記支持体の上記ポリイミドフィルムに対向する側の面に対して、カップリング処理層を形成するカップリング処理層形成工程と、
    上記ポリイミドフィルムの上記支持体に対向する側の面の一部に、パターン化処理を施して所定のパターンを形成するパターン形成工程と、
    上記カップリング処理層形成工程及び上記パターン形成工程の後に、上記支持体と上記ポリイミドフィルムとを重ね合わせて加圧加熱処理する加圧加熱処理工程と
    を備え、上記パターン化処理が不活性化処理であり、該不活性化処理がブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理、及び薬液処理からなる群より選択される少なくとも1種を行う
    ことを特徴とする積層体の製造方法。
  2. 上記不活性化処理として、少なくともUV照射処理を施す請求項に記載の積層体の製造方法。
  3. 上記パターン形成工程の前に、上記ポリイミドフィルムの上記支持体に対向する側の面に対して、プラズマ処理を施すプラズマ処理工程を備える請求項1又は2に記載の積層体の製造方法。
  4. 上記プラズマ処理工程と上記加圧加熱処理工程との間に、上記ポリイミドフィルムに酸処理を施す酸処理工程を備える請求項に記載の積層体の製造方法。
  5. ポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法であって、
    支持体とポリイミドフィルムとカップリング処理層とを有する請求項1〜のいずれか1項に記載の製造方法により得られた積層体を用い、
    該積層体のポリイミドフィルム上にデバイスを形成した後、上記ポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを上記支持体から剥離する
    ことを特徴とするデバイス構造体の製造方法。
JP2013169371A 2013-08-19 2013-08-19 積層体の製造方法及びそれを用いたデバイス構造体の製造方法 Active JP6201513B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169371A JP6201513B2 (ja) 2013-08-19 2013-08-19 積層体の製造方法及びそれを用いたデバイス構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169371A JP6201513B2 (ja) 2013-08-19 2013-08-19 積層体の製造方法及びそれを用いたデバイス構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2015037841A JP2015037841A (ja) 2015-02-26
JP6201513B2 true JP6201513B2 (ja) 2017-09-27

Family

ID=52631280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169371A Active JP6201513B2 (ja) 2013-08-19 2013-08-19 積層体の製造方法及びそれを用いたデバイス構造体の製造方法

Country Status (1)

Country Link
JP (1) JP6201513B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741262B (zh) * 2018-06-04 2021-10-01 美商帕斯馬舍門有限責任公司 切割晶粒附接膜的方法
WO2021124865A1 (ja) * 2019-12-17 2021-06-24 東洋紡株式会社 積層体
TWI823035B (zh) * 2020-06-27 2023-11-21 日商普羅瑪帝克股份有限公司 層壓體的製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251080A (ja) * 2006-03-20 2007-09-27 Fujifilm Corp プラスチック基板の固定方法、回路基板およびその製造方法
JP5818420B2 (ja) * 2010-11-05 2015-11-18 三菱重工業株式会社 内燃機関のジャケット
CN103249901B (zh) * 2010-11-05 2015-09-09 杰富意钢铁株式会社 钢管加劲支承部件及其制造方法
JP5862238B2 (ja) * 2011-05-27 2016-02-16 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法

Also Published As

Publication number Publication date
JP2015037841A (ja) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5224011B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP5862238B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP6003883B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
KR102034762B1 (ko) 적층체의 제조방법, 적층체, 이 적층체를 이용한 디바이스 부가 적층체의 제조방법, 및 디바이스 부가 적층체
JP5429375B2 (ja) 積層体とその製造方法および、この積層体を用いたデバイス構造体の作成方法
JP6733544B2 (ja) シランカップリング剤層積層ポリイミドフィルム
JP6550752B2 (ja) リジッド複合積層板とその製造方法、積層体および該積層体を用いたデバイスの製造方法
JP5742725B2 (ja) ポリイミドフィルムとその製造方法、積層体の製造方法
JPWO2016031746A6 (ja) シランカップリング剤層積層高分子フィルム
JP6354310B2 (ja) 積層体形成用ポリイミドフィルム
WO2014119648A1 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP2014237270A (ja) 高分子フィルム積層基板
JP2013226784A (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP6201513B2 (ja) 積層体の製造方法及びそれを用いたデバイス構造体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350