[go: up one dir, main page]

JP2009250562A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009250562A
JP2009250562A JP2008101220A JP2008101220A JP2009250562A JP 2009250562 A JP2009250562 A JP 2009250562A JP 2008101220 A JP2008101220 A JP 2008101220A JP 2008101220 A JP2008101220 A JP 2008101220A JP 2009250562 A JP2009250562 A JP 2009250562A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
aluminum
tube
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101220A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
昭一 横山
Tomoaki Ando
智朗 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008101220A priority Critical patent/JP2009250562A/en
Publication of JP2009250562A publication Critical patent/JP2009250562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】オールアルミニウム製の熱交換器において、伝熱管の接触腐食による孔食の発生を抑制するとともに、高い熱交換能力を得ることを目的とする。
【解決手段】プレートフィン1の材質はアルミニウムまたはアルミニウム合金とし、伝熱管2は材質がアルミニウムまたはアルミニウム合金の円筒状の芯材21の外面を、芯材21より腐食電位が卑な材質のアルミニウム合金で被覆したアルミニウムクラッド管を用い、アルミニウムクラッド管の伝熱管2の内面には伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23を形成する。
【選択図】図2
An object of the present invention is to suppress the occurrence of pitting corrosion due to contact corrosion of a heat transfer tube and obtain a high heat exchange capability in a heat exchanger made of all aluminum.
A plate fin is made of aluminum or an aluminum alloy, and a heat transfer tube is made of an aluminum alloy having a lower corrosion potential than the core material on the outer surface of a cylindrical core material made of aluminum or aluminum alloy. A plurality of fine projection fins 23 extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube 2 are formed on the inner surface of the heat transfer tube 2 of the aluminum clad tube.
[Selection] Figure 2

Description

本発明は、ルームエアコン、パッケージエアコン、カーエアコン、ヒートポンプ式給湯機、冷蔵庫、冷凍庫などに用いられる熱交換器に関するものである。   The present invention relates to a heat exchanger used for a room air conditioner, a packaged air conditioner, a car air conditioner, a heat pump type water heater, a refrigerator, a freezer and the like.

従来、この種のオールアルミニウム製の熱交換器の伝熱管として、図4に示すように、特許文献1に記載されているJISで規定される1000系の純アルミニウムや3000系のAl−Mn系合金など一種類の材質の円筒状伝熱管121の内面に、押出し加工時形成される管の長手方向に平行な拡管用の突起状フィン124と、拡管用の突起状フィンよりも高さが低く管の長手方向に平行な放熱用の突起状フィン122および、拡管用フィン124と放熱用フィン122に挟まれた管の長手方向に平行なフィン溝123を有するものを用い、またプレートフィンとしては、リサイクル性の観点から前記伝熱管の材質に近いアルミニウムまたはアルミニウム合金が用いられることが多い(例えば、特許文献1参照)。   Conventionally, as a heat transfer tube of this type of all-aluminum heat exchanger, as shown in FIG. 4, 1000 series pure aluminum or 3000 series Al—Mn system defined by JIS described in Patent Document 1 On the inner surface of the cylindrical heat transfer tube 121 made of one kind of material such as an alloy, a protruding fin 124 for expanding the tube parallel to the longitudinal direction of the tube formed during extrusion, and a height lower than the protruding fin for expanding the tube. A fin having a fin fin 123 for heat dissipation parallel to the longitudinal direction of the tube and a fin groove 123 parallel to the longitudinal direction of the tube sandwiched between the fin for expanding pipe 124 and the fin for heat dissipation 122 is used as a plate fin. From the viewpoint of recyclability, aluminum or an aluminum alloy close to the material of the heat transfer tube is often used (for example, see Patent Document 1).

また図5に示すように、特許文献2に記載されている円筒状の芯材212の外面に、芯材より腐食電位が卑な材質で被覆した被覆層210を有するアルミニウムクラッド管は、熱交換器の伝熱管として用いられることはないが、耐食性を必要とする配管用のアルミニウム管として用いられている(例えば、特許文献2参照)。
特開2001−289585号公報 特許第2635769号公報
Further, as shown in FIG. 5, an aluminum clad tube having a coating layer 210 covered with a material whose corrosion potential is lower than that of the core material on the outer surface of the cylindrical core material 212 described in Patent Document 2 is heat exchange. Although it is not used as a heat transfer tube of a vessel, it is used as an aluminum tube for piping that requires corrosion resistance (see, for example, Patent Document 2).
JP 2001-289585 A Japanese Patent No. 2635769

しかしながら、前記従来の特許文献1に記載されている構成では、伝熱管の内面の突起状フィン122,124は押出し加工時形成されるので伝熱管121の長手方向に平行なため、伝熱管の内部を流れる流体の螺旋流れを誘起できないため、伝熱性能の向上があまり大きくは期待できず、また、流通抵抗も大きくなるので伝熱管121の外部のプレートフィン群の間を流れる気体との温度差を小さくし、熱交換能力を低下させる要因となっている。また、熱交換器の設置環境によってはアルミニウム管がアルミニウムより腐食電位が貴な異種金属のイオンを含む水に濡れ、接触腐食による孔食が発生する恐れがある。   However, in the configuration described in Patent Document 1 above, the protruding fins 122 and 124 on the inner surface of the heat transfer tube are formed at the time of extrusion, and are therefore parallel to the longitudinal direction of the heat transfer tube 121. Since the spiral flow of the fluid flowing through the tube cannot be induced, the improvement in heat transfer performance cannot be expected to be so great, and the flow resistance is also increased, so the temperature difference from the gas flowing between the plate fin groups outside the heat transfer tube 121 This is a factor that reduces the heat exchange capacity. Further, depending on the installation environment of the heat exchanger, the aluminum tube may get wet with water containing ions of different metals having a corrosion potential higher than that of aluminum, and pitting corrosion due to contact corrosion may occur.

また、特許文献2に記載されているアルミニウムクラッド管は、耐食性を有しているが内面が平滑なため伝熱性能が悪いので、配管に用いられてはいるが、高性能が求められる熱交換器の伝熱管としては用いることができない。   In addition, the aluminum clad tube described in Patent Document 2 has corrosion resistance, but its heat transfer performance is poor because the inner surface is smooth, so it is used for piping, but heat exchange that requires high performance is required. It cannot be used as a heat transfer tube for a vessel.

本発明は、上記課題を解決するために、プレートフィンの材質はアルミニウムまたはアルミニウム合金とし、伝熱管は材質がアルミニウムまたはアルミニウム合金の円筒状芯材の外面に芯材より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層を有するアルミニウムクラッド管を用い、アルミニウムクラッド管の前記伝熱管の内面には前記伝熱管の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンを形成する。その結果、オールアルミニウム製の熱交換器は耐食性を有する伝熱管に孔食が発生することがほとんどなく、また伝熱管の内面の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンにより高い熱交換能力を得ることができる。   In the present invention, in order to solve the above-mentioned problems, the material of the plate fin is aluminum or aluminum alloy, and the heat transfer tube is made of a material whose corrosion potential is lower than that of the core material on the outer surface of the cylindrical core material made of aluminum or aluminum alloy. An aluminum clad tube having a coating layer coated with an aluminum alloy is used, and a plurality of fine projecting fins extending in an angle with the longitudinal direction of the heat transfer tube are formed on the inner surface of the heat transfer tube of the aluminum clad tube. . As a result, the all-aluminum heat exchanger hardly causes pitting corrosion in the heat transfer tube having corrosion resistance, and has a plurality of fine protruding fins extending in a direction that forms an angle with the longitudinal direction of the inner surface of the heat transfer tube. A higher heat exchange capacity can be obtained.

前記従来の課題を解決するため、プレートフィンの材質はアルミニウムまたはアルミニ
ウム合金とし、伝熱管は材質がアルミニウムまたはアルミニウム合金の円筒状芯材の外面に芯材より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層を有するアルミニウムクラッド管を用い、アルミニウムクラッド管の前記伝熱管の内面には前記伝熱管の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンを形成するもので、この構成によって、オールアルミニウム製の熱交換器は耐食性を有する伝熱管に孔食が発生することがほとんどなく、また伝熱管の内面の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンにより高い熱交換能力を得ることができる。
In order to solve the above conventional problems, the plate fin is made of aluminum or aluminum alloy, and the heat transfer tube is made of aluminum or aluminum alloy having a lower corrosion potential than the core on the outer surface of the aluminum or aluminum alloy cylindrical core. Using an aluminum clad tube having a coated layer, a plurality of fine projection-like fins extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube are formed on the inner surface of the heat transfer tube of the aluminum clad tube. With this configuration, the all-aluminum heat exchanger has almost no pitting corrosion on the heat transfer tube having corrosion resistance, and has a plurality of fine protrusions extending in a direction that forms an angle with the longitudinal direction of the inner surface of the heat transfer tube. High heat exchange capability can be obtained by the fins.

以上のように、本発明の熱交換器によれば、オールアルミニウム製であってもプレートフィンの材質はアルミニウムまたはアルミニウム合金とし、伝熱管は材質がアルミニウムまたはアルミニウム合金の円筒状芯材の外面に芯材より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層を有するアルミニウムクラッド管を用い、アルミニウムクラッド管の前記伝熱管の内面には前記伝熱管の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンを形成するので、耐食性を有する伝熱管には孔食が発生することがほとんどなく、また伝熱管の内面の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンにより高い熱交換能力を得ることができる。   As described above, according to the heat exchanger of the present invention, even if it is made of all aluminum, the plate fin is made of aluminum or aluminum alloy, and the heat transfer tube is formed on the outer surface of the cylindrical core material made of aluminum or aluminum alloy. An aluminum clad tube having a coating layer coated with an aluminum alloy whose material has a lower corrosion potential than the core material is used, and the inner surface of the heat transfer tube of the aluminum clad tube extends in a direction that forms an angle with the longitudinal direction of the heat transfer tube. Since the fins are made of fine projections, pitting corrosion is hardly generated in the heat transfer tubes having corrosion resistance, and a plurality of fine projections extending in a direction that forms an angle with the longitudinal direction of the inner surface of the heat transfer tubes. High heat exchange capability can be obtained with the fins.

以下に、本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は本発明の第1の実施の形態における熱交換器の斜視図、図2は同熱交換器に用いる伝熱管の断面図、図3は図2におけるA−A断面図である。
(Embodiment 1)
FIG. 1 is a perspective view of a heat exchanger according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of a heat transfer tube used in the heat exchanger, and FIG. 3 is a cross-sectional view along AA in FIG.

図1において、プレートフィンアンドチューブタイプの熱交換器は、一定間隔で平行に並べられるとともに、その間を気体3が流動する複数のプレートフィン1と、プレートフィン1に所定の段ピッチおよび列ピッチで略直角に挿入され、内部を流体4が流動する略円筒状の伝熱管2から構成され、伝熱管2は、伝熱管2の拡管や、接着、ろう付けなどによりプレートフィン1に密着している。   In FIG. 1, plate fin and tube type heat exchangers are arranged in parallel at regular intervals, a plurality of plate fins 1 through which a gas 3 flows, and plate fins 1 with a predetermined step pitch and row pitch. The heat transfer tube 2 is inserted at a substantially right angle and has a substantially cylindrical heat transfer tube 2 in which the fluid 4 flows. The heat transfer tube 2 is in close contact with the plate fin 1 by expansion of the heat transfer tube 2, adhesion, brazing, or the like. .

本発明の実施の形態1における熱交換器は、プレートフィン1の材質と伝熱管2の材質および、伝熱管2の内面形状に特徴がある。すなわち、プレートフィン1の材質はアルミニウムまたはアルミニウム合金とし、伝熱管2は、図2および図3に示すように、材質がアルミニウムまたはアルミニウム合金の円筒状の芯材21の外面に、芯材21より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層22を有するアルミニウムクラッド管である。さらに、アルミニウムクラッド管の伝熱管2の内面には伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23が形成されている。   The heat exchanger according to Embodiment 1 of the present invention is characterized by the material of the plate fins 1, the material of the heat transfer tubes 2, and the inner shape of the heat transfer tubes 2. That is, the material of the plate fin 1 is aluminum or aluminum alloy, and the heat transfer tube 2 is formed on the outer surface of the cylindrical core material 21 made of aluminum or aluminum alloy, as shown in FIGS. This is an aluminum clad tube having a coating layer 22 coated with an aluminum alloy having a low corrosion potential. Furthermore, a plurality of fine projecting fins 23 extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube 2 are formed on the inner surface of the heat transfer tube 2 of the aluminum clad tube.

また、アルミニウムクラッド管の伝熱管2の芯材21はJIS A 3003など3000系のAl−Mn系合金を用い、伝熱管2の外面の被覆層22にはJIS A 7072など伝熱管2の芯材21より腐食電位が卑で、伝熱管2の芯材21の腐食に対して犠牲材となるAl−Zn系合金を用いる。   The core material 21 of the heat transfer tube 2 of the aluminum clad tube is made of a 3000 series Al—Mn alloy such as JIS A 3003, and the coating layer 22 on the outer surface of the heat transfer tube 2 is the core material of the heat transfer tube 2 such as JIS A 7072. An Al—Zn alloy that has a lower corrosion potential than 21 and is a sacrificial material against the corrosion of the core material 21 of the heat transfer tube 2 is used.

また、プレートフィン1のアルミニウムまたはアルミニウム合金の材質は、伝熱管2の芯材21の材質より腐食電位が卑であるものまたは同等であるものを用いる。例えば、プレートフィン1はJIS A 1050など1000系の工業用純アルミニウム、または伝熱管2の芯材21と同じ材質のアルミニウム合金を用い、すなわち、伝熱管2の芯材21の材質がJIS A 3003であればプレートフィン1の材質としてもJIS A 3003を用いる。   In addition, the material of the plate fin 1 made of aluminum or aluminum alloy is one having a lower or lower corrosion potential than the material of the core material 21 of the heat transfer tube 2. For example, the plate fin 1 is made of 1000 series industrial pure aluminum such as JIS A 1050, or an aluminum alloy made of the same material as the core material 21 of the heat transfer tube 2, that is, the material of the core material 21 of the heat transfer tube 2 is JIS A 3003. If so, JIS A 3003 is used as the material of the plate fin 1.

伝熱管2の内部を流通させる流体4としては、HFC冷媒またはHC冷媒またはCO冷媒のいずれか、またはそれらを1つ以上含む混合冷媒を使用する。 As the fluid 4 that circulates inside the heat transfer tube 2, either an HFC refrigerant, an HC refrigerant, a CO 2 refrigerant, or a mixed refrigerant including one or more of them is used.

以上のように構成されたプレートフィンアンドチューブタイプのオールアルミニウム製の熱交換器は、プレートフィン1の材質をアルミニウムまたはアルミニウム合金とし、伝熱管2は、材質がアルミニウムまたはアルミニウム合金の円筒状芯材21の外面に芯材21より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層22を有するアルミニウムクラッド管とし、さらに、アルミニウムクラッド管の伝熱管2の内面には伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23が形成されているので、伝熱管2の内面に形成された伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23による内面の伝熱面積の増大効果、および内面を流動する流体4への攪拌効果、および内面を流動する流体4が二相流のとき引き起こされるらせん流による液膜の掻き揚げ効果で、高い伝熱性能を得ることができるとともに、伝熱管2に何らかの要因による腐食が始まったときも、アルミニウムクラッド管の芯材21より腐食電位が卑な材質の被覆層22に先に腐食が進んで、被覆層22が消滅するまで芯材21が腐食することはなく、伝熱管2に腐食による貫通孔が発生して、内部を流動する流体4が外部に洩れる現象を遅らせることができる。   In the plate fin and tube type all-aluminum heat exchanger configured as described above, the material of the plate fin 1 is aluminum or aluminum alloy, and the heat transfer tube 2 is a cylindrical core material made of aluminum or aluminum alloy. An aluminum clad tube having a coating layer 22 coated on the outer surface of the core 21 with an aluminum alloy whose corrosion potential is lower than that of the core material 21, and on the inner surface of the heat transfer tube 2 of the aluminum clad tube Since a plurality of fine protruding fins 23 extending in an angled direction are formed, a plurality of fine protruding fins extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube 2 formed on the inner surface of the heat transfer tube 2 23 increases the heat transfer area of the inner surface, stirs the fluid 4 flowing on the inner surface, and flows on the inner surface. High heat transfer performance can be obtained by the effect of the liquid film scraping caused by the spiral flow caused when the body 4 is a two-phase flow, and when the corrosion of the heat transfer tube 2 due to some factors starts, Corrosion proceeds first to the coating layer 22 of a material having a lower corrosion potential than the core material 21, and the core material 21 does not corrode until the coating layer 22 disappears, and a through hole is generated in the heat transfer tube 2 due to corrosion. Thus, the phenomenon that the fluid 4 flowing inside leaks to the outside can be delayed.

また、アルミニウムクラッド管の伝熱管2の芯材21はJIS A 3003など3000系のAl−Mn系合金を用い、伝熱管2の外面の被覆層22にはJIS A 7072などAl−Zn系合金を用いるので、JIS A 3003など3000系のAl−Mn系合金の材質の芯材21より腐食電位が卑なJIS A 7072などAl−Zn系合金の材質の被覆層22が芯材21の腐食に対して犠牲材となって、被覆層22が消滅するまで芯材21が腐食することがなく、伝熱管2の腐食による貫通孔の発生を抑えることができる。   The core material 21 of the heat transfer tube 2 of the aluminum clad tube is made of 3000 series Al—Mn alloy such as JIS A 3003, and the coating layer 22 on the outer surface of the heat transfer pipe 2 is made of Al—Zn alloy such as JIS A 7072. Therefore, the coating layer 22 made of an Al—Zn alloy such as JIS A 7072 has a lower corrosion potential than the core 21 made of a 3000 series Al—Mn alloy such as JIS A 3003. Thus, the core material 21 does not corrode until the coating layer 22 disappears as a sacrificial material, and the generation of through holes due to the corrosion of the heat transfer tube 2 can be suppressed.

また、プレートフィン1のアルミニウムまたはアルミニウム合金の材質は、伝熱管2の芯材21の材質より腐食電位が卑であるものまたは同等であるものを用いる。具体的には例えば、プレートフィン1はJIS A 1050など1000系の工業用純アルミニウム、または伝熱管2の芯材21と同じ材質のアルミニウム合金を用い、すなわち、伝熱管2の芯材21の材質がJIS A 3003であればプレートフィン1の材質としてもJIS A 3003を用いるので、アルミニウムクラッド管の伝熱管2の被覆層22が芯材21の腐食に対して犠牲材となり消滅してしまってからも、プレートフィン1の腐食電位が芯材21の腐食電位と同等であれば芯材21がプレートフィン1より先に腐食することがなく、さらにプレートフィン1の腐食電位が伝熱管2の芯材21の腐食電位より卑であれば、プレートフィン1が伝熱管2の芯材21の腐食に対し、伝熱管2の被覆層22に替わって継続して犠牲材となって、芯材21に腐食貫通孔が発生するのを遅らせることができる。   In addition, the material of the plate fin 1 made of aluminum or aluminum alloy is one having a lower or lower corrosion potential than the material of the core material 21 of the heat transfer tube 2. Specifically, for example, the plate fin 1 is made of 1000 series industrial pure aluminum such as JIS A 1050 or an aluminum alloy of the same material as the core material 21 of the heat transfer tube 2, that is, the material of the core material 21 of the heat transfer tube 2. If JIS A 3003 is used, JIS A 3003 is used as the material of the plate fin 1, so that the coating layer 22 of the heat transfer tube 2 of the aluminum clad tube becomes a sacrificial material against the corrosion of the core material 21 and disappears. However, if the corrosion potential of the plate fin 1 is equal to the corrosion potential of the core material 21, the core material 21 will not corrode prior to the plate fin 1, and the corrosion potential of the plate fin 1 will be the core material of the heat transfer tube 2. If the corrosion potential of the heat transfer tube 2 is lower than the corrosion potential of the heat transfer tube 2, the plate fin 1 continues to be sacrificed instead of the coating layer 22 of the heat transfer tube 2. Becomes, corrosion through hole in the core material 21 can be delayed to occur.

また、本発明の実施の形態1における熱交換器の伝熱管2の内部を流通させる流体4としては、HFC冷媒またはHC冷媒またはCO冷媒のいずれか、またはそれらを1つ以上含む混合冷媒を使用するので、地球環境に配慮した商品とすることができる。 As the fluid 4 to flow inside the heat transfer tubes 2 of the heat exchanger in the first embodiment of the present invention, either HFC refrigerant or HC refrigerant or CO 2 refrigerant, or the refrigerant mixture containing them one or more Since it is used, it can be made into a product in consideration of the global environment.

なお、アルミニウムクラッド管の伝熱管2の内面に伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23を形成する製造法としては、内面が平滑なアルミニウムクラッド管を押出し加工で作成してから転造加工で内面に複数のらせん状の微細な突起状フィン23を設ける方法や、後で内側の芯材21となる板と、後で外側の被覆層22となる板を貼り合わせたものの後で内表面となる芯材21の表面に、伝熱管2の長手方向と角度をなす方向に延びる複数の微細な突起状フィン23を機械加工してから、合せ
目を電縫溶接する方法が考えられる。
As a manufacturing method for forming a plurality of fine protruding fins 23 extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube 2 on the inner surface of the heat transfer tube 2 of the aluminum clad tube, an aluminum clad tube having a smooth inner surface is extruded. A method of providing a plurality of fine spiral-shaped fins 23 on the inner surface by rolling after forming, or a plate that later becomes the inner core member 21 and a plate that later becomes the outer coating layer 22 After machining a plurality of fine projecting fins 23 extending in a direction that makes an angle with the longitudinal direction of the heat transfer tube 2 on the surface of the core material 21 that becomes the inner surface after bonding, the seam is electrically connected. A method of sewing welding is conceivable.

本発明にかかるオールアルミニウム製のプレートフィンアンドチューブタイプの熱交換器は、プレートフィンの材質はアルミニウムまたはアルミニウム合金とし、伝熱管は、材質がアルミニウムまたはアルミニウム合金の円筒状芯材の外面に、芯材より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層を有するアルミニウムクラッド管を用い、アルミニウムクラッド管の伝熱管の内面には伝熱管の長手方向と角度をなす方向に延びる複数の微細な突起状フィンを形成するもので、この構成によって、オールアルミニウム製の熱交換器は、耐食性を有する伝熱管に孔食が発生することがほとんどなく、また伝熱管の内面の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンにより高い熱交換能力を得ることができるので、ルームエアコン、パッケージエアコン、カーエアコン、ヒートポンプ式給湯機、冷蔵庫、冷凍庫などの熱交換器として有用である。   In the all-aluminum plate fin and tube type heat exchanger according to the present invention, the plate fin is made of aluminum or aluminum alloy, and the heat transfer tube is formed on the outer surface of a cylindrical core made of aluminum or aluminum alloy. Using an aluminum clad tube having a coating layer coated with an aluminum alloy whose corrosion potential is lower than that of the material, the inner surface of the heat transfer tube of the aluminum clad tube has a plurality of fine lines extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube. With this configuration, the all-aluminum heat exchanger has almost no pitting corrosion in the corrosion-resistant heat transfer tube and forms an angle with the longitudinal direction of the inner surface of the heat transfer tube. Since a high heat exchange capability can be obtained by a plurality of fine protruding fins extending in the direction, Mueakon, packaged air conditioners, car air, heat pump water heater, is useful refrigerator, as a heat exchanger such as a freezer.

本発明の実施の形態1における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器に用いる伝熱管の断面図Sectional drawing of the heat exchanger tube used for the heat exchanger in Embodiment 1 of this invention 図2のA−A断面図AA sectional view of FIG. 従来のオールアルミニウム製熱交換器に用いられている伝熱管の断面図Sectional view of a heat transfer tube used in a conventional all-aluminum heat exchanger 従来の内面が平滑なアルミニウムクラッド管の断面図Sectional view of a conventional aluminum clad tube with a smooth inner surface

符号の説明Explanation of symbols

1 プレートフィン
2 伝熱管
3 気体
4 流体
21 芯材
22 被覆層
23 突起状フィン
1 Plate Fin 2 Heat Transfer Tube 3 Gas 4 Fluid 21 Core Material 22 Covering Layer 23 Projection Fin

Claims (5)

一定間隔で平行に並べられるとともに、その間を気体が流動するプレートフィン群と、前記プレートフィン群に所定の段ピッチ・列ピッチで略直角に挿入され、内部を流体が流動する略円筒状の伝熱管群から構成され、前記伝熱管を拡管することなどにより前記プレートフィンに密着させるプレートフィンアンドチューブタイプの熱交換器において、前記プレートフィンの材質はアルミニウムまたはアルミニウム合金とし、前記伝熱管は、材質がアルミニウムまたはアルミニウム合金の円筒状芯材の外面に芯材より腐食電位が卑な材質のアルミニウム合金で被覆した被覆層を有するアルミニウムクラッド管を用い、アルミニウムクラッド管の前記伝熱管の内面には前記伝熱管の長手方向と角度をなす方向に延びる複数の微細な突起状のフィンが形成されていることを特徴とする熱交換器。 Plate fin groups arranged in parallel at regular intervals and gas flowing between them, and inserted into the plate fin groups at a substantially right angle with a predetermined step pitch and row pitch, and a substantially cylindrical transmission through which fluid flows. In a plate fin and tube type heat exchanger composed of a heat tube group and closely contacting the plate fin by expanding the heat transfer tube, the plate fin is made of aluminum or an aluminum alloy, and the heat transfer tube is made of a material Uses an aluminum clad tube having a coating layer coated with an aluminum alloy of a material whose corrosion potential is lower than that of the core material on the outer surface of the cylindrical core material of aluminum or aluminum alloy, and the inner surface of the heat transfer tube of the aluminum clad tube A plurality of fine protrusion-like fins extending in a direction that forms an angle with the longitudinal direction of the heat transfer tube Heat exchanger, characterized in that it is formed. 前記伝熱管の芯材はJIS A 3003など3000系のAl−Mn系合金を用い、前記伝熱管の外面の被覆層はJIS A 7072など前記伝熱管の芯材より腐食電位が卑で、前記伝熱管の芯材の腐食に対して犠牲材となるAl−Zn系合金を用いたことを特徴とする請求項1に記載の熱交換器。 The core material of the heat transfer tube is made of a 3000 series Al-Mn alloy such as JIS A 3003, and the coating layer on the outer surface of the heat transfer tube has a lower corrosion potential than the core material of the heat transfer tube such as JIS A 7072. The heat exchanger according to claim 1, wherein an Al-Zn alloy that is a sacrificial material against corrosion of the core material of the heat pipe is used. 前記プレートフィンのアルミニウムまたはアルミニウム合金の材質は、前記伝熱管の芯材の材質より腐食電位が同等以下であることを特徴とする請求項1または2に記載の熱交換器。 3. The heat exchanger according to claim 1, wherein the plate fin is made of aluminum or an aluminum alloy having a corrosion potential equal to or less than that of a core material of the heat transfer tube. 前記プレートフィンはJIS A 1050など1000系の工業用純アルミニウム、または前記伝熱管の芯材と同じ材質のアルミニウム合金を用いたことを特徴とする請求項2〜3のいずれか1項に記載の熱交換器。 The said plate fin used 1000 series industrial pure aluminums, such as JIS A1050, or the aluminum alloy of the same material as the core material of the said heat exchanger tube, The any one of Claims 2-3 characterized by the above-mentioned. Heat exchanger. 前記伝熱管の内部を流通させる流体として、HFC冷媒またはHC冷媒またはCO冷媒のいずれかまたはそれらを1つ以上含む混合冷媒を使用することを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。 5. The HFC refrigerant, the HC refrigerant, the CO 2 refrigerant, or a mixed refrigerant containing one or more of them is used as the fluid that circulates inside the heat transfer tube. The heat exchanger as described in.
JP2008101220A 2008-04-09 2008-04-09 Heat exchanger Pending JP2009250562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101220A JP2009250562A (en) 2008-04-09 2008-04-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101220A JP2009250562A (en) 2008-04-09 2008-04-09 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009250562A true JP2009250562A (en) 2009-10-29

Family

ID=41311460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101220A Pending JP2009250562A (en) 2008-04-09 2008-04-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009250562A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235751A (en) * 2011-03-08 2011-11-09 海尔集团公司 Heat exchange tube of water heater and manufacturing method thereof
CN102235747A (en) * 2011-03-08 2011-11-09 海尔集团公司 Water heater with built-in composite heat exchange tube in water tank
WO2012014934A1 (en) * 2010-07-27 2012-02-02 住友軽金属工業株式会社 Serpentine heat exchanger for an air conditioner
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP2015038414A (en) * 2013-07-18 2015-02-26 三菱アルミニウム株式会社 Method of manufacturing heat exchanger
CN106524332A (en) * 2015-09-09 2017-03-22 江森自控日立空调技术(香港)有限公司 Air conditioner and manufacturing method thereof
WO2019059595A1 (en) * 2017-09-19 2019-03-28 삼성전자주식회사 Heat exchanger and air conditioner comprising same
CN117916537A (en) * 2021-09-30 2024-04-19 大金工业株式会社 Air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd High strength and high corrosion resistant aluminum alloy clad material for heat exchanger
JP2001124480A (en) * 1999-10-28 2001-05-11 Mitsubishi Shindoh Co Ltd Heat exchangers and heat exchangers
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2004044909A (en) * 2002-07-11 2004-02-12 Kobe Steel Ltd Aluminum fin material for heat exchanger, fin, and fin tube type heat exchanger
JP2005090839A (en) * 2003-09-17 2005-04-07 Zexel Valeo Climate Control Corp Heat exchange tube
JP2005134053A (en) * 2003-10-31 2005-05-26 Sumitomo Light Metal Ind Ltd Internal grooved heat transfer tube and heat exchanger manufacturing method using the same
JP2005257160A (en) * 2004-03-11 2005-09-22 Furukawa Electric Co Ltd:The Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2005288502A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube expanding tool and method for expanding tube using the same
JP2007163073A (en) * 2005-12-15 2007-06-28 Denso Corp Method for manufacturing tube for heat exchanger and heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd High strength and high corrosion resistant aluminum alloy clad material for heat exchanger
JP2001124480A (en) * 1999-10-28 2001-05-11 Mitsubishi Shindoh Co Ltd Heat exchangers and heat exchangers
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2004044909A (en) * 2002-07-11 2004-02-12 Kobe Steel Ltd Aluminum fin material for heat exchanger, fin, and fin tube type heat exchanger
JP2005090839A (en) * 2003-09-17 2005-04-07 Zexel Valeo Climate Control Corp Heat exchange tube
JP2005134053A (en) * 2003-10-31 2005-05-26 Sumitomo Light Metal Ind Ltd Internal grooved heat transfer tube and heat exchanger manufacturing method using the same
JP2005257160A (en) * 2004-03-11 2005-09-22 Furukawa Electric Co Ltd:The Heat transfer pipe with grooved inner surface and heat exchanger using the heat transfer tube with grooved inner surface
JP2005288502A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube expanding tool and method for expanding tube using the same
JP2007163073A (en) * 2005-12-15 2007-06-28 Denso Corp Method for manufacturing tube for heat exchanger and heat exchanger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026165A (en) * 2010-07-27 2013-04-03 住友轻金属工业株式会社 Serpentine heat exchanger for an air conditioner
JPWO2012014934A1 (en) * 2010-07-27 2013-09-12 住友軽金属工業株式会社 Serpentine heat exchanger for air conditioner
WO2012014934A1 (en) * 2010-07-27 2012-02-02 住友軽金属工業株式会社 Serpentine heat exchanger for an air conditioner
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
CN103097850A (en) * 2010-09-27 2013-05-08 古河Sky株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JPWO2012043492A1 (en) * 2010-09-27 2014-02-06 株式会社Uacj Aluminum alloy inner surface grooved heat transfer tube
JP2016164489A (en) * 2010-09-27 2016-09-08 株式会社Uacj Aluminum alloy inner surface grooved heat transfer tube
CN102235751A (en) * 2011-03-08 2011-11-09 海尔集团公司 Heat exchange tube of water heater and manufacturing method thereof
CN102235747A (en) * 2011-03-08 2011-11-09 海尔集团公司 Water heater with built-in composite heat exchange tube in water tank
JP2015038414A (en) * 2013-07-18 2015-02-26 三菱アルミニウム株式会社 Method of manufacturing heat exchanger
CN106524332A (en) * 2015-09-09 2017-03-22 江森自控日立空调技术(香港)有限公司 Air conditioner and manufacturing method thereof
WO2019059595A1 (en) * 2017-09-19 2019-03-28 삼성전자주식회사 Heat exchanger and air conditioner comprising same
US11125505B2 (en) 2017-09-19 2021-09-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same
CN117916537A (en) * 2021-09-30 2024-04-19 大金工业株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP2009250562A (en) Heat exchanger
EP2620736B1 (en) Heat exchanger and air-conditioning apparatus having the same
JP6172950B2 (en) Double tube for heat exchanger
CN100425939C (en) Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger
CN103026165B (en) Serpentine heat exchanger for an air conditioner
JP6004202B2 (en) Air conditioner heat exchanger
JP6197338B2 (en) Heat exchanger
JP2005090761A (en) Air conditioner
JP6074648B2 (en) Tube member assembly and heat exchanger of refrigeration cycle apparatus
JP2000081294A (en) Heat exchanger
JP2006214702A (en) Heat exchanger, method of manufacturing heat exchanger, and plate-shaped fin for heat exchanger
JP2004170061A (en) Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger
JP2012097920A (en) Heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
CN111556950A (en) Heat Exchanger for Refrigerator
WO2011162170A1 (en) Double tube for heat exchanger
WO2012017777A1 (en) Double pipe for heat exchanger
JP2001208494A (en) Heat exchanger
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2015049016A (en) Heat exchanger for air conditioning equipment
JP2011185589A (en) Serpentine heat exchanger for air conditioner
JP5066709B2 (en) Manufacturing method of flat tube
JP4934379B2 (en) Heat exchanger
JP2004239486A (en) Heat exchanger and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100312

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Effective date: 20111214

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A02