JP6154611B2 - Aluminum alloy inner surface grooved heat transfer tube - Google Patents
Aluminum alloy inner surface grooved heat transfer tube Download PDFInfo
- Publication number
- JP6154611B2 JP6154611B2 JP2012536445A JP2012536445A JP6154611B2 JP 6154611 B2 JP6154611 B2 JP 6154611B2 JP 2012536445 A JP2012536445 A JP 2012536445A JP 2012536445 A JP2012536445 A JP 2012536445A JP 6154611 B2 JP6154611 B2 JP 6154611B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- tube
- transfer tube
- fin
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012546 transfer Methods 0.000 title claims description 70
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910018137 Al-Zn Inorganic materials 0.000 claims description 6
- 229910018573 Al—Zn Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 45
- 238000000034 method Methods 0.000 description 32
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 230000008569 process Effects 0.000 description 18
- 238000005260 corrosion Methods 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 16
- 238000005096 rolling process Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910018131 Al-Mn Inorganic materials 0.000 description 6
- 229910018461 Al—Mn Inorganic materials 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 239000011162 core material Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 244000273618 Sphenoclea zeylanica Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
- F28F1/325—Fins with openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/08—Tubular elements crimped or corrugated in longitudinal section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Extrusion Of Metal (AREA)
Description
本発明は、家庭用空気調和機、業務用空気調和機、ヒートポンプ式給湯機などに用いられるクロスフィン型の熱交換器の伝熱管として使用される、アルミニウム製内面溝付き伝熱管に関するものである。 The present invention relates to an aluminum inner surface grooved heat transfer tube used as a heat transfer tube of a cross fin type heat exchanger used in a domestic air conditioner, a commercial air conditioner, a heat pump type hot water heater and the like. .
一般的なクロスフィン型(別名フィンアンドチューブ型)の熱交換器(図1)は、アルミニウム放熱フィンに開口された挿通孔内に伝熱管を挿通し、次いで伝熱管の内部にその内径より大きい外径を有する拡管用マンドレルを押し込み伝熱管の径を拡管して伝熱管の外周面とアルミニウム放熱フィンの挿通孔を密着させる(拡管加工。図2)。その後、アルミニウム放熱フィンと一体となった伝熱管をヘアピン状に曲げ、別途U字状に曲げた伝熱管(U字管)をトーチろう付けにより接合して完成する(非特許文献1)。 A general cross fin type (also known as fin and tube type) heat exchanger (FIG. 1) inserts a heat transfer tube into an insertion hole opened in an aluminum heat radiating fin and then has a larger inside diameter than the inside of the heat transfer tube. A mandrel for tube expansion having an outer diameter is pushed in to expand the diameter of the heat transfer tube, and the outer peripheral surface of the heat transfer tube and the insertion hole of the aluminum radiation fin are brought into close contact (tube expansion processing: FIG. 2). Thereafter, the heat transfer tube integrated with the aluminum radiation fin is bent into a hairpin shape, and a heat transfer tube (U-shaped tube) bent in a separate U shape is joined by torch brazing to complete (Non-patent Document 1).
クロスフィン型熱交換器に用いられる伝熱管は、管内に冷媒としてHFC等を流して熱交換を行わせるもので、管内面に断面形状が台形や三角形の突条型フィンを持つ銅製の伝熱管(以後、内面溝付き管と呼ぶ。)を使用することによって熱交換器の高効率化や省エネルギー化が進められており、図4に示す突状型フィン間の溝の深さ、底肉厚(突状型フィンの基底部の肉厚)、フィンの形状(頂角等)、あるいは図5に示す突状型フィンのリード角(管長手方向に対するフィンの配列の角度)を規定した各種伝熱管が提案されている(例えば、特許文献1)。内面溝付き管の伝熱性能が優れるのは、管内側の表面積が平滑管と比較して増加し、さらにこの溝により管内に均一な冷媒液膜が形成されるためと言われている(非特許文献2)。 The heat transfer tube used in the cross fin type heat exchanger is one that causes HFC or the like to flow through the tube as a refrigerant to exchange heat, and a copper heat transfer tube having a trapezoidal or triangular protrusion fin on the inner surface of the tube (Hereinafter referred to as an internally grooved tube) is used to improve the efficiency and energy saving of the heat exchanger. The depth and bottom thickness of the groove between the projecting fins shown in FIG. (Thickness of the base of the projecting fin), the shape of the fin (vertical angle, etc.), or various transmissions that define the lead angle of the projecting fin shown in FIG. A heat pipe has been proposed (for example, Patent Document 1). It is said that the heat transfer performance of the internally grooved tube is superior because the surface area inside the tube is increased compared to the smooth tube, and a uniform refrigerant liquid film is formed in the tube by this groove (non- Patent Document 2).
内面溝付き管の管内面には、一般に素管(平滑管)を転造加工することにより螺旋状に連続して配列した突状型のフィンが形成される。転造加工方法としては、管内に自由回転する溝付けプラグを挿入し、管外より自由回転するロールを押し付けて遊星回転させながら管を引き抜くロール転造法(図3参照)や、ロールの代わりにボール押し付け機構としたボール転造法が知られている(非特許文献1、特許文献2)。 On the inner surface of the inner grooved tube, projecting fins that are continuously arranged in a spiral form are generally formed by rolling a raw tube (smooth tube). As a rolling method, a roll rolling method (see Fig. 3) in which a grooved plug that freely rotates into the pipe is inserted, a roll that freely rotates from the outside of the pipe is pressed, and the pipe is pulled out while rotating planetary (see Fig. 3), or instead of a roll A ball rolling method using a ball pressing mechanism is known (Non-patent Document 1, Patent Document 2).
内面溝付き管にはこれまで主に銅や銅合金等の銅系材料が使用されてきたが、材料費低減や軽量化の要求に対応するため、アルミニウムやアルミニウム合金等のアルミニウム系材料(以下、アルミニウム合金とする。)を使用することが検討されている。 Until now, copper-based materials such as copper and copper alloys have been mainly used for internally grooved pipes, but aluminum-based materials such as aluminum and aluminum alloys (hereinafter referred to as “reducing costs”) , And aluminum alloys) are being studied.
しかし、アルミニウム合金は銅系材料に比較した場合、耐食性が低下することが想定される。そのため、例えば特許文献3では、伝熱管を2層構造とし、管の内側の層にはAl−Mn系合金をしようし、外表面層には犠牲防食層としてAl−Zn系合金をクラッドした内面溝付き管が提案されている。 However, it is assumed that the aluminum alloy has a reduced corrosion resistance when compared to a copper-based material. Therefore, for example, in Patent Document 3, the heat transfer tube has a two-layer structure, an inner layer of the tube is made of an Al—Mn alloy, and an outer surface layer is coated with an Al—Zn alloy as a sacrificial anticorrosion layer. Grooved tubes have been proposed.
あるいは、特許文献4では、A3003などのAl−Mn系合金を伝熱管の内側層に用い、外表面層には犠牲防食層としてA7072などのAl−Zn系合金をクラッドした内面溝付き管及び該内面溝付き管を使用した熱交換器が提案されている。 Alternatively, in Patent Document 4, an Al—Mn alloy such as A3003 is used for the inner layer of the heat transfer tube, and the outer surface layer is a sacrificial anticorrosive layer clad with an Al—Zn alloy such as A7072 and the inner grooved tube. Heat exchangers using internally grooved tubes have been proposed.
一方、耐食性の問題のほかに、これらのアルミニウム製の内面溝付き管を拡管加工する場合、管の内面にある突状型フィンの頭頂部が潰れるいわゆる「フィン潰れ」が発生し、フィン形状の崩れや、アルミニウム放熱フィンとの密着が不十分であることにより、所期の伝熱性能が得られないという問題がある。これはアルミニウムやアルミニウム合金内面溝付き管の材料強度が銅に較べて低いためである。 On the other hand, in addition to the problem of corrosion resistance, when expanding these aluminum inner-grooved tubes, so-called "fin crushing" occurs in which the top of the protruding fin on the inner surface of the tube is crushed, and the fin-shaped There is a problem that the desired heat transfer performance cannot be obtained due to the collapse and insufficient adhesion with the aluminum radiation fin. This is because the material strength of the inner grooved tube of aluminum or aluminum alloy is lower than that of copper.
拡管加工時のフィン潰れを解決するために、特許文献5ではアルミニウム管内面に厚さが5μm以上の酸化被膜を形成することが提案されている。 In order to solve the fin crushing at the time of the pipe expansion process, Patent Document 5 proposes forming an oxide film having a thickness of 5 μm or more on the inner surface of the aluminum pipe.
また、特許文献6では突条型フィンが形成された内側層が機械的強度の大きいアルミニウム合金層から成り、かつ該アルミニウム合金層の外側層に機械的強度の小さいアルミニウム層をクラッドしたアルミニウム製内面溝付き管が提案されている。具体的な合金としては内側層がA3003アルミニウム合金、外側層としてA1050(純アルミニウム)を使用した例が示されている。同文献では、A1050から成る外周側管底肉部は優先的に変形して外径が拡管され、A3003から成る内周側管底肉部は変形量が小さいため拡管加工しても内面にある突起フィンの潰れ量を許容範囲以下に抑えることができる、と説明されている。 Further, in Patent Document 6, the inner surface of the aluminum in which the inner layer on which the protruding fins are formed is made of an aluminum alloy layer having a high mechanical strength and the outer layer of the aluminum alloy layer is clad with an aluminum layer having a low mechanical strength. Grooved tubes have been proposed. As a specific alloy, an example is shown in which an inner layer uses an A3003 aluminum alloy and an outer layer uses A1050 (pure aluminum). In this document, the outer peripheral tube bottom portion made of A1050 is preferentially deformed and the outer diameter is expanded, and the inner peripheral tube bottom portion made of A3003 is on the inner surface even when the tube is expanded because the deformation amount is small. It is described that the collapse amount of the projection fin can be suppressed to an allowable range or less.
さらに、特許文献7には、拡管加工性に優れた内面溝付き管として、アルミニウム管の外層材としてAl−Mn系合金(A3000系合金)にZnを添加した強度の高い合金を使用し、その内側にAl−Mn系合金(A3000系合金)を、さらに内側の内層材を強度の高いAl−Mg−Si合金(A6000系合金)やAl−Mg系合金(A5000系合金)を使用した3層クラッド管も提案されている。 Furthermore, Patent Document 7 uses a high-strength alloy obtained by adding Zn to an Al-Mn alloy (A3000 alloy) as an outer layer material of an aluminum tube as an inner grooved tube excellent in tube expansion workability. Three layers using an Al-Mn alloy (A3000 alloy) on the inner side, and an inner inner layer material using a high-strength Al-Mg-Si alloy (A6000 alloy) or Al-Mg alloy (A5000 alloy) A cladding tube has also been proposed.
しかしながら、上記文献記載の従来技術は以下の点で改善の余地を有していた。
第一に、特許文献1、2、非特許文献1,および2においては、アルミニウム合金を伝熱管に使用した際の耐食性やフィン潰れの問題が改善されていなかった。However, the prior art described in the above literature has room for improvement in the following points.
First, in Patent Documents 1 and 2, Non-Patent Documents 1 and 2, the problems of corrosion resistance and fin crushing when an aluminum alloy is used for a heat transfer tube have not been improved.
第二に、特許文献3および4には伝熱管の耐食性を向上するための方法が記載されているが、フィン潰れの問題は改善されていなかった。 Secondly, Patent Documents 3 and 4 describe methods for improving the corrosion resistance of heat transfer tubes, but the problem of fin crushing has not been improved.
第三に、特許文献5〜7には伝熱管のフィン潰れを改善するための方法が記載されているが、以下の点で改善の余地を有していた。即ち、特許文献5においては、内部に酸化被膜を形成する工程として陽極酸化処理などが加わるため大幅な加工費の向上を招き、現実的でない。また一般に長尺である管の内部にこのような処理を施すこと自体、非常に困難である。 Thirdly, Patent Documents 5 to 7 describe methods for improving fin crushing of heat transfer tubes, but have room for improvement in the following respects. That is, in Patent Document 5, an anodizing process or the like is added as a process for forming an oxide film inside, which causes a significant increase in processing costs and is not realistic. In addition, it is very difficult to perform such treatment on the inside of a generally long tube.
特許文献6においては、外側層の純アルミニウムの肉厚比率を内側層のA3003合金よりも厚くする必要がある。同文献の実施態様に開示されている二例においてもA1050外側層が0.8mmに対しA3003内側層が0.2mm、またはA1050外側層が0.7mmに対しA3003内側層が0.3mmと、大部分がA1050となっている。しかし、このような構成は管自体の強度が低くなるため、冷媒の内圧に耐える耐圧強度を得るには管そのものを厚肉の管とすることが必要となり、材料費が高くなり不経済である。 In Patent Document 6, it is necessary to make the thickness ratio of pure aluminum of the outer layer thicker than the A3003 alloy of the inner layer. In the two examples disclosed in the embodiment of the same document, the A1050 outer layer is 0.8 mm and the A3003 inner layer is 0.2 mm, or the A1050 outer layer is 0.7 mm and the A3003 inner layer is 0.3 mm. Most are A1050. However, since such a structure reduces the strength of the pipe itself, it is necessary to make the pipe itself a thick-walled pipe in order to obtain a pressure resistance that can withstand the internal pressure of the refrigerant, which increases the material cost and is uneconomical. .
特許文献7においては、3層クラッド管を使用しているため、その製造工程は複雑であり生産性や歩留まりも低いため、加工費が高くなってしまうという問題がある。 In Patent Document 7, since a three-layer clad tube is used, the manufacturing process is complicated, and productivity and yield are low, so that there is a problem that the processing cost becomes high.
本発明はこのような観点に立ってなされたものであって、その目的は、マンドレルによって機械的に拡管加工をおこなってもフィン潰れが発生し難いアルミニウム合金製内面溝付き伝熱管を提供することである。または、そのようなフィン潰れが発生し難い伝熱管であり、さらに良好な耐食性を有し、薄肉化が可能なアルミニウム合金製内面溝付き伝熱管を提供することである。 The present invention has been made from such a viewpoint, and an object of the present invention is to provide an aluminum alloy internally grooved heat transfer tube that is less likely to cause fin crushing even when the tube is mechanically expanded by a mandrel. It is. Another object is to provide an aluminum alloy internally grooved heat transfer tube which is a heat transfer tube in which such fin crushing is unlikely to occur, and which has better corrosion resistance and can be thinned.
本発明者らは鋭意検討した結果、下記伝熱管が課題を解決することを知見し本発明を完成した。
すなわち、本発明によれば、内面に複数の突条型のフィンが形成され、Mn:0.8〜1.8質量%(以下、質量%を、%と記載)、Mg:0.1〜0.6%を含有し、残部がAlと不可避的不純物からなることを特徴とするアルミニウム合金製内面溝付き伝熱管が提供される。As a result of intensive studies, the present inventors have found that the following heat transfer tubes can solve the problems, and have completed the present invention.
That is, according to the present invention, a plurality of fin-shaped fins are formed on the inner surface, Mn: 0.8 to 1.8% by mass (hereinafter referred to as% by mass), Mg: 0.1 to 0.1% Provided is an aluminum alloy internally grooved heat transfer tube containing 0.6%, the balance being made of Al and inevitable impurities.
この構成によれば、フィン潰れが発生しにくい伝熱管を得ることができる。 According to this configuration, it is possible to obtain a heat transfer tube in which fin crushing is less likely to occur.
また本発明によれば、内面に複数の突条型のフィンが形成され、Mn:0.8〜1.8%、Mg:0.1〜0.6%、を含有し、更にFe:0.60%以下、Si:0.60%以下、Cu:0.30%以下、Zn:0.30%以下、Cr:0.20%以下、Ti:0.20%以下、Zr:0.20%以下の中から1種又は2種以上を含有し、残部がAlと不可避的不純物からなることを特徴とするアルミニウム合金製内面溝付き伝熱管が提供される。 Further, according to the present invention, a plurality of protrusion-shaped fins are formed on the inner surface, containing Mn: 0.8 to 1.8%, Mg: 0.1 to 0.6%, and further Fe: 0. .60% or less, Si: 0.60% or less, Cu: 0.30% or less, Zn: 0.30% or less, Cr: 0.20% or less, Ti: 0.20% or less, Zr: 0.20 An aluminum alloy inner surface grooved heat transfer tube is provided, which contains one or two or more of the following elements, and the balance is made of Al and inevitable impurities.
この構成によれば、フィン潰れが発生しにくい伝熱管を得ることができる。 According to this configuration, it is possible to obtain a heat transfer tube in which fin crushing is less likely to occur.
また本発明によれば、上記いずれかの伝熱管を備える熱交換器が提供される。 Moreover, according to this invention, a heat exchanger provided with one of the said heat exchanger tubes is provided.
この構成によれば、フィン潰れが発生しにくい伝熱管を備えているため、伝熱性能に優れた熱交換器を得ることができる。 According to this configuration, since the heat transfer tube that is unlikely to cause fin crushing is provided, a heat exchanger having excellent heat transfer performance can be obtained.
また本発明によれば、上記いずれかの伝熱管を備える空気調和機が提供される。 Moreover, according to this invention, an air conditioner provided with one of the said heat exchanger tubes is provided.
この構成によれば、フィン潰れが発生しにくい伝熱管を備えているため、伝熱性能に優れた空気調和機を得ることができる。 According to this configuration, since the heat transfer tube that is unlikely to cause fin crushing is provided, an air conditioner having excellent heat transfer performance can be obtained.
本発明のアルミニウム合金製内面溝付き伝熱管は、マンドレルにより機械的に拡管加工をおこなってもフィン潰れが発生し難いという効果を有する。または、フィン潰れが発生し難く、良好な耐食性を有し、さらに薄肉化が可能で材料費の抑制も可能であるという効果を有する。 The heat transfer tube with an inner surface groove made of an aluminum alloy according to the present invention has an effect that the fin crushing hardly occurs even when the tube is mechanically expanded by a mandrel. Or it has the effect that it is hard to generate | occur | produce a fin crushing, has favorable corrosion resistance, and also can be reduced in thickness and material cost can also be suppressed.
以下、本発明の実施の形態について、詳細に説明する。なお、同様な内容については、
繰り返しの煩雑を避けるために、適宜説明を省略する。Hereinafter, embodiments of the present invention will be described in detail. For similar contents,
In order to avoid repeated complications, description will be omitted as appropriate.
<実施形態1:伝熱管>
(1−1)成分
本実施形態において想定している伝熱管は、一般家庭向け空気調和機用の熱交換器に使用するものであり、その寸法は、例えば、外径φ4.0〜φ9.54mm、底肉厚0.3〜0.6mm程度の小径薄肉管である。このため、各種のアルミニウム合金のうち、適度な強度を有し、かつ小径薄肉管を得るための加工性(押出性、抽伸性、転造性)に比較的優れているAl−Mn系をベースとして、元素調整により加工性を損なわずに強度を向上させることで拡管加工によるフィン潰れを防止するアルミニウム合金を得るものである。<Embodiment 1: Heat transfer tube>
(1-1) Component The heat transfer tube assumed in the present embodiment is used for a heat exchanger for an air conditioner for general households, and its dimensions are, for example, outer diameter φ4.0 to φ9. It is a small-diameter thin tube with a thickness of 54 mm and a bottom wall thickness of about 0.3 to 0.6 mm. For this reason, among various aluminum alloys, the base is based on Al-Mn, which has moderate strength and relatively excellent workability (extrudability, drawability, rollability) for obtaining small-diameter thin-walled tubes. As described above, an aluminum alloy that prevents the crushing of the fins due to the pipe expansion process by improving the strength without impairing the workability by adjusting the element is obtained.
本実施形態の伝熱管は、内面に複数の突条型のフィンが形成され、Mn:0.8〜1.8質量%(以下、質量%を、%と記載)、Mg:0.1〜0.6%、を含有し、残部がAlと不可避的不純物からなることを特徴とするアルミニウム合金製内面溝付き伝熱管である。この伝熱管は後述する実施例で実証されているように、フィン潰れが発生し難いという効果を奏する。この伝熱管は、管の耐圧強度が高いため、薄肉化による素材費低減が可能である。この伝熱管は、複雑な生産工程や特殊な構造を必ずしも必要としないため、生産性や品質等に優れている。 In the heat transfer tube of the present embodiment, a plurality of fin-shaped fins are formed on the inner surface, Mn: 0.8 to 1.8% by mass (hereinafter referred to as% by mass), Mg: 0.1 to 0.1% It is an aluminum alloy internally grooved heat transfer tube characterized by containing 0.6% and the balance being made of Al and inevitable impurities. This heat transfer tube has an effect that the fin crushing hardly occurs, as demonstrated in the examples described later. Since this heat transfer tube has high pressure resistance, the material cost can be reduced by thinning. Since this heat transfer tube does not necessarily require a complicated production process or a special structure, it is excellent in productivity and quality.
この伝熱管は、内面に複数の突条型のフィンが形成され、Mn:0.8〜1.8%、Mg:0.1〜0.6%、を含有し、更にFe:0.60%以下、Si:0.60%以下、Zn:0.30%以下、Cr:0.20%以下、Ti:0.20%以下、Zr:0.20%以下の中から1種又は2種以上を含有し、残部がAlと不可避的不純物からなることを特徴とするアルミニウム合金製内面溝付き伝熱管であっても、同様の効果を奏すると考えられる。 The heat transfer tube has a plurality of fins formed on the inner surface, contains Mn: 0.8 to 1.8%, Mg: 0.1 to 0.6%, and further Fe: 0.60. % Or less, Si: 0.60% or less, Zn: 0.30% or less, Cr: 0.20% or less, Ti: 0.20% or less, Zr: 0.20% or less Even if it is an aluminum alloy inner surface grooved heat transfer tube containing the above, and the balance being made of Al and inevitable impurities, it is considered that the same effect can be obtained.
ここでアルミニウム合金とは、Alを主成分とする合金である。アルミニウム合金中のAlの含有量は、例えば、90〜99.9%である。 Here, the aluminum alloy is an alloy containing Al as a main component. The Al content in the aluminum alloy is, for example, 90 to 99.9%.
次に本実施形態における伝熱管の成分限定理由について説明する。
Mnは3000系合金において強度を向上させる主要な添加元素であり、アルミニウム中に固溶、一部は析出して強度を付与する効果をもち、その添加量が0.8%より少ないと伝熱管としての強度が不十分であり、1.8%より多いと強度向上効果が飽和するうえ、粗大な金属間化合物の量が多くなり管の製造工程において割れなどの不具合が発生しやすくなる。したがって、Mn添加量は0.8〜1.8%の範囲とする。更に好ましい範囲は1.0〜1.5%である。Next, the reason for limiting the components of the heat transfer tube in this embodiment will be described.
Mn is a main additive element for improving the strength of 3000 series alloys, and has the effect of giving solid solution, a part of which precipitates to give strength, and if the added amount is less than 0.8%, the heat transfer tube Insufficient strength, and if it exceeds 1.8%, the effect of improving the strength is saturated, and the amount of coarse intermetallic compound increases, so that defects such as cracks are likely to occur in the manufacturing process of the tube. Therefore, the amount of Mn added is in the range of 0.8 to 1.8%. A more preferable range is 1.0 to 1.5%.
Mgはアルミニウム中に固溶して強度をさらに向上させる効果を有し、かつ加工性を阻害しない元素である。その添加量が0.1%より少ないと強度が不十分であり機械的拡管による溝潰れを防止できず、0.6%より多いと押出性、抽伸性が劣化する。したがって、Mg添加量は0.1〜0.6%の範囲とする。更に好ましい範囲は0.2〜0.5%である。 Mg is an element that has the effect of further improving the strength by solid solution in aluminum and does not impair the workability. If the amount added is less than 0.1%, the strength is insufficient and crushing of the groove due to mechanical expansion cannot be prevented, and if it exceeds 0.6%, the extrudability and the drawability deteriorate. Therefore, the amount of Mg added is in the range of 0.1 to 0.6%. A more preferable range is 0.2 to 0.5%.
不純物としてはFe、Si、Cu、Znなどがあるが、これらはFe:0.60%以下、Si:0.60%以下、Cu:0.30%以下、Zn:0.30%以下であれば本発明の効果を阻害するものではない。これらの含有率は、本発明の効果を阻害しないという観点からは少ないほど好ましい。またこれらの含有率の下限値は特に限定されないが、例えば、0.01、0.001、もしくは0.0001以上、または0%であってもよい。 Impurities include Fe, Si, Cu, Zn, etc. These may be Fe: 0.60% or less, Si: 0.60% or less, Cu: 0.30% or less, Zn: 0.30% or less. It does not hinder the effects of the present invention. These content ratios are preferably as small as possible from the viewpoint of not inhibiting the effects of the present invention. Moreover, the lower limit of these content rates is not specifically limited, For example, 0.01, 0.001, 0.0001 or more, or 0% may be sufficient.
またTi、Cr、Zrは鋳塊組織を均一微細化する効果があるので含有しても良いが0.2%を超えると巨大金属間化合物を形成したり押出性が低下したりするので、その含有量は0.2%以下とする。これらの含有率の下限値は特に限定されないが、例えば、0.01、0.001、もしくは0.0001以上、または0%であってもよい。 Ti, Cr, Zr may be contained because it has the effect of uniformly refining the ingot structure. However, if it exceeds 0.2%, a giant intermetallic compound is formed or the extrudability is lowered. The content is 0.2% or less. Although the lower limit of these content rates is not specifically limited, For example, 0.01, 0.001, 0.0001 or more, or 0% may be sufficient.
(1−2)フィン
本実施形態においてはさらに突条フィンの硬さをHV(ヴィッカース硬さ)33以上であっても良い。これは拡管加工においてフィン潰れが発生しないようにするためである。この硬さを制御するために、具体的には上記Mn、Mg添加量の組合せを適正化(基本的には成分範囲内で高めの組合せ)するとともに、焼鈍で過加熱しない等の通常の工程管理をおこなえばよい。なお、突条フィンの硬さは拡管加工前にHV33以上であれば、拡管加工時に突条フィンが塑性変形することは無いので、拡管加工後の硬さもHV33より低いHVの値に変わることはない。(1-2) Fin In the present embodiment, the hardness of the ridge fin may be HV (Vickers hardness) 33 or more. This is to prevent the occurrence of fin crushing in the pipe expansion process. In order to control this hardness, specifically, the above-mentioned Mn and Mg addition amount is optimized (basically, a higher combination within the component range) and normal processes such as annealing and not overheating. Management should be performed. In addition, if the hardness of the ridge fin is HV33 or more before the pipe expansion process, the ridge fin will not be plastically deformed during the pipe expansion process, so the hardness after the pipe expansion process will also change to a value of HV lower than HV33. Absent.
(1−3)犠牲防食層
本実施形態の伝熱管は、海岸沿いの塩害地等において室外機の熱交換器として使用する場合を想定し、伝熱管外面に犠牲防食層として純AlまたはAl−Zn系合金層を設けても良い。犠牲防食層を形成した本実施例の伝熱管は、耐食性とフィン潰れの両面から優れているため、高品質の伝熱管である。(1-3) Sacrificial Corrosion Protection Layer The heat transfer tube of this embodiment is assumed to be used as a heat exchanger of an outdoor unit in a salt damage area along the coast, and pure Al or Al- A Zn-based alloy layer may be provided. The heat transfer tube of the present embodiment in which the sacrificial anticorrosion layer is formed is a high-quality heat transfer tube because it is excellent in both corrosion resistance and fin crushing.
これらの犠牲防食層の厚さは、全肉厚に対し、5〜30%が好ましい。犠牲防食層の厚さが全肉厚に対し5%未満では、熱交換器として使用中の犠牲防食層としての有効期間が不十分であり、30%を越えると伝熱管の強度が低下し薄肉化が困難となる場合がある。 The thickness of these sacrificial anticorrosive layers is preferably 5 to 30% with respect to the total thickness. If the thickness of the sacrificial anticorrosive layer is less than 5% of the total thickness, the effective period of the sacrificial anticorrosive layer in use as a heat exchanger is insufficient, and if it exceeds 30%, the strength of the heat transfer tube decreases and the wall thickness decreases. May become difficult.
該犠牲防食層の成分は、芯材のAl−Mn−Mg系合金よりも自然電位が卑であればよく、例えば、A1050などの純アルミニウムや、A7072(Al−0.8〜1.3%Zn合金)などのAl−Zn合金を適宜使用すればよい。 The sacrificial anticorrosive layer may have a natural potential lower than that of the core Al-Mn-Mg alloy. For example, pure aluminum such as A1050 or A7072 (Al-0.8 to 1.3%). An Al—Zn alloy such as a Zn alloy may be used as appropriate.
次に犠牲防食層の形成方法の実施態様の例について説明する。
本実施形態の伝熱管におけるAl−Mn−Mg系合金の、円筒状ビレットの外側に犠牲防食合金板材(純AlまたはAl−Zn系合金)を円筒状に曲げ被せた組み合わせビレットを作製し、これを加熱炉により350〜600℃に加熱し均質化処理をおこなう。この組み合わせビレットを押出ダイスと押出ラムノーズ間に挟持してコンテナ内に挿入し、押出ダイスと押出ラムノーズを固定した状態で、芯材内径より大きな外径を持つマンドレルを圧入し、芯材を拡管して芯材と外皮材間の空気を追い出す。次にマンドレルを所定の位置に固定して、押出ホローステムを前進させダイスを通して組み合わせビレットを押出し、2層クラッド押出管を得る。次いで該押出管を所定の外径、肉厚に抽伸加工し、2層クラッドの素管(平滑管)を得る。この抽伸加工は生産性の高いドローブロック式連続抽伸機を使用することが望ましい。Next, the example of the embodiment of the formation method of a sacrificial anticorrosion layer is demonstrated.
A combination billet in which a sacrificial anticorrosion alloy sheet (pure Al or Al-Zn alloy) is bent cylindrically on the outside of the cylindrical billet of the Al-Mn-Mg alloy in the heat transfer tube of the present embodiment is produced. Is heated to 350 to 600 ° C. in a heating furnace and homogenized. The combination billet is inserted between the extrusion die and the extrusion ram nose and inserted into the container. With the extrusion die and the extrusion ram nose fixed, a mandrel having an outer diameter larger than the inner diameter of the core material is press-fitted to expand the core material. To expel the air between the core and the skin. Next, the mandrel is fixed at a predetermined position, the extrusion hollow stem is advanced, the combination billet is extruded through a die, and a two-layer clad extruded tube is obtained. Next, the extruded tube is drawn to a predetermined outer diameter and thickness to obtain a two-layer clad elementary tube (smooth tube). For this drawing process, it is desirable to use a draw block type continuous drawing machine with high productivity.
または、円筒状の犠牲防食材のビレットを350〜600℃に加熱してその内側に、円筒状の芯材中空ビレットを焼嵌めして得られる2層中空ビレットを押出し加工後、同様に抽伸加工を施して、2層クラッドの素管(平滑管)を得ることもできる。 Alternatively, the cylindrical sacrificial anticorrosive billet is heated to 350-600 ° C., and the hollow hollow billet obtained by shrink-fitting the cylindrical hollow billet inside is extruded. It is also possible to obtain a two-layer clad base tube (smooth tube).
または、アルミニウム合金の芯材シートの片面側に犠牲防食材のシートをクラッド圧延した2層クラッドシートとし、このシートを管状にロール成形してからシート突合せ面を溶接し2層クラッドの電縫管としてもよい。 Alternatively, a two-layer clad sheet obtained by clad rolling a sacrificial anti-corrosion material sheet on one side of an aluminum alloy core sheet, and roll-forming the sheet into a tubular shape, and then welding the sheet abutting surface to form a two-layer clad electro-resistance tube It is good.
上記はクラッド押出・抽伸、またはクラッド圧延による犠牲防食層を形成した2層素管(平滑管)の形成方法の説明であったが、それ以外の方法として本実施形態の伝熱管におけるAl−Mn−Mg系合金の押出管(熱間押出またはコンフォーム押出による)、または抽伸管にZnを溶射したのち、Zn拡散加熱処理をほどこしてAl−Zn拡散層を形成する方法を採用しても良い。この場合、拡散加熱処理の温度と時間を適宜設定し、Zn拡散層が全肉厚に対し5〜30%の範囲とすることが望ましい。その温度はおおむね400〜500℃で2〜8時間程度とするのが工業上好ましい。なお、このZn溶射法を採用する場合に限り、後述する転造加工を施した後にZn溶射と拡散加熱処理を施しても構わない。 The above is a description of a method for forming a two-layer element tube (smooth tube) in which a sacrificial anticorrosive layer is formed by clad extrusion / drawing or clad rolling. As other methods, Al—Mn in the heat transfer tube of this embodiment is used. -A method of forming an Al-Zn diffusion layer by applying Zn diffusion heat treatment after spraying Zn on an extruded tube of Mg-based alloy (by hot extrusion or conform extrusion) or a drawing tube. . In this case, it is desirable that the temperature and time of the diffusion heat treatment are appropriately set so that the Zn diffusion layer is in the range of 5 to 30% with respect to the total thickness. It is industrially preferable that the temperature is about 400 to 500 ° C. and about 2 to 8 hours. Only when this Zn spraying method is adopted, Zn spraying and diffusion heat treatment may be performed after performing the rolling process described later.
なお、このようにして犠牲防食層を形成した素管(平滑管)に対し、次工程の転造加工を容易にするために、あらかじめ焼鈍軟化処理を施しておくことが望ましい。その場合、焼鈍条件は300〜400℃、時間は2〜8時間程度とすることが工業上好ましい。 In order to facilitate the rolling process in the next step, it is desirable to subject the raw pipe (smooth pipe) on which the sacrificial anticorrosive layer is formed in this manner to an annealing softening process in advance. In that case, it is industrially preferable that the annealing condition is 300 to 400 ° C. and the time is about 2 to 8 hours.
また、これら平滑管は、次工程の転造加工において外径と肉厚が若干減少する。したがって素管の寸法(外径、肉厚)はその減少分を考慮し、最終製品である内面溝付き管よりも大きく設定する。 In addition, these smooth tubes are slightly reduced in outer diameter and wall thickness in the subsequent rolling process. Therefore, the dimensions (outer diameter, wall thickness) of the raw pipe are set larger than the inner grooved pipe as the final product in consideration of the decrease.
次いで、平滑管にロール転造法やボール転造法等により転造加工を施し、突条型フィンを有する内面溝付き管を製造する。 Next, the smooth tube is subjected to a rolling process by a roll rolling method, a ball rolling method, or the like to manufacture an internally grooved tube having a protruding fin.
(1−4)構造および加工方法
本実施形態の内面溝付き管は、熱交換器の用途に応じて種々の寸法で製造できるが、家庭用空気調和機に使用する場合、管の製造における生産性の面からは外径φ4.0mm以上が好ましく、熱交換器の小型化・軽量化の面からは外径φ9.54mm以下が好ましい。(1-4) Structure and processing method The inner grooved tube of the present embodiment can be manufactured in various dimensions according to the use of the heat exchanger, but when used in a domestic air conditioner, production in the manufacture of the tube The outer diameter is preferably 4.0 mm or more from the viewpoint of performance, and the outer diameter is preferably 9.95 mm or less from the viewpoint of reducing the size and weight of the heat exchanger.
また底肉厚においては、耐圧強度の面からは0.3mm以上が好ましく、熱交換器の小型化・軽量化の面からは0.6mm以下が好ましい。 Further, the thickness of the bottom wall is preferably 0.3 mm or more from the viewpoint of pressure resistance and 0.6 mm or less from the viewpoint of reducing the size and weight of the heat exchanger.
また、内面突条フィンの高さHは0.1〜0.4mm、内面突条フィンの頂角αは10〜40°、内面突条フィンの数は40条以上、リード角β(内面突条フィンと管長手方向のなす角度)は20°以上とすることが望ましい。 Further, the height H of the inner surface projecting fin is 0.1 to 0.4 mm, the apex angle α of the inner surface projecting fin is 10 to 40 °, the number of the inner surface projecting fins is 40 or more, and the lead angle β (inner surface projecting fin). The angle between the strip fin and the longitudinal direction of the pipe is preferably 20 ° or more.
転造加工を施したのちには、焼鈍軟化処理を施しても良い。これは転造時に導入された加工歪を除去し、ヘアピン曲げ加工(蛇行曲げ加工)を容易にするためである。定法により、300〜400℃で2〜8時間程度の焼鈍を施せばよい。 After the rolling process, annealing softening treatment may be performed. This is for removing the processing distortion introduced at the time of rolling and facilitating hairpin bending (meandering bending). What is necessary is just to give annealing for about 2 to 8 hours at 300-400 degreeC by a conventional method.
このようにして製造された本実施形態の内面溝付き管は、拡管加工によりアルミニウム放熱フィンの挿通孔に密着させる。良好な密着を得るために拡管率(外径増加率)が4〜6%程度となるように挿通孔と伝熱管のクリアランスを設定することが適当である。なお、拡管加工は、マンドレルを利用する機械拡管法に変えて油圧または水圧により管に内圧を付与する液圧拡管法により、生産効率を向上することが可能である。 The inner grooved tube of the present embodiment manufactured in this manner is brought into close contact with the insertion hole of the aluminum radiating fin by tube expansion processing. In order to obtain good adhesion, it is appropriate to set the clearance between the insertion hole and the heat transfer tube so that the tube expansion rate (outer diameter increase rate) is about 4 to 6%. It should be noted that the pipe expanding process can improve production efficiency by a hydraulic pipe expanding method in which an internal pressure is applied to the pipe by hydraulic pressure or water pressure instead of a mechanical pipe expanding method using a mandrel.
<実施形態2:熱交換器>
本発明の他の実施形態は、上記の実施形態に係る伝熱管を備える熱交換器である。この熱交換器は、フィン潰れが発生し難い伝熱管を備えているため、伝熱性能が良く、効率性に優れている。または、この熱交換器はフィン潰れが発生し難く、且つ耐食性に優れた伝熱管を備えているため、伝熱性能および耐久性に優れている。<Embodiment 2: Heat exchanger>
Other embodiment of this invention is a heat exchanger provided with the heat exchanger tube which concerns on said embodiment. Since this heat exchanger includes a heat transfer tube in which fin crushing is difficult to occur, heat transfer performance is good and efficiency is excellent. Or since this heat exchanger is equipped with the heat exchanger tube which is hard to generate | occur | produce fin collapse and was excellent in corrosion resistance, it is excellent in heat transfer performance and durability.
<実施形態3:空気調和機>
本発明の他の実施形態は、上記の実施形態に係る伝熱管を備える空気調和機である。この空気調和機は、フィン潰れが発生し難い伝熱管を備えているため、伝熱性能が良く、効率性に優れている。または、この空気調和機はフィン潰れが発生し難く、且つ耐食性に優れた伝熱管を備えているため、伝熱性能および耐久性に優れている。<Embodiment 3: Air conditioner>
Other embodiment of this invention is an air conditioner provided with the heat exchanger tube which concerns on said embodiment. Since this air conditioner includes a heat transfer tube in which fins are not easily crushed, heat transfer performance is good and efficiency is high. Or since this air conditioner is equipped with the heat exchanger tube which is hard to generate | occur | produce fin collapse and was excellent in corrosion resistance, it is excellent in heat transfer performance and durability.
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.
次に本発明を実施例に基づいてさらに詳細に説明する。
表1に示す成分組成のアルミニウム合金の円筒状ビレットを鋳造し、間接押出法により外径φ47mm、肉厚3.5mmの押出管を得た。この押出管にドローブロック式連続抽伸機により抽伸加工を施し、外径φ10mm、肉厚0.45mmの抽伸管を得た。Next, the present invention will be described in more detail based on examples.
A cylindrical billet of an aluminum alloy having the composition shown in Table 1 was cast, and an extruded tube having an outer diameter of 47 mm and a wall thickness of 3.5 mm was obtained by an indirect extrusion method. The extruded tube was subjected to a drawing process using a draw block type continuous drawing machine to obtain a drawn tube having an outer diameter of 10 mm and a wall thickness of 0.45 mm.
犠牲防食層を形成したNo8〜14、No22〜28については、A1050またはA7072の円筒状の犠牲防食材のビレットを450℃に加熱しその内側に円筒状の芯材ビレットを焼嵌めして2層中空ビレット得、これを間接押出し、次いでドローブロック式連続抽伸機により抽伸加工を施し、同じく外径φ10mm、肉厚0.48mmの抽伸管を得た。 For Nos. 8 to 14 and Nos. 22 to 28 on which the sacrificial anticorrosive layer was formed, the cylindrical sacrificial anticorrosive billet of A1050 or A7072 was heated to 450 ° C., and the cylindrical core billet was shrink-fitted inside to form two layers A hollow billet was obtained, this was indirectly extruded, and then subjected to a drawing process using a draw block type continuous drawing machine to obtain a drawing tube having an outer diameter of φ10 mm and a wall thickness of 0.48 mm.
このようにして得られた抽伸管に360℃で2時間の焼鈍軟化処理を施した後、フローティングプラグ、ロッド、溝付きプラグが一体となったプラグを挿入し、フローティングダイス、加工ヘッド、成形ダイスを通過させることにより内面に溝付け加工を行い、外径:φ7mm、底肉厚:0.35mm、突条フィンの高さH:0.22mm、突条フィンの数は50条、頂角α:15°、リード角β:35°の内面溝付き管を作成した。なお、No8〜14、No21〜26については、その犠牲防食層が0.035mm(底肉厚に対し10%の比率)となるように、押出工程での犠牲防食材のビレット厚さで調整した。さらに最終的に360℃で2時間の焼鈍軟化処理を施し、内面溝付き管を完成した。 The drawn tube thus obtained is annealed and softened at 360 ° C. for 2 hours, and then a floating plug, a rod and a plug with a grooved plug are inserted, and a floating die, a machining head, and a molding die are inserted. The inner surface is grooved by passing it through, the outer diameter: φ7 mm, the bottom wall thickness: 0.35 mm, the height H of the ridge fins: 0.22 mm, the number of ridge fins is 50, the apex angle α : An internally grooved tube having a lead angle β of 35 ° was prepared. In addition, about No8-14, No21-26, it adjusted with the billet thickness of the sacrificial anticorrosive material in an extrusion process so that the sacrificial anticorrosive layer might be 0.035 mm (ratio of 10% with respect to bottom thickness). . Furthermore, the annealing softening process was finally performed at 360 degreeC for 2 hours, and the internally grooved pipe was completed.
このようにして得られた本発明例および比較例の内面溝付き管の特性を評価するために、次の試験を行った。得られた結果を表2に示す。 In order to evaluate the characteristics of the internally grooved tubes of the inventive examples and comparative examples thus obtained, the following tests were conducted. The obtained results are shown in Table 2.
(a)引張試験
内面溝付き管の強度を測定するため、JIS Z2241に準じ引張試験を実施した。(A) Tensile test A tensile test was performed according to JIS Z2241 in order to measure the strength of the internally grooved tube.
(b)拡管加工性
上記外径φ7mmの内面溝付き管を、鋼製マンドレルを使用し外径が5%増加するように拡管加工を行った。その後、管断面を観察し、突条フィン高さHの減少量を測定してフィン潰れ量を評価した。熱交換器としての伝熱特性を得るためには、このフィン潰れ量は0.01mm以下であることが望ましい。また拡管加工前後の突条フィン断面の中央部の硬さをマイクロヴィッカース硬度計で測定した。(B) Pipe expansion workability The pipe with an inner diameter of 7 mm in outer diameter was subjected to pipe expansion work using a steel mandrel so that the outer diameter increased by 5%. Thereafter, the cross section of the tube was observed, and the amount of decrease in the fin height H of the ridge was measured to evaluate the amount of fin collapse. In order to obtain heat transfer characteristics as a heat exchanger, it is desirable that the amount of fin collapse is 0.01 mm or less. Moreover, the hardness of the center part of the rib fin cross section before and after the pipe expansion process was measured with a micro Vickers hardness meter.
(c)耐食性
外部耐食性を評価するために、各内面溝付き管についてJIS Z8681に準じCASS試験を1500時間行った。試験後、供試管の表面腐食生成物を除去して、管の腐食状況を観察し、貫通孔の有無により外部耐食性を評価した。(C) Corrosion resistance In order to evaluate external corrosion resistance, a CASS test was performed for 1500 hours on each internally grooved tube in accordance with JIS Z8681. After the test, the surface corrosion products of the test tube were removed, the corrosion state of the tube was observed, and the external corrosion resistance was evaluated by the presence or absence of through holes.
表2から明らかなように、本発明のアルミニウム製内面溝付き管No1〜No14は、突条フィン高さHの減少量(フィン潰れ量)は0.01mm以下で、その中でも拡管前の突条フィン部の硬さがHV35以上であるNo3〜No7、No10〜No14のフィン潰れ量はゼロであり極めて良好である。また犠牲防食層を形成したNo8〜No14は、貫通孔の発生は見られず外部耐食性が良好である。また管の引張強さも119MPa以上あり、たとえば比較例No16の91MPa(A3003に相当)に較べても強度が高く、したがって管の耐圧強度も高いため、薄肉化による素材費低減が可能である。 As is apparent from Table 2, the aluminum inner grooved tubes No1 to No14 of the present invention have a reduction amount of the fin height H (fin collapse amount) of 0.01 mm or less, and among them, the protrusion before expansion. The fin collapse amount of No3-No7 and No10-No14 whose hardness of a fin part is HV35 or more is zero, and is very favorable. Moreover, No8-No14 in which the sacrificial anticorrosive layer was formed has good external corrosion resistance with no occurrence of through holes. Further, the tensile strength of the tube is 119 MPa or more, and the strength is higher than that of, for example, 91 MPa (corresponding to A3003) of Comparative Example No. 16, and therefore the pressure resistance of the tube is also high.
これに対し、Mn、Mg量の少ないNo15〜No18、No22〜No25は拡管時の突条フィンの潰れが大きく、管自体の強度も低い。逆にMn、Mg量の多いNo19〜No21、No26〜No28は抽伸工程や転造工程で割れが発生し、内面溝付き管の製造自体ができなかった。 In contrast, No. 15 to No. 18 and No. 22 to No. 25 with a small amount of Mn and Mg have a large collapse of the projecting fins at the time of tube expansion, and the strength of the tube itself is also low. On the other hand, No19 to No21 and No26 to No28 with large amounts of Mn and Mg were cracked in the drawing process or rolling process, and the inner grooved tube itself could not be manufactured.
以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.
1 アルミニウム放熱フィン
2 伝熱管(内面溝付管)
3 ルーバー
4 拡管プラグ(マンドレル)
5 素管(平滑管)
6 転造プラグ
7 回転ロール
8 内面螺旋溝付管
9 突条フィン
10 犠牲防食層1 Aluminum radiation fin 2 Heat transfer tube (inner grooved tube)
3 Louver 4 Expanded plug (mandrel)
5 Elementary tube (smooth tube)
6 Rolled plug 7 Rotating roll 8 Internal spiral grooved tube 9 Projection fin 10 Sacrificial anticorrosion layer
Claims (7)
内面に40条以上の突条型のフィンが形成され、Mn:0.8〜1.8質量%(以下、質量%を、%と記載)、Mg:0.1〜0.6%を含有し、更にFe:0.60%以下、Si:0.60%以下、Cu:0.30%以下、Zn:0.30%以下、Cr:0.20%以下、Ti:0.20%以下、Zr:0.20%以下の中から1種又は2種以上を含有し、残部がAlと不可避的不純物からなり、前記突条型のフィンの頂角αが10〜40°であり、
外面に犠牲防食材として純AlまたはAl−Zn系合金層を形成した、
犠牲防食層の厚さは、全肉厚に対し5〜30%であることを特徴とする拡管加工用アルミニウム合金製内面溝付き伝熱管。 A heat transfer tube with an inner surface groove made of aluminum alloy for tube expansion processing,
40 or more ridge-shaped fins are formed on the inner surface, Mn: 0.8 to 1.8% by mass (hereinafter referred to as “%”) , Mg: 0.1 to 0.6% Fe: 0.60% or less, Si: 0.60% or less, Cu: 0.30% or less, Zn: 0.30% or less, Cr: 0.20% or less, Ti: 0.20% or less Zr: containing one or more of 0.20% or less, the balance is made of Al and inevitable impurities, and the apex angle α of the ridge-shaped fin is 10 to 40 °,
A pure Al or Al-Zn alloy layer was formed on the outer surface as a sacrificial anticorrosive,
The thickness of the sacrificial anticorrosion layer is 5 to 30% with respect to the total thickness.
前記突条型のフィンと管長手方向のなすリード角βが20°以上であることを特徴とする拡管加工用アルミニウム合金製内面溝付き伝熱管。 The heat transfer tube according to claim 1 ,
A heat transfer tube with an inner surface groove made of aluminum alloy for tube expansion processing, wherein a lead angle β formed between the protruding fin and the longitudinal direction of the tube is 20 ° or more.
前記突条型のフィンの硬さがHV33以上であることを特徴とする拡管加工用アルミニウム合金製内面溝付き伝熱管。 The heat transfer tube according to claim 1 or 2 ,
A heat transfer tube with an inner surface groove made of aluminum alloy for tube expansion processing, wherein the protrusion-shaped fin has a hardness of HV33 or more.
前記伝熱管の外径が、4.0〜9.54mmである拡管加工用アルミニウム合金製内面溝付き伝熱管。 A heat transfer tube according to any one of claims 1 to 3 ,
A heat transfer tube with an inner surface groove made of aluminum alloy for tube expansion processing, wherein the outer diameter of the heat transfer tube is 4.0 to 9.54 mm.
前記伝熱管の底肉厚が、0.3〜0.6mmである拡管加工用アルミニウム合金製内面溝付き伝熱管。 The heat transfer tube according to any one of claims 1 to 4 ,
A heat transfer tube with an inner surface groove made of an aluminum alloy for tube expansion processing, wherein the heat transfer tube has a bottom wall thickness of 0.3 to 0.6 mm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010216124 | 2010-09-27 | ||
JP2010216124 | 2010-09-27 | ||
PCT/JP2011/071915 WO2012043492A1 (en) | 2010-09-27 | 2011-09-26 | Aluminum-alloy-made heat-transfer pipe with inner-surface grooves |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016093134A Division JP2016164489A (en) | 2010-09-27 | 2016-05-06 | Aluminum alloy inner surface grooved heat transfer tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012043492A1 JPWO2012043492A1 (en) | 2014-02-06 |
JP6154611B2 true JP6154611B2 (en) | 2017-06-28 |
Family
ID=45892936
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012536445A Expired - Fee Related JP6154611B2 (en) | 2010-09-27 | 2011-09-26 | Aluminum alloy inner surface grooved heat transfer tube |
JP2016093134A Pending JP2016164489A (en) | 2010-09-27 | 2016-05-06 | Aluminum alloy inner surface grooved heat transfer tube |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016093134A Pending JP2016164489A (en) | 2010-09-27 | 2016-05-06 | Aluminum alloy inner surface grooved heat transfer tube |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6154611B2 (en) |
KR (1) | KR20130127431A (en) |
CN (1) | CN103097850A (en) |
MY (1) | MY168857A (en) |
WO (1) | WO2012043492A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6288581B2 (en) * | 2013-08-29 | 2018-03-07 | 三菱アルミニウム株式会社 | Method of expanding aluminum or aluminum alloy heat transfer tubes |
JP2016020757A (en) * | 2014-07-14 | 2016-02-04 | 日立アプライアンス株式会社 | Refrigeration cycle apparatus and manufacturing method of cross fin tube type heat exchanger used therefor |
JP6649889B2 (en) | 2014-07-30 | 2020-02-19 | 株式会社Uacj | Aluminum alloy brazing sheet |
US10627127B2 (en) | 2015-11-12 | 2020-04-21 | Mitsubishi Electric Corporation | Air conditioner in which a flammable refrigerant flows |
JP6186455B2 (en) * | 2016-01-14 | 2017-08-23 | 株式会社Uacj | Heat exchanger and manufacturing method thereof |
JP6930825B2 (en) * | 2016-09-09 | 2021-09-01 | 三菱アルミニウム株式会社 | Manufacturing method and equipment for inner spiral grooved pipe and inner spiral grooved pipe |
JP6916715B2 (en) | 2017-11-08 | 2021-08-11 | 株式会社Uacj | Brazing sheet and its manufacturing method |
JP7291714B2 (en) | 2018-09-11 | 2023-06-15 | 株式会社Uacj | Brazing sheet manufacturing method |
JP6865809B2 (en) * | 2019-12-24 | 2021-04-28 | 三菱電機株式会社 | Air conditioner |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11351791A (en) * | 1998-06-09 | 1999-12-24 | Hitachi Cable Ltd | Aluminum grooved tube |
JP2002038232A (en) * | 2000-07-21 | 2002-02-06 | Furukawa Electric Co Ltd:The | Aluminum alloy piping material for heat exchanger |
JP4537019B2 (en) * | 2003-06-04 | 2010-09-01 | 古河スカイ株式会社 | Brazing method of aluminum material |
JP2005043026A (en) * | 2003-07-25 | 2005-02-17 | Toyo Radiator Co Ltd | Flat tube for heat exchanger |
JP2005127570A (en) * | 2003-10-22 | 2005-05-19 | Toshiba Kyaria Kk | Heat transfer tube and refrigeration system using the same |
JP2006145060A (en) * | 2004-11-16 | 2006-06-08 | Denso Corp | Aluminum heat exchanger |
JP2007231408A (en) * | 2006-03-03 | 2007-09-13 | Kobe Steel Ltd | Aluminum alloy hollow extruded shape material for tube expansion forming and aluminum alloy hollow member |
JP5354911B2 (en) * | 2008-01-09 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum heat exchanger and manufacturing method thereof |
JP2009250562A (en) * | 2008-04-09 | 2009-10-29 | Panasonic Corp | Heat exchanger |
EP2278252B1 (en) * | 2008-04-24 | 2013-08-14 | Mitsubishi Electric Corporation | Heat exchanger and air conditioner using the same |
JP2010185646A (en) * | 2009-01-13 | 2010-08-26 | Mitsubishi Alum Co Ltd | Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner |
-
2011
- 2011-09-26 CN CN2011800436354A patent/CN103097850A/en active Pending
- 2011-09-26 JP JP2012536445A patent/JP6154611B2/en not_active Expired - Fee Related
- 2011-09-26 MY MYPI2013000676A patent/MY168857A/en unknown
- 2011-09-26 KR KR1020137006307A patent/KR20130127431A/en not_active Application Discontinuation
- 2011-09-26 WO PCT/JP2011/071915 patent/WO2012043492A1/en active Application Filing
-
2016
- 2016-05-06 JP JP2016093134A patent/JP2016164489A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2012043492A1 (en) | 2012-04-05 |
JP2016164489A (en) | 2016-09-08 |
KR20130127431A (en) | 2013-11-22 |
CN103097850A (en) | 2013-05-08 |
MY168857A (en) | 2018-12-04 |
JPWO2012043492A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6154610B2 (en) | Aluminum alloy inner surface grooved heat transfer tube | |
JP6154611B2 (en) | Aluminum alloy inner surface grooved heat transfer tube | |
JP6105561B2 (en) | Aluminum alloy inner surface grooved heat transfer tube | |
JP5089232B2 (en) | Method for producing three-layer clad aluminum tube and aluminum internally grooved tube | |
JPH10265881A (en) | Composite pipe for inner pipe of oil cooler and its production method and double pipe type oil cooler/ integrated heat exchanger | |
JP2011085290A (en) | Heat exchanger, and pipe material and fin material for the heat exchanger | |
JP2006274313A (en) | Copper alloy tube for heat exchanger and manufacturing method therefor | |
JP2010185646A (en) | Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner | |
JP5357403B2 (en) | Aluminum inner grooved tube with excellent formability and method for producing the same | |
CN104475615A (en) | Manufacturing method of bi-metal composite finned tube | |
JP5006155B2 (en) | Heat transfer tube | |
JP6244213B2 (en) | Copper tube for heat exchanger | |
JP2016028219A (en) | Internal grooved tube with excellent extrudability | |
JP5990496B2 (en) | Phosphorus deoxidized copper pipe for heat exchanger | |
JP5882615B2 (en) | Aluminum alloy inner surface grooved tube for air conditioner, air conditioner including the grooved tube, aluminum alloy inner surface grooved tube manufacturing method, and air conditioner aluminum inner surface grooved tube manufacturing method | |
JP5607294B2 (en) | Heat transfer tube | |
JP5208562B2 (en) | Seamless pipe | |
JP2013224768A (en) | Two-layer clad aluminum alloy tube with inner surface groove, heat exchanger, and method of manufacturing two-layer clad aluminum alloy tube with inner surface groove | |
CN114888117A (en) | Aluminum-based composite pipe and manufacturing method thereof | |
JP2010185647A (en) | Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner | |
JP6101969B2 (en) | Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger | |
JP5885572B2 (en) | Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube | |
WO2013157461A1 (en) | Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger | |
JP2014109041A (en) | Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150914 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160506 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160517 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20160610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6154611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |