JP6122139B2 - Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles - Google Patents
Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles Download PDFInfo
- Publication number
- JP6122139B2 JP6122139B2 JP2015547336A JP2015547336A JP6122139B2 JP 6122139 B2 JP6122139 B2 JP 6122139B2 JP 2015547336 A JP2015547336 A JP 2015547336A JP 2015547336 A JP2015547336 A JP 2015547336A JP 6122139 B2 JP6122139 B2 JP 6122139B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- slightly acidic
- hypochlorous acid
- carbon dioxide
- nitrogen gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4618—Supplying or removing reactants or electrolyte
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4619—Supplying gas to the electrolyte
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/26—Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
この発明は、二酸化炭素あるいは二酸化炭素と窒素ガス等を含む超微細気泡で、電解次亜水あるいは次亜塩素酸ナトリウム水溶液を微酸性に調整し、長期安定化した微酸性の次亜塩素酸水溶液とその製造方法及び使用方法に関する。 The present invention is an ultrafine bubble containing carbon dioxide or carbon dioxide and nitrogen gas, etc., adjusted to a slightly acidic electrohypochlorous acid or sodium hypochlorite aqueous solution, and stabilized for a long time. And its manufacturing method and use method.
電解次亜水は、食塩水を無隔膜電解槽で電気分解して生成される。その殺菌成分は次亜塩素酸イオン(ClO−)であり、日本の厚生労働省により「提示した6条件に適合すれば、次亜塩素酸ナトリウムを希釈したものと同等である」と認められている。希薄食塩水や希塩酸を電気分解して製造するいわゆる電解水は、次亜塩素酸イオンを殺菌基盤とする電解次亜水と、次亜塩素酸(HOCl)を殺菌基盤とする次亜塩素酸水に大別される。 The electrolytic hyponitrous acid is generated by electrolyzing saline in a non-diaphragm electrolytic cell. Its bactericidal component is hypochlorite ion (ClO − ), which is recognized by the Japanese Ministry of Health, Labor and Welfare as “equivalent to diluted sodium hypochlorite if it meets the six conditions presented”. . The so-called electrolyzed water produced by electrolyzing dilute saline and dilute hydrochloric acid is electrolyzed hypochlorous water based on hypochlorite ion and hypochlorous acid water based on hypochlorous acid (HOCl). It is divided roughly into.
次亜塩素酸ナトリウム(NaOCl)は食品添加物に指定されており、果実・野菜等各種食材の殺菌処理、各種食品の製造加工用の装置や器具、環境の衛生管理、あるいは飲料水・プール用水・浴場用水や下水の殺菌処理などに幅広く利用されている。次亜塩素酸ナトリウム水溶液の塩素成分は、水溶液のpHにより変化し、pH3.0以上の酸性水領域では次亜塩素酸として、アルカリ領域では次亜塩素酸イオンとして存在する。特に、微酸性領域(pH5.0〜pH6.5)では、揮発性塩素ガス(Cl2)や次亜塩素酸イオンをほとんど含まず、次亜塩素酸イオンより殺菌力が強い次亜塩素酸のみとなる。次亜塩素酸の殺菌力は、次亜塩素酸イオンの約80倍強いことが報告されている。 Sodium hypochlorite (NaOCl) is designated as a food additive, sterilizing various foods such as fruits and vegetables, equipment and equipment for manufacturing and processing various foods, environmental hygiene management, or drinking water and pool water・ Widely used for sterilization of bath water and sewage. The chlorine component of the aqueous sodium hypochlorite solution varies depending on the pH of the aqueous solution, and exists as hypochlorous acid in the acidic water region having a pH of 3.0 or higher and as hypochlorite ion in the alkaline region. In particular, in a slightly acidic region (pH 5.0 to pH 6.5), only chlorous acid (Cl 2 ) and hypochlorous acid ions are scarcely contained, and only hypochlorous acid having stronger bactericidal power than hypochlorite ions. It becomes. It has been reported that the sterilizing power of hypochlorous acid is about 80 times stronger than that of hypochlorite ions.
従って、電解次亜水を殺菌水として使用するためには、電解次亜水(あるいは次亜塩素酸ナトリウム水溶液)を微酸性領域にpH調整することが重要である。このpH調整には、無機酸、有機酸あるいは二酸化炭素が使われる。このうち、塩酸などの無機酸を電解次亜水(あるいは次亜塩素酸ナトリウム水溶液)と混合すると、有毒な塩素ガスを発生させる危険性がある。食品添加物用の乳酸や酢酸などの有機酸でpH調整をする場合には、密封状態で点滴ポンプを使用することにより安全性を確保することができ、この技術は実用化されている。 Therefore, in order to use electrolytic hypochlorite as sterilizing water, it is important to adjust the pH of electrolytic hypochlorite (or sodium hypochlorite aqueous solution) to a slightly acidic region. For this pH adjustment, an inorganic acid, an organic acid or carbon dioxide is used. Among these, when an inorganic acid such as hydrochloric acid is mixed with electrolytic hyposulfite (or sodium hypochlorite aqueous solution), there is a risk of generating toxic chlorine gas. When pH is adjusted with an organic acid such as lactic acid or acetic acid for food additives, safety can be ensured by using an infusion pump in a sealed state, and this technique has been put to practical use.
二酸化炭素でpHを調整する方法としては、特許文献1に微酸性の塩素系殺菌水の製造方法として、次亜塩素酸ナトリウム水溶液に二酸化炭素をバブリングする方法が開示されている。特許文献2には、中空糸膜モジュールからなる二酸化炭素溶解器でpHを調整する方法が、微酸性殺菌剤の製造装置および製造方法として開示されている。二酸化炭素は、無味無臭の不活性ガスであり、素早く水に溶け、誤って加注入となっても急激なpH低下を呈することがなく、取扱い性に優れている。
As a method for adjusting pH with carbon dioxide,
次に、食塩を電気分解して生成する強酸性電解水(強酸性を示す次亜塩素酸水)の安定性について説明する。強酸性電解水は、室温保存する場合には、遮光密封保存が原則であり、その限度も60日程度であることが知られている。また、密封容器のみでは15日以内、開放容器に保存する場合には32時間を目安とすることが望ましいとされている。従って、強酸性電解水は、熱に不安定で、長期間の保存は難しいのが現状である。一方、希塩酸を電気分解した微酸性電解水を密閉にて貯蔵した場合、他の要因に関係なく、14日間pHと有効塩素濃度は食品添加物認可範囲を維持できるとした報告もある。 Next, the stability of strongly acidic electrolyzed water generated by electrolyzing salt (hypochlorous acid water showing strong acidity) will be described. When storing strongly acidic electrolyzed water at room temperature, in principle, it is known to store in a light-shielding sealed state, and the limit is known to be about 60 days. Further, it is desirable to use a sealed container alone within 15 days, and to store in an open container for 32 hours. Therefore, at present, strong acidic electrolyzed water is unstable to heat and is difficult to store for a long period of time. On the other hand, there is a report that when the slightly acidic electrolyzed water obtained by electrolyzing dilute hydrochloric acid is stored in a sealed state, the pH and effective chlorine concentration can maintain the food additive approved range regardless of other factors.
電解次亜水(あるいは次亜塩素酸ナトリウム水溶液)は、特許文献1、特許文献2に開示されているように、二酸化炭素を使用してpH調整をすることにより、高い殺菌力を持つ微酸性次亜塩素酸水溶液とすることができる。しかし、微酸性次亜塩素酸水溶液は、熱には不安定で、冷暗所に密封容器で保存しても、長期間有効塩素濃度を保持するのは難しいという欠点がある。従って、用時調製が望ましいとされており、この欠点を克服する技術開発が求められている。
As disclosed in
この発明は、上記背景技術の問題点に鑑みてなされたもので、市販の機器を使って製造する事ができ、高い殺菌効果を長時間保持することができる、微酸性化した電解次亜水あるいは次亜塩素酸ナトリウム水溶液(以下、この発明では微酸性次亜塩素酸水溶液と称す。)の製造方法及び使用方法を提供することを目的とする。 The present invention has been made in view of the above problems of the background art, and can be produced using commercially available equipment, and can maintain a high bactericidal effect for a long time. Alternatively, an object of the present invention is to provide a method for producing and using a sodium hypochlorite aqueous solution (hereinafter referred to as a slightly acidic hypochlorous acid aqueous solution in the present invention).
この発明は、所望の有効塩素濃度に調整した電解次亜水あるいは次亜塩素酸ナトリウムを含む水溶液に、二酸化炭素ガスボンベから二酸化炭素ガスを導入し、窒素ガスボンベから窒素ガスを導入し、これにより前記二酸化炭素ガスと前記窒素ガスのみを前記水溶液に溶解させて、pH5〜pH6に調整した後、その水溶液をマイクロバブル発生装置に導通することによって、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの超微細気泡を、前記水溶液中に形成する超微細気泡含有微酸性次亜塩素酸水溶液の製造方法である。
The present invention introduces carbon dioxide gas from a carbon dioxide gas cylinder into an aqueous solution containing electrolytic hypochlorite or sodium hypochlorite adjusted to a desired effective chlorine concentration, and introduces nitrogen gas from a nitrogen gas cylinder. Only carbon dioxide gas and nitrogen gas are dissolved in the aqueous solution and adjusted to
前記マイクロバブル発生装置は、前記水溶液を加圧した後マイクロバブル発生ノズルに通して、超微細気泡を前記水溶液中に発生させるものである。 The microbubble generator generates ultrafine bubbles in the aqueous solution by pressurizing the aqueous solution and passing through a microbubble generating nozzle.
またこの発明は、中空糸膜を内蔵した中空糸カートリッジ内で、所定量の水道水に二酸化炭素ガスと窒素ガスを導通させ、これにより前記中空糸膜を介して水道水に前記二酸化炭素ガスと前記窒素ガスのみを溶解させ、前記二酸化炭素ガスと前記窒素ガスを含む超微細気泡を有したpH5〜pH6の微酸性水溶液を調製した後、この微酸性水溶液に、電解次亜水あるいは次亜塩素酸ナトリウム水溶液を注入して、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの前記超微細気泡を含有しpH5〜pH6の微酸性次亜塩素酸水溶液を製造する超微細気泡含有微酸性次亜塩素酸水溶液の製造方法である。
Further, the present invention also provides a carbon fiber gas and a nitrogen gas that are conducted to a predetermined amount of tap water in a hollow fiber cartridge incorporating a hollow fiber membrane, whereby the carbon dioxide gas and the tap water are passed through the hollow fiber membrane. After dissolving only the nitrogen gas and preparing a slightly acidic aqueous solution of
またこの発明は、所望の有効塩素濃度に調整した電解次亜水あるいは次亜塩素酸ナトリウムを含む水溶液に、二酸化炭素ガスボンベから二酸化炭素ガスを導入し、窒素ガスボンベから窒素ガスを導入し、これにより前記二酸化炭素ガスと前記窒素ガスのみを前記水溶液に溶解させて、pH5〜pH6に調整した後、その水溶液をマイクロバブル発生装置に導通することによって、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの超微細気泡が前記水溶液中に長期間滞留している超微細気泡含有微酸性次亜塩素酸水溶液を設け、この超微細気泡含有微酸性次亜塩素酸水溶液を、有効塩素濃度1ppm〜20ppm、pH5.0〜pH6.7に調整して容器に注入し、切花を前記微細気泡含有微酸性次亜塩素酸水溶液中に差して水揚げを行う超微細気泡含有微酸性次亜塩素酸水溶液の使用方法である。
Further, the present invention introduces carbon dioxide gas from a carbon dioxide gas cylinder into an aqueous solution containing electrolytic hypochlorite or sodium hypochlorite adjusted to a desired effective chlorine concentration, and introduces nitrogen gas from a nitrogen gas cylinder. Only the carbon dioxide gas and the nitrogen gas are dissolved in the aqueous solution and adjusted to
またこの発明は、中空糸膜を内蔵した中空糸カートリッジ内で、所定量の水道水に二酸化炭素ガスと窒素ガスを導通させ、これにより前記中空糸膜を介して水道水に前記二酸化炭素ガスと前記窒素ガスのみを溶解させ、前記二酸化炭素ガスと前記窒素ガスを含む超微細気泡を有したpH5〜pH6の微酸性水溶液を調製した後、この微酸性水溶液に、電解次亜水あるいは次亜塩素酸ナトリウム水溶液を注入して、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの超微細気泡が前記水溶液中に長期間滞留しpH5〜pH6の超微細気泡含有微酸性次亜塩素酸水溶液を設け、この超微細気泡含有微酸性次亜塩素酸水溶液を、有効塩素濃度1ppm〜20ppm、pH5.0〜pH6.7に調整して容器に注入し、切花を前記微細気泡含有微酸性次亜塩素酸水溶液中に差して水揚げを行う超微細気泡含有微酸性次亜塩素酸水溶液の使用方法である。
Further, the present invention also provides a carbon fiber gas and a nitrogen gas that are conducted to a predetermined amount of tap water in a hollow fiber cartridge incorporating a hollow fiber membrane, whereby the carbon dioxide gas and the tap water are passed through the hollow fiber membrane. After dissolving only the nitrogen gas and preparing a slightly acidic aqueous solution of
またこの発明は、所望の有効塩素濃度に調整した電解次亜水あるいは次亜塩素酸ナトリウムを含む水溶液に、二酸化炭素ガスボンベから二酸化炭素ガスを導入し、窒素ガスボンベから窒素ガスを導入し、これにより前記二酸化炭素ガスと前記窒素ガスのみを前記水溶液に溶解させて、pH5〜pH6に調整した後、その水溶液をマイクロバブル発生装置に導通することによって、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの超微細気泡が前記水溶液中に長期間滞留している超微細気泡含有微酸性次亜塩素酸水を設け、この超微細気泡含有微酸性次亜塩素酸水を、噴霧手段を用いて対象物またはそれが存在する空間に噴霧し、噴霧したミストの有効塩素濃度が10ppm〜30ppm、pH5.0〜pH6.9となる環境を形成し、上記対象物またはそれが存在する空間の殺菌を行う超微細気泡含有微酸性次亜塩素酸水溶液の使用方法である。
Further, the present invention introduces carbon dioxide gas from a carbon dioxide gas cylinder into an aqueous solution containing electrolytic hypochlorite or sodium hypochlorite adjusted to a desired effective chlorine concentration, and introduces nitrogen gas from a nitrogen gas cylinder. Only the carbon dioxide gas and the nitrogen gas are dissolved in the aqueous solution and adjusted to
またこの発明は、中空糸膜を内蔵した中空糸カートリッジ内で、所定量の水道水に二酸化炭素ガスと窒素ガスを導通させ、これにより前記中空糸膜を介して水道水に前記二酸化炭素ガスと前記窒素ガスのみを溶解させ、前記二酸化炭素ガスと前記窒素ガスを含む超微細気泡を有したpH5〜pH6の微酸性水溶液を調製した後、この微酸性水溶液に、電解次亜水あるいは次亜塩素酸ナトリウム水溶液を注入して、前記二酸化炭素ガスと前記窒素ガスを含む平均粒径0.05μm〜2μmの超微細気泡が前記水溶液中に長期間滞留しpH5〜pH6の超微細気泡含有微酸性次亜塩素酸水を設け、この超微細気泡含有微酸性次亜塩素酸水を、噴霧手段を用いて対象物またはそれが存在する空間に噴霧し、噴霧したミストの有効塩素濃度が10ppm〜30ppm、pH5.0〜pH6.9となる環境を形成し、上記対象物またはそれが存在する空間の殺菌を行う超微細気泡含有微酸性次亜塩素酸水溶液の使用方法である。
Further, the present invention also provides a carbon fiber gas and a nitrogen gas that are conducted to a predetermined amount of tap water in a hollow fiber cartridge incorporating a hollow fiber membrane, whereby the carbon dioxide gas and the tap water are passed through the hollow fiber membrane. After dissolving only the nitrogen gas and preparing a slightly acidic aqueous solution of
この発明の超微細気泡含有微酸性次亜塩素酸水溶液の製造方法及び使用方法によれば、長期間の保存が可能な超微細気泡含有微酸性次亜塩素酸水溶液を、市販の装置で簡単に作ることができ、高い殺菌効果を有し、食品添加物として認可された殺菌料を提供することができる。超微細気泡含有微酸性次亜塩素酸水溶液は、市販のペットボトル程度の密栓中で熱安定性にも優れ、40℃程度以下の環境下で1年間以上の長期間の保存が可能であり、使用の都度生成する必要がなく、好都合である。また。pH5.0付近の微酸性であるため、機器類が錆びる問題も少なく、取り扱いが容易で、いろいろな使用方法が可能であり、優れた殺菌・除菌効果をもたらすことができる。さらに、遮光・密封容器を使えば、熱安定性に優れ、かつ長期間の保存が可能であることで、地球上のいかなる地域へも搬送して、食材の除菌や衛生管理、代用農薬や医療分野の殺菌料などに使用できる。 According to the method for producing and using an ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution of the present invention, an ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution that can be stored for a long period of time can be easily obtained using a commercially available apparatus. It is possible to provide a bactericidal agent that has a high bactericidal effect and is approved as a food additive. Ultra-fine bubble-containing slightly acidic hypochlorous acid aqueous solution is excellent in heat stability in a sealed bottle of a commercially available plastic bottle, and can be stored for a long period of time of 1 year or more in an environment of about 40 ° C. or less. There is no need to generate it every time it is used, which is convenient. Also. Since it is slightly acidic around pH 5.0, there are few problems that the equipment rusts, it is easy to handle, can be used in various ways, and can provide excellent sterilization and sterilization effects. In addition, if a light-shielding / sealed container is used, it has excellent thermal stability and can be stored for a long period of time, so it can be transported to any region on the earth for sterilization and hygiene management of foodstuffs, Can be used as a sterilizer in the medical field.
以下、この発明の実施形態について説明する。この発明の超微細気泡含有微酸性次亜塩素酸水溶液は、気体の二酸化炭素と窒素ガスの混合気体を電解次亜水(あるいは次亜塩素酸ナトリウム水溶液)に溶解させ、pH5.0付近の微酸性領域にpH調整された次亜塩素酸を含む水溶液である。二酸化炭素ガスと窒素ガスは、例えば、液中に長期間滞留する平均粒径112nm〜558nm(粒子数2.3×107/ml〜4.7nm×107/ml)の超微細気泡となって存在する。 Embodiments of the present invention will be described below. Ultrafine bubbles containing slightly acidic hypochlorite aqueous solution of the present invention can be prepared by dissolving a mixed gas of gaseous carbon dioxide and nitrogen gas into the electrolytic following Asui (or an aqueous solution of sodium hypochlorite), fine around pH5.0 It is an aqueous solution containing hypochlorous acid adjusted to pH in the acidic region. Carbon dioxide gas and nitrogen gas, for example, a mean particle size ultrafine bubbles of 112Nm~558nm (several particles 2.3 × 10 7 /ml~4.7nm×10 7 / ml ) staying long time in the liquid Exist.
この発明で用いられる二酸化炭素は、無味無臭の不活性ガスであり、素早く水に溶け、誤って加注入となっても急激なpH低下を呈することがないなど取扱い性に優れている。二酸化炭素を使用して、次亜塩素酸を含む水溶液のpHを調整することができ、微酸性次亜塩素酸水溶液とすることができる。二酸化炭素以外に超微細気泡の安定性を確保するための適用可能な気体としては、窒素ガスやアルゴンガス等の不活性気体を用いることもできる。これらの気体は、液体に溶かした時に液体のpHを酸性領域に移行させるものではない。例えば、実験結果は後述するが、マイクロバブル発生装置で、乳酸で調製した微酸性次亜塩素酸水溶液に空気マイクロバブルを溶解させ、超微細気泡含有微酸性次亜水溶液を調製できるが、得られた溶液の安定性は乳酸で調製した微酸性次亜塩素酸水溶液と大差なかった。従って、二酸化炭素ガスと窒素ガス等の超微細気泡を含有する微酸性次亜塩素酸水溶液が、長期間において熱にも安定な殺菌料となるものである。 Carbon dioxide used in the present invention is a tasteless and odorless inert gas, and dissolves quickly in water and has excellent handling properties such as no sudden pH drop even if accidentally injected. Carbon dioxide can be used to adjust the pH of an aqueous solution containing hypochlorous acid, and a slightly acidic hypochlorous acid aqueous solution can be obtained. In addition to carbon dioxide, as an applicable gas for ensuring the stability of ultrafine bubbles, an inert gas such as nitrogen gas or argon gas can also be used. These gases do not transfer the pH of the liquid to the acidic region when dissolved in the liquid. For example, although the experimental results will be described later, a microbubble generator can dissolve air microbubbles in a slightly acidic hypochlorous acid aqueous solution prepared with lactic acid to prepare a microacidic hypoaqueous solution containing ultrafine bubbles. The stability of the solution was not significantly different from the slightly acidic hypochlorous acid aqueous solution prepared with lactic acid. Accordingly, a slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles such as carbon dioxide gas and nitrogen gas becomes a sterilant that is stable to heat over a long period of time.
この発明の実施形態の超微細気泡含有微酸性次亜塩素酸水溶液の製造装置10としては、図1に示すように、二酸化炭素ガスボンベ12と窒素ガスボンベ14、電解次亜水生成装置16(例えば、アクアライザーT30(有)ヘルス製)と、加圧溶解型マイクロバブル発生装置18(例えば、プログレス750型(株)シンワ製)とにより構成される。このマイクロバブル発生装置18は、例えば微酸性次亜塩素酸水である水溶液を加圧状態にした後、図示しないマイクロバブル発生ノズルに通して加圧・減圧状態を形成し、超微細気泡を前記水溶液中に発生させるものである。使用する電解次亜水は、電解次亜水生成装置16で生成した原液(有効塩素濃度7000ppm、pH8.3)を、有効塩素濃度約50ppmに水道水で希釈したものを使用する。二酸化炭素ボンベ12の二酸化炭素ガスは2NL/min、窒素ガスボンベ14の窒素ガスは1NL/minの通気量で、有効塩素濃度約50ppmの上記電解次亜水に入れる。
As shown in FIG. 1, as an
マイクロバブル発生装置18を用いることにより、直径が50μm以下のマイクロバブルを含有する微酸性次亜塩素亜水溶液を調製することが出来る。微細気泡であるマイクロバブルは、液中での上昇速度が遅く、その寿命は通常のバブリングで発生させる泡よりも長い。マイクロバブルは、図2(a)に示すように、発生直後の溶液は乳濁しているのが特徴である。このマイクロバブルは、数十秒後には消失し(図2(b))、最終的には透明な溶液となる(図2(c))。また、マイクロバブルは、比較的大きい面積で対象物に接触し、気泡量が著しく多量となる。このことから、溶解している次亜塩素酸による殺菌効果を著しく強力にすることができると考えられる。これは、後述するカット野菜の除菌処理で、優れた除菌効果と除菌持続効果を与えたことから確認された。
By using the
次に、この実施形態の製造装置10により製造される超微細気泡含有微酸性次亜塩素酸水溶液20に含有するナノバブルについて説明する。ナノバブルの定義は定まってはいないが、一般的には粒径1μm以下のナノメートル(nm)単位の気泡がナノバブルと呼ばれる。気泡が極小のため、発生させても肉眼では透明な水に見えるのが特徴である。ナノバブルを製造する技術としては、マイクロバブルを圧壊させて生成する技術、シラスポーラスガラス膜を用いて生成する技術が知られている。しかし、マイクロバブルを圧壊させて生成するには、大がかりな装置が必要と言われている。これに対して、図1に示すこの実施形態の超微細気泡含有微酸性次亜塩素酸水溶液の製造装置10は、市販の二酸化炭素ガスボンベ12と窒素ガスボンベ14、電解次亜水生成装置16とマイクロバブル発生装置18を用いて、二酸化炭素ガスと窒素ガスを含むナノバブルを含有する超微細気泡含有微酸性次亜塩素酸水溶液20を製造することができるものである。
Next, nanobubbles contained in the ultrafine bubble-containing slightly acidic hypochlorous acid
この実施形態の超微細気泡含有微酸性次亜塩素酸水溶液20によれば、20℃・210日間と30℃・391日間保存した溶液に、平均粒径112nm〜558nmのナノバブルが1.2×107/ml〜4.7×107/ml含まれることを確認した。確認実験として、マイクロバブル発生装置18で二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液20を生成後、室温で約30分間放置した後の分析では、平均粒径154nm〜558nmのナノバブルが計測できた。
According to the ultrafine bubble-containing slightly acidic hypochlorous acid
次に、この実施形態の超微細気泡含有微酸性次亜塩素酸水溶液の使用方法について説明する。超微細気泡含有微酸性次亜塩素酸水溶液は、殺菌効果があり使用方法は様々であり、流水による洗浄、散布、塗布その他液体に適用されるあらゆる用途に適用することができる。食材の殺菌・除菌、あるいは食品加工工場の衛生管理に使用しても安全であり、カット野菜等を超微細気泡含有微酸性次亜塩素酸水溶液に浸漬処理して、野菜等の表面にバイオフィルムとして生残する微生物の除菌にも優れた効果がある。 Next, the usage method of the ultrafine bubble containing slightly acidic hypochlorous acid aqueous solution of this embodiment is demonstrated. The ultra-fine bubble-containing slightly acidic hypochlorous acid aqueous solution has a bactericidal effect and can be used in various ways, and can be applied to various uses applied to washing, spraying, coating, and other liquids with running water. It is safe to use for sterilization and sterilization of foodstuffs or for hygiene management of food processing plants. Cut vegetables are soaked in a slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles to produce bio It also has an excellent effect on sterilization of microorganisms that survive as a film.
特に、この発明による超微細気泡含有微酸性次亜塩素酸水溶液は、長期保存が可能という特徴を有するので、この特徴を生かした使用方法が有益である。例えば、切花の茎に供給する水として使用するものである。切花の水揚げを妨げる要因として細菌類の増殖による切り花茎の腐敗や導管閉鎖があげられるが、超微細気泡含有微酸性次亜塩素酸水溶液に切花の茎を漬けることにより、水揚げを促進する効果がある。この場合、超微細気泡含有微酸性次亜塩素酸水溶液を有効塩素濃度1ppm〜20ppm、好ましくは5ppm〜20ppm、pH5.0〜pH6.7に調整し、バケットに注入し、切花を超微細気泡含有微酸性次亜塩素酸水溶液に挿すものである。これによって、切り花の揚げ水に接触するプラスチック製バケットの内壁面が殺菌され、切花の水揚げを促進し、切花を長持ちさせる効果をもたらす。 In particular, since the ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution according to the present invention has a feature that it can be stored for a long period of time, a method of use utilizing this feature is beneficial. For example, it is used as water to be supplied to cut flower stems. Factors that hinder the landing of cut flowers include the decay of cut flower stems due to the growth of bacteria and the closure of conduits, but the effect of accelerating the landing of water by immersing cut flower stems in a slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles. is there. In this case, an ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution is adjusted to an effective chlorine concentration of 1 ppm to 20 ppm, preferably 5 ppm to 20 ppm, pH 5.0 to pH 6.7, injected into a bucket, and cut flowers contain ultrafine bubbles. It is inserted into a slightly acidic hypochlorous acid aqueous solution. This sterilizes the inner wall surface of the plastic bucket that comes into contact with the cut water of the cut flowers, promotes the landing of the cut flowers, and brings about the effect of prolonging the cut flowers.
また、超微細気泡含有微酸性次亜塩素酸水溶液を加湿器等の噴霧手段を用いて、対象とする領域空間に噴霧して空気の除菌を行うことができる。この時、空間に噴霧されたミスト中の有効塩素濃度が10ppm〜30ppm、pH5.0〜pH6.7となるように設定し、空間の殺菌を行う。この使用方法は、超微細気泡含有微酸性次亜塩素酸水溶液を噴霧した領域を密閉状態で確保できれば、あたかもガス薫蒸したものと同様の環境に数十日間保持することができる。また、インフルエンザやノロウィルス等の感染症を予防する殺菌料として使用することができる。 In addition, air can be sterilized by spraying an ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution onto a target area space using a spraying means such as a humidifier. At this time, the effective chlorine concentration in the mist sprayed in the space is set to 10 ppm to 30 ppm and pH 5.0 to pH 6.7, and the space is sterilized. This method of use can be maintained for several tens of days in the same environment as if it had been gas-fumigated, as long as the region sprayed with the ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution can be secured in a sealed state. Moreover, it can be used as a disinfectant for preventing infectious diseases such as influenza and norovirus.
次に、この発明の他の実施形態の超微細気泡含有微酸性次亜塩素酸水溶液の製造装置22について、図3に基づいて説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この製造装置22は、ナノバブルの二酸化炭素ガスと窒素ガスを含有させた超微細気泡含有微酸性次亜塩素酸水溶液20を、中空糸膜(4×13スーパーフォビック外圧型(セルガード(株)社製))を用いて容易に生成するものである。この装置では、図3に示すように、流量計28により水道水26の流量がコントロールされて、所定量の水道水が中空糸カートリッジ24に送られる。中空糸カートリッジ24内には、二酸化炭素ガスボンベ12と窒素ガスボンベ14から、二酸化炭素ガス・窒素ガスの混合ガスが水道水26とは対向流方向に供給される。中空糸カートリッジ24内では、中空糸膜を介して二酸化炭素ガス・窒素ガスを含む気体が水道水26に注入され、二酸化炭素あるいは二酸化炭素ガス・窒素ガスの超微細気泡を含有する微酸性の水道水が調製される。この溶液に、電解次亜水生成装置16から電解次亜水を点滴ポンプ30で注入し、スタティックミキサー32により混合する。かくして、生成直後の二酸化炭素ガス・窒素ガスの超微細気泡を含有する微酸性次亜塩素酸水溶液20が、透明な液体として製造される。
Next, a
この製造装置22では、例えば二酸化炭素ガス(3NL/min)・窒素ガス(1.5NL/min)の通気量で中空糸カートリッジ24に送り、水道水が逆方向から流量:10L/minで流れる。これにより、中空糸カートリッジ24内で、水道水に二酸化炭素ガス・窒素ガスの混合ガスが溶解する。続いて、この溶液に電解次亜水を750ml/minで注入して、二酸化炭素ガス・窒素ガスの超微細気泡を含有する微酸性次亜水溶液を製造することができる。この製造装置22では、二酸化炭素ガス・窒素ガスの超微細気泡が電解次亜水に確実に形成されることにより、次亜塩素酸イオンによる中空糸膜の劣化を避けるために、中空糸カートリッジ24の下流側に電解次亜水生成装置16が設けられている。
In this
得られた二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液20(有効塩素濃度:50ppm、pH5.5)は、約1時間室温に放置した後にナノバブルの粒径分析をしたところ、平均粒子径:94nm〜155nm、粒子数:1.6×107/ml〜3.6×107/mlの超微細気泡を含有していた。 The obtained carbon dioxide ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution 20 (effective chlorine concentration: 50 ppm, pH 5.5) was allowed to stand at room temperature for about 1 hour and then subjected to particle size analysis of nanobubbles. : 94Nm~155nm, number of particles: contained ultrafine bubbles of 1.6 × 10 7 /ml~3.6×10 7 / ml .
なお、この発明の超微細気泡含有微酸性次亜塩素酸水溶液とその製造方法は、上記実施形態に限定されるものではなく、超微細気泡は2μm以下の超微細気泡を含むもので、好ましくは1μm以下のナノバブルを含むものであれば良く、微酸性次亜塩素酸水溶液中に長期間含有され、微酸性次亜塩素酸水溶液を長期間微酸性領域に維持可能な超微細気泡を含有したものであれば良い。 Note that the ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution of the present invention and the method for producing the same are not limited to the above embodiment, and the ultrafine bubbles include those having a size of 2 μm or less, preferably What contains nanobubbles of 1 μm or less, containing ultrafine bubbles that can be contained in a slightly acidic hypochlorous acid aqueous solution for a long period of time and can maintain the slightly acidic hypochlorous acid aqueous solution in a slightly acidic region for a long period of time If it is good.
次に、この発明の超微細気泡含有微酸性次亜塩素酸水溶液の密封した環境での安定性について試験を行った結果を示す。超微細気泡含有微酸性次亜塩素酸水溶液の製造は、図1に示す装置を用いた。電解次亜水は、電解次亜水生成装置16(前記アクアライザーT30)で生成した原液(有効塩素濃度7000ppm、pH8.3)を有効塩素濃度約50ppmに水道水で希釈したものを使用した。二酸化炭素ガスボンベの二酸化炭素ガスは2NL/min(あるいは二酸化炭素ガス2NL/minと窒素ガスボンベの窒素ガスは1NL/min)の通気量で、有効塩素濃度約50ppmの電解次亜水に入れ、マイクロバブル発生装置18(前記プログレス750)内で、超微細気泡含有微酸性次亜塩素酸水溶液を製造した。かくして、二酸化炭素ガスの超微細気泡含有微酸性次亜塩素酸水溶液と、二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を調製して、安定性試験に供した。また、電解次亜水を水道水で希釈し、乳酸でpHを微酸性に調整して、超微細気泡を含有しない微酸性次亜塩素酸水溶液(乳酸微酸性次亜塩素酸水溶液)を調製し、対照区の溶液として安定性試験を行った。
Next, the result of having tested about the stability in the sealed environment of the ultra-acidic bubble containing slightly acidic hypochlorous acid aqueous solution of this invention is shown. The apparatus shown in FIG. 1 was used for production of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles. As the electrolytic hyponitrous acid, a stock solution (effective chlorine concentration 7000 ppm, pH 8.3) produced by the electrolytic hyponitrous generator 16 (the above-mentioned Aqualizer T30) was diluted with tap water to an effective chlorine concentration of about 50 ppm. Carbon dioxide carbon dioxide gas bomb at an aeration rate of 2 NL / min (or nitrogen gas of carbon dioxide gas 2 NL / min and
二酸化炭素超微細気泡あるいは二酸化炭素ガスと窒素ガスの超微細気泡を含有する微酸性次亜塩素酸水溶液と、乳酸微酸性次亜塩素酸水溶液を、それぞれ2L容量のペットボトルに入れて密栓し、10℃、20℃、30℃、40℃、50℃、60℃の恒温器に静置して、有効塩素濃度とpHの経時変化を測定した。有効塩素濃度の測定には柴田科学社製の有効塩素濃度測定器AQ−102Pを、pHの測定には佐藤計量器製pHメーターSK−620PHを、塩素成分の分子種同定には(株)日立製作所製の自記分光光度計U−3210を、ナノバブル粒子測定にはナノサイト社製のナノ粒子解析システムLM10を使用した。 Put a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide ultrafine bubbles or carbon dioxide gas and nitrogen gas ultrafine bubbles and a lactic acid slightly acidic hypochlorous acid aqueous solution in a 2 L capacity plastic bottle, respectively, It left still to a 10 degreeC, 20 degreeC, 30 degreeC, 40 degreeC, 50 degreeC, 60 degreeC thermostat, and the time-dependent change of the effective chlorine concentration and pH was measured. For effective chlorine concentration measurement, effective chlorine concentration measuring instrument AQ-102P manufactured by Shibata Kagakusha is used, for measuring pH, Sato Keiki pH meter SK-620PH is used, and for identifying the molecular species of chlorine components, Hitachi, Ltd. A self-recording spectrophotometer U-3210 manufactured by Seisakusho was used, and a nanoparticle analysis system LM10 manufactured by Nanosite was used for nanobubble particle measurement.
二酸化炭素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の有効塩素濃度とpHの経時変化の結果を、10℃〜30℃については表1に、40℃〜60℃については表2に示す。なお、NTは未測定である。 The results of changes in the effective chlorine concentration and pH of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas are shown in Table 1 for 10 ° C to 30 ° C and in Table 2 for 40 ° C to 60 ° C. . NT is not measured.
同様にして、二酸化炭素ガスと窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の有効塩素濃度とpHの経時変化の結果を、10℃〜30℃については表3に、40℃〜60℃については表4に示す。 Similarly, the results of changes over time in the effective chlorine concentration and pH of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas and nitrogen gas are shown in Table 3 for 10 ° C to 30 ° C and 40 ° C to 60 ° C. Table 4 shows the temperature.
対照区とした、従来製法による乳酸微酸性次亜塩素酸水溶液の有効塩素濃度とpHの経時変化の結果を、10℃〜30℃については表5に、40℃〜60℃については表6に示す。 The results of the time-dependent changes in the effective chlorine concentration and pH of the aqueous lactic acid slightly acidic hypochlorous acid solution by the conventional production method as the control group are shown in Table 5 for 10 ° C to 30 ° C and in Table 6 for 40 ° C to 60 ° C. Show.
以下、表1〜表6の結果を説明する。表1、表2のごとく、二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液は、314日間の遮光・密封保存下、10℃〜40℃で70.8%以上、50℃で37.5%の有効塩素濃度の残存率を示し、60℃・195日間で2.1%の有効塩素濃度の残存率を認めた。二酸化炭素ガスと窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液は、表3、表4に示したように、いわゆる室温下保存条件に相当する20℃と30℃で、遮光・密封保存下では602日後も、有効塩素濃度残存率は72.2%と44.4%をそれぞれ示した。これらの結果から、二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液よりも、二酸化炭素ガスと窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の方が、より熱安定性に優れ、高い有効塩素濃度を維持し、長期間安定していることが分った。対照区の乳酸でpH調整した超微細気泡を含有しない微酸性次亜塩素酸水溶液は、表5、表6のごとく、有効塩素濃度は30℃・11日後、50℃・5日間で消失した。以上の結果から、二酸化炭素ガスと窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液が長期の保存性に優れていることにあることが確かめられた。 Hereinafter, the results of Tables 1 to 6 will be described. As shown in Table 1 and Table 2, the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide ultrafine bubbles is 70.8% or more at 10 to 40 ° C. and 37.5 at 50 ° C. under light-shielding and sealing storage for 314 days. % Effective chlorine concentration remaining rate was found, and an effective chlorine concentration remaining rate of 2.1% was observed at 195 days at 60 ° C. As shown in Tables 3 and 4, the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas and nitrogen gas ultrafine bubbles is stored at 20 ° C. and 30 ° C. corresponding to so-called room temperature storage conditions, and is stored under light shielding and sealed storage. After 602 days, the effective chlorine concentration residual ratios were 72.2% and 44.4%, respectively. From these results, carbon dioxide gas and nitrogen gas ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution is more excellent in thermal stability than carbon dioxide ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution, It has been found that it maintains a high effective chlorine concentration and is stable for a long time. As shown in Table 5 and Table 6, the effective chlorine concentration of the slightly acidic hypochlorous acid aqueous solution containing no ultrafine bubbles, which was adjusted with lactic acid in the control group, disappeared after 30 ° C./11 days and at 50 ° C./5 days. From the above results, it was confirmed that the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas and nitrogen gas has excellent long-term storage stability.
続いて、電解次亜水の高有効塩素濃度(約200ppm)を使い、前記と同様の方法で二酸化炭素ガスと窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を調製した。同様に、高有効塩素濃度の乳酸微酸性次亜塩素亜酸水溶液を調製後、マイクロバブル発生装置18(前記プログレス750)に導通して、空気の超微細気泡含有乳酸微酸性次亜塩素酸水溶液を調製し、ペットボトルに入れて、遮光・密封下での経時変化を調べた。表7には二酸化炭素ガスと窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の経時変化を、表8には空気の超微細気泡含有微酸性次亜塩素酸水溶液の経時変化を示した。 Subsequently, using a high effective chlorine concentration (about 200 ppm) of electrolytic hypochlorous acid, a slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas and nitrogen gas was prepared in the same manner as described above. Similarly, after preparing a lactic acid slightly acidic hypochlorous acid aqueous solution having a high effective chlorine concentration, the lactic acid slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of air is connected to the microbubble generator 18 (progress 750). Was placed in a PET bottle and examined for changes over time under light shielding and sealing. Table 7 shows changes over time of the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas and nitrogen gas, and Table 8 shows changes over time of the slightly acidic hypochlorous acid aqueous solution containing air ultrafine bubbles. .
有効塩素濃度200ppmの二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、表7に示すごとく、60℃・20日間保存でも安定して有効塩素濃度を保持している。ところが、表8のように、乳酸微酸性次亜塩素酸水溶液に空気のナノバブルを溶解させて調製しても、有効塩素濃度は明らかに減少した。このことは、二酸化炭素超微細気泡を電解次亜水(あるいは次亜塩素酸ナトリウム水溶液)に溶解させて、微酸性領域に調整することが、1年以上の長期間にわたる安定性を付与するために必要であることを示唆している。 The slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas having an effective chlorine concentration of 200 ppm, as shown in Table 7, stably maintains the effective chlorine concentration even when stored at 60 ° C. for 20 days. However, as shown in Table 8, even when air nanobubbles were dissolved in a lactic acid slightly acidic hypochlorous acid aqueous solution, the effective chlorine concentration was clearly reduced. This is because carbon dioxide ultrafine bubbles are dissolved in electrolytic hyposulfite (or sodium hypochlorite aqueous solution) and adjusted to a slightly acidic region to provide stability over a long period of 1 year or more. Suggest that it is necessary.
次に、この発明の超微細気泡含有微酸性次亜塩素酸水溶液のUV吸収スペクトルを測定し、溶液中の塩素分子種の確認を行った。測定には、二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液を密閉状態で10℃〜50℃にて314日間保存した溶液と、60℃・90日間保存した溶液を使った。その結果は全て同一スペクトルなので、50℃・314日間保存溶液のUV吸収スペクトルを使い説明する。図4〜図6に示しように、超微細気泡含有微酸性次亜塩素酸水溶液のUV吸収スペクトルは全試料で236nm付近に弱い吸収を認め、希薄な水酸化ナトリウムでpH9.5に調整したUV吸収スペクトルは、新たに292nm付近に極大吸収を示した。そして、pH9.5に調整した試料を希塩酸で再度pH5.5に調整すると、292nmの吸収は消失し、236付近に弱い吸収が認められた。このことから、二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液を10℃〜50℃にて314日間保存した溶液と60℃・90日間保存した溶液の塩素成分分子種は、殺菌力が強い次亜塩素酸であると判定した。 Next, the UV absorption spectrum of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of the present invention was measured, and the chlorine molecular species in the solution was confirmed. For the measurement, a solution in which a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide ultrafine bubbles was stored in a sealed state at 10 ° C. to 50 ° C. for 314 days and a solution stored at 60 ° C. for 90 days were used. Since all the results are the same spectrum, explanation will be made using the UV absorption spectrum of the solution stored at 50 ° C. for 314 days. As shown in FIGS. 4 to 6, the UV absorption spectrum of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles was found to have weak absorption near 236 nm in all samples, and the UV was adjusted to pH 9.5 with dilute sodium hydroxide. The absorption spectrum newly showed a maximum absorption near 292 nm. When the sample adjusted to pH 9.5 was adjusted again to pH 5.5 with diluted hydrochloric acid, the absorption at 292 nm disappeared and a weak absorption was observed near 236. From this, the chlorine component molecular species of the solution in which the carbon dioxide ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution was stored at 10 ° C. to 50 ° C. for 314 days and the solution stored at 60 ° C./90 days have strong bactericidal activity. It was determined to be hypochlorous acid.
同様に、二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の塩素分子種を同定するため、UV吸収スペクトルを測定した。図7〜図9には、30℃・602日間保存試料の測定結果である。試料溶液は232nm付近の弱い吸収と292nmに微弱な吸収が見られ、pH9.5に調整すると292nmの極大吸収のみとなり、再度pH5.5に調整すると292nmの吸収は消失し、236nm付近に弱い吸収が見られた。この結果から、本試料の塩素分子種は、極微量の次亜塩素酸イオンを含む次亜塩素酸と判定した。なお、20℃・602日、50℃・376日、60℃・230日間保存溶液のUV吸収スペクトルは全て30℃・602日間保存のそれと同じであった。 Similarly, in order to identify the chlorine molecular species of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas, a UV absorption spectrum was measured. 7 to 9 show measurement results of samples stored at 30 ° C. for 602 days. The sample solution shows weak absorption near 232 nm and weak absorption at 292 nm. When adjusted to pH 9.5, only the maximum absorption at 292 nm is obtained, and when adjusted again to pH 5.5, the absorption at 292 nm disappears and the weak absorption near 236 nm. It was observed. From this result, the chlorine molecular species of this sample was determined to be hypochlorous acid containing a very small amount of hypochlorite ion. The UV absorption spectra of the solutions stored at 20 ° C./602 days, 50 ° C./376 days, 60 ° C./230 days were all the same as those stored at 30 ° C./602 days.
この発明では、二酸化炭素ガス・窒素ガスをナノバブル化して電解次亜水に溶解させた結果、塩素形態を殺菌力の強い次亜塩素酸にして、熱と長期間の保存性が著しく改善したと説明した。この理由を明らかにするため、上記経時変化実験に使った保存溶液中のナノバブル粒径分析をした。その結果は表9に示した。 In this invention, carbon dioxide gas / nitrogen gas was converted into nanobubbles and dissolved in electrolytic hypochlorous acid. As a result, the chlorine form was changed to hypochlorous acid with strong bactericidal power, and heat and long-term storage were significantly improved. explained. In order to clarify the reason for this, the nanobubble particle size analysis in the storage solution used in the above-mentioned time-change experiment was performed. The results are shown in Table 9.
表9の結果から、20℃・210日間、20℃・391日間と30℃・391日間保存した超微細気泡含有微酸性次亜水溶液には、平均粒径112nm〜558nmのナノバブルが1.2×107/ml〜4.7×107/ml検出された。また、マイクロバブル発生装置18(前記プログレス750)で二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を生成後、室温で約30分間放置後の溶液には、平均粒径154nm〜332nmのナノバブルが、1.2×107/ml〜7.8×107/ml計測できた。中空糸カートリッジ24で二酸化炭素超微細気泡含有微酸性次亜塩素酸水溶液を調整し、約1時間室温に放置した後では、平均粒径94nm〜291nmのナノバブルが、1.1×107/ml〜3.6×107/ml検出できた。中空糸カートリッジ24使用の方がマイクロバブル発生装置18で調製したより、ナノバブルの平均粒径は小さいことが解った。これらの知見から、超微細気泡含有微酸性次亜塩素酸水溶液の長期間の安定化には、二酸化炭素ガスと窒素ガスがナノバブルとして電解次亜水に溶解していることが必要であると考えられる。
From the results in Table 9, the ultrafine bubble-containing slightly acidic hypo-aqueous solution stored at 20 ° C./210 days, 20 ° C./391 days and 30 ° C./391 days contains 1.2 × nanobubbles having an average particle size of 112 nm to 558 nm. was 10 7 /ml~4.7×10 7 / ml detection. In addition, after the microbubble generator 18 (progress 750) generates a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas and left for about 30 minutes at room temperature, nanobubbles 154nm~332nm were able 1.2 × 10 7 /ml~7.8×10 7 / ml measurements. After preparing a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide ultrafine bubbles with the
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の開放した状態での安定性について試験を行った。試料は、上記表7に示した試験と同じ調製法の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液(有効塩素濃度:200ppm、pH5.7)を使用した。なお対照区としては、電解次亜水を乳酸で微酸性に調整し、超微細気泡を含有しない微酸性次亜塩素酸水溶液(有効塩素濃度:176ppm、pH5.7)を使用した。各試料を、タッパーウエアに600mlずつ分注してアルミホイルを被せた後、10℃と30℃の恒温器に静置し、経時変化を調べた。この試験の結果を、表10に示した。 Next, the stability in the open state of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention was tested. As the sample, a slightly acidic hypochlorous acid aqueous solution (effective chlorine concentration: 200 ppm, pH 5.7) containing carbon dioxide gas / nitrogen gas containing ultrafine bubbles of the same preparation method as the test shown in Table 7 above was used. As a control group, a slightly acidic hypochlorous acid aqueous solution (effective chlorine concentration: 176 ppm, pH 5.7) which was adjusted to be slightly acidic with lactic acid and did not contain ultrafine bubbles was used as a control group. Each sample was dispensed 600 ml into Tupperware and covered with aluminum foil, and then placed in a thermostat at 10 ° C. and 30 ° C. to examine the change with time. The results of this test are shown in Table 10.
表10によれば、対照区の乳酸微酸性次亜塩素酸水溶液は、30℃保存では有効塩素農は1日後には46.6%に減少し、4日後には殆どが消失していたことが分かる。このことから、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、開放した状態での安定性も比較的優れていることが分かった。 According to Table 10, the lactic acid slightly acidic hypochlorous acid aqueous solution in the control plot showed that the effective chlorine farming decreased to 46.6% after 1 day and almost disappeared after 4 days when stored at 30 ° C. I understand. From this, it was found that the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention is relatively excellent in stability in an open state.
なお、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、10℃保存では4日目98.5%が残存し、30℃・4日間保存では77.5%が残存していた。UVスペクトル解析から、図10に示すごとく、10℃保存の4日目では、次亜塩素酸と次亜塩素酸イオンの混在が認められた。30℃保存の4日目では、図11に示すごとく、次亜塩素酸イオンの存在が確認された。この結果、超微細気泡含有微酸性次亜塩素酸水溶液のように二酸化炭素を溶解させて微酸性にpHを調整すると、塩素成分の形態は次亜塩素酸となる。そして、この次亜塩素酸の分解は非常に少なく、二酸化炭素が放出されるに従い次亜塩素酸イオンに可逆することを示唆している。 In addition, the carbon dioxide gas / nitrogen gas-containing slightly acidic hypochlorous acid aqueous solution of the present invention remained at 98.5% on the fourth day when stored at 10 ° C., and 77.5 when stored at 30 ° C. for four days. % Remained. From the UV spectrum analysis, as shown in FIG. 10, the mixture of hypochlorous acid and hypochlorite ions was observed on the fourth day of storage at 10 ° C. On the fourth day of storage at 30 ° C., the presence of hypochlorite ions was confirmed as shown in FIG. As a result, when carbon dioxide is dissolved and the pH is adjusted to be slightly acidic as in the case of a slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles, the form of the chlorine component becomes hypochlorous acid. The decomposition of hypochlorous acid is very little, suggesting that it is reversible to hypochlorite ions as carbon dioxide is released.
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の、各細菌に対する殺菌効果について試験を行った。各細菌はソイビーン・カゼイン・ダイジェスト培地(ダイゴ、日本新薬(株)製)で37℃一夜培養後、生理食塩水で十分洗浄した。試料は、上記の安定性の試験に使用したこの発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を10℃で40日間保存した溶液(有効塩素濃度12.8ppm、pH5.9)と、60℃で40日間保存した溶液(有効塩素濃度13ppm、pH6.1)で試験を行った。この2種類の超微細気泡含有微酸性次亜塩素酸水溶液で、菌数が105〜106となるように希釈し、この時添加菌液量1%以内とし、1分間放置後、ソイビーン・カゼイン・ダイジェスト培地1mlを加え、10,000rpmで遠心分離後、生理食塩水1mlに再懸濁し、連続希釈法で生菌数をソイビーン・カゼイン・ダイジェスト寒天培地(ダイゴ、日本新薬(株)製)で測定し、殺菌効果を確認した。その結果を、表11に示した。
Next, the bactericidal effect on each bacterium of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas according to the present invention was tested. Each bacterium was cultured overnight at 37 ° C. in a soy bean / casein / digest medium (Digo, Nippon Shinyaku Co., Ltd.), and then thoroughly washed with physiological saline. The sample was a solution (effective chlorine concentration 12.8 ppm, effective chlorine concentration aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention used for the stability test described above, stored at 10 ° C. for 40 days. The test was conducted with pH 5.9) and a solution stored at 60 ° C. for 40 days (effective chlorine concentration 13 ppm, pH 6.1). Dilute with these two types of ultra-fine bubble-containing slightly acidic hypochlorous acid aqueous solution so that the number of bacteria becomes 10 5 to 10 6.
表11によれば、この発明による二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、60℃・40日間で保存した場合でも、これを殺菌水として使用することにより、被検菌を全て死滅させることができた。これにより、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、熱安定性に優れ、高い殺菌効果を長期間維持することを確認した。 According to Table 11, the ultra-fine bubble-containing slightly acidic hypochlorous acid aqueous solution of carbon dioxide gas / nitrogen gas according to the present invention can be used as sterilizing water even when stored at 60 ° C. for 40 days. All test bacteria could be killed. Thereby, it was confirmed that the ultra-fine bubble-containing slightly acidic hypochlorous acid aqueous solution of carbon dioxide gas / nitrogen gas of the present invention was excellent in thermal stability and maintained a high bactericidal effect for a long period of time.
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の、カット野菜に対する除菌効果について試験を行った。カット野菜は、長さ約5cmに裁断した水菜と、千切りキャベツを使用した。試験方法は、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液に、カット野菜を3分間浸漬処理し、無菌水で洗浄した後、カット野菜25gをストマッカー用滅菌ポリ袋3個に各々入れ、冷蔵庫に保管した。同様に、未処理のカット野菜25gをストマッカー用滅菌ポリ袋3個に各々入れ、冷蔵庫に保管した。冷蔵庫保管の1個を取り出して室温(約15℃)に戻し、滅菌生理食塩水225mlを加え、ストマッカーで30秒ホモゲナイズし、生菌数検査をした。同様に、冷蔵庫で24時間、48時間それぞれ保管したものについて生菌数検査をした。一般細菌は、トリプトソイ寒天培地(栄研化学(株))を使用し、大腸菌・大腸菌群はECコリマーク寒天培地(栄研化学(株))を使用して、24時間培養後生菌数を測定した。なお、水菜の処理に使用した二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液は有効塩素濃度50ppm、pH5.2であり、3分間浸漬処理した後は50ppm、pH5.4であった。千切りキャベツの処理に使用した二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は有効塩素濃度48ppm、pH5.4であり、3分間浸漬処理した後は45ppm、pH5.5であった。この試験の結果を、表12に示した。 Next, the sterilization effect on cut vegetables of the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas of the present invention was tested. As the cut vegetables, mizuna cut into a length of about 5 cm and shredded cabbage were used. The test method is that the cut vegetables are immersed in a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas of this invention for 3 minutes, washed with sterile water, and then 25 g of cut vegetables are sterilized for stomachers. Each was put into three plastic bags and stored in a refrigerator. Similarly, 25 g of untreated cut vegetables were put in three sterilized plastic bags for stomachers, respectively, and stored in a refrigerator. One piece stored in the refrigerator was taken out and returned to room temperature (about 15 ° C.), 225 ml of sterilized physiological saline was added, homogenized with a stomacher for 30 seconds, and the viable cell count was examined. Similarly, the viable cell count was examined for those stored in the refrigerator for 24 hours and 48 hours, respectively. The number of viable cells was measured after culturing for 24 hours using tryptosoy agar medium (Eiken Chemical Co., Ltd.) for general bacteria, and EC colimark agar medium (Eiken Chemical Co., Ltd.) for E. coli and coliforms. . Note that the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas ultrafine bubbles used for the treatment of mizuna has an effective chlorine concentration of 50 ppm, pH 5.2, and after immersion for 3 minutes, it is 50 ppm, pH 5.4. there were. The slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas and nitrogen gas used for the processing of shredded cabbage has an effective chlorine concentration of 48 ppm and pH 5.4, and after immersion for 3 minutes, it is 45 ppm and pH 5.5. there were. The results of this test are shown in Table 12.
表12によれば、未処理区の水菜では105個台の、千切りキャベツでは103個台の一般細菌が検出されるが、この発明による二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液で3分間浸漬処理することで、水菜では103個台に、千切りキャベツでは102個台に減少し、3分間の浸漬で効果的に除菌できることを確認した。また、この除菌効果は48時間持続することを確認した。
According to Table 12, the 10 5 base in mizuna untreated Ward, although the shredded
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の、市販加湿器により空中に噴霧する場合の殺菌効果について試験を行った。使用する二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、有効塩素濃度28ppm、pH5.1である。この二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液を、市販加湿器を用いて噴霧し、発生する霧状ミストを集め、有効塩素濃度を計測したところ、約20ppmであった。このことから、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液は、噴霧手段を用いて対象物又はそれが存在する領域に噴霧するだけで、所望の有効塩素濃度を保持することが分かった。 Next, a test was conducted on the bactericidal effect of the carbon dioxide gas / nitrogen gas-containing slightly acidic hypochlorous acid aqueous solution of this invention when sprayed into the air with a commercial humidifier. The slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas to be used has an effective chlorine concentration of 28 ppm and a pH of 5.1. This carbon dioxide gas / nitrogen gas ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution was sprayed using a commercially available humidifier, and the generated mist mist was collected, and the effective chlorine concentration was measured, and was about 20 ppm. . Therefore, the carbon dioxide gas / nitrogen gas-containing slightly acidic hypochlorous acid aqueous solution of the present invention can be obtained by spraying an object or an area where it exists by using spraying means. It was found to maintain the concentration.
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の噴霧による殺菌効果について試験を行った。この試験は、二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を、20℃に110日間保存したもの(有効塩素濃度52ppm、pH6.2)を使用し、約600,000cm3(間口132×奥行き67×高さ72cm)の密閉空間に3分間噴霧し、噴霧したミストの有効塩素濃度が30ppm、pH6.4となる環境を形成した。上記噴霧後2日を経過したのちソィビーン・カゼイン・ダイジェスト寒天平板を30分間開放する落下法で、落下細菌を試験した。その結果、平板1枚当たり0〜2個の細菌が検出された。なお、噴霧後二酸化炭素ガスが消失して、pHが多少上昇してもよく、pH5.0〜pH6.7が有効な範囲と判断される。 Next, the sterilization effect by spraying the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention was tested. This test uses a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas and nitrogen gas stored at 20 ° C. for 110 days (effective chlorine concentration 52 ppm, pH 6.2), and is about 600,000 cm. 3 (frontage 132 × depth 67 × height 72 cm) was sprayed for 3 minutes to form an environment in which the sprayed mist had an effective chlorine concentration of 30 ppm and a pH of 6.4. Two days after the spraying, the falling bacteria were tested by a dropping method in which a soy bean, casein, digest agar plate was opened for 30 minutes. As a result, 0 to 2 bacteria were detected per plate. It should be noted that the carbon dioxide gas may disappear after spraying and the pH may rise somewhat, and it is determined that pH 5.0 to pH 6.7 is an effective range.
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の、市販加湿器により空中に噴霧した場合の有効塩素濃度について試験を行った。使用する加湿器は、超音波式加湿器AHD−010((株)アピックスインターナショナル製)と、スチームファン式加湿器KX−235m((株)シー・シー・ピー製)の2種類である。試料は、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液(有効塩素濃度28ppm、pH5.1)である。各加湿器に試料である二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液を入れて稼働する。各加湿器の噴霧口から発生した霧状の二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液をビニール袋に集め、しずくとなった部分にクロール試験紙(10〜50ppm測定用、アドバンテック東洋(株)製)にて残留塩素濃度を測定した。この結果、超音波式加湿機では約20ppmの有効塩素濃度を確認したが、スチームファン式加湿機では約1ppm程度しか検出できなかった。
Next, a test was conducted on the effective chlorine concentration in the case where the aqueous solution of the slightly acidic hypochlorous acid containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention was sprayed into the air with a commercial humidifier. Two types of humidifiers are used: an ultrasonic humidifier AHD-010 (manufactured by Apics International Co., Ltd.) and a steam fan type humidifier KX-235m (manufactured by Sea CP Corporation). The sample is a slightly acidic hypochlorous acid aqueous solution (
さらに、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の、超音波式加湿器AHD−010((株)アピックスインターナショナル製)により空中に噴霧する場合の殺菌効果について試験を行った。予めソイビーン・カゼイン・ダイジェスト培地(日本新薬(株)製)で37℃一夜培養した黄色ブドウ球菌(Staphylococous aureus 209PJC−1)を生理食塩水で洗浄し、1.3×107/ml菌液を調整した。次に、アルミ製のトレー上に面積25cm2の円を二つ描き、この二つの円内に前記菌液を0.1ml広げ、クリーンベンチ(日立社製PCV−750AP)内で自然乾燥した。続いて、一つの円にぺたんチェック25標準寒天培地(栄研化学(株)製)をスタンプして無処理区とした。このトレーは、クリーンベンチ内につるした。クリーンベンチ内には超音波加湿器AHD−010((株)アピックスインターナショナル製)を置き、二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液(有効塩素濃度28ppm、pH5.1)を3分間噴霧し、加湿器から放出されたミストにトレーが囲まれるのを確認した。次に、トレー上の残りの一つの円にぺたんチェック25標準寒天培地(栄研化学(株)製)をスタンプして処理区とした。得られた二つのぺたんチェック25標準寒天培地(栄研化学(株)製)は37℃で一夜培養し生菌数を測定した。この試験の結果を、表13に示した。
Furthermore, the bactericidal effect of the aqueous solution of the slightly acidic hypochlorous acid containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention when sprayed in the air with an ultrasonic humidifier AHD-010 (manufactured by Apics International Co., Ltd.) The test was conducted. Staphylococcus aureus 209PJC-1 previously cultured in a soybean / casein digest medium (manufactured by Nippon Shinyaku Co., Ltd.) overnight at 37 ° C. was washed with physiological saline, and 1.3 × 10 7 / ml bacterial solution was added. It was adjusted. Next, two circles having an area of 25 cm 2 were drawn on an aluminum tray, and 0.1 ml of the bacterial solution was spread in the two circles, followed by natural drying in a clean bench (Hitachi PCV-750AP). Subsequently, a Petan Check 25 standard agar medium (manufactured by Eiken Chemical Co., Ltd.) was stamped on one circle to make an untreated section. This tray was hung in a clean bench. An ultrasonic humidifier AHD-010 (manufactured by Apics International Co., Ltd.) is placed in the clean bench, and a slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas and nitrogen gas ultrafine bubbles (
表13によれば、無処理区のぺたんチェック25標準寒天培地上には、菌数の測定が不能(無限大)の微生物増殖として認められたが、この発明による処理区のぺたんチェック25標準寒天培地上には、黄色ブドウ球菌がぺたんチェック25(面積:25cm2)当たり135集落の増殖を計測した。これによりこの発明の二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液は、超音波加湿器で空中に噴霧することにより、高い殺菌効果があることが分った。 According to Table 13, the number of bacteria could not be measured (infinite) on the untreated plot Petcheck 25 standard agar medium, but the treated plot Petcheck 25 standard agar according to the present invention was found. On the medium, the growth of 135 colonies was measured per scab check 25 (area: 25 cm 2 ). As a result, it was found that the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas ultrafine bubbles of the present invention has a high sterilizing effect when sprayed in the air with an ultrasonic humidifier.
次に、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液による、切花の水揚げ促進効果について試験を行った。切花を長く日持ちさせるためには、水揚げの良否が最も重要なポイントといわれている。そして、切花の水揚げを妨げる要因として細菌類の増殖により切花茎の腐敗や導管閉塞があげられる。なお、この問題を解決するため、硝酸銀や硫酸アルミニウム等の抗菌剤・静菌剤や有機酸を添加した鮮度保持剤、あるいは切花の老化に関与するエチレン発生阻害活性を持つSTS(チオ硫酸銀錯塩)が切花延命剤として市販されている。一方、食塩、塩化カリウムあるいは塩酸等の溶液を電気分解して生成する次亜塩素酸水の切花日持ち効果に関する技術がある。 Next, the effect of promoting the landing of cut flowers by the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas of the present invention was tested. In order to keep cut flowers for a long time, it is said that the quality of landing is the most important point. As factors that hinder the landing of cut flowers, the decay of cut flower stems and the closure of conduits are caused by the growth of bacteria. In order to solve this problem, antibacterial agents such as silver nitrate and aluminum sulfate, bacteriostatic agents, freshness-preserving agents added with organic acids, or STS (silver thiosulfate complex salts having ethylene generation inhibitory activity involved in cut flower aging ) Is commercially available as a cut flower life prolonging agent. On the other hand, there is a technology related to the effect of keeping the cut flowers of hypochlorous acid water generated by electrolyzing a solution of salt, potassium chloride, hydrochloric acid or the like.
使用する切花は、ベトナム産白色スプレー菊(以下、キク切花と称す)である。試料は、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の有効塩素濃度10ppm区と、20ppm区とし、対照区として水道水を使用した。試験方法は、プラスチック製バケット(縦40cm×横30cm)に、7リットルの二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液(有効塩素濃度10ppm区、有効塩素濃度20ppm区、いずれもpH5.0)をそれぞれ注入した。キク切花は、3本を1組とし、各処理区に3組ずつ挿した。対照区として、水道水7リットルを使い、同様に試験を行った。試験期間中は、バケットを室温(約15℃)で、自然光条件下に静置した。そして、有効塩素濃度とpHの測定を行い、その結果を表14に示した。また、同時に水揚げ量の測定を行い、その結果を表15に示した。水揚げ量は、試験開始時の切り花重量から4日後と8日後の重量を差し引くことで評価した。すなわち、差引重量の値が小さければ水揚げ量が大きいと判定される。
The cut flowers used are white spray chrysanthemums from Vietnam (hereinafter referred to as chrysanthemum cut flowers). Samples were carbon dioxide gas / nitrogen gas ultrafine bubbles-containing slightly acidic hypochlorous acid aqueous solution having an effective chlorine concentration of 10 ppm and 20 ppm, and tap water was used as a control. The test method was as follows: a plastic bucket (length 40 cm ×
表14によると、キク切花の水揚げ実験に使用した本発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液の有効塩素濃度は数日を経過すると低下する傾向が見られ、それに伴ってpHも変化するが、8日程度では、なお、有効な濃度を保っていることが分かる。 According to Table 14, the effective chlorine concentration of the slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles of carbon dioxide gas / nitrogen gas of the present invention used in the chrysanthemum flower landing experiment tends to decrease after several days. The pH also changes with this, but it can be seen that the effective concentration is still maintained in about 8 days.
表15によると、対照区は4日後減少量B/Aが13%を超え、8日後になると減少量C/Aが16.3%を示す。これに対して、この発明の二酸化炭素ガス・窒素ガス超微細気泡含有微酸性次亜塩素酸水溶液による場合、10ppmで4日後減少量B/Aが19.6%、8日後減少量C/Aは12.7%、20ppmで4日後減少量B/Aが12.9%、8日後減少量C/Aは16.6%であった。これらにより、この発明の二酸化炭素ガス・窒素ガスの超微細気泡含有微酸性次亜塩素酸水溶液を切花に使用することによって、水揚げを促進し、延命効果を図ることができる。 According to Table 15, in the control group, the decrease amount B / A after 4 days exceeds 13%, and after 8 days, the decrease amount C / A shows 16.3%. On the other hand, in the case of the carbon dioxide gas / nitrogen gas ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution of the present invention, the decrease amount B / A after 4 days was 19.6% at 10 ppm, and the decrease amount C / A after 8 days. 12.7%, 20 ppm, the decrease B / A after 4 days was 12.9%, and the decrease C / A after 8 days was 16.6%. Accordingly, by using the slightly acidic hypochlorous acid aqueous solution containing carbon dioxide gas / nitrogen gas of the present invention for cut flowers, landing can be promoted and a life extension effect can be achieved.
10 超微細気泡含有微酸性次亜塩素酸水溶液の製造装置
12 二酸化炭素ガスボンベ
14 窒素ガスボンベ
16 電解次亜水生成装置
18 マイクロバブル発生装置
20 超微細気泡含有微酸性次亜塩素酸水溶液
DESCRIPTION OF
Claims (7)
In a hollow fiber cartridge incorporating a hollow fiber membrane , carbon dioxide gas and nitrogen gas are conducted to a predetermined amount of tap water, and only the carbon dioxide gas and nitrogen gas are passed to the tap water through the hollow fiber membrane. After dissolving and preparing a slightly acidic aqueous solution of pH 5 to pH 6 having ultrafine bubbles containing the carbon dioxide gas and the nitrogen gas, electrolytic hyposulfite or sodium hypochlorite aqueous solution is injected into the slightly acidic aqueous solution Then, ultrafine bubbles having an average particle diameter of 0.05 μm to 2 μm containing the carbon dioxide gas and the nitrogen gas are retained in the aqueous solution for a long period of time, and ultrafine bubbles-containing slightly acidic hypochlorous acid water having a pH of 5 to 6 is added. And spraying this ultrafine bubble-containing slightly acidic hypochlorous acid water onto the object or the space in which it is present using a spraying means, and the effective chlorine concentration of the sprayed mist is 10 ppm to 30 ppm, p A method of using an ultrafine bubble-containing slightly acidic hypochlorous acid aqueous solution, characterized by forming an environment of H5.0 to pH 6.9 and sterilizing the object or a space in which the object exists.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/080812 WO2015071995A1 (en) | 2013-11-14 | 2013-11-14 | Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015071995A1 JPWO2015071995A1 (en) | 2017-03-09 |
JP6122139B2 true JP6122139B2 (en) | 2017-04-26 |
Family
ID=53056959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015547336A Active JP6122139B2 (en) | 2013-11-14 | 2013-11-14 | Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6122139B2 (en) |
CN (1) | CN105377770A (en) |
WO (1) | WO2015071995A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099085A1 (en) * | 2015-12-07 | 2017-06-15 | 新日本空調株式会社 | Cleaning method of article worn on human body |
JP6829002B2 (en) * | 2016-03-18 | 2021-02-10 | 株式会社東芝 | Storage and storage method |
JPWO2018003087A1 (en) * | 2016-06-30 | 2019-04-18 | マルハニチロ株式会社 | Bactericidal agent combining chlorine-based germicidal agent and microbubbles, and sterilizing method |
JP2018175740A (en) * | 2017-04-21 | 2018-11-15 | パナソニックIpマネジメント株式会社 | Air purification device |
JP2019063795A (en) * | 2017-10-03 | 2019-04-25 | キヤノンマーケティングジャパン株式会社 | Cleaning device and cleaning method |
JP2020099291A (en) * | 2018-12-25 | 2020-07-02 | 株式会社前川製作所 | Sterilization method and sterilization apparatus of food product |
EP4358977A1 (en) * | 2021-06-25 | 2024-05-01 | TTD Global Pty Ltd | Stabilised hypohalous acid solutions |
CN113772800B (en) * | 2021-09-27 | 2024-01-09 | 哈维(上海)环境科技有限公司 | Method for adding carbonic acid by adopting small carbonic acid solution adding system |
WO2024231969A1 (en) * | 2023-05-08 | 2024-11-14 | シャープ株式会社 | Gas treatment device, gas treatment method, storage, and air conditioner |
JP7490901B1 (en) | 2024-01-05 | 2024-05-27 | 竹本容器株式会社 | Carbon dioxide nanobubble water or carbon dioxide nanobubble mist, and its manufacturing method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07330502A (en) * | 1994-06-01 | 1995-12-19 | Pola Chem Ind Inc | Freshness-retaining agent for cut flower |
JP3083294B1 (en) * | 1999-09-16 | 2000-09-04 | 株式会社レーベン | Ceramic ball for sewage treatment and method for producing the same. |
JP2005000238A (en) * | 2003-06-09 | 2005-01-06 | Hiromaito Co Ltd | Method for manufacturing vessel filled with disinfectant aqueous solution |
JP4647030B2 (en) * | 2007-09-05 | 2011-03-09 | 株式会社 シンワ | Cleaning water supply device for dental unit |
JP2009072649A (en) * | 2007-09-18 | 2009-04-09 | Univ Of Tokyo | Nanobubble solution, method and apparatus for producing nanobubble solution, and method of using nanobubble solution |
JP2009297654A (en) * | 2008-06-13 | 2009-12-24 | Keiyu:Kk | Method of manufacturing sterilization water containing hypochlorous acid and apparatus thereof |
JP4595001B2 (en) * | 2008-06-26 | 2010-12-08 | 株式会社 シンワ | Medical cleaning water supply device |
JP2010115639A (en) * | 2008-10-18 | 2010-05-27 | Viita Kk | Method and apparatus for adjusting ph |
JP2010254661A (en) * | 2009-04-27 | 2010-11-11 | Hokuetsu:Kk | Slightly acidic electrolytic water mixed with carbon dioxide gas |
JP2011173858A (en) * | 2009-12-03 | 2011-09-08 | Tomita Pharmaceutical Co Ltd | Hypochlorous acid-based germicidal disinfectant, and method and apparatus for preparing the same |
JP2011224526A (en) * | 2010-04-19 | 2011-11-10 | Masami Fujita | Method of manufacturing aqueous hypochlorous acid, and device therefor |
JP2013017963A (en) * | 2011-07-12 | 2013-01-31 | Bisansei Denkaisui Kenkyusho:Kk | Device and method for producing sterilized water |
WO2013125051A1 (en) * | 2012-02-22 | 2013-08-29 | 株式会社シンワ | Device for producing liquid mixed with microbubbles containing gas incorporated thereinto |
JP2013180956A (en) * | 2012-02-29 | 2013-09-12 | Sunstar Engineering Inc | Bactericidal agent composition |
-
2013
- 2013-11-14 WO PCT/JP2013/080812 patent/WO2015071995A1/en active Application Filing
- 2013-11-14 CN CN201380020277.4A patent/CN105377770A/en active Pending
- 2013-11-14 JP JP2015547336A patent/JP6122139B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105377770A (en) | 2016-03-02 |
JPWO2015071995A1 (en) | 2017-03-09 |
WO2015071995A1 (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6122139B2 (en) | Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles | |
JP6214855B2 (en) | Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same | |
JP6051426B2 (en) | Bactericidal agent with excellent permeability and sterilizing method | |
KR102386583B1 (en) | Microbicide and method for manufacturing same | |
US20150119245A1 (en) | Method for Producing Shelf Stable Hypochlorous Acid Solutions | |
CN111569683B (en) | High-concentration long-acting ozone nano bubble aqueous solution and preparation method thereof | |
JP2007275089A (en) | Long-term sustainable ozone water, and environment sterilization and deodorizing/clarification method using long-term sustainable ozone water | |
US20150044144A1 (en) | Disinfectant solution | |
US20160151525A1 (en) | System and method for treatment of perishable goods with hydrogen-rich water | |
US10993448B2 (en) | Method for sanitizing fresh produce | |
JP2017046648A (en) | Processing method of perishable food using high concentration hydrogen water, and processing unit | |
JP2020099291A (en) | Sterilization method and sterilization apparatus of food product | |
WO2020122258A1 (en) | Radical-water production method, production device and radical water | |
JP7082896B2 (en) | How to sterilize food | |
JP6085560B2 (en) | Method for producing cut vegetables | |
JP5030089B2 (en) | Cleaning method by sterilization or particle removal, and apparatus used therefor | |
JPWO2018003087A1 (en) | Bactericidal agent combining chlorine-based germicidal agent and microbubbles, and sterilizing method | |
WO2008038744A1 (en) | Bactericidal composition | |
KR101902452B1 (en) | Fresh fruits and vegetable treated with hot water-microbubbles, method for treating fresh fruits and vegetable and hot water-microbubbles washing device | |
JP2017038528A (en) | Cleaning method and cleaning solution | |
Issa-Zacharia | Microbial Inactivation Mechanism and Properties of Slightly Acidic Electrolyzed Water: A Review | |
KR102371832B1 (en) | Method for producing disinfectant using aqueous chlorine dioxide solution and disinfectant in which aqueous chlorine dioxide solution is mixed | |
JP2019024321A (en) | Manufacturing method of packaged food and packaged food | |
JP6980272B2 (en) | Sterilization method and its equipment | |
Nederhoff et al. | Electrolysed water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6122139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |