[go: up one dir, main page]

JP6169667B2 - Cast steel product for welded structure and method for producing cast steel product for welded structure - Google Patents

Cast steel product for welded structure and method for producing cast steel product for welded structure Download PDF

Info

Publication number
JP6169667B2
JP6169667B2 JP2015217231A JP2015217231A JP6169667B2 JP 6169667 B2 JP6169667 B2 JP 6169667B2 JP 2015217231 A JP2015217231 A JP 2015217231A JP 2015217231 A JP2015217231 A JP 2015217231A JP 6169667 B2 JP6169667 B2 JP 6169667B2
Authority
JP
Japan
Prior art keywords
mass
cast steel
less
steel product
welded structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217231A
Other languages
Japanese (ja)
Other versions
JP2017088924A (en
Inventor
和也 谷
和也 谷
宏行 高岡
宏行 高岡
智也 篠崎
智也 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015217231A priority Critical patent/JP6169667B2/en
Priority to CN201910208070.9A priority patent/CN110066962A/en
Priority to CN201610906543.9A priority patent/CN106987764A/en
Priority to KR1020160146003A priority patent/KR101885436B1/en
Publication of JP2017088924A publication Critical patent/JP2017088924A/en
Application granted granted Critical
Publication of JP6169667B2 publication Critical patent/JP6169667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、溶接構造用鋳鋼品及び溶接構造用鋳鋼品の製造方法に関する。   The present invention relates to a welded cast steel product and a method for producing a welded cast steel product.

JIS−G5102(2015)には、引張強度が550MPa以上の溶接構造用鋳鋼品としてSCW550等が規定されている。このような強度を満足するためには、一般に合金量を増加させる必要がある。しかしながら、合金量を増加させると溶接性が低下し、溶接施工前にある温度以上へ溶接部を加熱する予熱や、溶接後に溶接部を加熱し応力除去する焼鈍(後熱)が必要となることが知られている。   JIS-G5102 (2015) defines SCW550 and the like as a cast steel product for welded structure having a tensile strength of 550 MPa or more. In order to satisfy such strength, it is generally necessary to increase the amount of alloy. However, if the amount of alloy is increased, the weldability is reduced, and preheating to heat the welded part to a temperature higher than the temperature before welding is performed, and annealing (postheating) to heat the welded part and remove stress after welding is necessary. It has been known.

しかしながら、特に、例えばラダーホン、ネックベアリング等の船舶用船体部品などとして使用される大型鋳鋼品の場合、溶接施工を屋外で実施することが多く、予熱及び後熱を管理して実施することが困難である。そこで、特に大型の溶接構造用鋳鋼品の溶接性を向上し、予熱及び後熱を簡素化できるようにすることが期待されている。   However, in particular, in the case of large cast steel products used as ship hull parts such as ladder phones and neck bearings, welding is often performed outdoors, and it is difficult to control preheating and afterheating. It is. Therefore, it is expected to improve the weldability of a particularly large cast steel for welded structure and to simplify preheating and afterheating.

一般的に、強度と溶接性とは互いに相反するトレードオフの関係にある。そこで、溶接構造用鋳鋼品の強度の低下を最小限に抑制しながら、溶接性を向上するために、以下の式(1)で表わされる溶接割れ感受性組成Pcmを溶接性の指標としては用いることが提案されている(例えば特開2001−181783号公報参照)。具体的には、上記公報では、溶接割れ感受性組成Pcmを0.3以下とすることで、良好な溶接性を得られるとしている。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
In general, strength and weldability are in a trade-off relationship that is mutually contradictory. Therefore, in order to improve weldability while minimizing the decrease in strength of the cast steel product for welded structure, the weld cracking susceptibility composition Pcm represented by the following formula (1) is used as an index of weldability. Has been proposed (see, for example, JP-A-2001-181783). Specifically, in the above publication, good weldability can be obtained by setting the weld cracking susceptibility composition Pcm to 0.3 or less.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)

しかしながら、大型の溶接構造用鋳鋼品には、さらなる強度及び溶接性の向上が求められている。具体的には、冬場に屋外でも予熱や後熱を行わずに溶接できる溶接構造用鋳鋼品が求められている。   However, further improvements in strength and weldability are required for large cast steel products for welded structures. Specifically, there is a need for a cast steel product for welded structure that can be welded outdoors without performing preheating or afterheating in winter.

特開2001−181783号公報JP 2001-181783 A

上記状況に鑑みて、本発明は、比較的強度及び溶接性に優れる溶接構造用鋳鋼品を提供することを課題とする。   In view of the above situation, an object of the present invention is to provide a cast steel product for welded structure that is relatively excellent in strength and weldability.

上記課題を解決するためになされた発明は、C:0.10質量%以上0.17質量%以下、Si:0.01質量%以上0.40質量%以下、Mn:0.7質量%以上1.4質量%以下、Ni:1.00質量%以上2.00質量%以下、Cr:0.20質量%以上0.50質量%以下、Mo:0.10質量%以上0.30質量%以下、V:0.05質量%以上0.20質量%以下、並びに残部:Fe及び不可避的不純物である組成を有し、下記式(1)で表わされる溶接割れ感受性組成Pcmが0.3以下であり、フェライト及びベイナイトを主組織とし、転位密度が1.35×1013−2以上であることを特徴とする溶接構造用鋳鋼品である。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
The invention made in order to solve the above problems is as follows: C: 0.10% by mass to 0.17% by mass, Si: 0.01% by mass to 0.40% by mass, Mn: 0.7% by mass or more 1.4 mass% or less, Ni: 1.00 mass% or more and 2.00 mass% or less, Cr: 0.20 mass% or more and 0.50 mass% or less, Mo: 0.10 mass% or more and 0.30 mass% or less Hereinafter, V: 0.05% by mass or more and 0.20% by mass or less, and the balance: Fe and an inevitable impurity composition, and the weld crack susceptibility composition Pcm represented by the following formula (1) is 0.3 or less. It is a cast steel product for welded structure characterized by having a main structure of ferrite and bainite and a dislocation density of 1.35 × 10 13 m −2 or more.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)

当該溶接構造用鋳鋼品は、C、Si、Mn、Ni、Cr、Mo及びVの含有量がそれぞれ上記範囲内であり、溶接割れ感受性組成Pcmが0.3以下であり、かつ転位密度が1.35×1013−2以上であることによって、常温よりもさらに低温の0℃においても予熱や後熱を行わずに溶接できる比較的優れた溶接性を有すると共に比較的強度に優れる。なお、「転位密度」とは、X線回折装置を用いて、Williamson−Hall法により測定される値である。 The cast steel product for welded structure has a content of C, Si, Mn, Ni, Cr, Mo and V within the above ranges, a weld cracking susceptibility composition Pcm of 0.3 or less, and a dislocation density of 1 When it is .35 × 10 13 m −2 or more, it has a relatively excellent weldability that allows welding without preheating or afterheating even at 0 ° C., which is lower than room temperature, and relatively excellent strength. The “dislocation density” is a value measured by the Williamson-Hall method using an X-ray diffractometer.

また、上記課題を解決するためになされた別の発明は、C:0.10質量%以上0.17質量%以下、Si:0.01質量%以上0.40質量%以下、Mn:0.7質量%以上1.4質量%以下、Ni:1.00質量%以上2.00質量%以下、Cr:0.20質量%以上0.50質量%以下、Mo:0.10質量%以上0.30質量%以下、V:0.05質量%以上0.20質量%以下、並びに残部:Fe及び不可避的不純物である組成を有し、下記式(1)で表わされる溶接割れ感受性組成Pcmが0.3以下である溶接構造用鋳鋼を鋳造する工程と、上記鋳造工程で得られた鋳造品を調質する工程とを備え、上記調質工程が、上記鋳造品をオーステナイト化温度以上に加熱する工程と、上記鋳造品をフェライト及びベイナイトが主組成となるよう冷却する工程と、上記鋳造品をオーステナイト化温度より低い温度で焼き戻しする工程とを有し、上記冷却工程で、転位密度が1.35×1013−2以上となる速度で冷却することを特徴とする溶接構造用鋳鋼品の製造方法である。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
Moreover, another invention made | formed in order to solve the said subject is C: 0.10 mass% or more and 0.17 mass% or less, Si: 0.01 mass% or more and 0.40 mass% or less, Mn: 0.00. 7 mass% to 1.4 mass%, Ni: 1.00 mass% to 2.00 mass%, Cr: 0.20 mass% to 0.50 mass%, Mo: 0.10 mass% to 0 .30% by mass or less, V: 0.05% by mass or more and 0.20% by mass or less, and the balance: Fe and an inevitable impurity composition, and the weld cracking susceptibility composition Pcm represented by the following formula (1) is A step of casting a cast steel for welded structure that is 0.3 or less and a step of tempering the cast product obtained in the casting step, wherein the tempering step heats the cast product to a temperature above the austenitizing temperature. And the casting is mainly composed of ferrite and bainite. It includes a step of cooling to be, and a step of tempering the casting at a temperature lower than the austenitizing temperature, in the cooling step, cooling at a rate that dislocation density is 1.35 × 10 13 m -2 or more It is the manufacturing method of the cast-steel goods for welded structures characterized by doing.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)

当該溶接構造用鋳鋼品の製造方法は、C、Si、Mn、Ni、Cr、Mo及びVの含有量がそれぞれ上記範囲内あり、かつ溶接割れ感受性組成Pcmが0.3以下である鋳鋼を用いることによって、得られる溶接構造用鋳鋼品の転位密度を大きくできると共に常温よりもさらに低温の0℃においても予熱や後熱を行わずに溶接できるまで溶接性を向上できる。そして、当該溶接構造用鋳鋼品の製造方法は、転位密度が1.35×1013−2以上となるよう冷却する工程を有することによって、得られる溶接構造用鋳鋼品の強度を向上することができる。 The manufacturing method of the cast steel product for welded structure uses cast steel in which the contents of C, Si, Mn, Ni, Cr, Mo, and V are within the above ranges, respectively, and the weld cracking susceptibility composition Pcm is 0.3 or less. As a result, the dislocation density of the resulting cast steel for welded structure can be increased, and weldability can be improved until welding can be performed without preheating or afterheating even at 0 ° C., which is lower than normal temperature. And the manufacturing method of the said cast steel product for welded structures improves the intensity | strength of the cast steel product for welded structure obtained by having the process cooled so that a dislocation density may become 1.35 * 10 < 13 > m <-2 > or more. Can do.

以上のように、本発明の溶接構造用鋳鋼品及び溶接構造用鋳鋼品の製造方法によって得られる溶接構造用鋳鋼品は、比較的強度及び溶接性に優れる。   As described above, the cast steel product for welded structure and the cast steel product for welded structure obtained by the method for producing a welded cast steel product for welded structure according to the present invention are relatively excellent in strength and weldability.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[溶接構造用鋳鋼品]
当該溶接構造用鋳鋼品は、C(炭素):0.10質量%以上0.17質量%以下、Si(シリコン):0.01質量%以上0.40質量%以下、Mn(マンガン):0.7質量%以上1.4質量%以下、Ni(ニッケル):1.00質量%以上2.00質量%以下、Cr(クロム):0.20質量%以上0.50質量%以下、Mo(モリブデン):0.10質量%以上0.30質量%以下、V(バナジウム):0.05質量%以上0.20質量%以下、並びに残部:Fe(鉄)及び不可避的不純物である組成を有する。
[Cast steel products for welded structures]
The cast steel product for welded structure is C (carbon): 0.10% by mass to 0.17% by mass, Si (silicon): 0.01% by mass to 0.40% by mass, Mn (manganese): 0 0.7 mass% or more and 1.4 mass% or less, Ni (nickel): 1.00 mass% or more and 2.00 mass% or less, Cr (chromium): 0.20 mass% or more and 0.50 mass% or less, Mo ( Molybdenum): 0.10% by mass to 0.30% by mass, V (vanadium): 0.05% by mass to 0.20% by mass, and the balance: Fe (iron) and an inevitable impurity composition .

また、当該溶接構造用鋳鋼品の下記式(1)で表わされる溶接割れ感受性組成Pcmの下限としては、上記組成により必然的に0.17であり、0.2が好ましく、0.22がより好ましい。一方、当該溶接構造用鋳鋼品の溶接割れ感受性組成Pcmの上限としては、0.3であり、0.27が好ましく、0.26がより好ましい。上記溶接割れ感受性組成Pcmが上記下限に満たない場合、強度が不十分となるおそれがある。逆に、上記溶接割れ感受性組成Pcmが上記上限を超える場合、常温で溶接すると溶接割れを生じるおそれがある。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
(但し、式中の各元素のシンボルは、それぞれの質量含有率を%で表わした値である)
Further, the lower limit of the weld cracking susceptibility composition Pcm represented by the following formula (1) of the cast steel product for welded structure is inevitably 0.17, preferably 0.2, more preferably 0.22 due to the above composition. preferable. On the other hand, the upper limit of the weld cracking susceptibility composition Pcm of the cast steel product for welded structure is 0.3, preferably 0.27, and more preferably 0.26. If the weld cracking susceptibility composition Pcm is less than the lower limit, the strength may be insufficient. Conversely, if the weld cracking susceptibility composition Pcm exceeds the above upper limit, welding at normal temperature may cause weld cracking.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(However, the symbol of each element in the formula is the value representing the mass content of each element in%)

また、当該溶接構造用鋳鋼品は、フェライト及びベイナイトを主組織とする。なお、「フェライト及びベイナイトを主組織とする」とは、断面におけるフェライト組織及びベイナイト組織の合計面積率が50%以上、好ましくは70%以上、より好ましくは90%以上であることを意味する。   Further, the cast steel product for welded structure has ferrite and bainite as a main structure. “The main structure is ferrite and bainite” means that the total area ratio of the ferrite structure and the bainite structure in the cross section is 50% or more, preferably 70% or more, more preferably 90% or more.

また、当該溶接構造用鋳鋼品における転位密度の下限としては、1.35×1013−2であり、1.80×1013−2が好ましく、2.00×1013−2がより好ましい。一方、当該溶接構造用鋳鋼品における転位密度の上限としては、特に限定されないが、現実的には1.00×1015−2が限界と考えられる。転位密度が上記下限に満たない場合、強度が不十分となるおそれがある。 Moreover, as a minimum of the dislocation density in the said cast steel for welded structures, it is 1.35 * 10 < 13 > m <-2 >, 1.80 * 10 < 13 > m <-2> is preferable, and 2.00 * 10 < 13 > m <-2> is. More preferred. On the other hand, the upper limit of the dislocation density in the cast steel product for welded structure is not particularly limited, but in reality, 1.00 × 10 15 m −2 is considered the limit. If the dislocation density is less than the lower limit, the strength may be insufficient.

以下、当該溶接構造用鋳鋼品の各成分について説明する。   Hereinafter, each component of the cast steel product for welded structure will be described.

<C(炭素)>
Cは、当該溶接構造用鋳鋼品の強度確保のために必要な元素である。Cの含有量の下限としては、0.10質量%であり、0.11質量%が好ましく、0.12質量%がより好ましい。一方、Cの含有量の上限としては、0.17質量%であり、0.15質量%が好ましく、0.14質量%がより好ましい。Cの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が不十分となるおそれがある。逆に、Cの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品に島状マルテンサイトが生じ、これがHIC(水素誘起割れ:Hydrogen Induced Cracking)の起点となることで耐HIC性が低下することで溶接性が不十分となるおそれがある。また、Cの含有量が上記上限を超える場合、溶接時にHAZ(熱影響部:Heat Affected Zone)におけるボンド部の近傍部位でマルテンサイトの硬度が上昇し、耐SSCC(硫化物応力腐食割れ:Sulfied Stress Corrosion Cracking)性が低下することで溶接性が不十分となるおそれがある。
<C (carbon)>
C is an element necessary for ensuring the strength of the welded cast steel product. The lower limit of the C content is 0.10% by mass, preferably 0.11% by mass, and more preferably 0.12% by mass. On the other hand, the upper limit of the C content is 0.17% by mass, preferably 0.15% by mass, and more preferably 0.14% by mass. When content of C is less than the said minimum, there exists a possibility that the intensity | strength of the said cast steel for welded structures may become inadequate. On the other hand, when the C content exceeds the above upper limit, island martensite is generated in the cast steel product for welded structure, and this is a starting point for HIC (Hydrogen Induced Cracking), resulting in a decrease in HIC resistance. Doing so may result in insufficient weldability. When the C content exceeds the above upper limit, the martensite hardness increases in the vicinity of the bond portion in the HAZ (Heat Affected Zone) during welding, and SSCC resistance (sulfide stress corrosion cracking: Sulfied). The weldability may be insufficient due to a decrease in stress corrosion cracking properties.

<Si(ケイ素)>
Siは、当該溶接構造用鋳鋼品の脱酸に必要な元素である。Siの含有量の下限としては、0.01質量%であり、0.10質量%が好ましく、0.20質量%がより好ましい。一方、Siの含有量の上限としては、0.40質量%であり、0.36質量%が好ましく、0.34質量%がより好ましい。Siの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の脱酸が不十分となるおそれがある。逆に、Siの含有量が上記上限を超える場合、逆V偏析等の鋳造欠陥が発生し易くなることで靱性のバラツキが生じるおそれや、HICの起点となる島状マルテンサイトが生成されることで耐HIC性が低下するおそれがある。
<Si (silicon)>
Si is an element necessary for deoxidation of the cast steel product for welded structure. The lower limit of the Si content is 0.01% by mass, preferably 0.10% by mass, and more preferably 0.20% by mass. On the other hand, the upper limit of the Si content is 0.40 mass%, preferably 0.36 mass%, and more preferably 0.34 mass%. When content of Si is less than the said minimum, there exists a possibility that the deoxidation of the said cast steel product for welded structures may become inadequate. Conversely, when the Si content exceeds the above upper limit, casting defects such as reverse V segregation are likely to occur, and there is a risk of variation in toughness, and island martensite that is the starting point of HIC is generated. The HIC resistance may be reduced.

<Mn(マンガン)>
Mnは、当該溶接構造用鋳鋼品の強度確保のために必要な元素である。Mnの含有量の下限としては、0.7質量%であり、0.9質量%が好ましく、1.0質量%がより好ましい。一方、Mnの含有量の上限としては、1.4質量%であり、1.3質量%が好ましく、1.2質量%がより好ましい。Mnの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が不十分となるおそれがある。逆に、Mnの含有量が上記上限を超える場合、不可避的不純物中のSと共にMnSを形成することで耐HIC性が低下して溶接性が不十分となるおそれがある。
<Mn (manganese)>
Mn is an element necessary for securing the strength of the welded cast steel product. The lower limit of the Mn content is 0.7% by mass, preferably 0.9% by mass, and more preferably 1.0% by mass. On the other hand, the upper limit of the Mn content is 1.4% by mass, preferably 1.3% by mass, and more preferably 1.2% by mass. When content of Mn is less than the said minimum, there exists a possibility that the intensity | strength of the said cast steel for welded structures may become inadequate. Conversely, when the Mn content exceeds the above upper limit, forming MnS together with S in the unavoidable impurities may reduce the HIC resistance and make the weldability insufficient.

<Ni(ニッケル)>
Niは、当該溶接構造用鋳鋼品の強度向上に寄与する元素である。Niの含有量の下限としては、1.00質量%であり、1.10質量%が好ましく、1.20質量%がより好ましい。一方、Niの含有量の上限としては、2.00質量%であり、1.95質量%が好ましく、1.90質量%がより好ましい。Niの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が低下するおそれがある。逆に、Niの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の溶接時にHAZにおけるボンド部の近傍部位で硬質マルテンサイトが増加することにより耐SSCC性が低下するおそれや、当該溶接構造用鋳鋼品が不必要に高価となるおそれがある。
<Ni (nickel)>
Ni is an element that contributes to improving the strength of the cast steel for welded structure. The lower limit of the Ni content is 1.00% by mass, preferably 1.10% by mass, and more preferably 1.20% by mass. On the other hand, the upper limit of the Ni content is 2.00% by mass, preferably 1.95% by mass, and more preferably 1.90% by mass. When content of Ni is less than the said minimum, there exists a possibility that the intensity | strength of the said cast steel for welded structures may fall. Conversely, if the Ni content exceeds the upper limit, the SSCC resistance may decrease due to an increase in hard martensite in the vicinity of the bond part in the HAZ during welding of the cast steel product for welded structure. There is a possibility that the structural cast steel product is unnecessarily expensive.

<Cr(クロム)>
Crは、当該溶接構造用鋳鋼品の強度向上に寄与する元素である。Crの含有量の下限としては、0.20質量%であり、0.23質量%が好ましく、0.25質量%がより好ましい。一方、Crの含有量の上限としては、0.50質量%であり、0.35質量%が好ましく、0.30質量%がより好ましい。Crの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が低下するおそれがある。逆に、Crの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の溶接時にHAZにおけるボンド部の近傍部位で硬質マルテンサイトが増加し、耐SSCC性が低下することで溶接性が不十分となるおそれがある。
<Cr (chrome)>
Cr is an element that contributes to improving the strength of the cast steel product for welded structure. As a minimum of content of Cr, it is 0.20 mass%, 0.23 mass% is preferable, and 0.25 mass% is more preferable. On the other hand, the upper limit of the Cr content is 0.50 mass%, preferably 0.35 mass%, and more preferably 0.30 mass%. When content of Cr is less than the said minimum, there exists a possibility that the intensity | strength of the said cast steel for welded structures may fall. On the other hand, when the Cr content exceeds the above upper limit, hard martensite increases in the vicinity of the bond portion in the HAZ during welding of the welded structural cast steel product, resulting in poor weldability due to decreased SSCC resistance. May be sufficient.

<Mo(モリブデン)>
Moは、当該溶接構造用鋳鋼品の強度向上に寄与し、焼き戻し軟化抵抗を高める元素である。Moの含有量の下限としては、0.10質量%であり、0.12質量%が好ましく、0.13質量%がより好ましい。一方、Moの含有量の上限としては、0.30質量%であり、0.25質量%が好ましく、0.20質量%がより好ましい。Moの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が不十分となるおそれや、強度を維持したまま焼き戻しをすることが容易ではなくなるおそれがある。逆に、Moの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の溶接時にHAZにおけるボンド部の近傍部位で硬質マルテンサイトが増加し、耐SSCC性が低下することで溶接性が不十分となるおそれがある。
<Mo (molybdenum)>
Mo is an element that contributes to improving the strength of the welded cast steel product and increases the temper softening resistance. As a minimum of content of Mo, it is 0.10 mass%, 0.12 mass% is preferable, and 0.13 mass% is more preferable. On the other hand, the upper limit of the Mo content is 0.30 mass%, preferably 0.25 mass%, and more preferably 0.20 mass%. If the Mo content is less than the above lower limit, the strength of the cast steel product for welded structure may be insufficient, or it may not be easy to perform tempering while maintaining the strength. On the other hand, when the Mo content exceeds the above upper limit, hard martensite increases in the vicinity of the bond portion in the HAZ during welding of the cast steel product for welded structure, resulting in poor weldability due to decreased SSCC resistance. May be sufficient.

<V(バナジウム)>
Vは、当該溶接構造用鋳鋼品の強度向上に寄与し、焼き戻し軟化抵抗を高める元素である。Vの含有量の下限としては、0.05質量%であり、0.07質量%が好ましく、0.08質量%がより好ましい。一方、Vの含有量の上限としては、0.20質量%であり、0.17質量%が好ましく、0.15質量%がより好ましい。Vの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の強度が不十分となるおそれや、強度を維持したまま焼き戻しをすることが容易ではなくなるおそれがある。逆に、Vの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の溶接時にHAZにおけるボンド部の近傍部位で硬質マルテンサイトが増加し、耐SSCC性が低下することで溶接性が不十分となるおそれがある。
<V (Vanadium)>
V is an element that contributes to improving the strength of the cast steel for welded structure and increases the temper softening resistance. The lower limit of the V content is 0.05% by mass, preferably 0.07% by mass, and more preferably 0.08% by mass. On the other hand, the upper limit of the V content is 0.20 mass%, preferably 0.17 mass%, and more preferably 0.15 mass%. If the V content is less than the above lower limit, the strength of the cast steel product for welded structure may be insufficient, and it may not be easy to perform tempering while maintaining the strength. On the other hand, when the V content exceeds the above upper limit, hard martensite is increased in the vicinity of the bond portion in the HAZ during welding of the welded structural cast steel product, resulting in poor weldability due to decreased SSCC resistance. May be sufficient.

<残部>
当該溶接構造用鋳鋼品は、上述した各元素以外にFe(鉄)及び不可避的不純物を残部として含有する。この不可避的不純物としては、例えばP(リン)、S(硫黄)等が挙げられる。当該溶接構造用鋳鋼品における不可避的不純物の合計含有量は、諸特性を損なわない限り、特に限定されない。具体的な当該溶接構造用鋳鋼品における不可避的不純物の合計含有量の上限としては、0.1質量%が好ましく、0.05質量%がより好ましく、0.02質量%がさらに好ましい。不可避的不純物の合計含有量を上記上限以下とすることで、当該溶接構造用鋳鋼品の強度及び溶接性の低下を抑制することができる。
<Remainder>
The cast steel product for welded structure contains Fe (iron) and inevitable impurities as the balance in addition to the elements described above. Examples of such inevitable impurities include P (phosphorus) and S (sulfur). The total content of inevitable impurities in the cast steel product for welded structure is not particularly limited as long as various properties are not impaired. As an upper limit of the total content of inevitable impurities in the concrete cast steel for welded structure, 0.1% by mass is preferable, 0.05% by mass is more preferable, and 0.02% by mass is more preferable. By making the total content of inevitable impurities not more than the above upper limit, the strength and weldability of the cast steel product for welded structure can be suppressed.

<P(リン)>
Pは、当該溶接構造用鋳鋼品に不可避的に含まれ、当該溶接構造用鋳鋼品の耐HIC性及び耐SSCC性を低下させる元素である。Pの含有量の下限としては、0.001質量%が好ましく、0.002質量%がより好ましい。一方、Pの含有量の上限としては、0.012質量%が好ましく、0.010質量%がより好ましく、0.008質量%がさらに好ましい。Pの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の製造コスト上昇に見合うだけの耐HIC性及び耐SSCC性の向上効果が得られないおそれがある。逆に、Pの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の耐HIC性及び耐SSCC性が低下するおそれがある。
<P (phosphorus)>
P is an element inevitably contained in the cast steel product for welded structure, and decreases the HIC resistance and SSCC resistance of the cast steel product for welded structure. As a minimum of content of P, 0.001 mass% is preferable and 0.002 mass% is more preferable. On the other hand, the upper limit of the P content is preferably 0.012% by mass, more preferably 0.010% by mass, and still more preferably 0.008% by mass. When the content of P is less than the lower limit, there is a possibility that the effect of improving the HIC resistance and SSCC resistance sufficient to meet the increase in the manufacturing cost of the welded structural cast steel product may not be obtained. Conversely, when the P content exceeds the above upper limit, the HIC resistance and SSCC resistance of the welded structural cast steel product may be reduced.

<S(硫黄)>
Sは、当該溶接構造用鋳鋼品に不可避的に含まれ、Mnと共にMnSを形成し、当該溶接構造用鋳鋼品の耐HIC性を低下させる元素である。Sの含有量の下限としては、0.0001質量%が好ましく、0.0003質量%がより好ましい。一方、Sの含有量の上限としては、0.010質量%が好ましく、0.008質量%がより好ましく、0.006質量%がさらに好ましい。Sの含有量が上記下限に満たない場合、当該溶接構造用鋳鋼品の製造コスト上昇に見合うだけの耐HIC性の向上効果が得られないおそれがある。逆に、Sの含有量が上記上限を超える場合、当該溶接構造用鋳鋼品の耐HIC性が低下するおそれがある。
<S (sulfur)>
S is an element that is inevitably included in the cast steel product for welded structure, forms MnS together with Mn, and lowers the HIC resistance of the cast steel product for welded structure. As a minimum of content of S, 0.0001 mass% is preferable and 0.0003 mass% is more preferable. On the other hand, the upper limit of the S content is preferably 0.010% by mass, more preferably 0.008% by mass, and still more preferably 0.006% by mass. When the content of S is less than the above lower limit, there is a possibility that the effect of improving the HIC resistance sufficient to meet the increase in the manufacturing cost of the welded structural cast steel product may not be obtained. On the other hand, when the S content exceeds the upper limit, the HIC resistance of the welded cast steel product may be lowered.

<Cu(銅)>
Cuは、一般的に強度を向上させるために鋳鋼に添加されることが多い金属である。しかしながら、Cuは、溶接割れ感受性組成Pcmを大きくする金属であるため、当該溶接構造用鋳鋼品は、Cuを含まないことが好ましいが、当該溶接構造用鋳鋼品を他の鋳鋼と同じ工場で製造する場合にはCuが微量に混入するおそれがある。つまり、当該溶接構造用鋳鋼品は、Cuを意図的に添加せず、不可避的不純物としての含有のみを許容する。当該溶接構造用鋳鋼品におけるCuの含有量の上限としては、0.02質量%が好ましく、0.01質量%がより好ましい。Cuの含有量が上記上限を超える場合、溶接割れ感受性組成Pcmが大きくなり、溶接性が不十分となるおそれがある。
<Cu (copper)>
Cu is a metal that is often added to cast steel in order to generally improve strength. However, since Cu is a metal that increases the weld cracking susceptibility composition Pcm, it is preferable that the cast steel product for welded structure does not contain Cu, but the cast steel product for welded structure is manufactured in the same factory as other cast steels. When it does, there is a possibility that Cu may be mixed in a trace amount. That is, the cast steel product for welded structure does not intentionally add Cu, and only allows inclusion as an inevitable impurity. The upper limit of the Cu content in the cast steel for welded structure is preferably 0.02% by mass, and more preferably 0.01% by mass. When the Cu content exceeds the above upper limit, the weld cracking susceptibility composition Pcm is increased, and the weldability may be insufficient.

<B(ホウ素)>
Bは、一般的に強度を向上させるために鋳鋼に添加され得る金属である。しかしながら、Bは、溶接割れ感受性組成Pcmを大きくする金属であるため、当該溶接構造用鋳鋼品では、Bを意図的に添加せず、不可避的不純物としての含有のみを許容する。Bの含有量の上限としては、0.003質量%が好ましく、0.002質量%がより好ましい。Bの含有量が上記上限を超える場合、溶接割れ感受性組成Pcmが大きくなり、溶接性が不十分となるおそれがある。
<B (boron)>
B is a metal that can generally be added to cast steel to improve strength. However, since B is a metal that increases the weld cracking susceptibility composition Pcm, the cast steel product for welded structure does not intentionally add B, and only allows inclusion as an inevitable impurity. As an upper limit of content of B, 0.003 mass% is preferable and 0.002 mass% is more preferable. When the content of B exceeds the above upper limit, the weld cracking susceptibility composition Pcm is increased, and the weldability may be insufficient.

[溶接構造用鋳鋼品の製造方法]
当該溶接構造用鋳鋼品は、溶接構造用鋳鋼を鋳造する工程と、上記鋳造工程で得られた鋳造品を調質する工程とを備える。当該溶接構造用鋳鋼品の製造方法は、上記鋳造工程後、上記調質工程の前に、鋳造品をオーステナイト化温度以上に加熱して焼鈍する工程をさらに備えることが好ましい。
[Method of manufacturing cast steel product for welded structure]
The welded structure cast steel product includes a step of casting the welded structure cast steel and a step of tempering the cast product obtained in the casting process. It is preferable that the manufacturing method of the cast steel product for welded structure further includes a step of heating and annealing the cast product to an austenitizing temperature or higher after the casting step and before the tempering step.

<鋳造工程>
鋳造工程では、C:0.10質量%以上0.17質量%以下、Si:0.01質量%以上0.40質量%以下、Mn:0.7質量%以上1.4質量%以下、Ni:1.00質量%以上2.00質量%以下、Cr:0.20質量%以上0.50質量%以下、Mo:0.10質量%以上0.30質量%以下、V:0.05質量%以上0.20質量%以下、並びに残部:Fe及び不可避的不純物である組成を有し、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bで表わされる溶接割れ感受性組成Pcmが0.3以下である溶接構造用鋳鋼を鋳造する。
<Casting process>
In the casting process, C: 0.10% by mass to 0.17% by mass, Si: 0.01% by mass to 0.40% by mass, Mn: 0.7% by mass to 1.4% by mass, Ni : 1.00 mass% or more and 2.00 mass% or less, Cr: 0.20 mass% or more and 0.50 mass% or less, Mo: 0.10 mass% or more and 0.30 mass% or less, V: 0.05 mass % To 0.20% by mass and the balance: Fe and a composition which is an inevitable impurity, and a weld cracking susceptibility composition Pcm represented by Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B Cast a welded structural cast steel of 0.3 or less.

<焼鈍工程>
焼鈍工程では、溶接構造用鋳鋼の鋳造品をオーステナイト化(γ化)温度以上に再加熱することにより組織を均質化する。この焼鈍温度の下限としては、900℃が好ましく、910℃がより好ましい。一方、焼鈍温度の上限としては、1000℃が好ましく、980℃がより好ましい。焼鈍温度が上記下限に満たない場合、鋳造品の均質化が不十分となり、当該溶接構造用鋳鋼品の品質がバラツクおそれがある。逆に、焼鈍温度が上記上限を超える場合、鋳鋼品が変形するおそれがある。
<Annealing process>
In the annealing step, the structure is homogenized by reheating the cast product of the welded structural cast steel to an austenitizing (γ) temperature or higher. As a minimum of this annealing temperature, 900 degreeC is preferable and 910 degreeC is more preferable. On the other hand, as an upper limit of annealing temperature, 1000 degreeC is preferable and 980 degreeC is more preferable. If the annealing temperature is less than the above lower limit, homogenization of the cast product becomes insufficient, and the quality of the cast steel product for welded structure may vary. Conversely, when the annealing temperature exceeds the above upper limit, the cast steel product may be deformed.

上記焼鈍温度の保持時間の下限としては、1時間が好ましく、3時間がより好ましい。一方、焼鈍温度の保持時間の上限としては、15時間が好ましく、10時間がより好ましい。焼鈍温度の保持時間が上記下限に満たない場合、溶接構造用鋳鋼の均質化が不十分となるおそれがある。逆に、焼鈍温度の保持時間が上記上限を超える場合、当該溶接構造用鋳鋼品の製造コストが不必要に増大するおそれがある。   As a minimum of the holding time of the said annealing temperature, 1 hour is preferable and 3 hours is more preferable. On the other hand, the upper limit of the annealing temperature holding time is preferably 15 hours and more preferably 10 hours. When the annealing temperature holding time is less than the lower limit, homogenization of the cast steel for welded structure may be insufficient. On the other hand, when the annealing temperature holding time exceeds the above upper limit, the production cost of the welded structural cast steel product may be unnecessarily increased.

<調質工程>
調質工程は、上記鋳造工程で得られる鋳造品をオーステナイト化温度以上に加熱する工程と、上記鋳造品をフェライト及びベイナイトが主組成となるよう冷却する工程と、上記鋳造品をオーステナイト化温度より低い温度で焼き戻しする工程とを有する。
<Refining process>
The tempering step is a step of heating the cast product obtained in the casting step above the austenitizing temperature, a step of cooling the cast product so that ferrite and bainite are the main composition, and the casting product from the austenitizing temperature. Tempering at a low temperature.

(加熱工程)
加熱工程では、溶接構造用鋳鋼の鋳造品をオーステナイト化温度以上に加熱して組織をオーステナイト化する。この加熱工程における加熱温度の下限としては、溶接構造用鋳鋼の組成にもよるが、860℃が好ましく、880℃がより好ましい。一方、加熱工程における加熱温度の上としては、1000℃が好ましく、980℃がより好ましい。加熱工程における加熱温度が上記下限に満たない場合、結晶粒を大きくすることができず、粒界面積が大きくなることにより、ベイナイトの生成が不十分となるおそれや、転位密度を十分に大きくできないおそれがある。逆に、加熱工程における加熱温度が上記上限を超える場合、靱性が不十分となるおそれがある。
(Heating process)
In the heating step, the structure is austenitized by heating the cast product of the welded structural cast steel to a temperature above the austenitizing temperature. The lower limit of the heating temperature in this heating step is preferably 860 ° C., more preferably 880 ° C., although it depends on the composition of the welded structural cast steel. On the other hand, as the heating temperature in the heating step, 1000 ° C. is preferable, and 980 ° C. is more preferable. When the heating temperature in the heating step is less than the above lower limit, the crystal grains cannot be increased, and the grain interfacial area is increased, so that the formation of bainite may be insufficient or the dislocation density cannot be increased sufficiently. There is a fear. Conversely, if the heating temperature in the heating step exceeds the above upper limit, the toughness may be insufficient.

上記加熱温度での保持時間の下限としては、1時間が好ましく、2時間がより好ましい。一方、上記加熱温度での保持時間の上限としては、10時間が好ましく、7時間がより好ましい。上記加熱温度での保持時間が上記下限に満たない場合、溶接構造用鋳鋼の均質化が不十分となるおそれがある。逆に、上記加熱温度での保持時間が上記上限を超える場合、当該溶接構造用鋳鋼品の製造コストが不必要に増大するおそれがある。   The lower limit of the holding time at the heating temperature is preferably 1 hour and more preferably 2 hours. On the other hand, the upper limit of the holding time at the heating temperature is preferably 10 hours, and more preferably 7 hours. If the holding time at the heating temperature is less than the lower limit, homogenization of the cast steel for welded structure may be insufficient. On the other hand, when the holding time at the heating temperature exceeds the upper limit, the manufacturing cost of the cast steel product for welded structure may increase unnecessarily.

(冷却工程)
冷却工程では、転位密度が1.35×1013−2以上、好ましくは1.80×1013−2以上、より好ましくは2.00×1013−2以上となるような速度で上記鋳造品を冷却する。具体的な冷却方法としては、例えば強制空冷、水冷、油冷等を挙げることがでる。
(Cooling process)
In the cooling step, the dislocation density is 1.35 × 10 13 m −2 or more, preferably 1.80 × 10 13 m −2 or more, more preferably 2.00 × 10 13 m −2 or more. The casting is cooled. Specific examples of the cooling method include forced air cooling, water cooling, and oil cooling.

冷却工程における冷却速度の下限としては、鋳造品の表面で2℃/minが好ましく、5℃/minがより好ましく、8℃/minがさらに好ましい。一方、冷却工程における冷却速度の上限としては、鋳造品の表面で250℃/minが好ましい。冷却工程における冷却速度が上記下限に満たない場合、転位密度を十分に大きくできず、強度が不十分となるおそれがある。逆に、冷却工程における冷却速度が上記上限を超える場合、当該溶接構造用鋳鋼品が不均質となるおそれがある。   The lower limit of the cooling rate in the cooling step is preferably 2 ° C / min on the surface of the cast product, more preferably 5 ° C / min, and even more preferably 8 ° C / min. On the other hand, the upper limit of the cooling rate in the cooling step is preferably 250 ° C./min on the surface of the cast product. If the cooling rate in the cooling step is less than the lower limit, the dislocation density cannot be increased sufficiently, and the strength may be insufficient. Conversely, when the cooling rate in the cooling step exceeds the above upper limit, the cast steel product for welded structure may be inhomogeneous.

冷却工程における上記冷却速度での到達温度の下限としては、250℃が好ましく、280℃がより好ましい。一方、冷却工程における到達温度の上限としては、450℃が好ましく、400℃がより好ましい。冷却工程における到達温度が上記下限に満たない場合、ベイナイト組織を十分に形成できないおそれがある。逆に、冷却工程における到達温度が上記上限を超える場合にも、ベイナイト組織を十分に形成できないおそれがある。   As a minimum of the ultimate temperature in the above-mentioned cooling rate in a cooling process, 250 ° C is preferred and 280 ° C is more preferred. On the other hand, the upper limit of the reached temperature in the cooling step is preferably 450 ° C, more preferably 400 ° C. When the ultimate temperature in the cooling step is less than the lower limit, a bainite structure may not be sufficiently formed. On the contrary, there is a possibility that a bainite structure cannot be sufficiently formed even when the temperature reached in the cooling step exceeds the upper limit.

冷却工程では、上記到達温度まで上記冷却速度で冷却した後、上記到達温度を保持することで、ベイナイト組織の比率を大きくすることができる。厳密に上記到達温度で保持する必要はなく、上記到達温度まで上記冷却速度で冷却した後、常温まで徐冷してもよい。   In the cooling step, the ratio of the bainite structure can be increased by holding the temperature reached after cooling to the temperature reached at the cooling rate. It is not necessary to strictly hold at the above-mentioned temperature, and after cooling to the above-mentioned temperature at the cooling rate, it may be gradually cooled to room temperature.

(焼き戻し工程)
焼き戻し工程では、冷却した鋳造品をオーステナイト化温度より低い温度で焼き戻しする。これにより、当該溶接構造用鋳鋼品の靱性を向上することができる。
(Tempering process)
In the tempering step, the cooled cast product is tempered at a temperature lower than the austenitizing temperature. Thereby, the toughness of the cast steel product for welded structure can be improved.

焼き戻し温度の下限としては、400℃が好ましく、500℃がより好ましい。一方、焼き戻し温度の上限としては、650℃が好ましく、630℃がより好ましい。焼き戻し温度が上記下限に満たない場合、靱性を十分に向上できないおそれがある。逆に、焼き戻し温度が上記上限を超える場合、焼き戻しにより転位密度が低下し、強度が不十分となるおそれがある。   As a minimum of tempering temperature, 400 degreeC is preferable and 500 degreeC is more preferable. On the other hand, as an upper limit of tempering temperature, 650 degreeC is preferable and 630 degreeC is more preferable. When the tempering temperature is less than the lower limit, the toughness may not be sufficiently improved. On the other hand, when the tempering temperature exceeds the above upper limit, the dislocation density is lowered by tempering, and the strength may be insufficient.

焼き戻し時間(上記焼き戻し温度での保持時間)の下限としては、2時間が好ましく、3時間がより好ましい。一方、焼き戻し時間の上限としては、15時間が好ましく、10時間がより好ましい。焼き戻し時間が上記下限に満たない場合、靱性を十分に向上できないおそれがある。逆に、焼き戻し時間が上記上限を超える場合、強度が不十分となるおそれや、不必要に製造コストが増大するおそれがある。   The lower limit of the tempering time (the holding time at the tempering temperature) is preferably 2 hours, and more preferably 3 hours. On the other hand, the upper limit of the tempering time is preferably 15 hours, and more preferably 10 hours. If the tempering time is less than the above lower limit, the toughness may not be sufficiently improved. On the other hand, when the tempering time exceeds the above upper limit, the strength may be insufficient, or the manufacturing cost may increase unnecessarily.

<利点>
当該溶接構造用鋳鋼品は、C、Si、Mn、Ni、Cr、Mo及びVの含有量がそれぞれ上記範囲内であり、溶接割れ感受性組成Pcmが0.3以下であり、かつ転位密度が1.35×1013−2以上であることによって、常温よりもさらに低温の0℃においても予熱や後熱を行わずに溶接できる比較的優れた溶接性を有すると共に比較的強度に優れる。
<Advantages>
The cast steel product for welded structure has a content of C, Si, Mn, Ni, Cr, Mo and V within the above ranges, a weld cracking susceptibility composition Pcm of 0.3 or less, and a dislocation density of 1 When it is .35 × 10 13 m −2 or more, it has a relatively excellent weldability that allows welding without preheating or afterheating even at 0 ° C., which is lower than room temperature, and relatively excellent strength.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

例えば、当該溶接構造用鋳鋼品は、P、S及びCu以外の不可避的不純物を含んでもよく、例えばO(酸素)、H(水素)等を不可避的不純物として含み得る。   For example, the cast steel product for welded structure may contain inevitable impurities other than P, S, and Cu, and may contain, for example, O (oxygen), H (hydrogen), etc. as inevitable impurities.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

(実施例1乃至4及び比較例1乃至5)
溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5として、C、Si、Mn、Ni、Cr、Mo及びVを含み(比較例5はさらにCuを添加した)、残部が鉄及び不可避的不純物である溶接構造用鋳鋼を鋳造、焼鈍及び調質することによって溶接構造用鋳鋼品の試作品を得た。
(Examples 1 to 4 and Comparative Examples 1 to 5)
Examples 1 to 4 and Comparative Examples 1 to 5 of the cast steel product for welded structure include C, Si, Mn, Ni, Cr, Mo and V (Comparative Example 5 further added Cu), with the balance being iron and A prototype of welded cast steel was obtained by casting, annealing and tempering cast steel for welded structure, which is an inevitable impurity.

表1に、実施例1乃至4及び比較例1乃至5における各金属の含有量の測定値に加え、不可避的不純物としてのP及びSの含有量の測定値を示す。また、表1には、各金属の含有量から算出される溶接割れ感受性組成Pcmの値も合わせて示す。なお、上記金属及びPの含有量は島津製作所社の発光分析装置「PDA−1017」を用いて測定し、C及びSの含有量は堀場製作所社の炭素・硫黄分析装置「EMIA−920V」を用いて測定した。   Table 1 shows the measured values of the contents of P and S as unavoidable impurities in addition to the measured values of the contents of each metal in Examples 1 to 4 and Comparative Examples 1 to 5. Table 1 also shows the value of the weld crack susceptibility composition Pcm calculated from the content of each metal. The metal and P contents were measured using an emission analyzer “PDA-1017” manufactured by Shimadzu Corporation, and the C and S contents were measured using a carbon / sulfur analyzer “EMIA-920V” manufactured by Horiba. And measured.

Figure 0006169667
Figure 0006169667

溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5の試作は、最初に、上記組成を有する溶接構造用鋳鋼を鋳造した。続いて、この鋳造品を切断して、25mm×25mm×180mmの直方体状のテストピース(後述する引張試験及び衝撃試験用)及び220mm×170mm×60mmの直方体状のテストピース(後述する溶接割れ試験用)を作成した。   In the trial production of Examples 1 to 4 and Comparative Examples 1 to 5 of cast steel products for welded structures, first, cast steel for welded structures having the above composition was cast. Subsequently, this cast product was cut, and a rectangular parallelepiped test piece of 25 mm × 25 mm × 180 mm (for tensile test and impact test described later) and a rectangular parallelepiped test piece of 220 mm × 170 mm × 60 mm (weld crack test described later) Created).

先ず、上記2種類のテストピースを920℃に加熱して5時間保持することによりオーステナイト化してから300℃まで炉内で徐冷し、300℃から室温まで空冷することにより焼鈍した。この焼鈍したテストピースを890℃に加熱して3時間保持することにより十分にオーステナイト化し、続いて2℃/min又は10℃/minの冷却速度で300℃まで冷却してから300℃から室温まで空冷することにより、主組織をフェライト及びベイナイトにした。さらに、このテストピースを590℃、620℃又は640℃に加熱して6時間保持することにより焼き戻しして溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5を得た。なお、各例に適用した冷却速度及び焼き戻し温度については、表1に合わせて示す。また、各温度は、テストピースの表面温度である。   First, the two types of test pieces were heated to 920 ° C. and held for 5 hours to austenite, then gradually cooled to 300 ° C. in the furnace, and then annealed by air cooling from 300 ° C. to room temperature. This annealed test piece is fully austenitized by heating to 890 ° C. and holding for 3 hours, followed by cooling to 300 ° C. at a cooling rate of 2 ° C./min or 10 ° C./min, and then from 300 ° C. to room temperature. The main structure was made into ferrite and bainite by air cooling. Further, this test piece was tempered by heating to 590 ° C., 620 ° C. or 640 ° C. and holding for 6 hours to obtain Examples 1 to 4 and Comparative Examples 1 to 5 of cast steel products for welded structure. The cooling rate and tempering temperature applied to each example are shown in Table 1. Each temperature is the surface temperature of the test piece.

(転位密度)
溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5を、一辺15mmの立方体に切断したものをリガク社のX線回折装置「RINT−1500」を用いて、Williamson−Hall法により測定した。
(Dislocation density)
Examples 1 to 4 and Comparative Examples 1 to 5 of welded structural cast steel cut into cubes with a side of 15 mm were measured by the Williamson-Hall method using an Rigaku X-ray diffractometer “RINT-1500”. did.

(引張試験)
溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5の引張強度を、JIS−Z2241(2015)に準拠し、14A号試験片を用い、室温にて測定した。
(Tensile test)
The tensile strengths of Examples 1 to 4 and Comparative Examples 1 to 5 of the welded cast steel products were measured at room temperature using a 14A test piece in accordance with JIS-Z2241 (2015).

(シャルピー衝撃試験)
溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5の靱性の指標として、シャルピー衝撃試験における吸収エネルギーをJIS−Z2242(2005)に準拠して複数回測定し、その平均値及び標準偏差を算出した。
(Charpy impact test)
As an index of toughness in Examples 1 to 4 and Comparative Examples 1 to 5 of welded cast steel products, the absorbed energy in the Charpy impact test was measured several times in accordance with JIS-Z2242 (2005), and the average value and standard Deviation was calculated.

(溶接割れ試験)
溶接構造用鋳鋼品の実施例1乃至4及び比較例1乃至5の溶接性について、JIS−Z3158(1993)に準拠して、y型溶接割れ試験を行った。なお、溶接は、試験片温度0℃、入熱量16kJ/cmのCO半自動溶接を行った。なお、溶接性の評価は、y型溶接割れ試験での割れ率が0%であるものを「A」、0%超1%以下であるものを「B」、1%超であるものを「C」とした。
(Weld crack test)
For the weldability of Examples 1 to 4 and Comparative Examples 1 to 5 of the cast steel product for welded structure, a y-type weld crack test was performed in accordance with JIS-Z3158 (1993). The welding was performed by semi-automatic CO 2 welding with a test piece temperature of 0 ° C. and a heat input of 16 kJ / cm. The evaluation of weldability is “A” when the crack rate in the y-type weld cracking test is 0%, “B” when the crack rate is over 0% and 1% or less, and “B” when the crack rate is over 1%. C ”.

表2に、上記転位密度測定、引張試験、シャルピー衝撃試験及び溶接割れ試験の結果を示す。なお、表中の「−」は測定を実施していないことを意味する。   Table 2 shows the results of the dislocation density measurement, tensile test, Charpy impact test, and weld crack test. In addition, "-" in a table | surface means that the measurement is not implemented.

Figure 0006169667
Figure 0006169667

このように、実施の形態において説明した組成及び転位密度を有する溶接構造用鋳鋼品は、550MPa以上の十分な引張強度を有し、溶接性が良好であることが確認された。   As described above, it was confirmed that the cast steel for welded structure having the composition and dislocation density described in the embodiment has a sufficient tensile strength of 550 MPa or more and has good weldability.

但し、C含有量が1.7質量%と略上限値である実施例4は、許容範囲ではあるものの溶接性がやや低い評価となっている。   However, in Example 4 where the C content is 1.7% by mass and the substantially upper limit value, the weldability is evaluated to be slightly low although it is within the allowable range.

一方、転位密度が1.35×1013−2よりも小さい比較例1、2、3及び5は、引張強度が不十分となっている。 On the other hand, Comparative Examples 1, 2, 3 and 5 having a dislocation density smaller than 1.35 × 10 13 m −2 have insufficient tensile strength.

また、Si含有量が0.40質量%よりも大きい比較例4は、吸収エネルギーの標準偏差、つまり靱性のバラツキが大きくなっている。   In Comparative Example 4 in which the Si content is greater than 0.40% by mass, the standard deviation of absorbed energy, that is, the variation in toughness is large.

また、溶接割れ感受性組成Pcmが0.3よりも大きい比較例5は、溶接性が不良であり、溶接割れ感受性組成Pcmが0.3よりは小さいもののこれに近い0.29及び0.28である実施例4及び比較例4は、溶接性がやや低い評価となっている。   Further, Comparative Example 5 in which the weld cracking susceptibility composition Pcm is larger than 0.3 has poor weldability, and the weld cracking susceptibility composition Pcm is smaller than 0.3 but close to 0.29 and 0.28. In Example 4 and Comparative Example 4, the weldability is evaluated to be slightly low.

本発明の溶接構造用鋳鋼品及び溶接構造用鋳鋼品の製造方法は、大型の溶接構造用鋳鋼品に好適に利用される。   The cast steel product for welded structure and the cast steel product for welded structure of the present invention are suitably used for a large cast steel product for welded structure.

Claims (2)

C:0.10質量%以上0.17質量%以下、
Si:0.01質量%以上0.40質量%以下、
Mn:0.7質量%以上1.4質量%以下、
Ni:1.00質量%以上2.00質量%以下、
Cr:0.20質量%以上0.50質量%以下、
Mo:0.10質量%以上0.30質量%以下、
V:0.05質量%以上0.20質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有し、
下記式(1)で表わされる溶接割れ感受性組成Pcmが0.3以下であり、
フェライト及びベイナイトを主組織とし、
転位密度が1.35×1013−2以上であることを特徴とする溶接構造用鋳鋼品。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
C: 0.10% by mass to 0.17% by mass,
Si: 0.01 mass% or more and 0.40 mass% or less,
Mn: 0.7% by mass or more and 1.4% by mass or less,
Ni: 1.00 mass% or more and 2.00 mass% or less,
Cr: 0.20% by mass or more and 0.50% by mass or less,
Mo: 0.10% by mass to 0.30% by mass,
V: 0.05% by mass or more and 0.20% by mass or less, and the balance: Fe and a composition that is an inevitable impurity,
The weld cracking sensitive composition Pcm represented by the following formula (1) is 0.3 or less,
The main structure is ferrite and bainite,
A cast steel product for welded structure having a dislocation density of 1.35 × 10 13 m −2 or more.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
C:0.10質量%以上0.17質量%以下、
Si:0.01質量%以上0.40質量%以下、
Mn:0.7質量%以上1.4質量%以下、
Ni:1.00質量%以上2.00質量%以下、
Cr:0.20質量%以上0.50質量%以下、
Mo:0.10質量%以上0.30質量%以下、
V:0.05質量%以上0.20質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有し、
下記式(1)で表わされる溶接割れ感受性組成Pcmが0.3以下である溶接構造用鋳鋼を鋳造する工程と、
上記鋳造工程で得られた鋳造品を調質する工程と
上記鋳造工程後、上記調質工程の前に、鋳造品をオーステナイト化温度以上に加熱して焼鈍する工程と
を備え、
上記調質工程が、
上記鋳造品をオーステナイト化温度以上に加熱する工程と、
上記鋳造品をフェライト及びベイナイトが主組成となるよう冷却する工程と、
上記鋳造品をオーステナイト化温度より低い温度で焼き戻しする工程と
を有し、
上記冷却工程で、転位密度が1.35×1013−2以上となる速度で冷却することを特徴とする溶接構造用鋳鋼品の製造方法。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・(1)
C: 0.10% by mass to 0.17% by mass,
Si: 0.01 mass% or more and 0.40 mass% or less,
Mn: 0.7% by mass or more and 1.4% by mass or less,
Ni: 1.00 mass% or more and 2.00 mass% or less,
Cr: 0.20% by mass or more and 0.50% by mass or less,
Mo: 0.10% by mass to 0.30% by mass,
V: 0.05% by mass or more and 0.20% by mass or less, and the balance: Fe and a composition that is an inevitable impurity,
Casting a welded structural cast steel having a weld cracking susceptibility composition Pcm represented by the following formula (1) of 0.3 or less;
Tempering the cast product obtained in the casting process ,
After the casting step and before the tempering step, a step of heating the cast product to an austenitizing temperature or higher and annealing , and
The tempering process is
Heating the casting above the austenitizing temperature; and
Cooling the cast product such that ferrite and bainite are the main composition;
Tempering the cast product at a temperature lower than the austenitizing temperature,
In the cooling step, cooling is performed at a speed at which a dislocation density is 1.35 × 10 13 m −2 or more.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
JP2015217231A 2015-11-05 2015-11-05 Cast steel product for welded structure and method for producing cast steel product for welded structure Active JP6169667B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015217231A JP6169667B2 (en) 2015-11-05 2015-11-05 Cast steel product for welded structure and method for producing cast steel product for welded structure
CN201910208070.9A CN110066962A (en) 2015-11-05 2016-10-18 Welding structure steel-casting and its manufacturing method
CN201610906543.9A CN106987764A (en) 2015-11-05 2016-10-18 Welding structure steel-casting and its manufacture method
KR1020160146003A KR101885436B1 (en) 2015-11-05 2016-11-03 Steel castings for a welding structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217231A JP6169667B2 (en) 2015-11-05 2015-11-05 Cast steel product for welded structure and method for producing cast steel product for welded structure

Publications (2)

Publication Number Publication Date
JP2017088924A JP2017088924A (en) 2017-05-25
JP6169667B2 true JP6169667B2 (en) 2017-07-26

Family

ID=58739813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217231A Active JP6169667B2 (en) 2015-11-05 2015-11-05 Cast steel product for welded structure and method for producing cast steel product for welded structure

Country Status (3)

Country Link
JP (1) JP6169667B2 (en)
KR (1) KR101885436B1 (en)
CN (2) CN106987764A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312912A (en) * 2017-07-03 2017-11-03 共享铸钢有限公司 Improve the heat treatment method of steel-casting yield strength
KR101981226B1 (en) 2017-09-28 2019-05-22 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR102021378B1 (en) 2018-01-31 2019-09-16 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
CN111500939B (en) * 2020-05-15 2021-08-03 佛山科学技术学院 A kind of anti-HIC pipeline steel based on cluster strengthening and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139521A (en) * 1974-09-30 1976-04-02 Hitachi Shipbuilding Eng Co TEIONYOKO CHORYOKUCHUKO
JPS5221210A (en) * 1975-08-13 1977-02-17 Hitachi Zosen Corp High tensile strength cast steel for low temperature having superior w elding property
JPH0578780A (en) * 1991-09-20 1993-03-30 Kubota Corp Cast steel tube with low yield ratio and its production
JPH06299237A (en) * 1993-04-13 1994-10-25 Nippon Steel Corp High-strength steel sheet manufacturing method
JP3509634B2 (en) * 1999-06-04 2004-03-22 株式会社神戸製鋼所 Low alloy cast steel and its heat treatment method
JP3536001B2 (en) * 1999-12-28 2004-06-07 株式会社神戸製鋼所 Cast steel for welded structures
CN100432263C (en) * 2006-05-18 2008-11-12 中国船舶重工集团公司第七二五研究所 Ultrahigh-strength and high-toughness welded cast steel
CN101096738A (en) * 2006-06-26 2008-01-02 舞阳钢铁有限责任公司 Steel plate with low welding crack sensitivity and production method thereof
JP5229823B2 (en) * 2009-09-25 2013-07-03 株式会社日本製鋼所 High-strength, high-toughness cast steel and method for producing the same
CN101775559B (en) * 2010-03-17 2011-09-21 北京科技大学 A kind of ship plate steel with high strength and high toughness that is easy to weld and its production process
CN102206790A (en) * 2011-04-07 2011-10-05 兰州兰石铸造有限责任公司 Low-temperature steel casting material and preparation technique thereof
JP5824283B2 (en) * 2011-08-17 2015-11-25 株式会社神戸製鋼所 High strength steel plate with excellent formability at room temperature and warm temperature
CN103436808B (en) * 2013-08-28 2015-07-29 武汉武船金属制造有限责任公司 A kind of low-carbon-equivalent high-strong toughness cast steel and preparation method thereof

Also Published As

Publication number Publication date
JP2017088924A (en) 2017-05-25
CN106987764A (en) 2017-07-28
KR20170053128A (en) 2017-05-15
KR101885436B1 (en) 2018-08-03
CN110066962A (en) 2019-07-30

Similar Documents

Publication Publication Date Title
US20190100818A1 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
KR101252996B1 (en) High tensile strength steel thick plate having excellent weldability and tensile strength of 780mpa or above, and process for manufacturing same
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JP6024928B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP6169667B2 (en) Cast steel product for welded structure and method for producing cast steel product for welded structure
JP6880194B2 (en) High-temperature tempering heat treatment and post-welding heat treatment Steel materials for pressure vessels with excellent resistance and their manufacturing methods
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
KR101372599B1 (en) WEAR RESISTANT WELD METAL JOINT CONTAINING HIGH Mn STEEL
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
JP4358898B1 (en) Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
JP6153747B2 (en) Structural high-strength cast steel
KR101546155B1 (en) Inverted angle steel and method of manufacturing the same
JP4828284B2 (en) 60 kg steel excellent in weldability and weld heat-affected zone toughness and method for producing the same
JPWO2016068094A1 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
KR101311118B1 (en) Steel sheet and method of manufacturing the steel sheet and manufacturing method of steel pipe using the steel sheet
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
KR101586932B1 (en) Hot-rolled steel sheet and method of manufacturing the same
JP2016079424A (en) Steel sheet excellent in toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R150 Certificate of patent or registration of utility model

Ref document number: 6169667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150