[go: up one dir, main page]

JP6180074B2 - Planar type electromagnetic actuator - Google Patents

Planar type electromagnetic actuator Download PDF

Info

Publication number
JP6180074B2
JP6180074B2 JP2011186857A JP2011186857A JP6180074B2 JP 6180074 B2 JP6180074 B2 JP 6180074B2 JP 2011186857 A JP2011186857 A JP 2011186857A JP 2011186857 A JP2011186857 A JP 2011186857A JP 6180074 B2 JP6180074 B2 JP 6180074B2
Authority
JP
Japan
Prior art keywords
drive coil
electromagnetic actuator
movable
movable portion
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011186857A
Other languages
Japanese (ja)
Other versions
JP2013051748A (en
Inventor
均 濱中
均 濱中
川崎 栄嗣
栄嗣 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2011186857A priority Critical patent/JP6180074B2/en
Publication of JP2013051748A publication Critical patent/JP2013051748A/en
Application granted granted Critical
Publication of JP6180074B2 publication Critical patent/JP6180074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、半導体製造技術を利用して製造するプレーナ型電磁アクチュエータに関し、特に、可動部に形成する駆動コイルの残留応力に起因する可動部の反りを低減したプレーナ型電磁アクチュエータに関する。   The present invention relates to a planar electromagnetic actuator manufactured using a semiconductor manufacturing technique, and more particularly to a planar electromagnetic actuator that reduces warpage of a movable part due to residual stress of a drive coil formed on the movable part.

従来、この種のプレーナ型電磁アクチュエータとしては、例えば特許文献1に記載されたように、半導体基板を異方性エッチングして、枠状の固定部と、可動部と、固定部に可動部を揺動可能に軸支するトーションバーとを一体形成し、可動部に駆動コイルを設け、トーションバーの軸方向と平行な可動部両端縁部の駆動コイル部分に静磁界を作用させる静磁界発生手段(例えば永久磁石)を設け、外部の駆動回路から駆動コイルに電流を供給することにより、駆動コイルに発生する磁界と永久磁石の静磁界との相互作用により発生する駆動力(ローレンツ力)を可動部に作用させて、可動部をトーションバーの軸回りに駆動する構成のものがある。   Conventionally, as this type of planar electromagnetic actuator, as described in Patent Document 1, for example, a semiconductor substrate is anisotropically etched to provide a frame-shaped fixed portion, a movable portion, and a movable portion on the fixed portion. A static magnetic field generating means that integrally forms a torsion bar that is pivotally supported, has a drive coil on the movable portion, and applies a static magnetic field to the drive coil portions at both ends of the movable portion parallel to the axial direction of the torsion bar (For example, a permanent magnet) is provided, and the drive force (Lorentz force) generated by the interaction between the magnetic field generated in the drive coil and the static magnetic field of the permanent magnet can be moved by supplying current to the drive coil from an external drive circuit. There is a configuration in which the movable portion is driven around the axis of the torsion bar by acting on the portion.

特許第2722314号公報Japanese Patent No. 2722314

ところで、この種のプレーナ型電磁アクチュエータは、一般的には、例えば、蒸着やスパッタリング等の成膜技術を用いて駆動コイル形成用の金属層を半導体基板上の絶縁膜上に形成した後、金属層に駆動コイルを含む電気配線のレジストパターンを形成し、このレジストパターンをマスクとして金属層をエッチン処理することにより、駆動コイルを含む電気配線を形成する。しかしながら、形成された駆動コイルには残留応力が存在し、この残留応力に起因して極めて薄い可動部に反りが生じる。このため、例えば可動部に反射ミラーを設けて光ビームを偏向走査する光走査デバイスに適用する場合、反射ミラー面に反りが生じて光走査デバイスの光走査機能に支障が生じる虞れがある。   By the way, this type of planar electromagnetic actuator is generally formed by forming a metal layer for forming a drive coil on an insulating film on a semiconductor substrate using a film formation technique such as vapor deposition or sputtering. A resist pattern of electric wiring including a driving coil is formed on the layer, and the metal layer is etched using the resist pattern as a mask, thereby forming electric wiring including the driving coil. However, there is a residual stress in the formed drive coil, and the extremely thin movable part is warped due to the residual stress. For this reason, for example, when the present invention is applied to an optical scanning device that deflects and scans a light beam by providing a reflecting mirror on a movable part, the reflection mirror surface may be warped, which may hinder the optical scanning function of the optical scanning device.

本発明は上記問題点に着目してなされたもので、駆動コイルの残留応力に起因する可動部の反りを低減できるプレーナ型電磁アクチュエータを提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a planar type electromagnetic actuator capable of reducing the warp of the movable part due to the residual stress of the drive coil.

このため、本発明は、固定部と、平面略矩形状の可動部と、前記固定部に前記可動部を揺動可能に軸支するトーションバーと、を半導体基板で一体形成すると共に、前記可動部の周縁部に沿って駆動コイルを巻回形成して設け、該駆動コイルに電流を供給することにより発生する電磁力により前記可動部を駆動するプレーナ型電磁アクチュエータにおいて、前記駆動コイルの各角部を可動部表面に固定し、各角部以外の駆動コイル部分を前記可動部表面から浮かすことで、前記駆動コイルの浮いた部位が、前記トーションバーの軸方向と直交し、前記可動部の中心を通る直線に対して略対称となるようにする、ことを特徴とする。 For this reason, the present invention integrally forms a fixed part, a movable part having a substantially rectangular plane, and a torsion bar that pivotally supports the movable part on the fixed part so as to be swingable. In a planar type electromagnetic actuator that is provided by winding a drive coil along the peripheral edge of a part and drives the movable part by electromagnetic force generated by supplying current to the drive coil, each angle of the drive coil By fixing the portion to the surface of the movable portion and floating the drive coil portion other than each corner portion from the surface of the movable portion, the floating portion of the drive coil is orthogonal to the axial direction of the torsion bar, set to be substantially symmetrical for a straight line passing through the center, characterized in that.

本発明のプレーナ型電磁アクチュエータによれば、駆動コイルの各角部を可動部表面に固定し、各角部以外を浮かしたので、駆動コイルから可動部に直接伝達する駆動コイルの残留応力の影響を従来と比較して抑制でき、可動部の反りを低減できる。更に、駆動コイルの浮いた部位が、トーションバーの軸方向と直交し、可動部の中心を通る直線に対して略対称となるように設けたことで、可動部に対して駆動コイルの残留応力を略均等に作用させることができる。このため、可動部に反射ミラーを設けて光ビームを偏向走査する光走査デバイスに適用した場合、反射ミラー面の反りを低減して反射ミラーの平坦度を上げることができ、走査光の歪みが少ない光走査デバイスを実現できる。 According to the planar type electromagnetic actuator of the present invention, each corner of the drive coil is fixed to the surface of the movable part and the other parts are floated, so the influence of the residual stress of the drive coil that is directly transmitted from the drive coil to the movable part. Can be suppressed as compared with the conventional case, and the warp of the movable part can be reduced. Furthermore, the residual stress of the drive coil with respect to the movable part is provided by providing the floating part of the drive coil so as to be orthogonal to the axial direction of the torsion bar and substantially symmetric with respect to a straight line passing through the center of the movable part. Can be made to act substantially evenly. For this reason, when applied to an optical scanning device that deflects and scans a light beam by providing a reflecting mirror in the movable part, the reflection mirror surface can be reduced in warpage and the flatness of the reflecting mirror can be increased, and the distortion of the scanning light can be reduced. Fewer optical scanning devices can be realized.

本発明に係るプレーナ型電磁アクチュエータの第1実施形態を示す平面図。The top view which shows 1st Embodiment of the planar type electromagnetic actuator which concerns on this invention. 図1のA−A矢視断面図。AA arrow sectional drawing of FIG. 同上第1実施形態のプレーナ型電磁アクチュエータの製造工程の説明図。Explanatory drawing of the manufacturing process of the planar type electromagnetic actuator of 1st Embodiment same as the above. 図3に続く製造工程の説明図。Explanatory drawing of the manufacturing process following FIG. 図4に続く製造工程の説明図。Explanatory drawing of the manufacturing process following FIG. 本発明に係るプレーナ型電磁アクチュエータの第2実施形態の要部の平面図。The top view of the principal part of 2nd Embodiment of the planar type | mold electromagnetic actuator which concerns on this invention. 本発明に係るプレーナ型電磁アクチュエータの第3実施形態の要部の平面図。The top view of the principal part of 3rd Embodiment of the planar type electromagnetic actuator which concerns on this invention. 本発明に係るプレーナ型電磁アクチュエータの第4実施形態を示す平面図。The top view which shows 4th Embodiment of the planar type electromagnetic actuator which concerns on this invention. 図8のB−B矢視断面図。BB arrow sectional drawing of FIG. 同上第4実施形態のプレーナ型電磁アクチュエータの製造工程の説明図。Explanatory drawing of the manufacturing process of the planar type electromagnetic actuator of 4th Embodiment same as the above. 図10に続く製造工程の説明図。Explanatory drawing of the manufacturing process following FIG.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係るプレーナ型電磁アクチュエータの第1実施形態の平面図である。図2は、図1のA−A矢視断面図である。
本実施形態のプレーナ型電磁アクチュエータ1は、枠状の固定部2に一対のトーションバー3,3を介して揺動可能に軸支される可動部4と、通電により磁界を発生する駆動コイル5と、駆動コイル5に静磁界を作用させる静磁界発生手段として例えば永久磁石6,6とを備え、通電により駆動コイル5に発生する磁界と永久磁石6,6の静磁界との相互作用によりトーションバー3,3の軸方向と平行な可動部4の両端縁部に駆動力(ローレンツ力)を作用させて可動部4を回動させるものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of a first embodiment of a planar electromagnetic actuator according to the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG.
The planar electromagnetic actuator 1 of this embodiment includes a movable part 4 pivotally supported by a frame-like fixed part 2 via a pair of torsion bars 3 and 3, and a drive coil 5 that generates a magnetic field when energized. And, for example, permanent magnets 6 and 6 as static magnetic field generating means for applying a static magnetic field to the drive coil 5, and the torsion is caused by the interaction between the magnetic field generated in the drive coil 5 by energization and the static magnetic field of the permanent magnets 6 and 6 A driving force (Lorentz force) is applied to both end edges of the movable portion 4 parallel to the axial direction of the bars 3 and 3 to rotate the movable portion 4.

前記固定部2、トーションバー3,3及び可動部4は、半導体基板として例えばSOI基板で一体に形成する。   The fixed portion 2, the torsion bars 3, 3 and the movable portion 4 are integrally formed as a semiconductor substrate, for example, using an SOI substrate.

前記駆動コイル5は、図1に示すように略平面矩形状に形成した可動部4の周縁部に沿って巻回形成されている。この駆動コイル5は、トーションバー3,3部分から固定部2部分にかけて形成した引出し配線部7により、固定部2側に形成した一対の外部接続端子8,8に電気的に接続する。また、駆動コイル5の一部は、可動部4表面から浮いた状態で設けられている。具体的には、駆動コイル5の浮いた部位が可動部4の中心軸線(本実施形態では互いに直交する各中心軸線)に対して略対称となるように、図1及び図2に示すように駆動コイル5の各角部(図1に黒色で示した部分)を可動部4表面に固定し、各角部以外のコイル部分(図1中で白色で示した部分)を可動部4表面から浮かしてある。本実施形態では、可動部4上の駆動コイル5と一対の外部接続端子8,8とを接続する引出し配線部7のトーションバー3,3配線部分についても、図1及び図2に示すようにトーションバー3,3表面から浮かして形成してある。尚、駆動コイル5や引出し配線部7について、可動部4、トーションバー3,3及び固定部2の各表面に対して浮いている箇所と固定している箇所と区別するため、便宜上、図1において浮上がり箇所を白色で示し固定箇所を黒色で示した。そして、駆動コイル5や引出し配線部7の固定箇所(図中、黒色部分)は、図2に示すように浮上がり箇所(図中、白色部分)において犠牲層としてエッチング除去される配線層9を介して可動部4や固定部2の表面のSiO2絶縁層10上に固定されている。 As shown in FIG. 1, the drive coil 5 is wound around the peripheral portion of the movable portion 4 formed in a substantially planar rectangular shape. The drive coil 5 is electrically connected to a pair of external connection terminals 8 and 8 formed on the fixed portion 2 side by a lead wiring portion 7 formed from the torsion bars 3 and 3 to the fixed portion 2 portion. A part of the drive coil 5 is provided in a state of floating from the surface of the movable part 4. Specifically, as shown in FIGS. 1 and 2, the floating portion of the drive coil 5 is substantially symmetric with respect to the central axis of the movable portion 4 (in the present embodiment, the central axes orthogonal to each other). Each corner (the portion shown in black in FIG. 1) of the drive coil 5 is fixed to the surface of the movable portion 4, and the coil portion other than each corner (the portion shown in white in FIG. 1) from the surface of the movable portion 4. It ’s floating. In the present embodiment, the torsion bars 3 and 3 wiring portions of the lead wiring portion 7 that connects the drive coil 5 on the movable portion 4 and the pair of external connection terminals 8 and 8 are also shown in FIGS. It is formed floating from the surface of the torsion bars 3 and 3. For the sake of convenience, the drive coil 5 and the lead-out wiring portion 7 are distinguished from the portions that are floating with respect to the surfaces of the movable portion 4, the torsion bars 3, 3, and the fixed portion 2 for the sake of convenience. In FIG. 2, the floating portion is shown in white, and the fixed portion is shown in black. And the fixed part (black part in a figure) of the drive coil 5 and the lead-out wiring part 7 is the wiring layer 9 etched away as a sacrificial layer in a floating part (white part in a figure) as shown in FIG. It is fixed on the SiO 2 insulating layer 10 on the surface of the movable part 4 and the fixed part 2 through the intermediate part.

前記永久磁石6,6は、図1に示すように可動部4を挟んで互いに反対磁極が対向するようにして固定部2の外側に設けられている。尚、静磁界発生手段として電磁石を用いることも可能である。   As shown in FIG. 1, the permanent magnets 6 and 6 are provided on the outer side of the fixed portion 2 so that opposite magnetic poles face each other with the movable portion 4 interposed therebetween. An electromagnet can also be used as the static magnetic field generating means.

可動部4の裏面側には、図2に示すように光走査用の反射ミラー11を設けてある。尚、言うまでもないが、光走査が不要な用途に適用する電磁アクチュエータの場合は、反射ミラー11を設ける必要はない。
尚、図2中、12は、駆動コイル5や引出し配線部7の浮上がり箇所(図中、白色部分)の配線層9を犠牲エッチング処理して除去するための絶縁層であり、13は、駆動コイル5、引出し配線部7及び外部電極端子8,8表面を覆う保護層である。
On the back side of the movable portion 4, a reflection mirror 11 for optical scanning is provided as shown in FIG. Needless to say, it is not necessary to provide the reflecting mirror 11 in the case of an electromagnetic actuator applied to an application that does not require optical scanning.
In FIG. 2, reference numeral 12 denotes an insulating layer for removing the wiring layer 9 in the floating portion (white portion in the drawing) of the drive coil 5 and the lead-out wiring portion 7 by sacrificial etching, This is a protective layer that covers the surfaces of the drive coil 5, the lead-out wiring portion 7, and the external electrode terminals 8 and 8.

本実施形態のプレーナ型電磁アクチュエータの動作を説明する。
可動部4の駆動原理は従来と同様であり、図示しない外部の駆動回路から、外部接続端子8,8、引出し配線部7を介して可動部4上の駆動コイル5に電流を供給すると磁界が発生する。この磁界と永久磁石6,6による静磁界との相互作用により、トーションバー3,3の軸方向と平行な可動部4の両端縁部に互いに逆方向の駆動力(ローレンツ力)が発生し、トーションバー3,3を軸中心として可動部4が回動する。この回動動作に伴ってトーションバー3,3が捩られトーションバー3,3にばね力が発生し、このばね力と発生した駆動力とが釣合う位置まで可動部4は回動する。駆動コイル5Aに正弦波等の交流電流を流せば可動部4を揺動動作させることができ、図2のように可動部4に反射ミラー11を設ければ光ビームを偏向走査することが可能となる。駆動コイル5に供給する交流電流の周波数を可動部4の揺動運動の共振周波数に設定すれば、一定周期で連続走査可能な光走査デバイスが実現できる。
The operation of the planar type electromagnetic actuator of this embodiment will be described.
The driving principle of the movable part 4 is the same as the conventional one. When a current is supplied from an external drive circuit (not shown) to the drive coil 5 on the movable part 4 via the external connection terminals 8 and 8 and the lead-out wiring part 7, a magnetic field is generated. Occur. Due to the interaction between this magnetic field and the static magnetic field generated by the permanent magnets 6 and 6, a driving force (Lorentz force) in opposite directions is generated at both end edges of the movable part 4 parallel to the axial direction of the torsion bars 3 and 3. The movable part 4 rotates around the torsion bars 3 and 3 as the axis center. With this turning operation, the torsion bars 3 and 3 are twisted to generate a spring force in the torsion bars 3 and 3, and the movable portion 4 is rotated to a position where the spring force and the generated driving force are balanced. If an alternating current such as a sine wave is supplied to the drive coil 5A, the movable part 4 can be swung. If the reflecting mirror 11 is provided on the movable part 4 as shown in FIG. 2, the light beam can be deflected and scanned. It becomes. If the frequency of the alternating current supplied to the drive coil 5 is set to the resonance frequency of the oscillating motion of the movable portion 4, an optical scanning device capable of continuous scanning at a constant period can be realized.

本実施形態の電磁アクチュエータによれば、図1及び図2に示すように、駆動コイル5の各角部以外のコイル部分を可動部4表面から浮かしてあるので、駆動コイル5から可動部4に伝わる駆動コイル5の残留応力の影響を少なくできる。このため、可動部4の反りを低減できるので、反射ミラー11を設けた場合に反射ミラー11の反りが低減され、光走査デバイスによる走査光の歪みを低減できるようになる。更に、駆動コイル5の浮上がり箇所(図中、白色部分)を可動部4の中心軸線(本実施形態では互いに直交する各中心軸線)に対して略対称となるように設けたので、可動部4に対して駆動コイル5の残留応力が略均等に作用させることができる。   According to the electromagnetic actuator of the present embodiment, as shown in FIGS. 1 and 2, the coil portions other than the corners of the drive coil 5 are floated from the surface of the movable portion 4, so that the drive coil 5 moves to the movable portion 4. The influence of the residual stress of the drive coil 5 that is transmitted can be reduced. For this reason, since the curvature of the movable part 4 can be reduced, when the reflection mirror 11 is provided, the curvature of the reflection mirror 11 is reduced, and the distortion of the scanning light by the optical scanning device can be reduced. Further, the floating portion (white portion in the figure) of the drive coil 5 is provided so as to be substantially symmetric with respect to the central axis of the movable portion 4 (in the present embodiment, the respective central axes orthogonal to each other). 4, the residual stress of the drive coil 5 can be applied substantially evenly.

本実施形態では、引出し配線部7のトーションバー3,3部分も、トーションバー3,3表面から浮かしたので、トーションバー3,3部分の引出し配線部7の捩り応力がトーションバー3,3に直接作用せず、引出し配線部7の応力によってトーションバー3,3の動きが拘束されることがない。このため、従来構造に比べて同じ供給電流でも大きな振れ角で可動部4を回動することができる。言い換えれば、可動部4を従来と同じ振れ角で駆動する場合に、少ない電流量で済むことになり、電磁アクチュエータ1の駆動効率が向上し消費電力の低減を図ることができる。   In the present embodiment, the torsion bars 3 and 3 of the lead-out wiring part 7 are also lifted from the surface of the torsion bars 3 and 3, so that the torsional stress of the lead-out wiring part 7 in the torsion bars 3 and 3 is applied to the torsion bars 3 and 3. It does not act directly, and the movement of the torsion bars 3 and 3 is not constrained by the stress of the lead wiring part 7. For this reason, the movable part 4 can be rotated with a large deflection angle even with the same supply current as compared with the conventional structure. In other words, when the movable part 4 is driven with the same deflection angle as in the prior art, a small amount of current is required, so that the drive efficiency of the electromagnetic actuator 1 is improved and power consumption can be reduced.

次に、駆動コイル5の一部を浮かした構造を有する図1に示す第1実施形態の電磁アクチュエータの製造工程を、図3〜図5を参照して説明する。
本実施形態では、半導体基板として、基板の表側と裏側のシリコン層100A,100Bの間にbox層100Cを有するSOI(Silicon On Insulator)基板100を用いた場合について説明する。
Next, a manufacturing process of the electromagnetic actuator according to the first embodiment shown in FIG. 1 having a structure in which a part of the drive coil 5 is floated will be described with reference to FIGS.
In this embodiment, a case where an SOI (Silicon On Insulator) substrate 100 having a box layer 100C between silicon layers 100A and 100B on the front side and the back side of the substrate is used as the semiconductor substrate will be described.

工程(a)で、SOI基板100表面側のシリコン層100Aの表面を熱酸化してSiO2絶縁層101(図2のSiO2絶縁層10となる)を形成する。
工程(b)で、SiO2絶縁層101の全面に、例えばAl(アルミニウム)の配線層をスパッタリング、蒸着等の既知の成膜技術で成膜し、その上にレジストを塗布し、駆動コイル5、引出し配線部7及び外部電極端子8,8に対応する部分のレジストを残してレジストパターンを形成する。これをマスクとして配線層をエッチングし、犠牲層として一部がエッチング除去される配線層102を形成する。
In step (a), the surface of the silicon layer 100A on the surface side of the SOI substrate 100 is thermally oxidized to form the SiO 2 insulating layer 101 (which becomes the SiO 2 insulating layer 10 in FIG. 2).
In step (b), a wiring layer of, for example, Al (aluminum) is formed on the entire surface of the SiO 2 insulating layer 101 by a known film forming technique such as sputtering or vapor deposition, a resist is applied thereon, and the drive coil 5 Then, a resist pattern is formed while leaving portions of the resist corresponding to the lead wiring portion 7 and the external electrode terminals 8 and 8. Using this as a mask, the wiring layer is etched, and the wiring layer 102 is formed as a sacrificial layer, part of which is removed by etching.

工程(c)で、SOI基板100全面に、例えばポリイミドの絶縁層を形成し、エッチング処理により駆動コイル5及び引出し配線部7の浮上がり箇所の形成部位を除いて除去して絶縁層103を形成する。
工程(d)で、基板100全体に、例えばスパッタリングよりAl(アルミニウム)の配線層を成膜し、配線層上にレジストを塗布し、駆動コイル5、引出し配線部7及び外部電極端子部8,8の配線部分のレジストを残してレジストパターンを形成し、これをマスクとして配線層をエッチングして、駆動コイル5、引出し配線部7及び外部接続端子8,8を形成する。
In step (c), an insulating layer of polyimide, for example, is formed on the entire surface of the SOI substrate 100, and the insulating layer 103 is formed by removing the portions where the drive coil 5 and the lead-out wiring portion 7 are lifted by etching. To do.
In step (d), an Al (aluminum) wiring layer is formed on the entire substrate 100 by sputtering, for example, a resist is applied on the wiring layer, and the drive coil 5, lead-out wiring portion 7, external electrode terminal portion 8, A resist pattern is formed leaving the resist of the wiring portion 8, and the wiring layer is etched using the resist pattern as a mask to form the drive coil 5, the lead-out wiring portion 7, and the external connection terminals 8 and 8.

工程(e)で、駆動コイル5、引出し配線部7及び外部接続端子8,8を覆う保護膜13を形成する。
工程(f)で、前記保護膜13及び絶縁層103をマスクとして駆動コイル5部分と引出し配線部7部分の絶縁層103下方の犠牲層となる配線層102部分をエッチング処理により除去する。これにより、図1に黒色で示す各角部が固定され、各角部以外の部分(図1中、白色の部分)が可動部4表面から浮いた状態の駆動コイル5と、図2に示すようにトーションバー3,3配線部分の絶縁層12下方がトーションバー3,3表面から浮いた状態の引出し配線部7が形成される。
In step (e), a protective film 13 that covers the drive coil 5, the lead-out wiring portion 7, and the external connection terminals 8 and 8 is formed.
In step (f), the protective film 13 and the insulating layer 103 are used as a mask to remove the wiring layer 102 portion that becomes a sacrificial layer below the insulating layer 103 in the drive coil 5 portion and the lead-out wiring portion 7 portion by etching. As a result, the corners shown in black in FIG. 1 are fixed, and the drive coil 5 in a state where the portions other than the corners (the white portions in FIG. 1) float from the surface of the movable portion 4, and FIG. 2. Thus, the lead-out wiring part 7 is formed in a state where the lower part of the insulating layer 12 of the torsion bars 3 and 3 is floating from the surface of the torsion bars 3 and 3.

工程(g)で、絶縁層101の固定部2、トーションバー3,3及び可動部4に対応する部分をレジストマスクで覆ってエッチングを行い、シリコン層100Aをエッチングする際のマスクとなる絶縁層部分をパターニングする。
工程(h)で、前記絶縁層部分をマスクとしてSOI基板100表面側のシリコン層100Aをエッチングする。
In step (g), the insulating layer 101 is etched by covering the portions corresponding to the fixed portion 2, the torsion bars 3, 3, and the movable portion 4 with a resist mask and etching the silicon layer 100 </ b> A. Pattern the part.
In step (h), the silicon layer 100A on the surface side of the SOI substrate 100 is etched using the insulating layer portion as a mask.

工程(i)で、SOI基板100裏側のシリコン層100Bの固定部2に対応する部分をレジストマスクで覆い、シリコン層100Bをエッチングする。
工程(j)で、SOI基板100のbox層100Cをエッチングする。この工程において、電磁アクチュエータ1の固定部2、トーションバー3,3、可動部4が形成され、図1のような平面形状となる。
工程(k)で、光走査用アクチュエータとして使用する場合の反射ミラー11を、例えばステンシルマスク等のマスクを用いて例えばアルミニウムの蒸着等により可動部4裏面側に形成する。これにより、図2に示す断面形状のプレーナ型電磁アクチュエータ1が形成される。
In step (i), a portion corresponding to the fixed portion 2 of the silicon layer 100B on the back side of the SOI substrate 100 is covered with a resist mask, and the silicon layer 100B is etched.
In step (j), the box layer 100C of the SOI substrate 100 is etched. In this step, the fixed portion 2, the torsion bars 3 and 3, and the movable portion 4 of the electromagnetic actuator 1 are formed, and the planar shape as shown in FIG. 1 is obtained.
In the step (k), the reflection mirror 11 when used as an optical scanning actuator is formed on the back surface side of the movable portion 4 by, for example, aluminum vapor deposition using a mask such as a stencil mask. As a result, the planar electromagnetic actuator 1 having the cross-sectional shape shown in FIG. 2 is formed.

上述の第1実施形態では、駆動コイル5の各角部のみを固定箇所(図中、黒色部分)とし、その他のコイル部分を浮上がり箇所(図中、白色部分)とする構成としたが、かかる構成に限るものではない。例えば、図6に示す第2実施形態の電磁アクチュエータ20のように、トーションバー3,3の軸方向と直交する可動部4の対辺部に沿う、可動部4の駆動にあまり寄与しないコイル部分を第1実施形態と同様に浮上がり箇所(図中、白色部分)とし、トーションバー3,3の軸方向と平行な可動部4の対辺部に沿う、可動部4の駆動に寄与するコイル部分を全長に亘って固定箇所(図中、黒色部分)を設ける構成としてもよいし、図7に示す第3実施形態の電磁アクチュエータ30ように、トーションバー3,3の軸方向と平行な可動部4の対辺部に沿うコイル部分の中間部分に略均等に複数の固定箇所(図中、黒色部分)を設ける構成としてもよい。尚、第2及び第3実施形態において、第1実施形態と同一要素には同一符号を付してある。
尚、引出し配線部7に関しても、必ずしもトーションバー3,3配線部分を浮かす必要はなく固定する構成でもよい。
In the first embodiment described above, only the corners of the drive coil 5 are fixed locations (black portions in the figure) and the other coil portions are raised portions (white portions in the drawings). The configuration is not limited to this. For example, like the electromagnetic actuator 20 of the second embodiment shown in FIG. 6, a coil portion that does not contribute much to the driving of the movable portion 4 along the opposite side portion of the movable portion 4 orthogonal to the axial direction of the torsion bars 3 and 3. As in the first embodiment, a coil portion that contributes to driving of the movable portion 4 along the opposite side portion of the movable portion 4 parallel to the axial direction of the torsion bars 3 and 3 is defined as a floating portion (white portion in the figure). It is good also as a structure which provides a fixed location (a black part in a figure) over the full length, and the movable part 4 parallel to the axial direction of the torsion bars 3 and 3 like the electromagnetic actuator 30 of 3rd Embodiment shown in FIG. It is good also as a structure which provides a some fixed location (a black part in a figure) in the intermediate part of the coil part in alignment with the opposite side part substantially equally. In the second and third embodiments, the same elements as those in the first embodiment are denoted by the same reference numerals.
It should be noted that with regard to the lead-out wiring section 7, the torsion bars 3 and 3 wiring portions do not necessarily have to be floated and may be fixed.

次に、図8及び図9に本発明のプレーナ型電磁アクチュエータの第4実施形態を示す。
上述した第1〜第3実施形態の電磁アクチュエータ1、20、30では、駆動コイル5の一部を可動部4表面から浮かすことによって、駆動コイル5の残留応力に起因する可動部4の反りを低減するようにしたが、第4実施形態の電磁アクチュエータ40は、駆動コイル5と可動部4との間に、駆動コイル5の残留応力の可動部4に対する作用を緩和する応力緩和層を介在させて、可動部4の反りを低減する構成である。
Next, FIGS. 8 and 9 show a fourth embodiment of the planar electromagnetic actuator of the present invention.
In the electromagnetic actuators 1, 20, and 30 of the first to third embodiments described above, a part of the drive coil 5 is lifted from the surface of the movable part 4, thereby causing the warp of the movable part 4 due to the residual stress of the drive coil 5. In the electromagnetic actuator 40 of the fourth embodiment, a stress relaxation layer that relaxes the action of the residual stress of the drive coil 5 on the movable part 4 is interposed between the drive coil 5 and the movable part 4. Thus, the warp of the movable part 4 is reduced.

図8は、第4実施形態の電磁アクチュエータ40の平面図を示し、図9は、図8のB-B矢視断面図を示す。尚、第1実施形態と同一部分には同一符号を付してある。   FIG. 8 is a plan view of the electromagnetic actuator 40 of the fourth embodiment, and FIG. 9 is a cross-sectional view taken along the line BB in FIG. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment.

第4実施形態のプレーナ型電磁アクチュエータ40は、図9に示すように、駆動コイル5と可動部4表面との間に、駆動コイル5内の残留応力の可動部4に対する作用を緩和する剛性の低い材料の例えばポリイミドからなる応力緩和層41を介在させて、駆動コイル5を可動部4表面に固定する構成である。   As shown in FIG. 9, the planar electromagnetic actuator 40 of the fourth embodiment has a rigidity that relaxes the action of the residual stress in the drive coil 5 on the movable part 4 between the drive coil 5 and the movable part 4 surface. The drive coil 5 is fixed to the surface of the movable portion 4 with a stress relaxation layer 41 made of a low material such as polyimide interposed.

かかる構成によれば、駆動コイル5から可動部4に伝達される残留応力の作用が応力緩和層41で吸収することにより、可動部4の反りを低減できる。   According to such a configuration, the warp of the movable part 4 can be reduced by absorbing the action of the residual stress transmitted from the drive coil 5 to the movable part 4 by the stress relaxation layer 41.

次に、図10及び図11を参照して第4実施形態のプレーナ型電磁アクチュエータ40の製造工程について説明する。尚、半導体基板として、第1実施形態と同様にSOI基板を用いた場合について説明する。   Next, a manufacturing process of the planar electromagnetic actuator 40 of the fourth embodiment will be described with reference to FIGS. A case where an SOI substrate is used as the semiconductor substrate as in the first embodiment will be described.

工程(a)で、SOI基板200表面側のシリコン層200Aの表面を熱酸化してSiO2絶縁層201(図9のSiO2絶縁層10となる)を形成する。
工程(b)で、SiO2絶縁層201の全面に、ポリイミド層を成膜し、その上にレジストを塗布し、駆動コイル5、引出し配線部7及び外部電極端子8,8に対応する部分のレジストを残してレジストパターンを形成する。これをマスクとしてポリイミド層をエッチングし、応力緩和層41を形成する。
In step (a), the surface of the silicon layer 200A on the surface side of the SOI substrate 200 is thermally oxidized to form the SiO 2 insulating layer 201 (which becomes the SiO 2 insulating layer 10 in FIG. 9).
In step (b), a polyimide layer is formed on the entire surface of the SiO 2 insulating layer 201, and a resist is applied thereon, and portions corresponding to the drive coil 5, lead-out wiring portion 7, and external electrode terminals 8, 8 are formed. A resist pattern is formed leaving the resist. Using this as a mask, the polyimide layer is etched to form the stress relaxation layer 41.

工程(c)で、SOI基板200全面に、例えばスパッタリングよりAl(アルミニウム)の配線層を成膜し、配線層上にレジストを塗布し、駆動コイル5、引出し配線部7及び外部電極端子部8,8の配線部分のレジストを残してレジストパターンを形成し、これをマスクとして配線層をエッチングして、応力緩和層41上に駆動コイル5、引出し配線部7及び外部接続端子8,8を形成する。   In step (c), a wiring layer of Al (aluminum) is formed on the entire surface of the SOI substrate 200 by sputtering, for example, a resist is applied on the wiring layer, and the drive coil 5, the lead wiring portion 7 and the external electrode terminal portion 8 are coated. , 8 leaving a resist of the wiring portion, forming a resist pattern, and using this as a mask, the wiring layer is etched to form the drive coil 5, lead-out wiring portion 7 and external connection terminals 8, 8 on the stress relaxation layer 41. To do.

工程(d)で、駆動コイル5、引出し配線部7及び外部接続端子8,8を覆う保護膜13を形成する。   In step (d), a protective film 13 that covers the drive coil 5, the lead-out wiring portion 7, and the external connection terminals 8 and 8 is formed.

その後の工程(e)〜(i)は、第1実施形態と同様である。即ち、工程(e)で、絶縁層201の固定部2、トーションバー3,3及び可動部4に対応する部分をレジストマスクで覆ってエッチングを行い、シリコン層100Aをエッチングする際のマスクとなる絶縁層部分をパターニングする。   The subsequent steps (e) to (i) are the same as in the first embodiment. That is, in the step (e), the portions corresponding to the fixed portion 2, the torsion bars 3 and 3 and the movable portion 4 of the insulating layer 201 are covered with a resist mask, and etching is performed, so that the silicon layer 100A is etched. The insulating layer portion is patterned.

工程(f)で、前記絶縁層部分をマスクとしてSOI基板200表面側のシリコン層200Aをエッチングする。
工程(g)で、SOI基板200裏側のシリコン層200Bの固定部2に対応する部分をレジストマスクで覆い、シリコン層200Bをエッチングする。
In step (f), the silicon layer 200A on the surface side of the SOI substrate 200 is etched using the insulating layer portion as a mask.
In step (g), a portion corresponding to the fixed portion 2 of the silicon layer 200B on the back side of the SOI substrate 200 is covered with a resist mask, and the silicon layer 200B is etched.

工程(h)で、SOI基板200のbox層200Cをエッチングする。この工程において、電磁アクチュエータ40の固定部2、トーションバー3,3、可動部4が形成される。
工程(i)で、光走査用アクチュエータとして使用する場合の反射ミラー11を、可動部4裏面側に形成する。これにより、図9に示す断面形状のプレーナ型電磁アクチュエータ40が形成される。
In step (h), the box layer 200C of the SOI substrate 200 is etched. In this step, the fixed portion 2, the torsion bars 3 and 3, and the movable portion 4 of the electromagnetic actuator 40 are formed.
In step (i), the reflection mirror 11 when used as an optical scanning actuator is formed on the back surface side of the movable portion 4. As a result, the planar electromagnetic actuator 40 having the cross-sectional shape shown in FIG. 9 is formed.

尚、上述した各実施形態では、半導体基板としてSOI基板を用いたが、例えばシリコン基板等の半導体基板の時間制御による異方性エッチングを用いて、固定部2、トーションバー3,3及び可動部4を一体に形成してもよい。   In each of the above-described embodiments, an SOI substrate is used as the semiconductor substrate. However, for example, the fixed portion 2, the torsion bars 3, 3, and the movable portion are formed by using anisotropic etching by time control of a semiconductor substrate such as a silicon substrate. 4 may be integrally formed.

また、上述した各実施形態は、1次元駆動型のプレーナ型電磁アクチュエータの例を示したが、トーションバー軸が互いに直交する2対のトーションバーを備える2次元駆動型のプレーナ型電磁アクチュエータにも本発明を適用できることは言うまでもない。   In addition, each of the above-described embodiments has shown an example of a planar electromagnetic actuator of a one-dimensional drive type. However, a planar electromagnetic actuator of a two-dimensional drive type that includes two pairs of torsion bars whose torsion bar axes are orthogonal to each other. Needless to say, the present invention can be applied.

1、20、30、40 電磁アクチュエータ
2 固定部
3 トーションバー
4 可動部
5 駆動コイル
6 永久磁石
7 引出し配線部
8、8 外部接続端子
11 反射ミラー
12 絶縁層
41 応力緩和層
1, 20, 30, 40 Electromagnetic actuator 2 Fixed portion 3 Torsion bar 4 Movable portion 5 Driving coil 6 Permanent magnet 7 Lead-out wiring portions 8 and 8 External connection terminal 11 Reflecting mirror 12 Insulating layer 41 Stress relaxation layer

Claims (2)

固定部と、平面略矩形状の可動部と、前記固定部に前記可動部を揺動可能に軸支するトーションバーと、を半導体基板で一体形成すると共に、前記可動部の周縁部に沿って駆動コイルを巻回形成して設け、該駆動コイルに電流を供給することにより発生する電磁力により前記可動部を駆動するプレーナ型電磁アクチュエータにおいて、
前記駆動コイルの各角部を可動部表面に固定し、各角部以外の駆動コイル部分を前記可動部表面から浮かすことで、前記駆動コイルの浮いた部位が、前記トーションバーの軸方向と直交し、前記可動部の中心を通る直線に対して略対称となるようにする、ことを特徴とするプレーナ型電磁アクチュエータ。
A fixed portion, a movable portion having a substantially rectangular shape on a plane, and a torsion bar that pivotally supports the movable portion on the fixed portion so as to be swingable are integrally formed with a semiconductor substrate, and along the peripheral portion of the movable portion. In a planar type electromagnetic actuator provided by winding a drive coil and driving the movable part by electromagnetic force generated by supplying current to the drive coil,
Each corner portion of the drive coil is fixed to the surface of the movable portion, and the drive coil portion other than each corner portion is floated from the surface of the movable portion, so that the floating portion of the drive coil is orthogonal to the axial direction of the torsion bar It was set to be substantially symmetrical for a straight line passing through the center of the movable portion, a planar type electromagnetic actuator, characterized in that.
更に、引出し配線部の前記トーションバー部分を、該トーションバー表面から浮かす構成とした請求項1に記載のプレーナ型電磁アクチュエータ。   The planar electromagnetic actuator according to claim 1, wherein the torsion bar portion of the lead-out wiring portion is configured to float from the surface of the torsion bar.
JP2011186857A 2011-08-30 2011-08-30 Planar type electromagnetic actuator Active JP6180074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186857A JP6180074B2 (en) 2011-08-30 2011-08-30 Planar type electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186857A JP6180074B2 (en) 2011-08-30 2011-08-30 Planar type electromagnetic actuator

Publications (2)

Publication Number Publication Date
JP2013051748A JP2013051748A (en) 2013-03-14
JP6180074B2 true JP6180074B2 (en) 2017-08-16

Family

ID=48013385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186857A Active JP6180074B2 (en) 2011-08-30 2011-08-30 Planar type electromagnetic actuator

Country Status (1)

Country Link
JP (1) JP6180074B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253889B2 (en) * 2013-03-29 2017-12-27 日本信号株式会社 Planar actuator
JP6177636B2 (en) * 2013-09-19 2017-08-09 日本信号株式会社 Planar actuator
US9810721B2 (en) * 2015-12-23 2017-11-07 Melexis Technologies Sa Method of making a current sensor and current sensor
IT202000024352A1 (en) * 2020-10-15 2022-04-15 St Microelectronics Srl MEMS DEVICE HAVING IMPROVED STRESS DISTRIBUTION AND RELATED MANUFACTURING PROCESS
CN217230242U (en) * 2020-10-15 2022-08-19 意法半导体股份有限公司 MEMS device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765649A (en) * 1993-08-25 1995-03-10 Canon Inc Wiring structure and image forming device using the structure
US6232861B1 (en) * 1995-06-05 2001-05-15 Nihon Shingo Kabushiki Kaisha Electromagnetic actuator
JP4197776B2 (en) * 1997-12-26 2008-12-17 オリンパス株式会社 Optical scanner
JP2002267996A (en) * 2001-03-13 2002-09-18 Ricoh Co Ltd Optical scanner and its manufacturing method
JP4458704B2 (en) * 2001-03-29 2010-04-28 シチズンファインテックミヨタ株式会社 Planar type galvano device and manufacturing method thereof
JP4359054B2 (en) * 2003-02-28 2009-11-04 シチズンファインテックミヨタ株式会社 Planar electromagnetic actuator and manufacturing method thereof
US20050280879A1 (en) * 2004-02-09 2005-12-22 Gibson Gregory T Method and apparatus for scanning a beam of light
JP2006042487A (en) * 2004-07-27 2006-02-09 Citizen Miyota Co Ltd Planar electromagnetic actuator and manufacturing method therefor
TWI341602B (en) * 2007-08-15 2011-05-01 Nat Univ Tsing Hua Magnetic element and manufacturing method therefor
JP2009069339A (en) * 2007-09-12 2009-04-02 Seiko Epson Corp Actuator, actuator manufacturing method, optical scanner, and image forming apparatus
JP5383065B2 (en) * 2008-03-05 2014-01-08 日本信号株式会社 Planar electromagnetic actuator and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013051748A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
KR100908120B1 (en) Electromagnetic micro actuator
JP2987750B2 (en) Planar type electromagnetic actuator
US6122089A (en) Optical deflector comprising a movable member having a high rigidity and a reduced moment of inertia and a method for producing the same
JP5146204B2 (en) Optical device, optical scanner, and image forming apparatus
JP6180074B2 (en) Planar type electromagnetic actuator
JP5383065B2 (en) Planar electromagnetic actuator and manufacturing method thereof
JP2013035081A (en) Actuator manufacturing method, actuator, optical scanner, and image forming apparatus
JP5634670B2 (en) Planar actuator
JP4536462B2 (en) Planar actuator and manufacturing method thereof
JP5235341B2 (en) Planar type electromagnetic actuator
JP5922873B2 (en) Planar actuator and manufacturing method thereof
JP6038319B2 (en) Actuator
JP2007014130A (en) Planar-type electromagnetic actuator
JP5322844B2 (en) Planar actuator
JP2012252265A (en) Optical scanner
WO2014162521A1 (en) Actuator
JP5558799B2 (en) Planar actuator
JP2015014753A (en) Actuator
JP6148055B2 (en) Planar actuator
JP5207656B2 (en) Planar type electromagnetic actuator
JP5520566B2 (en) Planar actuator and manufacturing method thereof
JP2007252124A (en) Electromagnetic actuator
JP2007295780A (en) Electromagnetic actuator
JP4969136B2 (en) Actuator manufacturing method
JP2005081533A (en) Planar type actuator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160623

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6180074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150