JP6156148B2 - 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法 - Google Patents
逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法 Download PDFInfo
- Publication number
- JP6156148B2 JP6156148B2 JP2013544280A JP2013544280A JP6156148B2 JP 6156148 B2 JP6156148 B2 JP 6156148B2 JP 2013544280 A JP2013544280 A JP 2013544280A JP 2013544280 A JP2013544280 A JP 2013544280A JP 6156148 B2 JP6156148 B2 JP 6156148B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- parasitic
- terminal
- harmonic
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
- H03F3/601—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/391—Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Description
電力変換効率が高い増幅回路として、F級増幅器、逆F級増幅器などが知られている。逆F級増幅回路では、消費電力を削減するために、偶数次高調波の信号に対しては開放状態となり、奇数次高調波の信号に対しては短絡状態となるようにインピーダンス整合を行うことが必要である。以下、このようなインピーダンス整合を「逆F級のインピーダンス条件を満たす」という。
ところが、現実の増幅器では、出力端子に寄生シャント容量(以下、単に「寄生容量」という。)や寄生直列インダクタンス(以下、単に「寄生インダクタンス」という。)が存在する。そのため、増幅素子の出力端子において、各高調波間の信号成分に位相のずれが生じて逆F級のインピーダンス条件を満たすことができず、十分に消費電力を削減できないという問題が生じる。以降、「寄生容量」と「寄生インダクタンス」を合わせて、「寄生回路」といい、「寄生回路」のインピーダンスを「寄生成分」という。
上記の問題に対応して、現実に逆F級のインピーダンス条件を満たすためには、寄生成分を考慮することが必要である。例えば、電界効果トランジスタ(以下、FET(Field Effect Transistor)という。)を用いる場合では、ドレイン・ソース間寄生容量Cds、ドレイン寄生インダクタンスLdを加味する。すなわち、FETの寄生回路を高調波処理回路の一部とみなした上で、寄生回路内部の等価電流源端面で、逆F級のインピーダンス条件を満たすように所定の回路を用いて補償する。以下、このような補償を「寄生補償」という。
しかしながら、特に、100W程度の大きな電力の出力信号を出力可能な増幅素子では、寄生容量が大きいため、数GHz程度の高調波に対する偶数次高調波での逆F級のインピーダンス条件である、開放条件を満たすことが困難である。
これに対して、「N.Ui,et al.,“Inverse Class−F GaN−HEMTs Doherty and Envelope Tracking“,2010 IEEE MTT−S Int.Microwave Symposium Workshop WSF−6,MAY 2010」(以降、「非特許文献1」という。)に、大出力電力の増幅器において、寄生成分を補償した逆F級増幅回路が提案されている。非特許文献1に開示された逆F級増幅回路の構成を図7に示す。図7のトランジスタ部1は、等価出力電流源1a、ドレイン・ソース間寄生容量1b(Cds)、寄生インダクタンス1c(Ld)を用いて、トランジスタを等価回路として表したものである。
さらに、上記の逆F級増幅回路は、インダクタ2a、2b、高インピーダンス伝送線路3、低インピーダンス伝送路4を備える。高インピーダンス伝送路3、低インピーダンス伝送路4は、それぞれ、誘導的、容量的に振舞う。これにより、寄生成分内部の等価電流源端面からみたインピーダンスZout1が、2倍高調波で短絡状態となるので、増幅素子の寄生成分を含め、逆F級のインピーダンス条件を満たす回路構成が実現される。
また、別の寄生補償の方法として、特開2005−86366号公報(以降、「特許文献1」という。)、特開2005−311579号公報(以降、「特許文献2」という。)には、基本波周波数で寄生容量Cdsと共振する共振回路を接続し、基本波周波数に対して寄生容量が影響しないようにする手法が提案されている。さらに、特許文献1、特許文献2の手法では、共振回路の出力端子に基本波整合に影響を与えずに高調波インピーダンス整合を行なう高調波インピーダンス整合回路が接続されている。
特開2009−130472号公報(以降、「特許文献3」という。)には、負荷回路を用いて寄生補償する手法が提案されている。
また、特許文献1、2の手法では、入力信号周波数に対して寄生成分と合わせて共振を引き起こし、入力信号周波数に対して寄生成分を打ち消す共振回路を形成している。しかし、共振回路部では高調波に対しての寄生補償をしていないため、大きな寄生容量を有する大出力増幅素子や高い周波数には、特許文献1、2の手法は対応することができない。
特許文献3の手法では、出力負荷回路に備えられた第2伝送線路を用いて共振回路を構成し、寄生容量を補償する。このとき、第2伝送線路の線路長が寄生容量に依存するので、デバイス・モデルの寄生容量の精度には高い精度が求められたり、実際の寄生容量の値にはバラツキが小さいことが求められたりする。しかし、モデルにおける寄生容量の精度が常に高いこと、及び寄生容量の値のバラツキが小さいことは必ずしも保証されない。従って、出力負荷回路の入力ノードでは、2次高調波に対する逆F級のインピーダンス条件が満たされない可能性、すなわち2次高調波に対して開放状態とならない可能性がある。
(発明の目的)
本発明の目的は、増幅素子の有する寄生成分に対する寄生補償を施した、逆F級増幅回路を提供することである。また、本発明の他の目的は、逆F級増幅回路が備える増幅素子の有する寄生成分に対する寄生補償を行う、逆F級増幅回路の寄生回路補償方法を提供することである。
本発明の逆F級増幅回路の寄生補償方法は、寄生回路を含む増幅部によって、所定の基本波周波数を持つ入力信号を増幅して、基本周波数の成分である基本波成分及び基本周波数の高調波の成分である高調波成分を含む第1の信号を出力し、寄生回路のインピーダンスと共振することによって、2次の高調波成分に対して開放状態となる寄生補償部によって、第1の信号を入力して、第2の信号を出力し、2次の高調波成分に対して開放状態となる高調波処理回路部によって、第2の信号を入力し、第3の信号を出力することを特徴とする。
図2は、第1実施形態にかかる逆F級増幅回路の、寄生補償部の具体的な回路構成図を示したブロック図である。
図3は、第1実施形態にかかる逆F級増幅回路の、高調波処理部の具体的構成を示したブロック図である。
図4Aは、第1実施形態にかかる逆F級増幅回路の各入力ノードから負荷側を見たときのインピーダンスのシミュレーション結果をプロットしたスミスチャートである。
図4Bは、図3の構成から寄生補償部を除いたときの、各入力ノードから見たときのインピーダンスのシミュレーション結果をプロットしたスミスチャートである。
図4Cは、図4Aで用いた回路のシミュレーション結果の周波数特性を示すグラフである。
図5は、第2実施形態にかかる逆F級増幅回路のブロック図である。
図6は、第3実施形態にかかる逆F級増幅回路のブロック図である。
図7は、非特許文献1に記載された逆F級増幅回路のブロック図である。
次に、本発明の実施の形態を、図を参照して詳細に説明する。図1は、本実施形態の逆F級増幅回路のブロック図である。
本実施形態の逆F級増幅回路は、増幅素子1、寄生補償部5、高調波処理部6を備える。
増幅素子1の等価回路は、等価出力電流源1a、寄生容量1b、寄生インダクタ1cを含む。寄生容量1bは、逆F級増幅器のドレイン出力端子とソース端子間に発生し、ドレイン・ソース間を容量結合する。寄生インダクタ1cは、ドレイン出力端子に発生するインダクタである。寄生容量1bと寄生インダクタ1cが、寄生回路1dを構成する。
寄生補償部5は増幅素子1の出力端子に接続され、増幅素子1の出力信号を入力する。高調波処理部6は寄生補償部5の出力端子に接続され、寄生補償部5の出力信号を入力する。
増幅素子1の出力信号は、基本周波数の信号成分と、基本周波数の整数倍の周波数成分である高調波の信号成分とを含む。また、寄生回路1dにより、ドレイン出力端子ノードにおける信号には位相にずれが生じる。このため、高調波の信号成分のドレイン出力端子における位相は、寄生回路1dによりずらされ、寄生回路1dから出力される。
そこで、等価出力電流源1aから負荷側を見たときの高調波のインピーダンス条件が、高調波処理部で設定された開放状態や短絡状態になるように、寄生補償部5が形成される。すなわち、寄生補償部5は、寄生回路1dの存在を考慮して逆F級のインピーダンス条件が満たされるように形成される。
図2は、逆F級増幅回路の、寄生補償部の具体回路構成例を示したブロック図である。寄生補償部5は、キャパシタ5b、インダクタ5aを含む。
キャパシタ5bは、2次高調波成分に対して無視し得るインピーダンスとなるような十分に大きい容量を有する、一方の端子が接地されたDCカット用の容量である。インダクタ5aは、キャパシタ5bと増幅素子1の出力端子とを接続する。インダクタ5aは、例えば、ボンディング・ワイヤーなどで構成される。
2次高調波の信号成分に対して、寄生回路1dと寄生補償部5はLC並列共振し、2次高調波の周波数に対して寄生成分を打ち消す。具体的には、インダクタ5aの値Lsは、以下の式(1)を満たす。
jωCds + 1/jωLs = 0 …(1)
ここで、jは虚数単位、ωは2次高調波の角周波数、Cdsは寄生容量1bの値である。なお、Lsには、寄生回路1dのドレイン寄生インダクタ1cのインダクタンス値Ldが無視できない場合は、Ldを加えた値が使用される。つまり、Lsには、インダクタ5aとドレイン寄生インダクタ1cのインダクタンス値を含む。
なお、寄生補償部5は、逆F級のインピーダンス条件のうち、2次高調波に対する開放状態を実現するものである。そのため、3次高調波以上の高調波成分が寄生回路1dの寄生容量により実効的に短絡した状態とみなし得る場合には、寄生補償部5による補償効果はさらに大きい。
図3は、高調波処理部6が、2次高調波に対する1/4波長伝送線路6aと、2次高調波に対する1/4波長オープンスタブ6bとで構成された場合のブロック図である。基本波整合部7は、基本波成分に対して、負荷8とのインピーダンス整合を行う。
1/4波長オープンスタブ6bにより、2次高調波の周波数成分に対して、高調波処理部6bの入力ノードCから見たロード・インピーダンスZout3は、短絡状態となる。さらに、1/4波長伝送線路6aにより、2次高調波の周波数成分に対して、高調波処理部6aの入力ノードBから見たロード・インピーダンスZout2が開放状態へと変換される。
ただし、寄生容量1bのインピーダンスが2次高調波の周波数成分に対して短絡状態に近い状態である場合は、寄生回路1dの入力ノードAから見たインピーダンスZout1には寄生容量1bの影響が顕著に現れる。すなわち、ロード・インピーダンスZout2単体では2次高調波に対して開放状態となっていたとしても、インピーダンスZout1は2次高調波の周波数に対して短絡状態となってしまう。特にこのような状態となる場合としては、大出力電力増幅器用に用いられるGaN(窒化ガリウム)増幅素子を用いる場合が挙げられる。大出力電力増幅器用のGaN増幅素子は、数pF程度の大きさの寄生容量を有することがある。
そこで、寄生補償部5によって寄生補償を行うことにより、寄生補償部5と寄生回路1dとを合わせた全体のインピーダンスを2次高調波の周波数成分に対して開放状態とする。このとき、高調波処理部6の入力ノードで設定された開放状態が、寄生回路1dの入力ノードでも保たれる。
図4Aは、以下の条件で回路を構成したときの、ノードA、B、Cから負荷側を見たときのロード・インピーダンス(SパラメータにおけるS11)のシミュレーション結果をプロットしたスミスチャートである。
Cds=4.19pF、
Ls=0.147nH
Cdc=1000pF
なお、伝送線路6bは、2次高調波に対する1/4波長オープンスタブの理想伝送線路、伝送線路6aは2次高調波に対する1/4波長線路である。
図4Bは、図4Aのシミュレーションで用いた回路から寄生補償部5を取り外した場合のシミュレーション結果である。図4Bにも、ノードA、B、Cでのシミュレーション結果がスミスチャート上にプロットされている。
図4Bでは、寄生回路1dの入力ノードA点でのインピーダンスの状態が短絡側に寄っている。これに対して、寄生補償部5を導入した図4Aでは、入力ノードAから見た場合にも、ノードCで設定した開放状態が保たれていることがわかる。
図4Cは、図4Aで用いた回路のシミュレーション結果を、6.4GHzから32GHzまでの周波数範囲で図示したグラフである。このように、3次以上の高次高調波では短絡状態に近づいている。
以上のように、本実施形態の逆F級増幅回路では、寄生補償部によって、増幅素子の出力信号の2次高調波に対して簡易的に寄生補償を施した後、高調波処理部へ出力する。そのため、寄生容量1bを有する増幅素子を用いる電力増幅器でも、高調波処理部6の入力ノードBでロード・インピーダンスが単独で逆F級のインピーダンス条件を満たしさえすればよい。
このように、本実施形態の逆F級増幅回路では、高調波処理部が単独で逆F級のインピーダンス条件を満たすように設計することが可能となり、逆F級増幅回路の設計の高効率化を図ることができる。
(第2実施形態)
図5は、本発明の第2の実施の形態である逆F級増幅回路を示す。第2の実施の形態では、寄生補償部の第2の具体回路の構成例を示す。
増幅素子1の等価回路は、等価出力電流源1a、寄生容量1b、寄生インダクタ1cを含む。寄生容量1bは、逆F級増幅器のドレイン出力端子とソース端子間に発生し、ドレイン・ソース間を容量結合する。寄生インダクタ1cは、ドレイン出力端子に発生するインダクタである。寄生容量1bと寄生インダクタ1cが、寄生回路1dを構成する。
寄生補償部5は、キャパシタ5e、5f、インダクタ5dを含む。
キャパシタ5eは、2次高調波成分に対して無視し得るインピーダンスとなるような十分に大きい容量を有する、一方の端子が接地されたDCカット用の容量である。インダクタ5dは、キャパシタ5eと増幅素子1の出力端子とを接続する。インダクタ5dは、例えば、ボンディング・ワイヤーで構成される。キャパシタ5fは、一方の端子がFETの出力端子に接続され、他方の端子が接地される。
インダクタ5dは、寄生回路1d、キャパシタ5f、インダクタ5dのインピーダンスと合わせて、2次高調波成分の周波数に対して共振を起こす値を持つように調整される。このとき、寄生補償部5は、2次高調波の信号成分に対して寄生回路1dとLC並列共振し、2次高調波に対して寄生成分を打ち消すことができる。
具体的には、インダクタ5dのインダクタンス値Ls、キャパシタンス5fの容量値Caddは、以下の式(2)を満たす。
jω(Cds + Cadd) + 1/jωLs = 0 …(2)
ここで、jは虚数単位、ωは2次高調波の角周波数、Cdsは寄生回路1dの寄生容量1bの容量値である。なお、Lsには、寄生回路1dのドレイン寄生インダクタ1cのインダクタンス値Ldが無視できない場合は、Ldを加えた値が使用される。つまり、Lsには、インダクタ5dとドレイン寄生インダクタ1cのインダクタンス値を含む。
なお、3次高調波以上の高調波成分に対しては、寄生回路1dの寄生容量1bと寄生補償部5のキャパシタンス5fとの合成容量により、ロード・インピーダンスZout1は、実効的に短絡した状態とみなし得る。
第一の実施の形態と同様に、高調波処理回路6は、2次高調波に対する1/4波長オープンスタブと、2次高調波に対する1/4波長伝送線路とで構成される。そして、高調波処理部6から負荷側を見たロード・インピーダンスZout2が逆F級のインピーダンス条件を満たすようにする。
このとき、2次高調波に対する寄生回路1dの影響は、寄生補償部5で打ち消されている。さらに、寄生補償部に組み込まれたキャパシタンス5fにより、3次高調波以上の奇数高調波に対しても逆F級のインピーダンス条件を満たすことができる。すなわち、Zout1が短絡状態となるようにすることができる。
本実施形態の回路構成が特に有効となる場合としては、入力信号が数GHz程度で、寄生容量が1pF程度と小さな増幅素子を用いるような場合などが挙げられる。このような、低出力で小さな寄生容量を有する増幅素子を用いる、低出力から中出力の電力増幅器の場合でも、2次高調波処理に対して寄生補償を施すことができる。
また同時に、3次以上の奇数次の高調波成分に対しても逆F級のインピーダンス条件を満たす奇数次高調波への補償処理を寄生補償部で実現することができる。
以上のように、寄生成分を有する増幅素子を用いる場合であっても、キャパシタやインダクタの追加のみによって、容易に逆F級のインピーダンス条件を満たすように調整できるので、増幅装置を小型化することができる。
(第3実施形態)
図6は、本発明の第3の実施の形態である逆F級増幅回路を示す。第3の実施の形態では、寄生補償部の第3の具体回路の構成例を示す。。
増幅素子1の等価回路は、等価出力電流源1a、寄生容量1b、寄生インダクタ1cを含む。寄生容量1bは、逆F級増幅器のドレイン出力端子とソース端子間に発生し、ドレイン・ソース間を容量結合する。寄生インダクタ1cは、ドレイン出力端子に発生するインダクタである。寄生容量1bと寄生インダクタ1cが、寄生回路1dを構成する。
寄生補償部5は、LC並列回路5Aを含む高調波共振回路部5F1と、LC並列回路5Bを含む高調波共振回路部5F2を備える。LC並列回路5Aは、キャパシタ5h、5j、インダクタ5g、5iを含む。LC並列回路5Bは、キャパシタ5l、5n、インダクタ5k、5mを含む。
高調波共振回路部5F1は、寄生回路1dと合わせたインピーダンスが、所望の周波数F1に対して、共振し開放状態となる。高調波共振回路部5F2は、寄生回路1dと合わせたインピーダンスが、所望の周波数F2に対して、共振し開放状態となる。
このとき、高調波共振回路部5F1は、周波数F2の信号に対しては、LC並列回路5Aの共振周波数をF2に設定することにより開放状態となるため、寄生回路1dの影響を無視できる。
同様に、高調波共振回路部5F2は、周波数F1の信号に対しては、LC並列回路5Bの共振周波数をF1に設定することにより開放状態となるため、寄生回路1dの影響を無視できる。
具体的には、高調波共振回路部5Aと5Bはそれぞれ以下の式(3)、式(4)を満たすように設定される。
1/jω2・Lf1 + jω2・Cf1 = 0 …(3)
1/jω1・Lf2 + jω1・Cf2 = 0 …(4)
ここで、jは虚数単位、ωは角周波数、Lf1は高調波共振回路部5Aのインダクタ5gのインダクタンス値、Cf1は高調波共振回路部5F1のキャパシタ5hの容量を表し、ω2は周波数F2の周波数に対応する。
同様に、Lf2は高調波共振回路部5Bのインダクタ5kのインダクタンス値、Cf2は高調波共振回路部5Bのキャパシタ5lの容量を表し、ω1は周波数F1の周波数に対応する。
さらに、高調波共振回路部5F1は、LC並列回路5Aに接続されるインダクタ5iとキャパシタ5jを備える。キャパシタ5jは、一方の端子がインダクタ5iに接続され、他方の端子が接地されるDCカット用の容量で、周波数F1の信号の周波数に対して、インピーダンスが無視し得る容量を有する。
同様に、高調波共振回路部5F2は、LC並列回路5Bに接続されるインダクタ5mと、キャパシタ5nを備える。キャパシタ5nは、一方の端子がインダクタ5mに接続され、他方の端子が接地されるDCカット用の容量で、周波数F2の信号の周波数に対して、インピーダンスが無視し得る容量を有する。
以上の構成により、周波数F1とF2に対しては、寄生回路1dと寄生補償部5とをあわせたインピーダンスは、開放状態に調整される。
具体的には、高調波共振回路部5F1と5F2はそれぞれ以下の式(5)、式(6)を満たすように設定される。
jω1・Cds + 1/{jω1・Ls1 + 1/(jω1・Cf1 + 1/jω1・Lf1)} = 0 …(5)
jω2・Cds + 1/{jω2・Ls2 + 1/(jω2・Cf2 + 1/jω2・Lf2)} = 0 …(6)
ここで、Ls1は高調波共振回路部5F1のインダクタ5iのインダクタンス値、Ls2は高調波共振回路部5F1のインダクタ5mのインダクタンス値である。また、ω1は周波数F1の周波数に対応し、ω2は周波数F2の周波数に対応する。つまり、(5)式は、寄生容量1bから、インダクタ5iまでを1つの直列回路と見たときの、インピーダンスの値が、周波数F1において0であることを意味している。(6)式は、寄生容量1bから、インダクタ5mまでを1つの直列回路と見たときの、インピーダンスの値が周波数F2において0であることを意味している。ただし、キャパシタ5j、5nは、それぞれ、周波数F1、F2において、それらのインピーダンスが十分に小さいものとして無視している。
例えば、F1、F2をそれぞれ入力信号周波数の2次、4次高調波とそれぞれ設定することにより、増幅素子の寄生成分を加味した状態で、2次、4次高調波まで逆F級のインピーダンス条件を満たすことができる。
第二の周波数例としては、F1、F2をそれぞれ周波数が異なる入力信号の2次高調波に設定する場合がある。このように設定することで、2つの異なる入力信号周波数に対して、増幅素子の寄生素子を考慮した逆F級のインピーダンス条件を満たすことができ、増幅装置のデュアルバンド化に対応することも可能である。
また、第一の実施形態で述べたように、100W程度の大きな出力電力を発生し得るGaN増幅素子などでは、寄生回路1dの寄生容量1bは数pF程度の大きな容量を有する。そのため、入力信号周波数が数GHz程度の場合、出力される3次以上の高次高調波の周波数においては、寄生シャント容量1bにより奇数次高調波は実質的に短絡され、奇数次高調波に対しても逆F級のインピーダンス条件が満たされる。従って、大出力電力を発生し得る増幅素子などでは、本実施形態の効果は特に大きい。
なお、上記の説明から明らかなように、本発明は寄生回路を備える増幅素子を用いた逆F級僧服回路全般に適用可能である。従って、本明細書では、増幅素子1としてFETのみを取り上げたが、具体的な増幅素子の構造や材料は特に限定されない。また、各実施形態は、適宜組み合わせで用いることができる。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2011年11月17日に出願された日本出願特願2011−251844を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1a 等価出力電流源
1b 寄生容量
1c 寄生インダクタ
1d 寄生回路
2a、2b: インダクタ
3 高インピーダンス線路
4 低インピーダンス線路
5 寄生補償部
5a、5d、5i、5m、5g、5k インダクタ
5b、5e、5f、5h、5j、5l、5n キャパシタ
5A、5B LC並列共振回路
5F1、5F2 高調波共振回路部
6 高調波処理部
6a 1/4波長伝送線路
6b 1/4波長オープンスタブ
7 基本波整合回路
8 負荷
Claims (8)
- 寄生回路を含み、所定の基本周波数を持つ入力信号を増幅し、前記基本周波数の成分である基本波成分及び前記基本周波数の高調波の成分である高調波成分を含む第1の信号を出力する増幅部と、
前記第1の信号を入力し、前記寄生回路のインピーダンスと共振することによって、前記第1の信号の2次の前記高調波成分に対して開放状態となり、第2の信号を出力する寄生補償部と、
前記第2の信号を入力し、前記第2の信号の2次の前記高調波成分に対して開放状態となり、第3の信号を出力する高調波処理部と、を備え、
前記寄生補償部は、
第1の端子及び第2の端子を有し、前記第1の端子が接地端子に接続され、前記第1の信号の2次の前記高調波成分に対して十分に小さいインピーダンスとなる第1のキャパシタと、
前記第2の端子と前記増幅部の出力端子とを接続する第1のインダクタと、
前記増幅部の出力端子と接地端子とを接続し、前記第1の信号の3次の前記高調波成分より高次の高調波の前記高調波成分に対して十分に小さいインピーダンスとなる第2のキャパシタと、を備える、
逆F級増幅回路。 - 寄生回路を含み、所定の基本周波数を持つ入力信号を増幅し、前記基本周波数の成分である基本波成分及び前記基本周波数の高調波の成分である高調波成分を含む第1の信号を出力する増幅部と、
前記第1の信号を入力し、前記寄生回路のインピーダンスと共振することによって、前記第1の信号の偶数次高調波成分に対して開放状態となり、第2の信号を出力する寄生補償部と、
前記第2の信号を入力し、前記第2の信号の偶数次高調波成分に対して開放状態となり、第3の信号を出力する高調波処理部と、を備え、
前記寄生補償部は、
前記第1の信号の第1の偶数次高調波成分に対して並列共振する第1の並列共振回路と、
第3の端子及び第4の端子を有し、前記第3の端子が接地端子に接続され、前記第1の信号の第2の偶数次高調波成分に対して十分に小さいインピーダンスとなる第3のキャパシタと、
前記第4の端子と前記第1の共振回路とを接続する第2のインダクタと、
前記第1の信号の第2の偶数次高調波成分に対して並列共振する第2の並列共振回路と、
第5の端子及び第6の端子を有し、前記第5の端子が接地端子に接続され、前記第1の信号の第1の偶数次高調波成分に対して十分に小さいインピーダンスとなる第4のキャパシタと、
前記第6の端子と前記第2の共振回路とを接続する第3のインダクタと、を備える、
逆F級増幅回路。 - 前記第1の信号の前記第1の偶数次高調波成分は、
前記第1の信号の2次の前記高調波成分であり、
前記第1の信号の前記第2の偶数次高調波成分は、
前記第1の信号の4次の前記高調波成分である、
請求項2に記載の逆F級増幅回路。 - 前記第1の信号の前記第1の偶数次高調波成分は、
前記第1の信号の第1の基本周波数の高調波の2次の高調波成分であり、
前記第1の信号の前記第2の偶数次高調波成分は、
前記第1の信号の第2の基本周波数の高調波の2次の高調波成分である、
請求項2に記載の逆F級増幅回路。 - 前記寄生回路は、
前記増幅部の出力端子と接地端子との間の寄生容量と、
前記出力端子から見て負荷に対して直列に存在する寄生インダクタと、を含む、
請求項1乃至4のいずれかに記載の逆F級増幅回路。 - 前記増幅部は
電界効果トランジスタを含み、
前記寄生容量は、
前記電界効果トランジスタのドレインとソース間の寄生容量であり、
前記寄生インダクタは、
前記電界効果トランジスタの寄生ドレイン直列インダクタである、
請求項1乃至5のいずれかに記載の逆F級増幅回路。 - 前記第3の信号を入力し、前記基本波成分のインピーダンス整合を行う基本波整合部と、
前記基本波整合部の出力端子と接地端子を接続する負荷と、を備える、
請求項1乃至6のいずれかに記載の逆F級増幅回路。 - 寄生回路を含む増幅部によって、所定の基本周波数を持つ入力信号を増幅して、前記基本周波数の成分である基本波成分及び前記基本周波数の高調波の成分である高調波成分を含む第1の信号を出力し、
第1の端子及び第2の端子を有し、前記第1の端子が接地端子に接続され、前記第1の信号の2次の前記高調波成分に対して十分に小さいインピーダンスとなる第1のキャパシタと、前記第2の端子と前記増幅部の出力端子とを接続する第1のインダクタと、前記増幅部の出力端子と接地端子とを接続し、前記第1の信号の3次の前記高調波成分より高次の前記高調波成分に対して十分に小さいインピーダンスとなる第2のキャパシタと、を備える寄生補償部に、前記第1の信号を入力し、前記寄生回路のインピーダンスと共振することによって前記第1の信号の2次の前記高調波成分に対して開放状態となり、第2の信号を出力し、
高調波処理部に前記第2の信号を入力し、前記第2の信号の2次の前記高調波成分に対して開放状態となり、第3の信号を出力する、
逆F級増幅回路の寄生補償方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251844 | 2011-11-17 | ||
JP2011251844 | 2011-11-17 | ||
PCT/JP2012/079442 WO2013073544A1 (ja) | 2011-11-17 | 2012-11-07 | 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013073544A1 JPWO2013073544A1 (ja) | 2015-04-02 |
JP6156148B2 true JP6156148B2 (ja) | 2017-07-05 |
Family
ID=48429600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013544280A Active JP6156148B2 (ja) | 2011-11-17 | 2012-11-07 | 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6156148B2 (ja) |
WO (1) | WO2013073544A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9319010B1 (en) | 2014-12-16 | 2016-04-19 | Freescale Semiconductor Inc. | Inverse class F amplifiers with intrinsic capacitance compensation |
WO2019176015A1 (ja) * | 2018-03-14 | 2019-09-19 | 三菱電機株式会社 | 増幅器 |
CN110649928A (zh) * | 2019-09-20 | 2020-01-03 | 深圳迈睿智能科技有限公司 | 微波多普勒模块 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2505442B2 (ja) * | 1987-02-20 | 1996-06-12 | 三菱電機株式会社 | 半導体増幅器 |
AU2002213122A1 (en) * | 2000-10-10 | 2002-04-22 | California Institute Of Technology | Class e/f switching power amplifiers |
JP4335633B2 (ja) * | 2003-10-03 | 2009-09-30 | 株式会社ナノテコ | F級増幅回路,及びf級増幅器用負荷回路 |
US7265619B2 (en) * | 2005-07-06 | 2007-09-04 | Raytheon Company | Two stage microwave Class E power amplifier |
JP4936965B2 (ja) * | 2007-04-12 | 2012-05-23 | 株式会社東芝 | F級増幅回路 |
JP2009130472A (ja) * | 2007-11-20 | 2009-06-11 | Univ Of Electro-Communications | 逆f級増幅回路 |
JP5408616B2 (ja) * | 2009-08-31 | 2014-02-05 | 国立大学法人電気通信大学 | 増幅回路 |
-
2012
- 2012-11-07 JP JP2013544280A patent/JP6156148B2/ja active Active
- 2012-11-07 WO PCT/JP2012/079442 patent/WO2013073544A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2013073544A1 (ja) | 2015-04-02 |
WO2013073544A1 (ja) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103765765B (zh) | 高效率功率放大器 | |
JP5223008B2 (ja) | 高周波電力増幅器 | |
JP4841394B2 (ja) | 電力増幅器 | |
JP5874441B2 (ja) | 増幅器 | |
US20120319782A1 (en) | Class e power amplifier | |
CN102006019B (zh) | 放大器电路 | |
JP5958834B2 (ja) | 高周波電力増幅器 | |
JP6901108B2 (ja) | デュアルバンド増幅器 | |
JP5646302B2 (ja) | 周波数逓倍器 | |
JP6156148B2 (ja) | 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法 | |
JP5516425B2 (ja) | 高周波電力増幅器 | |
Ledezma | Doherty power amplifier with lumped non-foster impedance inverter | |
CN101882912A (zh) | 线性度和功率附加效率提高的射频cascode结构功率放大器 | |
JP4335633B2 (ja) | F級増幅回路,及びf級増幅器用負荷回路 | |
JP5161856B2 (ja) | バイアス回路 | |
JP6332097B2 (ja) | 電力増幅器 | |
JP2005341447A (ja) | 高周波電力増幅器 | |
JP2009239672A (ja) | 高周波電力増幅器 | |
US8723601B2 (en) | Amplifier | |
WO2020235093A1 (ja) | ドハティ増幅器 | |
CN201733280U (zh) | 线性度和功率附加效率提高的射频cascode结构功率放大器 | |
CN114567262A (zh) | 一种高效率宽带射频功率放大器 | |
KR20230120441A (ko) | 고조파 억제 정합 네트워크 및 이를 포함하는 전력 증폭기 | |
TWI435539B (zh) | Dual Band Low Noise Amplifier and Single Band Low Noise Amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6156148 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |