[go: up one dir, main page]

JP6053325B2 - Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment - Google Patents

Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment Download PDF

Info

Publication number
JP6053325B2
JP6053325B2 JP2012116498A JP2012116498A JP6053325B2 JP 6053325 B2 JP6053325 B2 JP 6053325B2 JP 2012116498 A JP2012116498 A JP 2012116498A JP 2012116498 A JP2012116498 A JP 2012116498A JP 6053325 B2 JP6053325 B2 JP 6053325B2
Authority
JP
Japan
Prior art keywords
metal ion
adsorbent
fired product
metal
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012116498A
Other languages
Japanese (ja)
Other versions
JP2013241312A (en
Inventor
裕司 弘重
裕司 弘重
紀宏 笠井
紀宏 笠井
誠一 太田
誠一 太田
裕顕 山口
裕顕 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2012116498A priority Critical patent/JP6053325B2/en
Priority to PCT/US2013/041341 priority patent/WO2013176956A2/en
Publication of JP2013241312A publication Critical patent/JP2013241312A/en
Application granted granted Critical
Publication of JP6053325B2 publication Critical patent/JP6053325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3035Compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、焼成物、該焼成物を含有する金属イオン吸着材、該金属イオン吸着材を用いた金属イオンの除去方法及び金属イオン除去設備に関する。   The present invention relates to a fired product, a metal ion adsorbent containing the fired product, a metal ion removal method and a metal ion removal facility using the metal ion adsorbent.

原子炉施設、核燃料の再処理工場等からの廃液には種々の放射性核種が含まれており、これを除去するための吸着材がこれまで種々提案されている。   Waste liquids from nuclear reactor facilities, nuclear fuel reprocessing plants, and the like contain various radionuclides, and various adsorbents have been proposed to remove them.

特許文献1には、チタン酸カリウムKOnTiO(ただし、n=2〜4)からKO成分を抽出して得られたチタニヤ水和物TiO・mHO(ただし、m=0〜3)によって水溶液中のストロンチウムを吸着及びイオン交換させて、ストロンチウム吸着体SrO・nTiO・mHO(ただし、x=0.5〜1、n=2〜8、m=2〜8)となし、該ストロンチウム吸着体を900〜1300℃に加熱してチタン酸ストロンチウムSrTiOと二酸化チタンの混合物とすることを特徴とするストロンチウムの固定化法が開示されている。 Patent Document 1 discloses titania hydrate TiO 2 · mH 2 O (m = 0) obtained by extracting a K 2 O component from potassium titanate K 2 OnTiO 2 (where n = 2 to 4). To 3), strontium in the aqueous solution is adsorbed and ion-exchanged, and the strontium adsorbent Sr x O.nTiO 2 .mH 2 O (x = 0.5 to 1, n = 2 to 8, m = 2 to 2) 8), and a method for immobilizing strontium, characterized in that the strontium adsorbent is heated to 900 to 1300 ° C. to form a mixture of strontium titanate SrTiO 3 and titanium dioxide.

特許文献2には、一般式:Ce(HPO・yHO(式中のxは1.8〜2.1の範囲の数、yは1〜4の範囲の数である)で表される含水複合酸化物から成るストロンチウムイオン固定剤が開示されている。 Patent Document 2 includes a general formula: Ce (HPO 4 ) x · yH 2 O (wherein x is a number in the range of 1.8 to 2.1 and y is a number in the range of 1 to 4). A strontium ion fixative comprising a water-containing composite oxide is disclosed.

特許文献3には、ナトリウム/チタンモル比が0.6以下で、NaをSrに置換する選択係数が50,000以上で、イオン交換容量が4.5m当量/g以上で、pH11の2.0M−NaClの水溶液中で測定した放射性ストロンチウムの分配係数が40,000ml/g以上で、粒径が0.1〜2mmの顆粒からなるチタン酸ナトリウムイオン交換体が開示されている。   Patent Document 3 discloses that a sodium / titanium molar ratio is 0.6 or less, a selectivity coefficient for substituting Na with Sr is 50,000 or more, an ion exchange capacity is 4.5 meq / g or more, and a pH of 2.0M. Disclosed is a sodium titanate ion exchanger composed of granules having a partition coefficient of radioactive strontium measured in an aqueous solution of NaCl of 40,000 ml / g or more and a particle size of 0.1 to 2 mm.

特開昭61−256922号公報JP 61-256922 A 特許第2535783号Japanese Patent No. 2535783 特許第4428541号Japanese Patent No. 4428541

放射性核種を除去するための吸着材は、例えば、吸着塔に充填して使用される。吸着材を充填した吸着塔に廃液を通液し、廃液と吸着材とを接触させることで、廃液中の放射性核種が吸着材に吸着される。   The adsorbent for removing the radionuclide is used by being packed in an adsorption tower, for example. By passing the waste liquid through the adsorption tower filled with the adsorbent and bringing the waste liquid into contact with the adsorbent, the radionuclide in the waste liquid is adsorbed by the adsorbent.

吸着材を工業規模で使用する場合、吸着塔での使用に適した顆粒の形状とすることが望まれ、この顆粒には適切な機械的強度が要求される。機械的強度が不十分であると、通液時に吸着材が粉砕されて微粉が生じ、この微粉が吸着塔の後段に漏出してしまう場合がある。漏出した微粉は、放射性核種を吸着した放射性廃棄物であるため、フィルタリング等の処理により除去する必要があり、作業効率の低下に繋がる。また、放射性核種を除去する用途では、吸着塔から使用済みの吸着材を取り出すために、水流を用いた輸送等を行う場合があるが、吸着材が脆いと、水圧により粉砕されて微粉が生じ、この微粉が配管を詰まらせるおそれもある。   When the adsorbent is used on an industrial scale, it is desired to have a granule shape suitable for use in an adsorption tower, and the granule is required to have an appropriate mechanical strength. If the mechanical strength is insufficient, the adsorbent may be pulverized to generate fine powder during liquid flow, and the fine powder may leak to the subsequent stage of the adsorption tower. Since the leaked fine powder is a radioactive waste adsorbing the radionuclide, it must be removed by a process such as filtering, leading to a reduction in work efficiency. In addition, in applications where radioactive nuclides are removed, transportation using a water stream may be carried out to remove the used adsorbent from the adsorption tower, but if the adsorbent is brittle, it will be pulverized by water pressure to produce fine powder. The fine powder may clog the piping.

チタン酸アルカリ化合物は、ストロンチウムの除去を目的とした吸着材として知られているが、放射性ストロチウムを除去する目的とし工業規模で使用することを考慮し、耐放射性が十分で、且つ、カラム充填に適する粒子形状に調整し得るものを得るのは困難である。唯一、特許文献3にチタネートの粒状イオン交換体が開示されている。この特許では、酸化チタンとアルカリ剤とを反応させ、更に、反応液の洗浄、乾燥、粉砕を経てイオン交換体の顆粒を得ている。しかし、この顆粒は、乾燥による自発的な凝集による凝集体であることから、この顆粒を水に分散した場合、微粉が発生して上澄み液がコロイド状の溶液になる。よって、この顆粒をカラムや吸着塔に充填しても、微粉が発生しつづける為に放射性ストロンチウムを吸着した微粉が後段に流失する危険がある。また、顆粒の強度も弱い為、配管中で水流を用いて輸送した場合に、水圧により顆粒の一部が粉砕し、結果、粉砕された顆粒が配管中に詰まる可能性もある。   Alkali titanate is known as an adsorbent for the purpose of removing strontium, but considering its use on an industrial scale for the purpose of removing radioactive strontium, it has sufficient radiation resistance and is suitable for column packing. It is difficult to obtain what can be adjusted to a suitable particle shape. Only Patent Document 3 discloses a granular ion exchanger of titanate. In this patent, titanium oxide and an alkali agent are reacted, and the reaction solution is washed, dried, and pulverized to obtain ion exchanger granules. However, since the granules are aggregates due to spontaneous aggregation by drying, when the granules are dispersed in water, fine powder is generated and the supernatant liquid becomes a colloidal solution. Therefore, even if this granule is packed in a column or an adsorption tower, fine powder continues to be generated, and there is a risk that the fine powder adsorbing radioactive strontium will be washed away later. Further, since the strength of the granule is weak, when it is transported using a water stream in a pipe, a part of the granule may be crushed by water pressure, and as a result, the crushed granule may be clogged in the pipe.

本発明の一側面は、含水酸化チタン及びアルカリ金属化合物を含む混合物の焼成物に関するものである。   One aspect of the present invention relates to a fired product of a mixture containing hydrous titanium oxide and an alkali metal compound.

この焼成物は、優れた金属イオン吸着能を有するとともに、十分な機械的強度を有し、吸着材としての用途において微粉の発生が十分に抑制される。このような効果が奏される理由は、アルカリ金属化合物が、焼成に際して結着剤として働いて、焼成物の機械的強度を向上させるためと考えられる。   This fired product has an excellent ability to adsorb metal ions and has sufficient mechanical strength, and generation of fine powder is sufficiently suppressed in applications as an adsorbent. The reason why such an effect is exerted is considered that the alkali metal compound works as a binder during firing to improve the mechanical strength of the fired product.

一実施形態において、上記アルカリ金属化合物はアルカリ金属硝酸塩を含んでいてもよい。また、アルカリ金属化合物がアルカリ金属硝酸塩を含むと、焼成物の細孔密度が向上して、焼成物の金属イオン吸着能が一層向上する。このような効果が奏される理由は、焼成に際して、硝酸イオンの分解物として生じるガスが、焼成物に細孔を生じさせるためと考えられる。   In one embodiment, the alkali metal compound may include an alkali metal nitrate. When the alkali metal compound contains an alkali metal nitrate, the pore density of the fired product is improved, and the metal ion adsorption ability of the fired product is further improved. The reason why such an effect is exhibited is considered to be that a gas generated as a decomposition product of nitrate ions during firing causes pores to be generated in the fired product.

一実施形態では、上記混合物中のアルカリ金属元素の含有量Cに対するチタン元素の含有量Cのモル比C/Cは、0.5〜5.0であってよい。モル比C/Cがこの範囲であると、金属イオン吸着能に一層優れる焼成物が得られる。 In one embodiment, the molar ratio C 1 / C 2 of the content C 1 of titanium element to the content C 2 of alkali metal element in the mixture may be 0.5 to 5.0. When the molar ratio C 1 / C 2 is within this range, a fired product having further excellent metal ion adsorption ability can be obtained.

一実施形態において、焼成物は、混合物を100℃以上、好ましくは200〜600℃で焼成したものであってよい。焼成温度が100℃未満であると、アルカリ金属化合物による結着効果が十分に得られない場合があり、600℃を超えると、焼成物の一部が結晶化して金属イオン吸着能が低下する場合がある。すなわち、焼成温度を上記範囲内とすることで、焼成物の結晶化を抑えつつアルカリ金属化合物の結着剤としての効果をより有効に得ることができ、金属イオン吸着能及び機械的強度の双方を一層向上させることができる。   In one embodiment, the fired product may be obtained by firing the mixture at 100 ° C. or higher, preferably 200 to 600 ° C. When the firing temperature is less than 100 ° C., the binding effect of the alkali metal compound may not be sufficiently obtained. When the firing temperature exceeds 600 ° C., a part of the fired product is crystallized and the metal ion adsorption ability decreases. There is. That is, by setting the firing temperature within the above range, the effect as a binder of the alkali metal compound can be more effectively obtained while suppressing the crystallization of the fired product, and both the metal ion adsorption ability and the mechanical strength can be obtained. Can be further improved.

一実施形態において、焼成物は多孔質であってよく、その平均細孔径は0.1〜10μmであってよい。このような焼成物は、金属イオン吸着能に一層優れるものとなる。   In one embodiment, the fired product may be porous, and the average pore diameter may be 0.1 to 10 μm. Such a baked product is further excellent in metal ion adsorption ability.

一実施形態において、焼成物は、ATi2n+1(Aはアルカリ金属を示し、nは0.5〜5.0を示す。)で表されるチタン酸アルカリ化合物を含む粒子(以下、場合により「チタン酸アルカリ粒子」という。)の凝集体から構成されていてもよい。 In one embodiment, the fired product is a particle containing an alkali titanate compound represented by A 2 Ti n O 2n + 1 (A represents an alkali metal and n represents 0.5 to 5.0) (hereinafter, In some cases, it may be composed of an aggregate of “alkali titanate particles”).

含水酸化チタン及びアルカリ金属化合物を含む混合物の焼成物は、チタン酸アルカリ粒子の凝集体となり得る。なお、従来の吸着材でも無機粒子が凝集した態様を取る場合があるが、従来では、当該無機粒子の分散による微粉の発生を抑制することが困難であった。これに対して、本実施形態の焼成物は、粒子間の凝集力が強く、吸着材として用いた場合でも微粉の発生が十分に抑制される。   A fired product of a mixture containing hydrous titanium oxide and an alkali metal compound can be an aggregate of alkali titanate particles. In addition, although the conventional adsorbent may take the form which the inorganic particle aggregated, conventionally, it was difficult to suppress generation | occurrence | production of the fine powder by dispersion | distribution of the said inorganic particle. On the other hand, the fired product of the present embodiment has a strong cohesive force between particles, and generation of fine powder is sufficiently suppressed even when used as an adsorbent.

一実施形態において、チタン酸アルカリ粒子の平均粒子径は0.1〜10μmであってよい。平均粒子径が上記範囲内であると、焼成物の金属イオン吸着能が一層向上する。   In one embodiment, the average particle diameter of the alkali titanate particles may be 0.1 to 10 μm. When the average particle diameter is within the above range, the metal ion adsorption ability of the fired product is further improved.

本発明の他の側面は、上述の焼成物を含有する、金属イオン吸着材に関するものである。   Another aspect of the present invention relates to a metal ion adsorbent containing the fired product described above.

この金属イオン吸着材は、上述の焼成物を含有するため、優れた金属イオン吸着能を有する。また、この金属イオン吸着材によれば、吸着塔外への微粉の漏出が抑制され、吸着塔の後段におけるフィルタリング等の処理負担が低減されるため、作業効率の向上を図ることができる。   Since this metal ion adsorbent contains the above-mentioned fired product, it has excellent metal ion adsorption ability. Moreover, according to this metal ion adsorbent, the leakage of fine powder to the outside of the adsorption tower is suppressed, and the processing burden such as filtering in the latter stage of the adsorption tower is reduced, so that the work efficiency can be improved.

また、本発明の他の側面は、金属イオンを含有する処理液を、上記金属イオン吸着材に接触させて、上記処理液から上記金属イオンの少なくとも一部を除去する工程を備える、金属イオンの除去方法に関するものである。   Another aspect of the present invention includes a step of bringing a treatment liquid containing metal ions into contact with the metal ion adsorbent to remove at least a part of the metal ions from the treatment liquid. It relates to a removal method.

さらに、本発明の他の側面は、上記金属イオン吸着材が充填された充填塔を備える、金属イオン除去設備に関するものである。   Furthermore, the other side surface of this invention is related with the metal ion removal equipment provided with the packed tower filled with the said metal ion adsorption material.

本発明によれば、優れた金属イオン吸着能を有し、吸着材としての用途において微粉の発生を十分に抑制することが可能な焼成物、及びそれを含有する金属イオン吸着材を提供することができる。また、本発明によれば、当該金属イオン吸着材を用いた金属イオンの除去方法、及び金属イオン除去設備を提供することができる。   According to the present invention, there are provided a fired product having an excellent ability to adsorb metal ions and capable of sufficiently suppressing the generation of fine powder in the use as an adsorbent, and a metal ion adsorbent containing the same. Can do. Moreover, according to this invention, the removal method of a metal ion using the said metal ion adsorption material, and a metal ion removal equipment can be provided.

本発明に係る金属イオン除去設備の一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the metal ion removal equipment concerning the present invention. 実施例1の焼成物のSEM観察結果を示す図である。FIG. 4 is a diagram showing the SEM observation result of the fired product of Example 1. 実施例2の焼成物のSEM観察結果を示す図である。It is a figure which shows the SEM observation result of the baking products of Example 2. FIG.

以下、図面を参照しながら本発明の実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.

(焼成物)
本実施形態に係る焼成物は、含水酸化チタン及びアルカリ金属化合物を含む混合物の焼成物であり、優れた金属イオン吸着能を有する。また、この焼成物は、十分な機械的強度を有し、吸着材としての用途において、微粉の発生を十分に抑制することができる。このような効果が奏される理由は、アルカリ金属化合物が、焼成に際して結着剤として働いて、焼成物の機械的強度を向上させるためと考えられる。
(Fired product)
The fired product according to the present embodiment is a fired product of a mixture containing hydrous titanium oxide and an alkali metal compound, and has excellent metal ion adsorption ability. In addition, the fired product has sufficient mechanical strength and can sufficiently suppress the generation of fine powder in the application as an adsorbent. The reason why such an effect is exerted is considered that the alkali metal compound works as a binder during firing to improve the mechanical strength of the fired product.

焼成とは、一般的に、固体粉末の集合体が、融点以下、あるいは一部液相を生じる温度に加熱されることにより固まり、焼結体といわれる緻密な強度の大きな固体になる現象をいう。焼結の駆動力は、粒子集合体から成る径の表面エネルギーを最小にしようとする力であり、エネルギーが与えられることで、固体拡散、または溶融により粒子間に物質移動がおこり、結合が生じる。   Firing generally refers to a phenomenon in which an aggregate of solid powders is solidified by heating to a temperature below the melting point or a temperature at which a partial liquid phase is formed, and becomes a dense solid with a large strength called a sintered body. . The driving force for sintering is the force that tries to minimize the surface energy of the diameter composed of particle aggregates. When energy is applied, mass transfer occurs between particles due to solid diffusion or melting, and bonding occurs. .

本実施形態に係る焼成物は、上記混合物中のアルカリ金属化合物が融解又は固体拡散して焼結したものである。また、本実施形態に係る焼成物では、アルカリ金属が含水酸化チタンに移動してチタン酸アルカリ化合物が生じていると考えられる。また、アルカリ金属化合物がアルカリ金属硝酸塩を含有する場合はさらに、硝酸塩の熱分解により硝酸ガスが生じて、焼成物が多孔質になる。   The fired product according to the present embodiment is obtained by sintering the alkali metal compound in the mixture by melting or solid diffusion. Moreover, in the baked product according to the present embodiment, it is considered that the alkali metal is transferred to the hydrous titanium oxide to produce an alkali titanate compound. Further, when the alkali metal compound contains an alkali metal nitrate, nitric acid gas is further generated by thermal decomposition of the nitrate, and the fired product becomes porous.

含水酸化チタンは、TiO・nHOで表される化合物であり、二酸化チタンの水和物ということもできる。含水酸化チタンを得る方法は特に制限されず、例えば、四塩化チタンの加水分解により得ることができる。 Hydrous titanium oxide is a compound represented by TiO 2 · nH 2 O, and can also be referred to as a hydrate of titanium dioxide. The method for obtaining hydrous titanium oxide is not particularly limited, and can be obtained, for example, by hydrolysis of titanium tetrachloride.

アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムが挙げられ、これのうちリチウム、ナトリウム及びカリウムが好ましい。   Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium, and among these, lithium, sodium and potassium are preferable.

アルカリ金属化合物としては、例えば、アルカリ金属水酸化物及びアルカリ金属塩が挙げられ、アルカリ金属塩としては、アルカリ金属硝酸塩等が挙げられる。   Examples of the alkali metal compound include alkali metal hydroxides and alkali metal salts, and examples of the alkali metal salt include alkali metal nitrates.

また、アルカリ金属化合物としては、融点が200〜600℃の範囲にあるものが好ましい。このようなアルカリ金属化合物は、後述の好適な焼成温度において溶融して、結着剤としての効果をより有効に奏することができる。例えば、硝酸ナトリウムの融点は306℃、硝酸カリウムの融点は339℃、水酸化ナトリウムの融点は328℃、水酸化カリウムの融点は360℃であり、これらのアルカリ金属化合物を好適に用いることができる。   Moreover, as an alkali metal compound, what has melting | fusing point is the range of 200-600 degreeC is preferable. Such an alkali metal compound can be melted at a suitable firing temperature, which will be described later, and more effectively exhibit the effect as a binder. For example, the melting point of sodium nitrate is 306 ° C., the melting point of potassium nitrate is 339 ° C., the melting point of sodium hydroxide is 328 ° C., and the melting point of potassium hydroxide is 360 ° C., and these alkali metal compounds can be suitably used.

アルカリ金属化合物は、アルカリ金属硝酸塩を含むことがより好ましい。アルカリ金属化合物がアルカリ金属硝酸塩を含むと、焼成物の細孔密度が上昇して、焼成物の金属イオン吸着能が一層向上する傾向にある。このような効果が奏される理由は、焼成に際して、硝酸イオンの分解物として生じるガスにより焼成物に細孔が生じるためと考えられる。   More preferably, the alkali metal compound contains an alkali metal nitrate. When the alkali metal compound contains an alkali metal nitrate, the pore density of the fired product is increased, and the metal ion adsorption ability of the fired product tends to be further improved. The reason why such an effect is exhibited is considered to be that pores are generated in the fired product due to the gas generated as a decomposition product of nitrate ions during firing.

含水酸化チタン及びアルカリ金属化合物の混合量は、例えば、混合物中のアルカリ金属元素の含有量Cに対するチタン元素の含有量Cのモル比C/Cが0.5〜5.0となるように調整することが好ましい。 Mixing amount of hydrous titanium oxide and alkali metal compounds are, for example, the molar ratio C 1 / C 2 content C 1 of the titanium element to the content C 2 of the alkali metal element in the mixture with 0.5 to 5.0 It is preferable to adjust so that it becomes.

本実施形態において、焼成物は、ATi2n+1(Aはアルカリ金属を示し、nは0.5〜5.0を示す。)で表されるチタン酸アルカリ化合物を含む粒子(以下、場合により「チタン酸アルカリ粒子」と称する。)の凝集体から構成される。 In the present embodiment, the fired product is a particle containing an alkali titanate compound represented by A 2 Ti n O 2n + 1 (A represents an alkali metal and n represents 0.5 to 5.0) (hereinafter, (Sometimes referred to as “alkali titanate particles”).

チタン酸アルカリ化合物のnは、上述のモル比C/Cを変更することで調整することができる。また、Aは、アルカリ金属化合物に由来し、Aで示されるアルカリ金属は一種であっても複数種であってもよい。 N of an alkali titanate compound can be adjusted by changing the above-mentioned molar ratio C 1 / C 2 . A is derived from an alkali metal compound, and the alkali metal represented by A may be one kind or plural kinds.

なお、従来の吸着材でも無機粒子が凝集した態様を取る場合があるが、従来では、当該無機粒子の分散による微粉の発生を抑制することが困難であった。これに対して、本実施形態においては、凝集体中の粒子間の凝集力が強く、吸着材として用いた場合でも微粉の発生が十分に抑制される。   In addition, although the conventional adsorbent may take the form which the inorganic particle aggregated, conventionally, it was difficult to suppress generation | occurrence | production of the fine powder by dispersion | distribution of the said inorganic particle. On the other hand, in this embodiment, the cohesive force between the particles in the aggregate is strong, and even when used as an adsorbent, the generation of fine powder is sufficiently suppressed.

チタン酸アルカリ粒子の平均粒子径は、0.1〜10μmであることが好ましく、0.5〜5μmであることがより好ましい。チタン酸アルカリ粒子の平均粒子径が上記範囲にあると、焼成物の金属イオン吸着能が一層向上する傾向にある。   The average particle diameter of the alkali titanate particles is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm. When the average particle diameter of the alkali titanate particles is in the above range, the metal ion adsorption ability of the fired product tends to be further improved.

なお、本明細書中、チタン酸アルカリ粒子の平均粒子径は、以下の方法で測定される。走査型電子顕微鏡による表面観察(以下、場合により「SEM観察」という。)で得られた画像より、任意の100個のチタン酸アルカリ粒子の定方向最大径を測定し、その相加平均を、チタン酸アルカリ粒子の平均粒子径とする。   In the present specification, the average particle diameter of the alkali titanate particles is measured by the following method. From the image obtained by surface observation with a scanning electron microscope (hereinafter referred to as “SEM observation” in some cases), the maximum diameter in the fixed direction of 100 arbitrary alkali titanate particles was measured, and the arithmetic average was It is set as the average particle diameter of alkali titanate particles.

本実施形態において、焼成物は多孔質であって、その平均細孔径は、好ましくは0.5〜5μmである。このような焼成物は、金属イオン吸着能に一層優れる。なお、焼成物が有する細孔は、必ずしも平均細孔径を測定できるような独立気泡の形態である必要はなく、例えば、焼成物は、チタン酸アルカリ粒子間に微細な間隙が多数存在する形態(連続気泡)の多孔質であってもよい。   In the present embodiment, the fired product is porous, and the average pore diameter is preferably 0.5 to 5 μm. Such a fired product is further excellent in metal ion adsorption ability. The pores of the fired product are not necessarily in the form of closed cells so that the average pore diameter can be measured. For example, the fired product has a form in which many fine gaps exist between alkali titanate particles ( Open-cell porous) may be used.

本明細書中、焼成物の平均細孔径は、以下の方法で測定される。焼成物のSEM観察で得られた画像より、任意の100個の細孔の定方向最大径を測定し、その相加平均を、平均細孔径とする。   In the present specification, the average pore diameter of the fired product is measured by the following method. From the image obtained by SEM observation of the fired product, the maximum diameter in the fixed direction of 100 arbitrary pores is measured, and the arithmetic average thereof is defined as the average pore diameter.

X線回折の結果から、チタン酸アルカリ粒子を構成する一次粒子の形態は、非晶質の粒子であるか、ナノサイズの結晶性粒子であるか、ナノサイズの結晶性粒子と非晶質の粒子とが混在する半晶質であるか、のいずれかであると考えられる。   From the result of X-ray diffraction, the form of the primary particles constituting the alkali titanate particles is amorphous particles, nano-sized crystalline particles, nano-sized crystalline particles and amorphous particles. It is considered to be either semi-crystalline or mixed with particles.

焼成物は、例えば、以下の方法で調製することができる。   The fired product can be prepared, for example, by the following method.

まず、含水酸化チタンを溶媒(例えば、水)中に懸濁させたスラリーに、アルカリ金属化合物を添加する。次いで、スラリーから溶媒を乾燥除去して、含水酸化チタンとアルカリ金属化合物との混合物である固形分を得る。この固形分を、200〜600℃で焼成することにより、焼成物が得られる。   First, an alkali metal compound is added to a slurry in which hydrous titanium oxide is suspended in a solvent (for example, water). Next, the solvent is dried and removed from the slurry to obtain a solid content that is a mixture of hydrous titanium oxide and an alkali metal compound. By baking this solid content at 200 to 600 ° C., a fired product is obtained.

なお、含水酸化チタンとアルカリ金属化合物との混合物である固形分は、溶媒の乾燥除去に際して互いに圧着して凝集する。本実施形態では、この凝集した固形分をそのまま焼成に供してもよく、圧縮成形した後に焼成に供することもできる。   In addition, solid content which is a mixture of hydrous titanium oxide and an alkali metal compound is agglomerated by pressure bonding with each other when the solvent is removed by drying. In the present embodiment, the agglomerated solid content may be directly subjected to firing, or may be subjected to firing after compression molding.

溶媒の乾燥除去は、例えば、60〜95℃の加熱により行うことができる。また、溶媒の乾燥除去は、常圧下で行うことも減圧下で行うこともできる。   The solvent can be removed by drying, for example, by heating at 60 to 95 ° C. Further, the solvent can be removed by drying under normal pressure or under reduced pressure.

焼成時間は、特に制限されないが、例えば1〜10時間とすることができる。   The firing time is not particularly limited, but can be, for example, 1 to 10 hours.

チタン酸アルカリ粒子の平均粒子径は、スラリー中の含水酸化チタンの粒径を変化させることで調整できる。例えば、スラリー中の含水酸化チタンの粒径を小さくすることで、平均粒子径の小さいチタン酸アルカリ粒子を得ることができる。   The average particle diameter of the alkali titanate particles can be adjusted by changing the particle diameter of the hydrous titanium oxide in the slurry. For example, alkali titanate particles having a small average particle size can be obtained by reducing the particle size of the hydrous titanium oxide in the slurry.

焼成物は、そのまま金属イオン吸着材として用いてもよく、用途に応じたサイズに破砕した上で用いることもできる。例えば、吸着塔に充填される吸着材の用途においては、焼成物は、顆粒の形態で用いることが好ましく、顆粒の粒子径は0.1〜5mmが好ましく、より好ましくは0.2〜2mmである。   The fired product may be used as it is as a metal ion adsorbent, or may be used after being crushed to a size according to the application. For example, in the use of the adsorbent filled in the adsorption tower, the fired product is preferably used in the form of granules, and the particle diameter of the granules is preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm. is there.

(金属イオン吸着材)
本実施形態に係る金属イオン吸着材は、上記焼成物を含有する。本実施形態に係る金属イオン吸着材は、上記焼成物を含有するため、優れた金属イオン吸着能を有する。
(Metal ion adsorbent)
The metal ion adsorbent according to the present embodiment contains the fired product. Since the metal ion adsorbent according to the present embodiment contains the fired product, the metal ion adsorbent has excellent metal ion adsorption ability.

また、この金属イオン吸着材によれば、吸着塔外への微粉の漏出が十分に抑制され、吸着塔の後段におけるフィルタリング等の処理負担が低減されるため、作業効率の向上を図ることができる。   Moreover, according to this metal ion adsorbent, the leakage of fine powder to the outside of the adsorption tower is sufficiently suppressed, and the processing burden such as filtering in the latter stage of the adsorption tower is reduced, so that the work efficiency can be improved. .

特に、原子炉施設、核燃料の再処理工場等における廃液から、放射性核種(例えば、セシウム、ストロンチウム等)を除去するために吸着材を用いる場合、微粉の漏出は放射性廃棄物の漏出であるため、その処理には過大な作業負担及び相応の危険を伴う。本実施形態に係る金属イオン吸着材によれば、この微粉の漏出を十分に抑制できるため、本実施形態に係る金属イオン吸着材は、放射性核種を除去するための吸着材として、好適に用いることができる。   In particular, when adsorbents are used to remove radionuclides (eg, cesium, strontium, etc.) from waste liquids at nuclear reactor facilities, nuclear fuel reprocessing plants, etc., because the leakage of fine powder is the leakage of radioactive waste, The processing involves an excessive work burden and corresponding risks. According to the metal ion adsorbent according to the present embodiment, the leakage of the fine powder can be sufficiently suppressed. Therefore, the metal ion adsorbent according to the present embodiment is preferably used as an adsorbent for removing radionuclides. Can do.

また、放射性核種を除去する用途では、使用済みの吸着材を水流を用いて輸送する場合があるが、吸着材が脆く微粉を生じやすいと、微粉が配管を詰まらせてしまうおそれがある。この点、本実施形態に係る金属イオン吸着材によれば、微粉の発生が十分に抑制されるため、水流による輸送時の配管の詰まりの発生を十分に防止することができる。   Moreover, in the use which removes a radionuclide, a used adsorbent may be transported using a water flow. However, if the adsorbent is brittle and easily generates fine powder, the fine powder may clog the pipe. In this regard, according to the metal ion adsorbent according to the present embodiment, the generation of fine powder is sufficiently suppressed, and therefore, the occurrence of clogging of piping during transportation by a water flow can be sufficiently prevented.

また、放射性核種のうちセシウムは、共沈法等により比較的容易に除去することができるが、ストロンチウムは、その廃液からの除去方法が十分に確立されていなかった。本実施形態に係る金属イオン吸着材は、ストロンチウムイオンに対する吸着能に優れており、ストロンチウム吸着材として好適に用いることができる。   In addition, cesium among radionuclides can be removed relatively easily by a coprecipitation method or the like, but a method for removing strontium from the waste liquid has not been well established. The metal ion adsorbent according to the present embodiment has excellent adsorbability for strontium ions, and can be suitably used as a strontium adsorbent.

なお、本実施形態に係る金属イオン吸着材は、必ずしも吸着塔に充填して使用される必要は無く、吸着材としての公知の種々の用途に用いることができる。また、吸着する金属種も放射性核種に限定されず、種々の金属種を吸着する用途に用いることができる。   Note that the metal ion adsorbent according to the present embodiment does not necessarily need to be used by being packed in an adsorption tower, and can be used for various known uses as an adsorbent. Moreover, the metal species to be adsorbed are not limited to radionuclides, and can be used for applications that adsorb various metal species.

金属イオン吸着材は、上記焼成物からなるものであってもよく、上記焼成物以外の成分を含有していてもよい。例えば、金属イオン吸着材は、上記焼成物と、吸着材として公知の他の材料(ゼオライト、リン酸塩、アンチモン酸、キレート樹脂等)との混合物であってもよい。   The metal ion adsorbent may be composed of the fired product, and may contain components other than the fired product. For example, the metal ion adsorbent may be a mixture of the fired product and another material known as an adsorbent (zeolite, phosphate, antimonic acid, chelate resin, etc.).

(金属イオンの除去方法)
本実施形態に係る金属イオンの除去方法は、金属イオンを含有する処理液を、上記金属イオン吸着材に接触させて、上記処理液から上記金属イオンの少なくとも一部を除去する工程(以下、場合により「除去工程」という。)を備える。
(Metal ion removal method)
In the method for removing metal ions according to the present embodiment, a treatment liquid containing metal ions is brought into contact with the metal ion adsorbent to remove at least a part of the metal ions from the treatment liquid (hereinafter referred to as a case). (Referred to as “removal step”).

除去工程は、例えば、金属イオン吸着材が充填された吸着塔に処理液を通液し、処理液と金属イオン吸着材とを接触させることにより行うことができる。   The removal step can be performed, for example, by passing the treatment liquid through an adsorption tower filled with a metal ion adsorbent and bringing the treatment liquid and the metal ion adsorbent into contact with each other.

本実施形態に係る除去方法は、上記除去工程以外の工程を備えるものであってもよい。例えば、除去方法は、上記除去工程の前に、処理液から金属イオンの一部を除去する前処理工程を有していてもよい。   The removal method according to the present embodiment may include steps other than the removal step. For example, the removal method may include a pretreatment step of removing a part of the metal ions from the treatment liquid before the removal step.

除去工程は、例えば、処理液を10〜200(1/hr)の空間速度で吸着塔に流通させて行うことができる。なお、空間速度は、吸着塔内を通過する1時間当たりの処理液量を、吸着塔内の吸着材容量で除した値を示す。   The removal step can be performed, for example, by circulating the treatment liquid through the adsorption tower at a space velocity of 10 to 200 (1 / hr). In addition, space velocity shows the value which remove | divided the amount of processing liquids per hour passing through the inside of the adsorption tower by the adsorbent capacity in the adsorption tower.

前処理工程としては、鉄共沈処理により処理液中の金属イオンの一部をスラッジとして除去する鉄共沈処理工程、炭酸塩共沈処理により処理液中の金属イオンの一部をスラッジとして除去する炭酸塩共沈処理工程、等が挙げられる。除去方法は、前処理工程として一つの工程を備えていても、二つ以上の工程を備えていてもよい。   As a pretreatment process, iron coprecipitation treatment removes part of the metal ions in the treatment liquid as sludge, and carbonate coprecipitation treatment removes part of the metal ions in the treatment liquid as sludge. Carbonate coprecipitation treatment step, and the like. The removal method may include one process as a pretreatment process or may include two or more processes.

また、除去方法は、上記除去工程を経た処理液から、更に金属イオンを除去する後処理工程を備えていてもよい。後処理工程としては、処理液を充填材が充填されたカラム式充填塔に流通させる工程、等が挙げられる。除去方法は、後処理工程として一つの工程を備えていても、二つ以上の工程を備えていてもよい。   Moreover, the removal method may be provided with the post-processing process which removes a metal ion further from the process liquid which passed the said removal process. Examples of the post-treatment step include a step of circulating the treatment liquid through a column packed tower packed with a filler. The removal method may include one step as a post-processing step or may include two or more steps.

本実施形態に係る金属イオンの除去方法は、上述の金属イオン吸着材を用いているため、放射性核種を含有する処理液から、当該放射線核種の少なくとも一部を除去する方法として好適であり、ストロンチウムイオンを有する処理液から、当該ストロンチウムイオンの少なくとも一部を除去する方法として、一層好適である。   Since the metal ion removal method according to the present embodiment uses the above-described metal ion adsorbent, it is suitable as a method for removing at least a part of the radionuclide from the treatment liquid containing the radionuclide, and strontium. As a method for removing at least a part of the strontium ions from the treatment liquid having ions, it is more preferable.

(金属イオン除去設備)
図1は、本発明に係る金属イオン除去設備の一実施形態を示す模式図である。金属イオン除去設備100は、鉄共沈処理設備10と、炭酸塩共沈処理設備20と、多段吸着塔30と、カラム式多段充填塔40と、を備える。
(Metal ion removal equipment)
FIG. 1 is a schematic view showing an embodiment of a metal ion removing facility according to the present invention. The metal ion removal equipment 100 includes an iron coprecipitation treatment equipment 10, a carbonate coprecipitation treatment equipment 20, a multistage adsorption tower 30, and a column type multistage packed tower 40.

金属イオンを含有する処理液(例えば、放射性核種を含有する廃水)は、鉄共沈処理設備10に供される。鉄共沈処理設備10においては、鉄共沈処理により処理液中の金属イオンの一部がスラッジとして除去される。鉄共沈処理設備10から取り出されたスラッジは、保管容器11に保管される。   A treatment liquid containing metal ions (for example, wastewater containing a radionuclide) is supplied to the iron coprecipitation treatment facility 10. In the iron coprecipitation treatment facility 10, a part of metal ions in the treatment liquid is removed as sludge by the iron coprecipitation treatment. The sludge taken out from the iron coprecipitation treatment facility 10 is stored in the storage container 11.

鉄共沈処理を経た処理液は、炭酸塩共沈処理設備20に供される。炭酸塩共沈処理設備20では、炭酸塩共沈処理により処理液中の金属イオンの一部がスラッジとして除去される。炭酸塩共沈処理設備20から取り出されたスラッジは、保管容器21に保管される。   The treatment liquid that has undergone the iron coprecipitation treatment is supplied to the carbonate coprecipitation treatment facility 20. In the carbonate coprecipitation treatment facility 20, a part of metal ions in the treatment liquid is removed as sludge by the carbonate coprecipitation treatment. The sludge taken out from the carbonate coprecipitation treatment facility 20 is stored in the storage container 21.

炭酸塩共沈処理を経た処理液は、多段吸着塔30に供される。多段吸着塔30では、金属イオン吸着材が充填された複数の吸着塔31が連結されている。なお、金属イオン除去設備100において、多段吸着塔30は8塔の吸着塔31が直列に連結された構造を有するが、本実施形態の金属イオン除去設備において、多段吸着塔における吸着塔の数は特に制限されない。   The treatment liquid that has undergone the carbonate coprecipitation treatment is supplied to the multistage adsorption tower 30. In the multistage adsorption tower 30, a plurality of adsorption towers 31 filled with a metal ion adsorbent are connected. In the metal ion removal equipment 100, the multistage adsorption tower 30 has a structure in which eight adsorption towers 31 are connected in series. In the metal ion removal equipment of this embodiment, the number of adsorption towers in the multistage adsorption tower is as follows. There is no particular limitation.

多段充填塔30においては、処理液を充填塔31内で金属イオン吸着材に接触させて、処理液中の金属イオンを金属イオン吸着材に吸着させる。なお、金属イオン吸着容量、処理液中の金属イオン濃度、処理液の流通量に応じて、金属イオン吸着材は適宜交換することができる。   In the multistage packed tower 30, the treatment liquid is brought into contact with the metal ion adsorbent in the packed tower 31 to adsorb the metal ions in the treatment liquid onto the metal ion adsorbent. Note that the metal ion adsorbent can be appropriately replaced according to the metal ion adsorption capacity, the metal ion concentration in the treatment liquid, and the flow rate of the treatment liquid.

多段充填塔30を通過した処理液は、カラム式多段充填塔40に供される。カラム式多段充填塔40は、カラム式充填塔41が複数連結されている。なお、金属イオン除去設備100において、カラム式多段充填塔40は2つのカラム式充填塔41が連結した構造を有するが、カラム式多段充填塔は3つ以上のカラム式充填塔が連結して構造を有していてもよい。   The treatment liquid that has passed through the multistage packed tower 30 is supplied to the column-type multistage packed tower 40. The column-type multistage packed tower 40 is connected to a plurality of column-type packed towers 41. In the metal ion removal equipment 100, the column-type multistage packed tower 40 has a structure in which two column-type packed towers 41 are connected, but the column-type multistage packed tower has a structure in which three or more column-type packed towers are connected. You may have.

カラム式多段充填塔40では、処理液中に残存した金属イオンが除去される。また、カラム式多段充填塔40は、多段吸着塔30から金属イオン吸着材の微粉等が漏出した場合のトラップとしても機能し得る。   In the column-type multistage packed tower 40, metal ions remaining in the processing liquid are removed. The column-type multi-stage packed tower 40 can also function as a trap when metal ion adsorbent fine powder leaks from the multi-stage adsorption tower 30.

カラム式多段充填塔41を経た処理液は、保管容器50に回収される。   The treatment liquid that has passed through the column-type multistage packed tower 41 is collected in the storage container 50.

金属イオン除去設備100は、多段吸着塔30において、上述の金属イオン吸着材が充填された吸着塔31を備える。そのため、金属イオン除去設備100では、優れた金属イオン除去性能が奏されるとともに、多段吸着塔30から吸着材の微粉が漏出することを十分に防止することができる。   The metal ion removal equipment 100 includes an adsorption tower 31 filled with the metal ion adsorbent described above in the multistage adsorption tower 30. Therefore, in the metal ion removal equipment 100, excellent metal ion removal performance is achieved, and leakage of adsorbent fine powder from the multistage adsorption tower 30 can be sufficiently prevented.

また、金属イオン除去設備100は、上述の金属イオン吸着材が充填された吸着塔31を備えるため、放射性核種を含有する処理液を処理するための、放射線核種除去設備として、好適であり、ストロンチウムイオンを有する処理液を処理するための、ストロンチウム除去設備としても好適である。   Moreover, since the metal ion removal equipment 100 includes the adsorption tower 31 filled with the above-described metal ion adsorbent, it is suitable as a radionuclide removal equipment for treating a treatment liquid containing a radionuclide, and strontium. It is also suitable as a strontium removal facility for treating a treatment liquid having ions.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to an Example.

(実施例1)
四塩化チタン水溶液(TC−36、36質量%の四塩化チタン水溶液、石原産業株式会社製)15gと、1N水酸化ナトリウム水溶液114gとを混合して、析出した沈殿物をろ過により回収した。この沈殿物を水で洗浄して、副生した塩化ナトリウムを除去することにより、白色固体の含水酸化チタンを得た。
Example 1
15 g of titanium tetrachloride aqueous solution (TC-36, 36 mass% titanium tetrachloride aqueous solution, manufactured by Ishihara Sangyo Co., Ltd.) and 114 g of 1N sodium hydroxide aqueous solution were mixed, and the deposited precipitate was collected by filtration. The precipitate was washed with water to remove by-produced sodium chloride, thereby obtaining a white solid hydrous titanium oxide.

得られた含水酸化チタンを水中に分散させてスラリーを調製し、このスラリーに、硝酸ナトリウム2.0g(混合物中のナトリウム元素含量Cに対するチタン元素含量Cのモル比C/Cが1.21となる量)を添加した。次いでスラリーを80℃に加熱して乾燥させ、得られた固体を400℃で5時間焼成して、白色の凝集体(焼成物)を得た。 The obtained hydrous titanium oxide was dispersed in water to prepare a slurry. To this slurry, 2.0 g of sodium nitrate (the molar ratio C 1 / C 2 of the titanium element content C 1 to the sodium element content C 2 in the mixture was 1.21) was added. Next, the slurry was heated to 80 ° C. and dried, and the obtained solid was fired at 400 ° C. for 5 hours to obtain a white aggregate (baked product).

実施例1で得られた焼成物について、走査型電子顕微鏡(以下、「SEM」という。)による表面観察を行った。観察結果を図2に示す。SEM観察結果から、焼成物が粒子の凝集体であり、且つ、多孔質であることが確認された。また、SEM観察結果から下記の方法で算出した平均粒子径は1.6μmであった。また、SEM観察結果から下記の方法で算出した平均細孔径は2.1μmであった。   The fired product obtained in Example 1 was subjected to surface observation with a scanning electron microscope (hereinafter referred to as “SEM”). The observation results are shown in FIG. From the SEM observation results, it was confirmed that the fired product was an aggregate of particles and was porous. Moreover, the average particle diameter computed by the following method from the SEM observation result was 1.6 micrometers. Moreover, the average pore diameter computed by the following method from the SEM observation result was 2.1 micrometers.

<平均粒子径の算出>
SEM観察で得られた画像より、任意の100個の粒子の定方向最大径を測定し、その相加平均を求め、これを粒子の平均粒子径とした。
<Calculation of average particle size>
From the image obtained by SEM observation, the maximum diameter in the fixed direction of 100 arbitrary particles was measured, and the arithmetic average thereof was obtained, which was defined as the average particle diameter of the particles.

<平均細孔径の算出>
SEM観察で得られた画像より、任意の100個の細孔の定方向最大径を測定し、その相加平均を求め、これを平均細孔径とした。
<Calculation of average pore diameter>
From the image obtained by SEM observation, the maximum diameter in the fixed direction of 100 arbitrary pores was measured, and the arithmetic average thereof was obtained, and this was taken as the average pore diameter.

<吸着材評価>
実施例1で得られた焼成体を粉砕して、0.25〜1.0mmのサイズに分級した。これを吸着材サンプルとし、以下の方法でストロンチウム吸着能を評価した。
<Adsorbent evaluation>
The fired body obtained in Example 1 was pulverized and classified to a size of 0.25 to 1.0 mm. Using this as an adsorbent sample, strontium adsorption ability was evaluated by the following method.

吸着材サンプル1.5gと、模擬汚染水(NaCl含有量:10000ppm、Ca2+含有量:16ppm、Mg2+含有量:10ppm、Sr2+含有量:10ppm)150mlとを、200mlの密閉容器に入れ、振盪機で110rpm、振り幅3.7cm、0.5時間の条件で撹拌した。撹拌後、遠心分離(3000rpm、5分間)したのち、上澄み液を0.45μmのフィルターで濾して測定液を得た。 1.5 ml of the adsorbent sample and 150 ml of simulated contaminated water (NaCl content: 10000 ppm, Ca 2+ content: 16 ppm, Mg 2+ content: 10 ppm, Sr 2+ content: 10 ppm) are placed in a 200 ml sealed container, The mixture was stirred with a shaker at 110 rpm, a swinging width of 3.7 cm, and 0.5 hours. After stirring, the mixture was centrifuged (3000 rpm, 5 minutes), and the supernatant was filtered through a 0.45 μm filter to obtain a measurement solution.

得られた測定液のICP発光分析を行って、測定液中のSr2+含有量を定量し、下記式により除去率(%)を求めた。
除去率(%)=((模擬汚染水中のSr2+含有量)−(測定液中のSr2+含有量))×100/(模擬汚染水中のSr2+含有量)
The obtained measurement liquid was subjected to ICP emission analysis, the Sr 2+ content in the measurement liquid was quantified, and the removal rate (%) was determined by the following formula.
Removal rate (%) = ((Sr 2+ content in simulated contaminated water) − (Sr 2+ content in measurement liquid)) × 100 / (Sr 2+ content in simulated contaminated water)

次いで、同様の方法で、撹拌時間を1.0時間、2.0時間、4.0時間、24時間に変更した場合の除去率(%)を求めた。得られた結果を表1に示す。なお、表1中「>99.9」は測定限界以上(測定液中のSr2+含有量が測定限界以下)であることを示す。 Subsequently, the removal rate (%) when stirring time was changed into 1.0 hour, 2.0 hours, 4.0 hours, and 24 hours by the same method was calculated | required. The obtained results are shown in Table 1. In Table 1, “> 99.9” indicates that the measurement limit is exceeded (the Sr 2+ content in the measurement solution is less than the measurement limit).

また、上記評価に際し、撹拌後、1分間静置したときの上澄み液の外観を観察した。上澄み液が透明であった場合をAとし、微粉により白濁していた場合をBとして、吸着材微粉の発生度合を評価した。評価結果を表1に示す。なお、実施例において評価がBとなるサンプルは観察されなかった。   Moreover, in the said evaluation, the external appearance of the supernatant liquid when it left still for 1 minute after stirring was observed. The case where the supernatant was transparent was designated as A, and the case where it was clouded by fine powder was designated as B, and the degree of generation of adsorbent fine powder was evaluated. The evaluation results are shown in Table 1. In the examples, no sample with an evaluation of B was observed.

次いで、本発明に係る焼成物の複数の態様(実施例2〜4)について、そのストロンチウム吸着能を、結晶性のチタン酸ストロンチウムと対比した。   Subsequently, about the several aspect (Examples 2-4) of the baked product which concerns on this invention, the strontium adsorption ability was contrasted with crystalline strontium titanate.

(実施例2)
四塩化チタン水溶液(TC−36、36質量%の四塩化チタン水溶液、石原産業株式会社製)15gと、1N水酸化カリウム水溶液114gとを混合して、析出した沈殿物をろ過により回収した。この沈殿物を水で洗浄して、副生した塩化カリウムを除去することにより、白色固体の含水酸化チタンを得た。
(Example 2)
15 g of titanium tetrachloride aqueous solution (TC-36, 36 mass% titanium tetrachloride aqueous solution, manufactured by Ishihara Sangyo Co., Ltd.) and 114 g of 1N potassium hydroxide aqueous solution were mixed, and the deposited precipitate was collected by filtration. This precipitate was washed with water to remove by-produced potassium chloride, thereby obtaining a white solid hydrous titanium oxide.

得られた含水酸化チタンを水中に分散させてスラリーを調製し、このスラリーに、硝酸カリウム1.0g(混合物中のカリウム元素含量Cに対するチタン元素含量Cのモル比C/Cが2.88となる量)を添加した。次いでスラリーを80℃に加熱して乾燥させ、得られた固体を400℃で2時間焼成して、白色の凝集体(焼成物)を得た。 The obtained hydrous titanium oxide was dispersed in water to prepare a slurry, and 1.0 g of potassium nitrate (the molar ratio C 1 / C 2 of the titanium element content C 1 to the potassium element content C 2 in the mixture was 2) .88) was added. Next, the slurry was heated to 80 ° C. and dried, and the obtained solid was fired at 400 ° C. for 2 hours to obtain a white aggregate (fired product).

実施例2で得られた焼成物について、SEMによる表面観察を行った。観察結果を図3に示す。SEM観察結果から、焼成物が粒子の凝集体であり、且つ、多孔質であることが確認された。また、SEM観察結果から上記の方法で算出した平均粒子径は0.81μmであった。なお、実施例2で得られた焼成物は、凝集した粒子間に多数の細孔が観察されたが、細孔が独立気泡の形態ではなかったため、平均細孔径は計測できなかった。   The fired product obtained in Example 2 was subjected to surface observation by SEM. The observation results are shown in FIG. From the SEM observation results, it was confirmed that the fired product was an aggregate of particles and was porous. Moreover, the average particle diameter calculated by the above method from the SEM observation result was 0.81 μm. In the fired product obtained in Example 2, many pores were observed between the aggregated particles, but the average pore diameter could not be measured because the pores were not in the form of closed cells.

(実施例3)
四塩化チタン水溶液(TC−36、36質量%の四塩化チタン水溶液、石原産業株式会社製)15gと、1N水酸化ナトリウム水溶液171gとを混合して、析出した沈殿物をろ過により回収した。この沈殿物を水で洗浄して、副生した塩化ナトリウムを除去することにより、白色固体の含水酸化チタンを得た。
Example 3
15 g of titanium tetrachloride aqueous solution (TC-36, 36 mass% titanium tetrachloride aqueous solution, manufactured by Ishihara Sangyo Co., Ltd.) and 171 g of 1N sodium hydroxide aqueous solution were mixed, and the deposited precipitate was collected by filtration. The precipitate was washed with water to remove by-produced sodium chloride, thereby obtaining a white solid hydrous titanium oxide.

得られた含水酸化チタンを水中に分散させてスラリーを調製し、このスラリーに、硝酸ナトリウム1.0g(混合物中のナトリウム元素含量Cに対するチタン元素含量Cのモル比C/Cが2.42となる量)を添加した。次いでスラリーを80℃に加熱して乾燥させ、得られた固体を400℃で2時間焼成して、白色の凝集体(焼成物)を得た。 The obtained hydrous titanium oxide was dispersed in water to prepare a slurry. To this slurry, 1.0 g of sodium nitrate (the molar ratio C 1 / C 2 of the titanium element content C 1 to the sodium element content C 2 in the mixture was 2.42) was added. Next, the slurry was heated to 80 ° C. and dried, and the obtained solid was fired at 400 ° C. for 2 hours to obtain a white aggregate (fired product).

実施例3で得られた焼成物について、SEMによる表面観察を行った。SEM観察結果から、焼成物が粒子の凝集体であり、且つ、多孔質であることが確認された。また、SEM観察結果から上記の方法で算出した平均粒子径は0.81μmであった。また、SEM観察結果から上記の方法で算出した平均細孔径は0.92μmであった。   The fired product obtained in Example 3 was subjected to surface observation by SEM. From the SEM observation results, it was confirmed that the fired product was an aggregate of particles and was porous. Moreover, the average particle diameter calculated by the above method from the SEM observation result was 0.81 μm. Moreover, the average pore diameter calculated by the above method from the SEM observation result was 0.92 μm.

(実施例4)
四塩化チタン水溶液(TC−36、36質量%の四塩化チタン水溶液、石原産業株式会社製)15gと、1N水酸化ナトリウム水溶液114gとを混合して、析出した沈殿物をろ過により回収した。この沈殿物を水で洗浄して、副生した塩化ナトリウムを除去することにより、白色固体の含水酸化チタンを得た。
Example 4
15 g of titanium tetrachloride aqueous solution (TC-36, 36 mass% titanium tetrachloride aqueous solution, manufactured by Ishihara Sangyo Co., Ltd.) and 114 g of 1N sodium hydroxide aqueous solution were mixed, and the deposited precipitate was collected by filtration. The precipitate was washed with water to remove by-produced sodium chloride, thereby obtaining a white solid hydrous titanium oxide.

得られた含水酸化チタンを水中に分散させてスラリーを調製し、このスラリーに、硝酸ナトリウム0.5g(混合物中のナトリウム元素含量Cに対するチタン元素含量Cのモル比C/Cが4.84となる量)を添加した。次いでスラリーを80℃に加熱して乾燥させ、得られた固体を400℃で2時間焼成して、白色の凝集体(焼成物)を得た。 The obtained hydrous titanium oxide was dispersed in water to prepare a slurry. To this slurry, 0.5 g of sodium nitrate (the molar ratio C 1 / C 2 of the titanium element content C 1 to the sodium element content C 2 in the mixture was 4. Amount of 4.84) was added. Next, the slurry was heated to 80 ° C. and dried, and the obtained solid was fired at 400 ° C. for 2 hours to obtain a white aggregate (fired product).

(比較例1)
比較例1の吸着材として、チタン酸ナトリウム(NaTi)の結晶粉末(Strem Chemicals Inc.製)を準備した。
(Comparative Example 1)
As an adsorbent of Comparative Example 1, sodium titanate (Na 2 Ti 3 O 7 ) crystal powder (manufactured by Strem Chemicals Inc.) was prepared.

<ストロンチウム吸着能評価>
実施例で得られた焼成体を粉砕して、0.25〜1.0mmのサイズに分級した。これを吸着材サンプルとし、以下の方法でストロンチウム吸着能を評価した。
<Evaluation of strontium adsorption capacity>
The fired bodies obtained in the examples were pulverized and classified into sizes of 0.25 to 1.0 mm. Using this as an adsorbent sample, strontium adsorption ability was evaluated by the following method.

吸着材サンプル1.0gと、模擬汚染水(NaCl含有量:10000ppm、Ca2+含有量:16ppm、Mg2+含有量:10ppm、Sr2+含有量:10ppm)300mlとを、ビーカーに入れ、スターラーで30分間撹拌した。撹拌後、遠心分離(3000rpm、5分間)し、上澄み液を0.45μmのフィルターで濾して測定液を得た。 An adsorbent sample (1.0 g) and 300 ml of simulated contaminated water (NaCl content: 10000 ppm, Ca 2+ content: 16 ppm, Mg 2+ content: 10 ppm, Sr 2+ content: 10 ppm) are placed in a beaker and mixed with a stirrer. Stir for minutes. After stirring, the mixture was centrifuged (3000 rpm, 5 minutes), and the supernatant was filtered through a 0.45 μm filter to obtain a measurement solution.

得られた測定液のICP発光分析を行って、測定液のSr2+含有量(ppm)を定量し、下記式により除去率(%)を求めた。
除去率(%)=((模擬汚染水中のSr2+含有量)−(測定液中のSr2+含有量))×100/(模擬汚染水のSr2+含有量)
The obtained measurement liquid was subjected to ICP emission analysis, and the Sr 2+ content (ppm) of the measurement liquid was quantified, and the removal rate (%) was determined by the following formula.
Removal rate (%) = ((Sr 2+ content in simulated contaminated water) − (Sr 2+ content in measurement liquid)) × 100 / (Sr 2+ content in simulated contaminated water)

次に、撹拌時間を60分間に変更したこと以外は同様にして、除去率(%)を求めた。更に、吸着材サンプルに代えて比較例1の吸着材を用い、同様にして除去率(%)を求めた。得られた結果を表2に示す。   Next, the removal rate (%) was determined in the same manner except that the stirring time was changed to 60 minutes. Further, the removal rate (%) was determined in the same manner using the adsorbent of Comparative Example 1 instead of the adsorbent sample. The obtained results are shown in Table 2.

本発明の焼成物は、優れた金属イオン吸着能を有し、吸着材としての用途において微粉の発生を十分に抑制することができることから、例えば、原子炉施設、核燃料の再処理工場等からの廃液から放射性核種を除去するための吸着材として有用である。   The fired product of the present invention has an excellent ability to adsorb metal ions, and can sufficiently suppress the generation of fine powder in applications as an adsorbent. For example, from a nuclear facility, a nuclear fuel reprocessing plant, etc. It is useful as an adsorbent for removing radionuclides from waste liquid.

10…鉄共沈処理設備、20…炭酸塩共沈処理設備、30…多段吸着塔、31…吸着塔、40…カラム式多段充填塔、41…カラム式充填塔、11,21,50…保管容器、100…金属イオン除去設備。   DESCRIPTION OF SYMBOLS 10 ... Iron coprecipitation processing equipment, 20 ... Carbonate coprecipitation processing equipment, 30 ... Multistage adsorption tower, 31 ... Adsorption tower, 40 ... Column type multistage packed tower, 41 ... Column type packed tower, 11, 21, 50 ... Storage Container, 100 ... Metal ion removal equipment.

Claims (7)

四塩化チタンと水酸化カリウム又は水酸化ナトリウムとの反応により含水酸化チタンを得る工程と、Obtaining hydrous titanium oxide by reaction of titanium tetrachloride with potassium hydroxide or sodium hydroxide;
前記含水酸化チタンと硝酸カリウム又は硝酸ナトリウムとを含む混合物を焼成して、焼成物を得る工程と、  Firing a mixture containing the hydrous titanium oxide and potassium nitrate or sodium nitrate to obtain a fired product;
を備える、前記焼成物を含有する金属イオン吸着材の製造方法。A method for producing a metal ion adsorbent containing the fired product.
前記混合物中のアルカリ金属元素の含有量Cに対するチタン元素の含有量Cのモル比C/Cが、0.5〜5.0である、請求項に記載の製造方法Molar ratio C 1 / C 2 content C 1 of the titanium element to the content C 2 of the alkali metal element in the mixture is 0.5 to 5.0 The method according to claim 1. 前記混合物を200〜600℃で焼成して前記焼成物を得る、請求項1又は2に記載の製造方法The manufacturing method according to claim 1 or 2 , wherein the mixture is fired at 200 to 600 ° C to obtain the fired product . 前記焼成物が多孔質であり、
前記焼成物の平均細孔径が0.1〜10μmである、請求項1〜3のいずれか一項に記載の製造方法
The fired product is porous,
The manufacturing method as described in any one of Claims 1-3 whose average pore diameter of the said baked product is 0.1-10 micrometers.
前記焼成物が、Ti2n+1(Aはアルカリ金属を示し、nは0.5〜5.0を示す。)で表されるチタン酸アルカリ化合物を含む粒子の凝集体から構成されている、請求項1〜4のいずれか一項に記載の製造方法 The fired product is composed of an aggregate of particles containing an alkali titanate compound represented by A 2 Ti n O 2n + 1 (A represents an alkali metal and n represents 0.5 to 5.0). The manufacturing method as described in any one of Claims 1-4 . 前記粒子の平均粒子径が、0.1〜10μmである、請求項に記載の製造方法The manufacturing method of Claim 5 whose average particle diameter of the said particle | grain is 0.1-10 micrometers. 請求項1〜6のいずれか一項に記載の製造方法で金属イオン吸着材を製造する工程と、
金属イオンを含有する処理液を、前記金属イオン吸着材に接触させて、前記処理液から前記金属イオンの少なくとも一部を除去する工程と、
を備える、金属イオンの除去方法。
A step of producing a metal ion adsorbent by the production method according to claim 1;
A treatment liquid containing metal ions, in contact with the metal ion adsorbent, and removing at least a portion of the metal ions from the processing solution,
A method for removing metal ions.
JP2012116498A 2012-05-22 2012-05-22 Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment Active JP6053325B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012116498A JP6053325B2 (en) 2012-05-22 2012-05-22 Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment
PCT/US2013/041341 WO2013176956A2 (en) 2012-05-22 2013-05-16 Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116498A JP6053325B2 (en) 2012-05-22 2012-05-22 Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment

Publications (2)

Publication Number Publication Date
JP2013241312A JP2013241312A (en) 2013-12-05
JP6053325B2 true JP6053325B2 (en) 2016-12-27

Family

ID=49624483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116498A Active JP6053325B2 (en) 2012-05-22 2012-05-22 Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment

Country Status (2)

Country Link
JP (1) JP6053325B2 (en)
WO (1) WO2013176956A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992646B2 (en) * 2014-02-21 2016-09-14 日本化学工業株式会社 Method for producing alkali metal 9 titanate
JP6263067B2 (en) * 2014-03-27 2018-01-17 株式会社クボタ Porous titanate ion exchanger
KR101902720B1 (en) 2014-10-24 2018-09-28 오츠카 가가쿠 가부시키가이샤 Porous titanate compound particles and method for producing same
US10598599B2 (en) 2015-11-03 2020-03-24 Savannah River Nuclear Solutions, Llc Methods and materials for determination of distribution coefficients for separation materials
JP6279539B2 (en) * 2015-12-10 2018-02-14 株式会社荏原製作所 Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
JP6716247B2 (en) * 2015-12-24 2020-07-01 株式会社荏原製作所 Radioactive antimony, radioiodine and radioruthenium adsorbents, and radioactive waste liquid treatment methods using the adsorbents
JP7086524B2 (en) 2017-03-08 2022-06-20 株式会社荏原製作所 Alkaline earth metal ion adsorbent and its manufacturing method and alkaline earth metal ion-containing liquid treatment equipment
JP7128139B2 (en) * 2019-03-18 2022-08-30 株式会社東芝 Radioactive waste liquid treatment method and radioactive waste liquid treatment system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146712A (en) * 1984-12-21 1986-07-04 Asahi Chem Ind Co Ltd Production of barium-strontium titanate solid solution or barium titanate
JPH04280816A (en) * 1991-03-06 1992-10-06 Sanyo Shikiso Kk Production of porous fine particulate titanium oxide
JP3894614B2 (en) * 1996-03-18 2007-03-22 石原産業株式会社 Method for producing lithium titanate
JP4015212B2 (en) * 1996-08-02 2007-11-28 石原産業株式会社 Ion exchanger
US6645673B2 (en) * 1999-02-16 2003-11-11 Toho Titanium Co., Ltd. Process for producing lithium titanate and lithium ion battery and negative electrode therein
JP2001133594A (en) * 1999-11-05 2001-05-18 Jgc Corp Method of removing radionuclide from reactor cooling water
JP4597546B2 (en) * 2004-02-25 2010-12-15 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
US7820137B2 (en) * 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
WO2008123558A1 (en) * 2007-03-29 2008-10-16 Toho Titanium Co., Ltd. Method for production of alkali titanate, method for production of hollow powder of alkali titanate, alkali titanate and hollow powder thereof produced by the methods, and friction material comprising the alkali titanate or the hollow powder thereof
JP5579981B2 (en) * 2008-12-15 2014-08-27 チタン工業株式会社 Titanium oxide compound for electrode and lithium secondary battery using the same

Also Published As

Publication number Publication date
WO2013176956A3 (en) 2014-03-06
JP2013241312A (en) 2013-12-05
WO2013176956A2 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6053325B2 (en) Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment
Deng et al. Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water
JP6645202B2 (en) Composition containing silicotitanate having cinnamite structure and method for producing the same
JP6380999B2 (en) Ion adsorbent
KR102337203B1 (en) Adsorbent of radionuclide and preparing method of the same and removal method of radionuclide using the same
JP6645203B2 (en) Composition containing silicotitanate having cinnamite structure and method for producing the same
JP5936196B2 (en) Cesium-containing layered double hydroxide composite, solidified solid, method for treating cesium-containing wastewater, layered double hydroxide composite, and method for producing layered double hydroxide composite
Liu et al. The performance of phosphate removal using aluminium-manganese bimetal oxide coated zeolite: batch and dynamic adsorption studies
EP3556729B1 (en) Use of a composition comprising silicotitanate having sitinakite structure and niobium
JP2014115135A (en) RADIOACTIVE Cs ADSORBENT AND METHOD OF MANUFACTURING THE SAME
JP6470354B2 (en) Silicotitanate molded body and method for producing the same, cesium or strontium adsorbent containing silicotitanate molded body, and decontamination method of radioactive liquid waste using the adsorbent
WO2017099099A1 (en) Treatment method for radioactive waste liquid comprising radioactive cesium and radioactive strontium
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same
JP2020015042A (en) Strontium ion adsorbent and method for producing the same
JP2015171958A (en) Porous titanate and method of manufacturing the same, metal ion adsorbent, method of removing metal ion and metal ion removal equipment
JP5694593B2 (en) Radioactive Cs adsorbent and method for producing the same
JP6708663B2 (en) Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
JP4189652B2 (en) Adsorbent
JP6773511B2 (en) Treatment method of radioactive liquid waste containing radioactive strontium
JP5099349B2 (en) Adsorbent
JP6526511B2 (en) Adsorbent and method for producing the same
Ali et al. Sorption performance of lithium-doped titanium vanadate for Sr2+, Fe3+ and Al3+ from polluted water
JP4072624B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JP6957077B2 (en) Layered double hydroxide crystal, anion adsorbent and method for producing the layered double hydroxide crystal
JP6807374B2 (en) Treatment method for radioactive iodine-containing fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161129

R150 Certificate of patent or registration of utility model

Ref document number: 6053325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370