JP6142929B2 - ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 - Google Patents
ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 Download PDFInfo
- Publication number
- JP6142929B2 JP6142929B2 JP2015560011A JP2015560011A JP6142929B2 JP 6142929 B2 JP6142929 B2 JP 6142929B2 JP 2015560011 A JP2015560011 A JP 2015560011A JP 2015560011 A JP2015560011 A JP 2015560011A JP 6142929 B2 JP6142929 B2 JP 6142929B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- composite hydroxide
- nickel
- particles
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Materials Engineering (AREA)
Description
本発明のニッケルマンガン複合水酸化物粒子(以下、「複合水酸化物粒子」という)の製造方法は、一般式:NixMnyMt(OH)2+α(0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、0≦α≦0.5、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される、複数の一次粒子が凝集して形成された二次粒子からなる複合水酸化物粒子の製造方法である。特に、本発明の複合水酸化物粒子の製造方法は、少なくともニッケル塩およびマンガン塩を含む金属化合物の水溶液と、アンモニウムイオン供給体を含む水溶液と、アルカリ溶液とを、反応槽内に供給し、混合することにより反応水溶液を形成し、複合水酸化物粒子を晶析させる際に、反応槽内の酸素濃度を3.0容量%以下とし、反応水溶液の温度を35℃〜60℃、かつ、ニッケルイオン濃度を1000mg/L以上に制御することを特徴とする。このような製造方法(晶析工程)によれば、工業規模の製造において、量産性を犠牲にすることなく、円形度の高い複合水酸化物粒子を効率よく得ることができる。
a)原料水溶液
原料水溶液としては、少なくともニッケル塩およびマンガン塩を含む水溶液、すなわち、ニッケル塩やマンガン塩を溶解した水溶液を用いることができる。ニッケル塩およびマンガン塩としては、硫酸塩、硝酸塩、および塩化物からなる群より選ばれる少なくとも1種を使用することができる。これらの中でも、コストや廃液処理の観点から、硫酸塩を使用することが好ましい。
アンモニウムイオン供給体を含む水溶液としては、反応水溶液中でニッケルアンミン錯体を形成可能なものであれば、特に制限されることなく使用することができる。具体的には、アンモニア水、硫酸アンモニウム水溶液、および塩化アンモニウム水溶液からなる群から選ばれる少なくとも1種を使用することができる。これらの中でも、取扱いの容易性から、アンモニア水を使用することが好ましい。
アルカリ溶液としては、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。これらの中でも、コストや取扱いの容易性の観点から、水酸化ナトリウム水溶液を使用することが好ましい。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度は、12質量%〜30質量%とすることが好ましく、20質量%〜30質量%とすることがより好ましい。アルカリ金属水酸化物水溶液の濃度が12質量%未満では、反応槽への供給量が増大し、粒子が十分に成長しないおそれがある。一方、アルカリ金属水酸化物水溶液の濃度が30質量%を超えると、アルカリ金属水酸化物の添加位置で局所的にpH値が高くなり、微粒子が発生するおそれがある。
a)ニッケルイオン濃度
[ニッケルイオン濃度]
本発明では、上述した原料水溶液と、アンモニウムイオン供給体を含む水溶液と、アルカリ溶液とを、反応槽内に供給し、混合することにより形成される反応水溶液のニッケルイオン濃度を特定の範囲に制御することが必要となる。なお、マンガンは、ニッケルと比べてアンミン錯体を形成しにくく、反応水溶液のアンモニウムイオン濃度やpH値の変動による濃度変化がきわめて少ないため、本発明の条件で晶析反応を行う限り、その影響を無視することができる。
反応水溶液中のニッケルイオン濃度は、反応水溶液の温度や反応槽内の雰囲気を一定範囲に制御した上で、反応水溶液のpH値やアンモニウムイオン濃度を調整することによって制御される。すなわち、ニッケルイオン濃度を上述した範囲に制御するためには、反応水溶液の温度および反応槽内の雰囲気を後述する範囲に制御した上で、アルカリ溶液およびアンモニウムイオン供給体の供給量を調整し、反応水溶液のpH値を、液温25℃基準で、好ましくは10.5〜13.0、より好ましくは11.5〜13.0の範囲に制御し、かつ、アンモニウムイオンの濃度を、好ましくは5g/L〜25g/L、より好ましくは5g/L〜20g/L、さらに好ましくは10g/L〜20g/Lの範囲に制御することが必要となる。
上述したように、反応水溶液中のマンガンは、微量の酸素によっても容易に酸化し、一次粒子が微細化する。このような傾向は、複合水酸化物粒子中のマンガン含有量が増加するほど顕著となる。このため、マンガンを多く含む複合水酸化物粒子(二次粒子)の円形度を向上させるためには、反応水溶液中のマンガンの酸化を抑制することが重要となる。
反応水溶液の温度は、35℃〜60℃、好ましくは35℃〜55℃、より好ましくは35℃〜45℃の範囲に制御する。反応水溶液の温度が35℃未満では、ニッケルの溶解度が低くなりすぎるため、核の生成量が増大し、複合水酸化物粒子を所定の大きさまで成長させることが困難となるばかりか、微粒子の割合が増加し、粒度分布が悪化する。一方、60℃を超えると、ニッケルの溶解度が高くなるばかりでなく、アンモニアの揮発が激しくなり、反応水溶液のアンモニウムイオン濃度を所定の範囲に制御することが困難となる。また、得られる複合水酸化物粒子の結晶性が崩れ、その円形度が低下してしまう。
本発明の複合水酸化物粒子を製造するための装置(反応槽)は、撹拌手段を備え、少なくともニッケル塩およびマンガン塩を含む原料水溶液と、アンモニウムイオン供給体を含む水溶液とを一定速度で連続供給し、アルカリ溶液を、その添加量を調整しながら供給することができるものであれば特に制限されることはない。ただし、温度制御手段やpH値制御手段などを備えるものが好ましい。
本発明の複合水酸化物粒子は、上述した製造方法によって得られ、一般式:NixMnyMt(OH)2+α(0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、0≦α≦0.5、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される、複数の一次粒子が凝集して形成された二次粒子からなる複合水酸化物粒子であって、この複合水酸化物粒子のうち、平均粒径の70%以上の粒径を有する複合水酸化物粒子の円形度の平均値が0.82以上であり、かつ、タップ密度が2.20g/cm3以上であることを特徴とする。このような複合水酸化物粒子は、高い円形度を備えていると評価することができ、これを前駆体とすることで、円形度が高く、充填性に優れた正極活物質を得ることが可能となる。
ニッケル(Ni)は、電池容量の向上に寄与する。ニッケルの含有量を示すxの値は、0.05〜0.95、好ましくは0.10〜0.90、より好ましくは0.20〜0.75とする。xの値が0.05未満では、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池の電池容量が低下してしまう。一方、xの値が0.95を超えると、熱安定性が低下し、この複合水酸化物粒子を前駆体とする正極活物質を用いた二次電池を、高温環境下で保存または使用した場合に、十分な特性を得ることができない。
本発明においては、平均粒径(体積平均粒径)の70%以上の粒径を有する複合水酸化物粒子の円形度γ1の平均値を、0.82以上、好ましくは0.83以上に制御することが重要となる。円形度γ1の平均値をこのような範囲に制御することにより、この複合水酸化物粒子を前駆体とする正極活物質の円形度γ2の平均値を所定の範囲(0.82以上)とすることができる。これに対して、円形度γ1の平均値が0.82未満では、正極活物質の円形度γ2の平均値も低下し、その充填性を改善することができない。
本発明では、平均粒径の70%以上の粒径を有する複合水酸化物粒子の円形度γ1の平均値を0.82以上に規制するとともに、複合酸化物粒子全体のタップ密度を2.20g/cm3以上、好ましくは2.30g/cm3以上、より好ましくは2.35g/cm3以上に規制することが必要である。タップ密度が2.20g/cm3未満では、円形度γ1の平均値を0.82以上とした場合であっても、複合水酸化物粒子を前駆体とする正極活物質の充填性を十分に改善することができない。一方、タップ密度は大きいほど好ましく、その上限値が制限されることはないが、通常の条件で複合水酸化物粒子を製造する場合には、3.30g/cm3程度がその上限値となる。
本発明では、二次粒子の平均粒径を、好ましくは7.0μm〜25.0μm、より好ましくは7.0μm〜17.0μm、さらに好ましくは7.0μm〜15.0μm、特に好ましくは8.0μm〜11.0μmの範囲に調整することが必要となる。ここで、平均粒径とは、体積平均粒径を意味し、レーザ光回折散乱式粒度分布計により求めることができる。二次粒子の平均粒径が7.0μm未満では、タップ密度を上記範囲に規制することが困難となる。一方、二次粒子の平均粒径が25.0μmを超えると、この複合水酸化物粒子を前駆体とする正極活物質の比表面積が低下するため、これを用いて二次電池を構成した場合に、電解液との界面が減少し、正極抵抗の上昇および出力特性の低下を招くこととなる。
本発明の複合水酸化物粒子において、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕は、0.80〜1.20であることが好ましく、0.80〜1.10であることがより好ましく、0.85〜1.10であることがさらに好ましい。〔(d90−d10)/平均粒径〕が0.80未満では、複合水酸化物粒子の粒径が均一になりすぎるため、タップ密度を上述した範囲に規制することが困難となる。一方、〔(d90−d10)/平均粒径〕が1.20を超えると、複合水酸化物粒子中の微粒子や粗大粒子の割合が増加し、安全性やサイクル特性が低下するおそれがある。
本発明の正極活物質の製造方法は、上述した複合水酸化物粒子を前駆体として用い、所定の円形度γ2、平均粒径、および粒度分布を備える正極活物質を合成することができる限り、特に制限されることはない。しかしながら、工業規模の製造を前提とした場合には、上述した複合水酸化物粒子をリチウム化合物と混合し、リチウム混合物を得る、混合工程と、得られたリチウム混合物を、酸化性雰囲気下、720℃〜1000℃で焼成する焼成工程とを備える製造方法によって正極活物質を合成することが好ましい。なお、必要に応じて、本発明の正極活物質の製造方法に、熱処理工程や仮焼工程などの工程を追加してもよい。
本発明の正極活物質の製造方法においては、任意的に、混合工程の前に熱処理工程を設けて、複合水酸化物粒子を熱処理粒子としてからリチウム化合物と混合してもよい。ここで、熱処理粒子には、熱処理工程において余剰水分が除去された複合水酸化物粒子のみならず、熱処理工程により、酸化物に転換されたニッケルマンガン複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。
混合工程は、上述した複合水酸化物粒子または熱処理粒子に、リチウム化合物を混合して、リチウム混合物を得る工程である。
リチウム化合物として水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後、焼成工程の前に、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃〜800℃、好ましくは450℃〜780℃で仮焼する仮焼工程を行ってもよい。これにより、複合水酸化物粒子または熱処理粒子中に、リチウムを十分に拡散させることができ、より均一なリチウム複合酸化物粒子を得ることができる。
焼成工程は、混合工程で得られたリチウム混合物を、所定条件で焼成し、室温まで冷却して、リチウムニッケルマンガン複合酸化物粒子(以下、「リチウム複合酸化物粒子」という)を得る工程である。なお、本発明において、焼成工程で用いる焼成炉は特に制限されることはないが、炉内の雰囲気を適切に制御する観点から、ガス発生の内の電気炉が好ましく、バッチ式または連続式のいずれも用いることができる。
焼成工程によって得られたリチウム複合酸化物粒子は、凝集または軽度の焼結が生じている場合がある。このような場合には、リチウム複合酸化物粒子の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の平均粒径や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作のことである。
本発明の非水電解質二次電池用正極活物質は、一般式:Li1+uNixMnyMtO2(−0.05≦u≦0.50、0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、層状構造を有する六方晶系リチウム複合酸化物粒子からなり、平均粒径の70%以上の粒径を有する正極活物質についての円形度の平均値が0.82以上であり、かつ、タップ密度が2.20g/cm3以上であることを特徴とする。このような正極活物質は、所定の粒径を有する粒子の円形度が高く、充填性に優れるため、これを用いた二次電池を高容量で、サイクル特性に優れたものとすることができる。また、近年、二次電池のパッキングや電子伝導性の問題から、電極の厚さを数十ミクロン程度に抑えることが要求されているが、この正極活物質であれば、このような要求を満足することができる。
リチウム(Li)の過剰量を示すuの値は、−0.05〜0.50、好ましくは−0.05〜0.30、より好ましくは0.00〜0.20とする。uの値が−0.05未満では、この正極活物質を用いた二次電池の正極抵抗が大きくなるため、電池の出力が低くなってしまう。一方、uの値が0.50を超えると、この正極活物質を用いた二次電池の初期放電容量が低下するばかりでなく、その正極抵抗が増加してしまう。
a)円形度
本発明において、平均粒径(体積平均粒径)の70%以上の粒径を有する正極活物質の円形度γ2の平均値は、0.82以上、好ましくは0.83以上、より好ましくは0.84以上に制御される。このような正極活物質は、モフォロジーに優れ、高い充填性を備えたものと評価することができる。これに対して、円形度γ2の平均値が0.82未満では、正極活物質のモフォロジーが悪化し、充填性を十分に向上させることができない。
本発明においては、円形度γ2を評価する対象を、平均粒径の70%以上の粒径を有する正極活物質に限定している。これは、平均粒径の70%未満の粒径を有する正極活物質は、二次粒子が十分に発達していないため、円形度γ2を正確に測定することができないからである。また、平均粒径の70%未満の粒径を有する正極活物質は、より大きな粒径を有する正極活物質同士の間に入り込むため、充填性に対する影響が小さいからである。すなわち、円形度γ2に支配的な影響を及ぼすのは、平均粒径の70%以上の粒径を有する比較的大きな正極活物質であり、平均粒径の70%未満の粒径を有する正極活物質を含めて、円形度γ2を評価した場合には、上述した円形度γ2と充填性の相関関係が崩れ、正極活物質の充填性を十分に向上させることができなくなるからである。
本発明では、平均粒径の70%以上の粒径を有する正極活物質の円形度γ2の平均値を0.82以上に規制するとともに、正極活物質全体のタップ密度を2.20g/cm3以上、好ましくは2.40g/cm3以上、より好ましくは2.45g/cm3以上に規制することが必要である。タップ密度が2.20g/cm3未満では、円形度γ2の平均値を0.82以上とした場合であっても、正極活物質の充填性を十分に改善することができない。なお、タップ密度は大きいほど好ましく、その上限値が制限されることはないが、通常の条件で正極活物質を製造する場合には、3.30g/cm3程度となる。
本発明の正極活物質の平均粒径は、好ましくは7.0μm〜25.0μm、より好ましく7.0μm〜17.0μm、さらに好ましくは7.0μm〜15.0μm、特に好ましくは8.0μm〜11.0μmに制御される。平均粒径が7.0μm未満では、タップ密度を上記範囲に規制することが困難となる。一方、平均粒径が25.0μmを超えると、正極活物質の比表面積が低下するため、これを用いて二次電池を構成した場合に、電解液との界面が減少し、正極抵抗の上昇および出力特性の低下を招くこととなる。なお、平均粒径の意味および求め方については、上述した複合水酸化物粒子の場合と同様であるため、ここでの説明は省略する。
本発明の正極活物質において、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕は、0.80〜1.20であることが好ましく、0.80〜1.10であることがより好ましく、0.85〜1.10であることがさらに好ましい。〔(d90−d10)/平均粒径〕が0.80未満では、正極活物質の粒径が均一になりすぎるため、タップ密度を上述した範囲に規制することが困難となる。一方、〔(d90−d10)/平均粒径〕が1.20を超えると、正極活物質中の微粒子や粗大粒子の割合が増加し、安全性やサイクル特性が低下するおそれがある。なお、〔(d90−d10)/平均粒径〕の求め方については、上述した複合水酸化物粒子の場合と同様であるため、ここでの説明は省略する。
本発明の非水電解質二次電池は、正極、負極、セパレータ、および非水電解液などからなり、一般の非水電解質二次電池と同様の構成要素により構成される。なお、以下に説明する実施形態は例示にすぎず、本発明の非水電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
a)正極
本発明の非水電解質二次電池用正極活物質を用いて、たとえば、以下のようにして、非水電解質二次電池の正極を作製する。
負極には、金属リチウムやリチウム合金を使用することができる。あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥した後、必要に応じて電極密度を高めるために圧縮して形成した材料を使用することができる。
セパレータは、正極と負極とを分離し、電解質を保持するものであり、正極と負極の間に配置される。セパレータとしては、ポリエチレンやポリプロピレンなどからなり、微小な孔を多数有する薄い膜を用いることができる。
非水電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
上述した正極、負極、セパレータ、および非水電解液で構成される非水電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に非水電解液を含浸させ、正極集電体と外部に通じる正極端子との間、および、負極集電体と外部に通じる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水電解質二次電池を完成させる。
本発明の非水電解質二次電池は、正極材料に本発明の正極活物質を用いているため、正極の電極密度が高く、高容量で、サイクル特性に優れていると評価することができる。具体的には、本発明の非水電解質二次電池は、初期放電容量を160mAh/g以上、好ましくは162mAh/g以上、より好ましくは163mAh/g以上とすることができる。同時に、200サイクル容量維持率を90%以上、好ましくは92%以上、より好ましくは93%以上とすることができる。
a)複合水酸化物粒子の作製
はじめに、硫酸ニッケル6水和物と硫酸マンガン7水和物とを、ニッケルとマンガンのモル比がNi:Mn=63:37となるように水に溶解し、ニッケルとマンガンの濃度が、合計で2mol/Lの原料水溶液を調製した。一方、オーバーフロー口までの容量が60Lである反応槽に、上限まで水を入れ、ウォーターバスを用いて槽内温度が40℃となるまで加温した。同時に、反応槽内に20L/分で窒素ガスを導入し、反応槽内を不活性雰囲気(酸素濃度:0.2容量%)に調整した。
[組成]
得られた複合水酸化物粒子の組成を、ICP発光分光分析装置(島津製作所社製、ICPE9000)を用いて測定したところ、一般式:Ni0.63Mn0.37(OH)2で表されるものであることが確認された。
レーザ回折式粒度分布計(日機装株式会社製、マイクロトラック)を用いて、この複合水酸化物粒子の平均粒径を求めたところ、9.7μmであることが確認された。また、同様にして、d90およびd10を求め、これらの値から粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕を求めたところ、0.98であることが確認された。
複合水酸化物粒子の形状を、SEM(株式会社日立製作所製、電界放出形走査電子顕微鏡S−4700)を用いて観察したところ、この複合水酸化物粒子は、複数の一次粒子が凝集して形成された略球状の二次粒子からなることが確認された。次に、平均粒径の70%以上の粒径を有する複合水酸物粒子のうち、任意の20個について、画像処理ソフト(imageJ)を用いて、円形度γ1をそれぞれ測定し、その平均値を算出したところ、0.82であることが確認された。以上の結果を表3に示す。
JIS Z−2504に基づき、容器に採取した複合水酸化物粒子を100回タッピングした後のかさ密度をタップ密度として、振とう比重測定器(蔵持科学器械製作所社製、KRS−406)を用いて測定したところ、2.31g/cm3であることが確認された。
得られた複合水酸化物粒子に対して、大気雰囲気中、150℃で12時間の熱処理を施すことにより熱処理粒子とした(熱処理工程)。この熱処理粒子に、Li/Me=1.15となるように秤量した炭酸リチウムを混合し、リチウム混合物を得た。なお、混合には、シェーカミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製、TURBULA
TypeT2C)を使用した(混合工程)。このリチウム混合物を、空気(酸素濃度:21容量%)気流中、760℃で4時間仮焼した後、950℃で10時間焼成し、室温まで冷却することによりリチウム複合酸化物粒子を得た(仮焼工程、焼成工程)。冷却後のリチウム複合酸化物粒子には軽度の焼結が生じていたため、これを解砕することで正極活物質を得た(解砕工程)。
このようにして得られた正極活物質の組成、平均粒径、粒度分布、円形度、およびタップ密度について、複合水酸化物粒子の場合と同様の方法で評価した。この結果を表4に示す。
反応槽内のアンモニウムイオン濃度およびpH値を調整することにより、ニッケルイオン濃度を表2に示すように制御したこと以外は実施例1と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応槽内に3.0L/分で窒素ガスを導入し、酸素濃度を3.0容量%に調整したこと以外は実施例2と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応槽内に9.0L/分で窒素ガスを導入し、酸素濃度を1.0容量%に調整したこと以外は実施例2と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応水溶液の温度、アンモニウムイオン濃度およびpH値を調整することにより、ニッケルイオン濃度を表2に示すように制御したこと以外は実施例2と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応槽内のアンモニウムイオン濃度およびpH値を調整することにより、ニッケルイオン濃度を表2に示すように制御したこと以外は実施例1と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応槽内に1.5L/分で窒素ガスを導入し、酸素濃度を5.0容量%に維持したこと以外は実施例2と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応水溶液の温度を30℃に制御したこと以外は実施例2と同様にして、複合水酸化物粒子および正極活物質を得て、その評価を行った。この結果を表3および表4に示す。
反応水溶液の温度を65℃に制御したところ、アンモニアの揮発が激しく、反応水溶液のアンモニウムイオン濃度、pH値およびニッケルイオン濃度を制御することが困難となった。このため、比較例5では、晶析反応の途中で、複合水酸化物粒子の作製を中止した。
a)2032型コイン電池の作製
実施例1〜10および比較例1〜4で得られた正極活物質を用いて、図4に示すような2032型コイン電池1を作製した。この2032型コイン電池1は、ケース2と、ケース2内に収容された電極3とから構成される。
得られた2032型コイン電池1の初期放電容量、200サイクル容量維持率、および正極抵抗について評価を行った。
2032型コイン電池1を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cm2として、カットオフ電圧が4.8Vとなるまで充電し、1時間の休止後、カットオフ電圧が2.5Vになるまで放電したときの放電容量を測定する充放電試験を行い、初期放電容量を求めた。この際、充放電容量の測定には、マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。
正極に対する電流密度を2mA/cm2として、4.8Vまで充電して2.0Vまで放電を行うサイクルを200回繰り返した後の放電容量と初期放電容量の比を計算して容量維持率(200サイクル容量維持率)を求めた。
表2〜5より、実施例1〜10の複合水酸化物粒子およびこれを前駆体とする正極活物質は、結晶性および円形度に優れ、高い充填性を備えていることが理解される。また、実施例1〜10の正極活物質を用いた2032型コイン電池は、160mAh/g以上の初期放電容量と、90%以上の200サイクル容量維持率を同時に達成可能であることが理解される。
2 ケース
2a 正極缶
2b 負極缶
2c ガスケット
3 電極
3a 正極
3b 負極
3c セパレータ
Claims (10)
- 一般式:NixMnyMt(OH)2+α(0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、0≦α≦0.5、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される、複数の一次粒子が凝集して形成された二次粒子からなるニッケルマンガン複合水酸化物粒子の製造方法であって、
少なくともニッケル塩およびマンガン塩を含む原料水溶液と、アンモニウムイオン供給体を含む水溶液と、アルカリ溶液とを、反応槽内に供給し、混合することにより反応水溶液を形成し、前記ニッケルマンガン複合水酸化物粒子を晶析させる際に、前記反応水溶液のpH値を、液温25℃基準で10.5〜13.0、アンモニウムイオン濃度を5g/L〜25g/Lの範囲に制御し、かつ、該反応槽内の酸素濃度を3.0容量%以下とし、該反応水溶液の温度を35℃〜60℃、ニッケルイオン濃度を1000mg/L以上に制御する、ニッケルマンガン複合水酸化物粒子の製造方法。 - 前記反応水溶液の温度を35℃〜45℃とする、請求項1に記載のニッケルマンガン複合水酸化物粒子の製造方法。
- 前記ニッケル塩および前記マンガン塩として、硫酸塩、硝酸塩、および塩化物からなる群から選ばれる少なくとも1種を用いる、請求項1または2に記載のニッケルマンガン複合水酸化物粒子の製造方法。
- 前記アンモニウムイオン供給体として、アンモニア、硫酸アンモニウム、および塩化アンモニウムからなる群から選ばれる少なくとも1種を用いる、請求項1〜3のいずれかに記載のニッケルマンガン複合水酸化物粒子の製造方法。
- 前記アルカリ溶液として、水酸化ナトリウム水溶液を用いる、請求項1〜4のいずれかに記載のニッケルマンガン複合水酸化物粒子の製造方法。
- 前記ニッケルマンガン複合水酸化物粒子を、該反応槽内の反応水溶液をオーバーフローさせることにより回収する、請求項1〜5のいずれかに記載のニッケルマンガン複合水酸化物粒子の製造方法。
- 一般式:NixMnyMt(OH)2+α(0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、0≦α≦0.5、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、複数の一次粒子が凝集して形成された二次粒子からなるニッケルマンガン複合水酸化物粒子であって、
平均粒径が7.0μm〜25.0μmであり、かつ、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.80〜1.20である、および、
前記ニッケルマンガン複合水酸化物粒子のうち、平均粒径の70%以上の粒径を有するニッケルマンガン複合水酸化物粒子の円形度の平均値が0.82以上であり、かつ、タップ密度が2.20g/cm3以上である、ニッケルマンガン複合水酸化物粒子。 - 請求項7に記載のニッケルマンガン複合水酸化物粒子またはこれを熱処理することにより得られる熱処理粒子とリチウム化合物を混合し、リチウム混合物を得る、混合工程と、
前記リチウム混合物を酸化性雰囲気下、720℃〜1000℃で焼成する、焼成工程と、
を備える、非水電解質二次電池用正極活物質の製造方法。 - 一般式:Li1+uNixMnyMtO2(−0.05≦u≦0.50、0.05≦x≦0.95、0.05≦y≦0.95、0≦t≦0.20、x+y+t=1、Mは、Co、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、層状構造を有する六方晶系リチウムニッケルマンガン複合酸化物粒子からなり、
平均粒径が7.0μm〜25.0μmであり、かつ、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.80〜1.20であり、および、
平均粒径の70%以上の粒径を有する正極活物質の円形度の平均値が0.82以上であり、かつ、タップ密度が2.20g/cm3以上である、非水電解質二次電池用正極活物質。 - 正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項9に記載の非水電解質二次電池用正極活物質が用いられている、非水電解質二次電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014017399 | 2014-01-31 | ||
JP2014017399 | 2014-01-31 | ||
PCT/JP2015/052526 WO2015115547A1 (ja) | 2014-01-31 | 2015-01-29 | ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015115547A1 JPWO2015115547A1 (ja) | 2017-03-23 |
JP6142929B2 true JP6142929B2 (ja) | 2017-06-07 |
Family
ID=53757117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015560011A Active JP6142929B2 (ja) | 2014-01-31 | 2015-01-29 | ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10236507B2 (ja) |
JP (1) | JP6142929B2 (ja) |
CN (1) | CN105934409B (ja) |
WO (1) | WO2015115547A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12126018B2 (en) | 2018-11-23 | 2024-10-22 | Research Institute Of Industrial Science & Technology | Positive electrode active material for rechargeable lithium battery, production method therefor and rechargeable lithum battery comprising same |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797623B (zh) * | 2011-06-07 | 2016-12-14 | 住友金属矿山株式会社 | 镍复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法以及非水电解质二次电池 |
DE102015115691B4 (de) | 2015-09-17 | 2020-10-01 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung | Lithium-Nickel-Mangan-basierte Übergangsmetalloxidpartikel, deren Herstellung sowie deren Verwendung als Elektrodenmaterial |
JP6250853B2 (ja) | 2016-03-31 | 2017-12-20 | 本田技研工業株式会社 | 非水系電解質二次電池用正極活物質 |
PL3225592T3 (pl) | 2016-03-31 | 2020-03-31 | Honda Motor Co., Ltd. | Materiał aktywny elektrody dodatniej dla baterii akumulatorowej z niewodnym elektrolitem |
EP3470375A4 (en) | 2016-06-14 | 2019-06-26 | Sumitomo Metal Mining Co., Ltd. | MANUFACTURING METHOD FOR NICKEL-CONTAINING HYDROXIDE |
CN109311699B (zh) * | 2016-06-14 | 2022-05-03 | 住友金属矿山株式会社 | 含镍氢氧化物的制造方法 |
US11670765B2 (en) | 2016-07-29 | 2023-06-06 | Sumitomo Metal Mining Co., Ltd. | Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
KR102425186B1 (ko) | 2016-07-29 | 2022-07-27 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지 |
US11387453B2 (en) | 2016-07-29 | 2022-07-12 | Sumitomo Metal Mining Co., Ltd. | Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JP7064685B2 (ja) * | 2016-07-29 | 2022-05-11 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物の製造方法、および非水系電解質二次電池用正極活物質の製造方法 |
JP7120012B2 (ja) * | 2016-07-29 | 2022-08-17 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP6848249B2 (ja) * | 2016-07-29 | 2021-03-24 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池 |
US11165062B2 (en) | 2016-08-31 | 2021-11-02 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
JP6855752B2 (ja) * | 2016-10-31 | 2021-04-07 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
CN110392950B (zh) | 2016-12-26 | 2023-05-26 | 住友金属矿山株式会社 | 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池 |
CN107915263B (zh) * | 2017-08-31 | 2020-01-14 | 广东佳纳能源科技有限公司 | 一种小粒径三元正极材料前驱体的制备方法 |
WO2019163845A1 (ja) * | 2018-02-22 | 2019-08-29 | 住友金属鉱山株式会社 | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
WO2019163846A1 (ja) * | 2018-02-22 | 2019-08-29 | 住友金属鉱山株式会社 | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
JP6994990B2 (ja) * | 2018-03-13 | 2022-01-14 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池 |
KR102304738B1 (ko) * | 2018-11-30 | 2021-09-24 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 전구체의 제조 방법 |
JP6880086B2 (ja) * | 2019-01-21 | 2021-06-02 | Jx金属株式会社 | 全固体リチウムイオン電池用酸化物系正極活物質、全固体リチウムイオン電池用酸化物系正極活物質の製造方法及び全固体リチウムイオン電池 |
CN113474922B (zh) * | 2019-02-26 | 2024-09-17 | 住友金属矿山株式会社 | 锂离子二次电池用正极活性物质、锂离子二次电池用正极活性物质的制造方法、锂离子二次电池 |
WO2020202602A1 (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | 全固体リチウムイオン電池用酸化物系正極活物質、全固体リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法、全固体リチウムイオン電池用酸化物系正極活物質の製造方法及び全固体リチウムイオン電池 |
JPWO2021025101A1 (ja) * | 2019-08-06 | 2021-02-11 | ||
CN111430683A (zh) * | 2020-01-17 | 2020-07-17 | 蜂巢能源科技有限公司 | 锂离子电池的无钴正极材料及其制备方法和锂离子电池 |
CN111620377B (zh) * | 2020-06-12 | 2023-06-30 | 福建常青新能源科技有限公司 | 一种硫酸锰溶液除油除杂工艺及其装置 |
JP6936909B1 (ja) * | 2020-08-07 | 2021-09-22 | Basf戸田バッテリーマテリアルズ合同会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
DE112022002815T5 (de) * | 2021-05-28 | 2024-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Batterie, elektronisches Gerät, Energiespeichersystem und beweglicher Gegenstand |
JP7353432B1 (ja) | 2022-07-15 | 2023-09-29 | 住友化学株式会社 | 金属複合化合物及びリチウム金属複合酸化物の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11130440A (ja) | 1997-10-23 | 1999-05-18 | Ise Chemicals Corp | ニッケルを含む水酸化物の製造方法 |
JP4217710B2 (ja) | 2003-04-17 | 2009-02-04 | Agcセイミケミカル株式会社 | リチウム−ニッケル−コバルト−マンガン含有複合酸化物の製造方法 |
JP2006265086A (ja) * | 2005-02-24 | 2006-10-05 | Toyota Motor Corp | 水酸化ニッケル粒子の製造方法及び製造装置 |
JP5055702B2 (ja) | 2005-03-09 | 2012-10-24 | 株式会社Gsユアサ | 正極活物質及びその製造方法 |
EP1876664B1 (en) | 2005-04-28 | 2011-06-15 | Nissan Motor Co., Ltd. | Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same |
JP5079291B2 (ja) | 2006-09-21 | 2012-11-21 | パナソニック株式会社 | 非水電解質二次電池 |
JP2008147068A (ja) * | 2006-12-12 | 2008-06-26 | Ise Chemicals Corp | 非水電解液二次電池用リチウム複合酸化物 |
CN101528607B (zh) | 2006-12-22 | 2014-08-27 | 松下电器产业株式会社 | 镍氢氧化物、非水电解质二次电池用正极活性物质的制造方法、非水电解质二次电池用电极以及非水电解质二次电池 |
DE102007039471A1 (de) * | 2007-08-21 | 2009-02-26 | H.C. Starck Gmbh | Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien |
JP5214202B2 (ja) | 2007-09-21 | 2013-06-19 | パナソニック株式会社 | 非水電解質二次電池およびその製造方法 |
WO2011067937A1 (ja) | 2009-12-02 | 2011-06-09 | 住友金属鉱山株式会社 | ニッケル複合水酸化物粒子および非水系電解質二次電池 |
JP5973167B2 (ja) * | 2010-01-06 | 2016-08-23 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池 |
JP5464348B2 (ja) * | 2010-02-26 | 2014-04-09 | 住友金属鉱山株式会社 | 非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法 |
US10017875B2 (en) * | 2011-03-28 | 2018-07-10 | Sumitomo Metal Mining Co., Ltd. | Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery |
US9553312B2 (en) | 2012-02-23 | 2017-01-24 | Sumitomo Metal Mining Co., Ltd | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery |
WO2014175191A1 (ja) * | 2013-04-25 | 2014-10-30 | 旭硝子株式会社 | 複合化合物、リチウム含有複合酸化物、及びそれらの製造方法 |
-
2015
- 2015-01-29 US US15/115,375 patent/US10236507B2/en active Active
- 2015-01-29 WO PCT/JP2015/052526 patent/WO2015115547A1/ja active Application Filing
- 2015-01-29 CN CN201580005695.5A patent/CN105934409B/zh active Active
- 2015-01-29 JP JP2015560011A patent/JP6142929B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12126018B2 (en) | 2018-11-23 | 2024-10-22 | Research Institute Of Industrial Science & Technology | Positive electrode active material for rechargeable lithium battery, production method therefor and rechargeable lithum battery comprising same |
Also Published As
Publication number | Publication date |
---|---|
US20170012288A1 (en) | 2017-01-12 |
US10236507B2 (en) | 2019-03-19 |
CN105934409A (zh) | 2016-09-07 |
WO2015115547A1 (ja) | 2015-08-06 |
CN105934409B (zh) | 2018-03-09 |
JPWO2015115547A1 (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6142929B2 (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6596978B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6159395B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 | |
JP6582824B2 (ja) | ニッケルマンガン含有複合水酸化物およびその製造方法 | |
JP5638232B2 (ja) | 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP4915488B1 (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP5708277B2 (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池 | |
JP5877817B2 (ja) | 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池 | |
JP6252384B2 (ja) | ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
WO2012165654A1 (ja) | 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池 | |
JP2011116580A5 (ja) | ||
JP2014129188A (ja) | ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
WO2011067937A1 (ja) | ニッケル複合水酸化物粒子および非水系電解質二次電池 | |
JP2016094307A (ja) | 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法 | |
JP5776996B2 (ja) | 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池 | |
JP2016011226A (ja) | マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
JP2011116583A5 (ja) | ||
WO2015198676A1 (ja) | マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
JP2016031854A (ja) | 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法 | |
CN107922212A (zh) | 锰镍复合氢氧化物及制造方法、锂锰镍复合氧化物及制造方法、以及非水系电解质二次电池 | |
JP2011116582A (ja) | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP2020027700A (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP2019220361A (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP2019153567A (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法及び非水系電解質二次電池用正極活物質の製造方法 | |
JP2019021426A (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6142929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |