JP6091310B2 - Method for producing butadiene - Google Patents
Method for producing butadiene Download PDFInfo
- Publication number
- JP6091310B2 JP6091310B2 JP2013089121A JP2013089121A JP6091310B2 JP 6091310 B2 JP6091310 B2 JP 6091310B2 JP 2013089121 A JP2013089121 A JP 2013089121A JP 2013089121 A JP2013089121 A JP 2013089121A JP 6091310 B2 JP6091310 B2 JP 6091310B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- butadiene
- catalyst
- oxide
- producing butadiene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 title claims description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 48
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 150000001299 aldehydes Chemical class 0.000 description 5
- 239000012018 catalyst precursor Substances 0.000 description 5
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 2
- WCASXYBKJHWFMY-NSCUHMNNSA-N 2-Buten-1-ol Chemical compound C\C=C\CO WCASXYBKJHWFMY-NSCUHMNNSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 2
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- WCASXYBKJHWFMY-UHFFFAOYSA-N gamma-methylallyl alcohol Natural products CC=CCO WCASXYBKJHWFMY-UHFFFAOYSA-N 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000005882 aldol condensation reaction Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000000075 primary alcohol group Chemical group 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- -1 sphere Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、原料にアセトアルデヒドとアルコールを使用するブタジエンの製造方法に関する。 The present invention relates to a method for producing butadiene using acetaldehyde and alcohol as raw materials.
ブタジエンの主な供給源はナフサの熱分解炉(クラッカー)の炭素数4の留分からの抽出物であるが、ナフサの熱分解は主にエチレンおよびプロピレンの製造を目的としており、ブタジエンは副生物として扱われているに過ぎない。また、ブタジエンは新興国の需要増が予想されているが、生産量が十分ではないため、新しいブタジエン製法の開発が求められている。 The main source of butadiene is an extract from a 4 carbon distillate in a naphtha pyrolysis furnace (cracker), but naphtha pyrolysis is primarily intended for the production of ethylene and propylene, and butadiene is a byproduct. It is only treated as. In addition, demand for butadiene is expected to increase in emerging countries, but since the production volume is not sufficient, development of a new butadiene manufacturing method is required.
アセトアルデヒドとアルコールを原料としてブタジエンを製造する方法は古くから知られており、非特許文献1(Catalysis Science and Technology 1 (2011) pp. 267-272)には後述のような反応機構が推定されている。特許文献1(米国特許第2421361号明細書)には、ジルコニウム、タンタルまたはニオブの酸化物を触媒に用いた例が開示されている。特許文献2(米国特許第2524848号明細書)には、触媒としてシリカに担持した酸化タンタルを使用することが開示されている。しかしながら、これらの方法はブタジエンの選択率が低いなどの理由から、実用的にはまだ課題がある。 A method for producing butadiene using acetaldehyde and alcohol as raw materials has been known for a long time, and non-patent document 1 (Catalysis Science and Technology 1 (2011) pp. 267-272) estimates a reaction mechanism as described below. Yes. Patent Document 1 (US Pat. No. 2,421,361) discloses an example in which an oxide of zirconium, tantalum or niobium is used as a catalyst. Patent Document 2 (US Pat. No. 2,524,848) discloses the use of tantalum oxide supported on silica as a catalyst. However, these methods still have problems in practical use because of the low selectivity of butadiene.
本発明の目的は、アセトアルデヒドとアルコールを原料として使用する、選択率の高いブタジエンの製造方法を提供することである。 An object of the present invention is to provide a method for producing butadiene with high selectivity, using acetaldehyde and alcohol as raw materials.
本発明者らは種々検討した結果、アセトアルデヒドとアルコールからブタジエンを製造するための触媒として従来の酸化タンタルなどに加え、周期律表第1〜3族からなる群から選ばれる少なくとも1種の金属Bの酸化物を併用することで上記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は以下の[1]〜[6]に関する。 As a result of various studies, the present inventors have found that as a catalyst for producing butadiene from acetaldehyde and alcohol, at least one metal B selected from the group consisting of Groups 1 to 3 in the periodic table in addition to conventional tantalum oxide and the like. The present inventors have found that the above-mentioned problems can be solved by using the oxides together, and have completed the present invention. That is, the present invention relates to the following [1] to [6].
[1]
原料にアセトアルデヒドおよび一般式(I)で示されるアルコールを用いてブタジエンを製造する方法であって、周期律表第4族および5族からなる群から選ばれる少なくとも1種の金属Aの酸化物(成分A)と、周期律表第1〜3族からなる群から選ばれる少なくとも1種の金属Bの酸化物(成分B)とを含有する触媒を使用することを特徴とするブタジエンの製造方法。
[2]
金属Bがナトリウム、バリウム、ランタン、およびイットリウムから選ばれる少なくとも1種である[1]に記載のブタジエンの製造方法。
[3]
金属Aがジルコニウム、ハフニウム、およびタンタルから選ばれる少なくとも1種である[1]または[2]のいずれかに記載のブタジエンの製造方法。
[4]
触媒が成分Aおよび成分Bが担体に担持されたものである[1]〜[3]のいずれかに記載のブタジエンの製造方法。
[5]
一般式(I)のR1が水素原子、R2が炭素数1〜6のアルキル基である[1]〜[4]のいずれかに記載のブタジエンの製造方法。
[6]
一般式(I)で示されるアルコールがエタノールである[1]〜[4]のいずれかに記載のブタジエンの製造方法。
[1]
A method for producing butadiene using acetaldehyde and an alcohol represented by the general formula (I) as a raw material, wherein at least one metal A oxide selected from the group consisting of groups 4 and 5 of the periodic table ( A method for producing butadiene, comprising using a catalyst containing component A) and at least one oxide of metal B selected from the group consisting of Groups 1 to 3 in the periodic table (component B).
[2]
The method for producing butadiene according to [1], wherein the metal B is at least one selected from sodium, barium, lanthanum, and yttrium.
[3]
The method for producing butadiene according to any one of [1] or [2], wherein the metal A is at least one selected from zirconium, hafnium, and tantalum.
[4]
The method for producing butadiene according to any one of [1] to [3], wherein the catalyst is one in which component A and component B are supported on a carrier.
[5]
The method for producing butadiene according to any one of [1] to [4], wherein R 1 in the general formula (I) is a hydrogen atom, and R 2 is an alkyl group having 1 to 6 carbon atoms.
[6]
The method for producing butadiene according to any one of [1] to [4], wherein the alcohol represented by the general formula (I) is ethanol.
本発明によれば、アセトアルデヒドとアルコールを原料として使用して、ブタジエンを高い選択率で製造することができる。 According to the present invention, butadiene can be produced with high selectivity using acetaldehyde and alcohol as raw materials.
本発明は、式1に示すように2分子のアセトアルデヒドと1級または2級のアルコールからブタジエン、アルデヒドまたはケトンおよび2分子の水ができる反応を利用したブタジエンの製造方法である。非特許文献1によれば、推定される反応機構は、2分子のアセトアルデヒドがアルドール縮合後脱水しクロトンアルデヒドとなり、それがアルコールとのメールワイン・ポンドルフ・バーレー還元(MPV還元)によりクロチルアルコールとなり、更に脱水することにより、ブタジエンを生成するものである。
アルコールとしてエタノールを用いた場合、エタノールは式(1)によりアセトアルデヒド、すなわち原料化合物と同一となり、結果として生成物はブタジエンと水のみとなる。このため、生成物の分離工程が簡潔となり、より好ましい。 When ethanol is used as the alcohol, the ethanol is the same as acetaldehyde, that is, the raw material compound according to the formula (1), and as a result, the product is only butadiene and water. For this reason, the separation process of a product becomes simple and is more preferable.
ブタジエン選択率の向上のためには、副反応であるアルコールの脱水によるオレフィンおよび/またはエーテルの生成、アセトアルデヒドからの高分子量体の生成などを抑制することが重要である。 In order to improve the butadiene selectivity, it is important to suppress generation of olefins and / or ethers due to dehydration of alcohol, which is a side reaction, and formation of high molecular weight products from acetaldehyde.
(反応形態)
一般式(I)で示されるアルコールにおいて、R1、R2は水素原子または炭素数1〜20の脂肪族炭化水素基である。さらにR1、R2は取扱いの容易性の面から炭素数1〜6のアルキル基が好ましい。また、R1が水素原子である一級アルコールが好ましい。より好ましくはR1が水素原子であり、R2が炭素数1〜6のアルキル基である。 In the alcohol represented by the general formula (I), R 1 and R 2 are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms. Further, R 1 and R 2 are preferably alkyl groups having 1 to 6 carbon atoms from the viewpoint of easy handling. Moreover, the primary alcohol whose R < 1 > is a hydrogen atom is preferable. More preferably, R 1 is a hydrogen atom, and R 2 is an alkyl group having 1 to 6 carbon atoms.
一般式(I)で示されるアルコールとしては、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、i−ブタノール、クロチルアルコールなどが挙げられる。特に好ましいのは、式(1)における主生成物がブタジエンと水のみとなるエタノールである。 Examples of the alcohol represented by the general formula (I) include methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, i-butanol, crotyl alcohol and the like. Particularly preferred is ethanol in which the main product in formula (1) is only butadiene and water.
本発明のブタジエンの製造方法における原料化合物としては、アセトアルデヒドと一般式(I)で示されるアルコールを必須成分とするが、これ以外にも他のアルデヒド類を一緒に使用してもよい。アセトアルデヒド以外のアルデヒド類としては、目的化合物であるブタジエンと同じ炭素数4のクロトンアルデヒドやブチルアルデヒドなどが挙げられる。 As a raw material compound in the method for producing butadiene of the present invention, acetaldehyde and an alcohol represented by the general formula (I) are essential components, but other aldehydes may be used together. Examples of aldehydes other than acetaldehyde include crotonaldehyde and butyraldehyde having the same carbon number as butadiene which is the target compound.
一般式(I)で示されるアルコールと、アセトアルデヒドおよび任意にアセトアルデヒド以外のアルデヒド類の比率は、アルコール:アルデヒド=0.5:1〜10:1(モル比)であることが好ましく、1:1〜5:1(モル比)であることがより好ましく、1.5:1〜3:1(モル比)であることが特に好ましい。 The ratio of the alcohol represented by the general formula (I) to acetaldehyde and optionally aldehydes other than acetaldehyde is preferably alcohol: aldehyde = 0.5: 1 to 10: 1 (molar ratio). More preferably, it is -5: 1 (molar ratio), and it is especially preferable that it is 1.5: 1-3: 1 (molar ratio).
本発明のブタジエンの製造方法に適した反応温度は、100℃〜700℃の範囲である。好ましくは250℃〜600℃であり、更に好ましくは300℃〜450℃である。 The reaction temperature suitable for the method for producing butadiene of the present invention is in the range of 100 ° C to 700 ° C. Preferably it is 250 to 600 degreeC, More preferably, it is 300 to 450 degreeC.
また、反応時の圧力は常圧、加圧下または減圧下のいずれでもよく、常圧以下がより好ましい。 Moreover, the pressure at the time of reaction may be normal pressure, under pressure or under reduced pressure, more preferably below normal pressure.
反応形式としては、バッチ方式、連続方式、固定床、移動床、流動床またはスラリー床のいずれの方法でもよい。 The reaction format may be any of a batch system, a continuous system, a fixed bed, a moving bed, a fluidized bed, or a slurry bed.
本発明は原料化合物のみで行うこともできるが、窒素またはヘリウムのような不活性なガスを原料化合物と混合し触媒と接触させることにより、反応させることもできる。水を原料化合物と混合して反応の開始および/または進行を促進することもできる。 Although the present invention can be carried out using only the raw material compound, it can also be reacted by mixing an inert gas such as nitrogen or helium with the raw material compound and bringing it into contact with the catalyst. Water can be mixed with the raw material compound to promote the initiation and / or progress of the reaction.
このようにして得られた反応生成物からは、通常用いられている分離、精製法によりブタジエンを取り出すことができる。例えば、精溜、抽出、吸着法などを用いてブタジエンを取り出すことができる。 From the reaction product thus obtained, butadiene can be taken out by a commonly used separation and purification method. For example, butadiene can be taken out using rectification, extraction, adsorption, or the like.
(触媒)
本発明のブタジエンの製造方法に使用することのできる触媒は、IUPACが1989年に勧告した18族型元素周期表でいう第4族および5族からなる群から選ばれる少なくとも1種の金属Aの酸化物(成分A)と、第1〜3族からなる群から選ばれる少なくとも1種の金属Bの酸化物(成分B)とを含む触媒が挙げられる。金属Aとしてはジルコニウム、ハフニウム、およびタンタルが好ましく、その酸化物である成分Aは酸化ジルコニウム、酸化ハフニウム、および酸化タンタルが好ましい。また、金属Bとしてはナトリウム、バリウム、ランタン、およびイットリウムが好ましく、その酸化物である成分Bは酸化ナトリウム、酸化バリウム、酸化ランタン、および酸化イットリウムが好ましい。
(catalyst)
The catalyst that can be used in the method for producing butadiene of the present invention is at least one metal A selected from the group consisting of groups 4 and 5 in the group 18 element periodic table recommended by IUPAC in 1989. Examples thereof include a catalyst containing an oxide (component A) and an oxide (component B) of at least one metal B selected from the group consisting of Groups 1 to 3. Zirconium, hafnium, and tantalum are preferable as the metal A, and the component A that is an oxide thereof is preferably zirconium oxide, hafnium oxide, and tantalum oxide. The metal B is preferably sodium, barium, lanthanum and yttrium, and the component B which is an oxide thereof is preferably sodium oxide, barium oxide, lanthanum oxide and yttrium oxide.
上記触媒の具体的な作用は不明であり、いかなる理論に拘束されることを望む訳ではないが、以下のように推測できる。成分Aが原料にアセトアルデヒドおよびアルコールを使用したブタジエンの製造に活性であることは知られているが、それに成分Bを加えることにより、原料および/または中間生成物の酸点を制御して副反応を抑制することができ、その結果、ブタジエンの選択率を向上させることができる。 The specific action of the catalyst is unknown and is not desired to be bound by any theory, but can be estimated as follows. It is known that component A is active in the production of butadiene using acetaldehyde and alcohol as raw materials, but by adding component B thereto, the acid point of the raw materials and / or intermediate products is controlled to cause side reactions. As a result, the selectivity of butadiene can be improved.
本発明に使用する触媒は、ブタジエンの製造に使用する際に成分Aおよび成分Bを含んでいればよい。これら成分の前駆体化合物として、ブタジエンの製造に使用するまでに酸化物となるようなものであれば、特に制限なく使用することができる。例えば、硝酸塩、塩酸塩、リン酸塩、硫酸塩などの無機塩、エトキシド、プロポキシド、ブトキシドなどのアルコラートなどが触媒前駆体化合物として挙げられる。これらを加熱、焼成などにより酸化物に変換したのちに使用することができる。 The catalyst used for this invention should just contain the component A and the component B, when using for manufacture of a butadiene. As precursor compounds of these components, any compound can be used without particular limitation as long as it becomes an oxide before being used for the production of butadiene. For example, inorganic salts such as nitrates, hydrochlorides, phosphates, sulfates, alcoholates such as ethoxides, propoxides, butoxides, etc. can be mentioned as catalyst precursor compounds. These can be used after being converted into oxides by heating, baking or the like.
焼成温度は100℃〜900℃、好ましくは300℃〜800℃であり、更に好ましくは400℃〜700℃である。焼成は、空気中および窒素またはヘリウムなどの不活性ガス中のいずれの雰囲気下でも可能である。また、反応温度以下で酸化物に変換されうる触媒前駆体化合物の場合、そのまま触媒層として使用することもできる。 The firing temperature is 100 ° C to 900 ° C, preferably 300 ° C to 800 ° C, and more preferably 400 ° C to 700 ° C. Calcination can be performed in any atmosphere in air and an inert gas such as nitrogen or helium. Further, in the case of a catalyst precursor compound that can be converted to an oxide at a reaction temperature or lower, it can be used as it is as a catalyst layer.
触媒は、粉末、顆粒、球体、ペレットなど任意の形状で使用できる。乾燥、焼成して用いることもできる。 The catalyst can be used in any shape such as powder, granule, sphere, pellet and the like. It can also be used after drying and firing.
成分Aと成分Bの比は、各成分に含まれる金属の原子比〔(成分B中の金属B)/(成分A中の金属A)〕で0.01〜10が好ましく、0.05〜5がより好ましく、0.1〜2が更に好ましい。担持量が少ないとその効果が小さく、多すぎると生産性が低下することがある。 The ratio of component A to component B is preferably 0.01 to 10 in terms of atomic ratio of metal contained in each component [(metal B in component B) / (metal A in component A)], 0.05 to 5 is more preferable, and 0.1 to 2 is still more preferable. If the loading amount is small, the effect is small, and if it is too large, the productivity may decrease.
上記の触媒および/または触媒前駆体化合物を、必要に応じて担体に担持させて用いることも可能である。これらの担体としては、加熱帯域において安定な化合物であればよく、他に制限はない。これらの化合物の一例として、アルミナ、シリカ、ゼオライト、マグネシア、チタニア、ジルコニア、グラファイト、活性炭、炭素繊維などが挙げられる。 It is also possible to use the catalyst and / or catalyst precursor compound supported on a carrier as necessary. These carriers are not particularly limited as long as they are stable compounds in the heating zone. Examples of these compounds include alumina, silica, zeolite, magnesia, titania, zirconia, graphite, activated carbon, carbon fiber and the like.
触媒を担体に担持して用いる場合には、成分Aおよび成分Bの触媒前駆体化合物を一緒にまたは別々にそれらの溶解可能な溶媒、例えばエタノール、アセトン、ジクロロメタン、クロロホルムなどに溶解し、担体に含浸した後に、必要に応じて溶媒を除去し、成分Aおよび成分Bの触媒前駆体化合物を加熱、焼成などにより酸化物に変換することができる。 When the catalyst is supported on a support and used, the catalyst precursor compounds of component A and component B are dissolved together or separately in a soluble solvent such as ethanol, acetone, dichloromethane, chloroform, etc. After impregnation, the solvent can be removed if necessary, and the catalyst precursor compounds of component A and component B can be converted to oxides by heating, baking, or the like.
担体に担持する場合の成分Aの担持量は、成分A、成分Bおよび担体の合計質量に対して0.1質量%〜10質量%が好ましく、0.5質量%〜5質量%がより好ましく、1質量%〜4質量%が更に好ましい。担持量が少ないと生産性が低くなり、多すぎると触媒コストが高くなり実用的でない。 The amount of component A supported on the carrier is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 5% by mass with respect to the total mass of component A, component B and the carrier. 1 mass%-4 mass% are still more preferable. If the supported amount is small, the productivity is low, and if it is too large, the catalyst cost is high, which is not practical.
成分Bの担持量は、成分Aと成分B各々に含まれる金属の原子比〔(成分B中の金属B)/(成分A中の金属A)〕で0.01〜10が好ましく、0.05〜5がより好ましく、0.1〜2が更に好ましい。担持量が少ないとその効果が小さく、多すぎると生産性が低下することがある。 The amount of component B supported is preferably 0.01 to 10 in terms of the atomic ratio of metal contained in each of component A and component B [(metal B in component B) / (metal A in component A)]. 05-5 are more preferable, and 0.1-2 are still more preferable. If the loading amount is small, the effect is small, and if it is too large, the productivity may decrease.
以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to the following example.
ブタジエンの選択率および収率の計算は、以下の式により求めた。
(生成ガスの分析方法)
反応後のガス中の各成分量は、反応後のガスを室温まで冷却し、凝縮した液成分と残りのガス成分に分け、それぞれをガスクロマトグラフィーで分析し、液成分およびガス成分に含まれる量を合計して求めた。分析条件は以下のとおりである。
(Production gas analysis method)
The amount of each component in the gas after the reaction is contained in the liquid component and the gas component by cooling the gas after the reaction to room temperature, dividing it into a condensed liquid component and the remaining gas component, and analyzing each by gas chromatography. The total was determined. The analysis conditions are as follows.
液成分
GC装置 :株式会社島津製作所製 GC−14B
カラム :キャピラリーカラム TC−1(長さ60m×内径0.25mm×膜厚1μm)
キャリアーガス:ヘリウム
カラム温度 :40℃、6分→昇温5℃/分→200℃、2分
検出器 :FID
Liquid component GC device: GC-14B manufactured by Shimadzu Corporation
Column: Capillary column TC-1 (length 60 m × inner diameter 0.25 mm × film thickness 1 μm)
Carrier gas: Helium Column temperature: 40 ° C., 6 minutes → Temperature increase 5 ° C./min→200° C., 2 minutes Detector: FID
ガス成分1〔分析成分:アセトアルデヒド、エタノール〕
GC装置 :株式会社島津製作所製 GC−14B
カラム :パックドカラム PEG−1540(長さ5m)
キャリアーガス:ヘリウム
カラム温度 :40℃、一定
検出器 :FID
Gas component 1 [analytical components: acetaldehyde, ethanol]
GC device: GC-14B manufactured by Shimadzu Corporation
Column: Packed column PEG-1540 (length 5 m)
Carrier gas: Helium Column temperature: 40 ° C, constant Detector: FID
ガス成分2〔分析成分:炭化水素(C1〜C4)〕
GC装置 :アジレント・テクノロジー株式会社製 Agilent−7890A
カラム :キャピラリーカラム HP−AL/S(長さ25m×内径0.32mm×膜厚8μm)
キャリアーガス:ヘリウム
カラム温度 :60℃、一定
検出器 :FID
Gas component 2 [analysis component: hydrocarbon (C1-C4)]
GC device: Agilent-7890A manufactured by Agilent Technologies, Inc.
Column: Capillary column HP-AL / S (length 25 m × inner diameter 0.32 mm × film thickness 8 μm)
Carrier gas: Helium Column temperature: 60 ° C, constant Detector: FID
ガス成分3〔分析成分:窒素〕
GC装置 :アジレント・テクノロジー株式会社製 Agilent−7890A
カラム :パックドカラム モレキュラーシーブ5A(長さ5m)
キャリアーガス:ヘリウム
カラム温度 :60℃、一定
検出器 :TCD
Gas component 3 [analytical component: nitrogen]
GC device: Agilent-7890A manufactured by Agilent Technologies, Inc.
Column: Packed column molecular sieve 5A (length 5m)
Carrier gas: helium Column temperature: 60 ° C, constant Detector: TCD
(実施例1)
グローブボックス内でタンタルエトキシド(和光純薬工業株式会社製)0.81gを脱水エタノール(和光純薬工業株式会社製)に溶解し、シリカ(CARiACT Q−10;富士シリシア化学株式会社製)50mL(22g)に全量吸収させた。エバポレーターでエタノールを除き、更に100℃で一晩乾燥させ、タンタル前駆体化合物担持シリカを得た。硝酸ナトリウム(和光純薬工業株式会社製)0.047gを水に溶解し、タンタル前駆体化合物担持シリカに全量吸収させた。100℃で一晩乾燥させた後に、空気下、550℃で4時間焼成し、酸化タンタル/酸化ナトリウム担持シリカ触媒を得た。
Example 1
0.81 g of tantalum ethoxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a glove box, and 50 mL of silica (CariACT Q-10; manufactured by Fuji Silysia Chemical Co., Ltd.) (22 g) was completely absorbed. Ethanol was removed by an evaporator and further dried at 100 ° C. overnight to obtain a tantalum precursor compound-supporting silica. 0.047 g of sodium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in water and completely absorbed in tantalum precursor compound-supported silica. After drying at 100 ° C. overnight, calcination was performed in air at 550 ° C. for 4 hours to obtain a tantalum oxide / sodium oxide-supported silica catalyst.
得られた触媒10mLを流通型反応装置に仕込み、反応温度400℃、圧力大気圧、エタノール:アセトアルデヒド:水:窒素ガス=4:2:0.4:3.6L/H(0℃、1気圧換算で)で反応させた結果、ブタジエンを収率22.1%、選択率66.5%で得た。また、エチレン、ジエチルエーテルの選択率はそれぞれ6.3%、6.8%であった。 10 mL of the obtained catalyst was charged into a flow reactor, the reaction temperature was 400 ° C., the pressure was atmospheric pressure, ethanol: acetaldehyde: water: nitrogen gas = 4: 2: 0.4: 3.6 L / H (0 ° C., 1 atmosphere) Butadiene was obtained in a yield of 22.1% and a selectivity of 66.5%. The selectivity of ethylene and diethyl ether were 6.3% and 6.8%, respectively.
(実施例2〜6)
表1に示すように成分B(成分B前駆体)の種類、比率を変えて実施例1と同様にして触媒を調製した。この各触媒を用いて実施例1と同様の反応を行った。結果を表1に示す。
(Examples 2 to 6)
As shown in Table 1, catalysts were prepared in the same manner as in Example 1, except that the type and ratio of component B (component B precursor) were changed. The same reaction as in Example 1 was performed using each of these catalysts. The results are shown in Table 1.
(比較例1)
成分Bを担持しなかったほかは実施例1と同様にして触媒を調製した。すなわち、グローブボックス内でタンタルエトキシド(和光純薬工業株式会社製)0.81gを脱水エタノール(和光純薬工業株式会社製)に溶解し、シリカ(CARiACT Q−10;富士シリシア化学株式会社製)50mLに全量吸収させた。エバポレーターでエタノールを除き、更に100℃で一晩乾燥させた。更にそれを空気下、550℃で4時間焼成し、酸化タンタル担持シリカ触媒を得た。
(Comparative Example 1)
A catalyst was prepared in the same manner as in Example 1 except that Component B was not supported. That is, 0.81 g of tantalum ethoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a glove box, and silica (CARIACT Q-10; manufactured by Fuji Silysia Chemical Co., Ltd.) was dissolved. ) The whole amount was absorbed in 50 mL. Ethanol was removed by an evaporator, and further dried at 100 ° C. overnight. Further, it was calcined in the air at 550 ° C. for 4 hours to obtain a tantalum oxide-supported silica catalyst.
実施例1と同じようにして反応させた結果、ブタジエンを収率25.9%、選択率58.5%で得た。また、エチレン、ジエチルエーテルの選択率はそれぞれ11.1%、10.1%であった。 As a result of reacting in the same manner as in Example 1, butadiene was obtained with a yield of 25.9% and a selectivity of 58.5%. The selectivity of ethylene and diethyl ether were 11.1% and 10.1%, respectively.
(参考例7)
グローブボックス内で塩化ジルコニウム(和光純薬工業株式会社製)1.25gを脱水エタノール(和光純薬工業株式会社製)に溶解し、シリカ(CARiACT Q−10;富士シリシア化学株式会社製)50mLに全量吸収させた。エバポレーターでエタノールを除き、更に100℃で一晩乾燥させ、ジルコニウム前駆体化合物担持シリカを得た。硝酸バリウム(和光純薬工業株式会社製)0.28gを水に溶解し、ジルコニウム前駆体化合物担持シリカに全量吸収させた。100℃で一晩乾燥させた後に、空気下、550℃で4時間焼成し、酸化ジルコニウム/酸化バリウム担持シリカ触媒を得た。
( Reference Example 7)
In a glove box, 1.25 g of zirconium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) and dissolved in 50 mL of silica (CARIACT Q-10; manufactured by Fuji Silysia Chemical Co., Ltd.). All was absorbed. Ethanol was removed by an evaporator and further dried at 100 ° C. overnight to obtain a zirconium precursor compound-supporting silica. 0.28 g of barium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in water and completely absorbed in the zirconium precursor compound-supported silica. After drying at 100 ° C. overnight, calcination was performed in air at 550 ° C. for 4 hours to obtain a zirconium oxide / barium oxide supported silica catalyst.
得られた触媒10mLを流通型反応装置に仕込み、反応温度400℃、圧力大気圧、エタノール:アセトアルデヒド:水:窒素ガス=4:2:0.4:3.6L/H(0℃、1気圧換算で)で反応させた結果、ブタジエンを収率22.3%、選択率54.2%で得た。また、エチレン、ジエチルエーテルの選択率はそれぞれ1.6%、0.7%であった。 10 mL of the obtained catalyst was charged into a flow reactor, the reaction temperature was 400 ° C., the pressure was atmospheric pressure, ethanol: acetaldehyde: water: nitrogen gas = 4: 2: 0.4: 3.6 L / H (0 ° C., 1 atmosphere) Butadiene was obtained in a yield of 22.3% and a selectivity of 54.2%. The selectivity for ethylene and diethyl ether were 1.6% and 0.7%, respectively.
(比較例2)
成分Bを担持しなかったほかは参考例7と同様にして触媒を調製し、酸化ジルコニウム担持シリカ触媒を得た。実施例1と同じようにして反応させた結果、ブタジエンを収率30.3%、選択率50.9%で得た。また、エチレン、ジエチルエーテルの選択率はそれぞれ8.7%、6.5%であった。
(Comparative Example 2)
A catalyst was prepared in the same manner as in Reference Example 7 except that Component B was not supported, and a zirconium oxide-supported silica catalyst was obtained. As a result of reacting in the same manner as in Example 1, butadiene was obtained in a yield of 30.3% and a selectivity of 50.9%. The selectivity of ethylene and diethyl ether was 8.7% and 6.5%, respectively.
このように第4族および5族からなる群から選ばれる少なくとも1種の金属の酸化物に第1〜3族からなる群から選ばれる少なくとも1種の金属の酸化物を加え、原料および/または中間生成物の酸点をコントロールすることにより、副生物を低減し、ブタジエン選択率を向上させることに成功した。また、未反応原料は回収しリサイクルすることができるので、原単位の向上には収率が低くてもブタジエン選択率の高い方が重要である。 In this way, at least one metal oxide selected from the group consisting of Group 1 to 3 is added to at least one metal oxide selected from the group consisting of Group 4 and Group 5, and the raw materials and / or By controlling the acid point of the intermediate product, by-products were reduced and butadiene selectivity was successfully improved. In addition, since unreacted raw materials can be recovered and recycled, it is important to improve the basic unit that the butadiene selectivity is high even if the yield is low.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013089121A JP6091310B2 (en) | 2013-04-22 | 2013-04-22 | Method for producing butadiene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013089121A JP6091310B2 (en) | 2013-04-22 | 2013-04-22 | Method for producing butadiene |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014210755A JP2014210755A (en) | 2014-11-13 |
JP6091310B2 true JP6091310B2 (en) | 2017-03-08 |
Family
ID=51930799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013089121A Active JP6091310B2 (en) | 2013-04-22 | 2013-04-22 | Method for producing butadiene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6091310B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016111203A1 (en) * | 2015-01-05 | 2016-07-14 | 日揮株式会社 | Method for producing 1,3-butadiene |
US20210339226A1 (en) * | 2018-09-21 | 2021-11-04 | Sekisui Chemical Co., Ltd. | Catalyst, and method for producing 1,3-butadiene using same |
CN116887916A (en) * | 2021-01-29 | 2023-10-13 | 埃科维斯特催化剂技术有限责任公司 | Method for manufacturing supported tantalum catalyst |
KR102516098B1 (en) * | 2021-03-25 | 2023-03-30 | 서울과학기술대학교 산학협력단 | Adsorbent for removing gaseous acetaldehyde and method for removing gaseous acetaldehyde |
BR102021018172A2 (en) | 2021-09-13 | 2023-03-28 | Petróleo Brasileiro S.A. - Petrobras | METHOD OF PREPARING THE CATALYST FOR THE PRODUCTION OF BUTADIENE FROM ETHANOL IN ONE STAGE, CATALYST AND USE |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2436125A (en) * | 1944-08-30 | 1948-02-17 | Rohm & Haas | Silica-zirconia catalysts and method of preparation |
RU2440962C1 (en) * | 2010-07-29 | 2012-01-27 | Общество с ограниченной ответственностью "УНИСИТ" (ООО "УНИСИТ") | Single-step method of producing butadiene |
WO2013125389A1 (en) * | 2012-02-20 | 2013-08-29 | 株式会社ダイセル | Method for producing 1,3-butadiene |
-
2013
- 2013-04-22 JP JP2013089121A patent/JP6091310B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014210755A (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101818242B1 (en) | Process for manufacturing acrolein or acrylic acid from glycerin | |
KR101258347B1 (en) | Olefin manufacturing method | |
EP2994229B1 (en) | Process for the production of 1,3-butadiene | |
JP6091310B2 (en) | Method for producing butadiene | |
CN107108397B (en) | Process for producing diolefins | |
KR102203848B1 (en) | Method for the production of ethylene oxide | |
JPWO2013018752A1 (en) | Catalyst for production of acrolein and acrylic acid by dehydration reaction of glycerin and production method thereof | |
WO2011046232A1 (en) | Process for preparing catalyst used in production of unsaturated aldehyde and/or unsaturated carboxylic acid by dehydration reaction of glycerin, and catalyst obtained | |
CN102482178B (en) | Eucalyptol | |
JP2016023141A (en) | Method for producing butadiene | |
JP2694177B2 (en) | One-step synthetic method for methyl-t-butyl ether | |
JP6332913B2 (en) | Solid phosphoric acid catalyst and method for producing trioxane using the same | |
WO2013008279A1 (en) | Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin | |
CN108097286B (en) | A kind of catalyst for preparing acrylic acid and methyl acrylate | |
JP6637235B2 (en) | Method for producing aldehyde | |
EP3408249A1 (en) | Efficient synthesis of methacroelin and other alpha, beta-unsaturated aldehydes over a regenerable anatase titania catalyst | |
EP3408251A1 (en) | Efficient synthesis of methacroelin and other alpha, beta-unsaturated aldehydes from methanol and an aldehyde | |
JP7262189B2 (en) | Catalyst for producing conjugated diene, method for producing catalyst, and method for producing conjugated diene | |
EP3315194B1 (en) | Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst | |
WO2014024782A2 (en) | Catalyst for production of acrylic acid from glycerin, and method for producing same | |
JP6462498B2 (en) | Process for producing unsaturated alcohol and catalyst | |
JPS6126A (en) | Production of tertiary olefin | |
JP2694178B2 (en) | One-step synthetic method for methyl-t-butyl ether | |
WO2012010923A1 (en) | Process for manufacturing acrolein from glycerol | |
WO2015046716A1 (en) | Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6091310 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6091310 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |