[go: up one dir, main page]

JP6048951B2 - Highly active oxygen carrier material in chemical loop process - Google Patents

Highly active oxygen carrier material in chemical loop process Download PDF

Info

Publication number
JP6048951B2
JP6048951B2 JP2012170908A JP2012170908A JP6048951B2 JP 6048951 B2 JP6048951 B2 JP 6048951B2 JP 2012170908 A JP2012170908 A JP 2012170908A JP 2012170908 A JP2012170908 A JP 2012170908A JP 6048951 B2 JP6048951 B2 JP 6048951B2
Authority
JP
Japan
Prior art keywords
oxygen carrier
carrier material
chemical loop
oxygen
abo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012170908A
Other languages
Japanese (ja)
Other versions
JP2014031282A (en
Inventor
順一郎 大友
順一郎 大友
幡野 博之
博之 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012170908A priority Critical patent/JP6048951B2/en
Publication of JP2014031282A publication Critical patent/JP2014031282A/en
Application granted granted Critical
Publication of JP6048951B2 publication Critical patent/JP6048951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Conductive Materials (AREA)

Description

本発明は、新規な酸素キャリア材料、特に、ケミカルループ法に用いられる酸素キャリア材料、及び当該酸素キャリア材料を用いたケミカルループ法に関る。   The present invention relates to a novel oxygen carrier material, in particular, an oxygen carrier material used in a chemical loop method, and a chemical loop method using the oxygen carrier material.

炭化水素類から二酸化炭素と熱の同時生成を行なうエネルギー変換システムとしてケミカルループ法(Chemical looping)が提案されており、高いエネルギー変換効率を有することに加えて、エネルギー損失を伴わずに二酸化炭素の分離回収が可能であり、また、燃焼過程においてNOxの発生を抑制することができるため環境性能が高いことから近年注目を集め、研究が活発に行なわれている。   A chemical looping method has been proposed as an energy conversion system that simultaneously generates carbon dioxide and heat from hydrocarbons. In addition to having high energy conversion efficiency, carbon dioxide can be produced without energy loss. In recent years, it has attracted attention and has been actively researched because of its high environmental performance because it can be separated and recovered and can suppress the generation of NOx in the combustion process.

ケミカルループ法は、金属粒子を酸化する酸化反応系と金属酸化物を還元する還元反応系との間で金属粒子および金属酸化物を循環させることで熱あるいは水素と同時に二酸化炭素や窒素ガスを得るようにしたエネルギー変換システムであり、燃料を直接空気と燃焼させる代わりに、酸素源として金属酸化物中の格子酸素を用いることにより、燃焼反応を「金属粒子の酸化」と、「金属酸化物の還元」という2つに分け、両者を物理的な粒子の循環で結ぶシステムである。燃料と空気は直接接触することがなく、金属を媒体として純酸素のやり取りをしている。図1にケミカルループ法の概略を示す。   The chemical loop method obtains carbon dioxide and nitrogen gas simultaneously with heat or hydrogen by circulating metal particles and metal oxide between an oxidation reaction system that oxidizes metal particles and a reduction reaction system that reduces metal oxides. By using lattice oxygen in the metal oxide as an oxygen source instead of burning the fuel directly with air, the combustion reaction can be performed by “oxidizing metal particles” and “metal oxide. It is a system that connects the two by physical particle circulation. There is no direct contact between fuel and air, and pure oxygen is exchanged using metal as a medium. FIG. 1 shows an outline of the chemical loop method.

ケミカルループ法(ケミカルループ燃料およびケミカルループ改質)では、メタンなどの炭化水素は、還元反応系において、酸化金属の還元剤として働き、金属の還元反応で吸熱する。さらに、還元反応系では、燃料の炭化水素と酸化金属から供給される酸素のみが存在し、そのため、排ガス成分はほぼ二酸化炭素と水だけとなる。そのために、排出されたガスを冷却して水を取り除けばほぼ純粋なCOを容易に回収可能となる。また酸化反応系には、空気と金属粒子だけが供給され酸化反応によって発熱するが、燃焼温度が比較的低いことからサーマルNOxは殆ど生成しない。また、ケミカルループ燃焼では高い発電効率が得られるという利点もある。加えて、ケミカルループ改質では、還元反応系において、燃料の炭化水素と酸化金属に加え、水蒸気を供給することで、水素および一酸化炭素を含む燃料ガスを生成することができる。また、酸化反応系においても、還元に必要な熱を得る以外の還元された酸化金属と水蒸気の反応により、水素を生成させることができる。 In the chemical loop method (chemical loop fuel and chemical loop reforming), hydrocarbons such as methane function as a metal oxide reducing agent in the reduction reaction system and absorb heat by the metal reduction reaction. Furthermore, in the reduction reaction system, only oxygen supplied from the hydrocarbon and metal oxide of the fuel is present, so that the exhaust gas components are substantially only carbon dioxide and water. Therefore, if the exhausted gas is cooled to remove water, almost pure CO 2 can be easily recovered. Further, only air and metal particles are supplied to the oxidation reaction system and heat is generated by the oxidation reaction, but thermal NOx is hardly generated because the combustion temperature is relatively low. In addition, chemical loop combustion has an advantage that high power generation efficiency can be obtained. In addition, in chemical loop reforming, in the reduction reaction system, fuel gas containing hydrogen and carbon monoxide can be generated by supplying water vapor in addition to the hydrocarbon and metal oxide of the fuel. Also in the oxidation reaction system, hydrogen can be generated by a reaction between the reduced metal oxide and water vapor other than obtaining heat necessary for the reduction.

このようにケミカルループ法は様々な利点を有するが、その実用化には、還元反応速度の向上と格子酸素利用率の向上が必要とされており、低コストで高性能な酸素キャリア材料の開発が必要であり、その研究も行なわれている(非特許文献1〜3)。   As described above, the chemical loop method has various advantages, but for its practical use, it is necessary to improve the reduction reaction rate and the lattice oxygen utilization rate, and to develop a low-cost and high-performance oxygen carrier material. Is necessary, and its research is also being conducted (Non-Patent Documents 1 to 3).

M.Ishida et al.,Energy Conversion and Management 43(2002)1469M.M. Ishida et al. , Energy Conversion and Management 43 (2002) 1469 M.Ryden et al.,Int.J of Hydrogen Energy 31(2006)1271M.M. Ryden et al. , Int. J of Hydrogen Energy 31 (2006) 1271 M.Ishida et al.,Energy&Fuels12(1998)223M.M. Ishida et al. , Energy & Fuels 12 (1998) 223

ケミカルループ法で用いられる酸素キャリア材料は、通常、金属酸化物の酸素キャリアと担体から主に構成されており、従来は、酸素キャリアとしてFeが用いられ、担体としてAlや熱安定性が高いNiAlなどのスピネル構造体が用いられていた。
本発明者らは、酸素キャリア担体として固体酸化物燃料電池部材などに用いられるZn1−x2−δ(YSZ)、Ce0.9Gd0.12−δ(GDC)等の酸化物イオン伝導体を用いたところ、還元反応速度を向上させ得ることが示唆された。しかしながら、これらの材料は貴金属を含有することから材料コストが高いため、経済性の観点から実用化するのは困難である。従って、低コストで高活性な酸素キャリア材料は未だ実用化には至っていない。
The oxygen carrier material used in the chemical loop method is usually mainly composed of a metal oxide oxygen carrier and a carrier. Conventionally, Fe 2 O 3 is used as the oxygen carrier, and Al 2 O 3 or the like is used as the carrier. Spinel structures such as NiAl 2 O 4 having high thermal stability have been used.
The inventors of the present invention use Zn 1-x Y x O 2-δ (YSZ), Ce 0.9 Gd 0.1 O 2-δ (GDC), etc. used as solid oxide fuel cell members as oxygen carrier carriers. It was suggested that the reduction rate of the oxide ion conductor can be improved. However, since these materials contain noble metals, the material cost is high, and it is difficult to put them into practical use from the viewpoint of economy. Therefore, a low-cost and highly active oxygen carrier material has not yet been put into practical use.

本発明は、還元反応速度及び格子酸素利用率を向上させることができ、更に材料コスト面でも有利である、ケミカルループ法に適した酸素キャリア材料を提供することを目的とする。   An object of the present invention is to provide an oxygen carrier material suitable for a chemical loop method, which can improve the reduction reaction rate and lattice oxygen utilization rate, and is advantageous in terms of material cost.

本発明者らは、格子酸素欠陥を有する酸化物イオン伝導体に着目し、材料コスト面及び合成方法の簡便性を含めて種々検討したところ、特定の酸化物イオン伝導体がケミカルループ法の運転温度付近で高い酸化物イオン伝導度を有することを知見した。そして、これらの特定の酸化物イオン伝導体を用いることにより、還元反応速度及び格子酸素利用率を従来品に対して著しく向上させることができ、更にコスト的にも有利である酸化物キャリア材料を提供できることを見出し、本発明を完成した。   The present inventors paid attention to oxide ion conductors having lattice oxygen defects, and conducted various studies including the material cost and the simplicity of the synthesis method. It was found that the oxide ion conductivity is high near the temperature. By using these specific oxide ion conductors, it is possible to remarkably improve the reduction reaction rate and the lattice oxygen utilization rate compared with the conventional products, and further to provide an oxide carrier material that is advantageous in terms of cost. The present invention has been completed by finding out that it can be provided.

即ち、本発明は、以下の構成を有するものである。
(1)A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む酸素キャリア材料。
(2)酸素キャリア及び担体を含み、担体が、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体である、(1)に記載の酸素キャリア材料。
(3)酸素キャリアが、Fe 、NiO、CuO、CuO、Ti/Fe鉱石、及びTiOからなる群から選択される1以上である、(2)に記載の酸素キャリア材料。
(4)酸素キャリアが、Fe 又はNiOである、(2)又は(3)に記載の酸素キャリア材料。
(5)酸化物イオン伝導体がAである、(1)〜(4)のいずれか1に記載の酸素キャリア材料。
(6)AがCaであり、BがFeである、(1)〜(5)のいずれか1に記載の酸素キャリア材料。
(7)酸化物イオン伝導体が他の金属イオンでドープされている、(1)〜(6)のいずれか1に記載の酸素キャリア材料。
(8)酸素キャリア及び場合により担体を含み、酸素キャリアが、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体である、(1)に記載の酸素キャリア材料。
(9)酸化物イオン伝導体がAである、(8)に記載の酸素キャリア材料。
(10)AがCaであり、BがFeである、(8)又は(9)に記載の酸素キャリア材料。
(11)酸化物イオン伝導体が他の金属イオンでドープされている、(8)〜(10)のいずれか1に記載の酸素キャリア材料。
(12)ケミカルループ法に使用される、(1)〜(11)のいずれか1に記載の酸素キャリア材料。
(13)A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む酸素キャリア材料を用いることを特徴とするケミカルループ法。
(14)酸素キャリア材料を酸化する酸化反応系と酸素キャリア材料を還元する還元反応系との間で酸素キャリア材料を循環させることで熱あるいは水素と同時に二酸化炭素や窒素を得るケミカルループ燃焼あるいはケミカルループ改質を実施するためのシステムであって、酸素キャリア材料が、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む、当該システム。
That is, the present invention has the following configuration.
(1) At least one oxidation selected from A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn). Oxygen carrier material containing an ionic conductor.
(2) An oxygen carrier and a carrier are included, and the carrier is A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn. The oxygen carrier material according to (1), which is at least one oxide ion conductor selected from.
(3) The oxygen carrier material according to (2), wherein the oxygen carrier is one or more selected from the group consisting of Fe 2 O 3 , NiO, CuO, Cu 2 O, Ti / Fe ore, and TiO 2 .
(4) The oxygen carrier material according to (2) or (3), wherein the oxygen carrier is Fe 2 O 3 or NiO.
(5) The oxygen carrier material according to any one of (1) to (4), wherein the oxide ion conductor is A 2 B 2 O 5 .
(6) The oxygen carrier material according to any one of (1) to (5), wherein A is Ca and B is Fe.
(7) The oxygen carrier material according to any one of (1) to (6), wherein the oxide ion conductor is doped with another metal ion.
(8) An oxygen carrier and optionally a carrier, wherein the oxygen carrier is A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, B represents Fe, Cu or Mn The oxygen carrier material according to (1), which is at least one oxide ion conductor selected from:
(9) The oxygen carrier material according to (8), wherein the oxide ion conductor is A 2 B 2 O 5 .
(10) The oxygen carrier material according to (8) or (9), wherein A is Ca and B is Fe.
(11) The oxygen carrier material according to any one of (8) to (10), wherein the oxide ion conductor is doped with another metal ion.
(12) The oxygen carrier material according to any one of (1) to (11), which is used in a chemical loop method.
(13) At least one oxidation selected from A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn). A chemical loop method using an oxygen carrier material containing a physical ion conductor.
(14) Chemical loop combustion or chemical that obtains carbon dioxide or nitrogen simultaneously with heat or hydrogen by circulating the oxygen carrier material between an oxidation reaction system that oxidizes the oxygen carrier material and a reduction reaction system that reduces the oxygen carrier material A system for performing loop reforming, wherein the oxygen carrier material is A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, B represents Fe, Cu Or Mn.), The system comprising at least one oxide ion conductor selected from:

本発明の酸素キャリア材料は、還元反応速度を向上させることができ、更に、格子酸素の利用率も向上させることができる。
特に、担体として、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体と、酸素キャリアを含む本発明の酸素キャリア材料は、従来技術に対して、低コストで、かつ還元活性を大幅に高めることができることから、ケミカルループ法の実用化に大きく寄与するものである。
また、本発明の上記酸化物イオン伝導体を用いると、それ自体が酸素キャリアとして機能し、更に、ケミカルループ法における酸化還元サイクルにおいて当該酸化物イオン伝導体は分解と再生を繰り返すことができる。従って、本発明の酸化物イオン伝導体単独でも酸素キャリア材料を構成することが可能である。
The oxygen carrier material of the present invention can improve the reduction reaction rate, and can further improve the utilization rate of lattice oxygen.
In particular, at least one or more selected from A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn) as the carrier. Since the oxygen carrier material of the present invention including the oxide ion conductor of the present invention and the oxygen carrier can lower the cost and greatly increase the reduction activity as compared with the prior art, it is greatly applied to the practical use of the chemical loop method. It contributes.
Further, when the oxide ion conductor of the present invention is used, the oxide ion conductor itself functions as an oxygen carrier, and the oxide ion conductor can be repeatedly decomposed and regenerated in a redox cycle in the chemical loop method. Therefore, it is possible to constitute an oxygen carrier material with the oxide ion conductor of the present invention alone.

ケミカルループ法の概略図。Schematic of the chemical loop method. Fe/CFO複合試料(実施例1)のXRD測定結果。Fe 2 O 3 / CFO composite samples (Example 1) XRD measurement results of. 各種酸素キャリア材料のSEM像。SEM images of various oxygen carrier materials. 各種酸素キャリア材料についての3%H(無加湿)による昇温還元TG測定結果。3% H 2 (non-humidified) heating the reducing TG measurement results of the the various oxygen carrier material. 還元反応前後及び酸化後のFe/CFO複合試料(実施例1)のXRD測定結果。 Fe 2 after reduction reaction before and after and oxidation O 3 / CFO composite samples (Example 1) XRD measurement results of. 加湿CHを用いた還元反応実験装置(熱重量・示差熱同時分析装置)の概略図。Schematic of a reduction reaction experiment apparatus (thermogravimetric / differential thermal simultaneous analysis apparatus) using humidified CH 4 . 各種酸素キャリア材料についての昇温CH還元反応実験結果(昇温速度:10℃/分)。Experimental results of temperature rising CH 4 reduction reaction for various oxygen carrier materials (temperature rising rate: 10 ° C./min). 各種酸素キャリア材料のCH還元反応開始温度の比較。Comparison of CH 4 reduction reaction start temperatures of various oxygen carrier materials. 各種酸素キャリア材料についての900℃での5%CH(10%HO)による還元反応TGの測定結果。The measurement result of reduction reaction TG by 5% CH 4 (10% H 2 O) at 900 ° C. for various oxygen carrier materials. 各種酸素キャリア材料についての、750℃、800℃、850℃、900℃、950℃での定温還元反応TGの測定結果。The measurement result of the constant temperature reduction reaction TG in 750 degreeC, 800 degreeC, 850 degreeC, 900 degreeC, and 950 degreeC about various oxygen carrier materials. 実施例1の試料を用いた、酸化還元反応繰り返し試験の結果。The result of the oxidation-reduction reaction repetition test using the sample of Example 1. 各種酸素キャリア材料についての750〜950℃の反応温度域における段階1の反応完結時間。Stage 1 reaction completion time in the reaction temperature range of 750-950 ° C. for various oxygen carrier materials. 各種酸素キャリア材料についての900℃での反応完結時間の比較。Comparison of reaction completion time at 900 ° C. for various oxygen carrier materials. 各種酸素キャリア材料についての750〜950℃において100秒反応させた時の格子酸素利用率。Lattice oxygen utilization rate when reacted at 750 to 950 ° C. for 100 seconds for various oxygen carrier materials. 各種酸素キャリア材料についての900℃で100秒反応させた時の格子酸素利用率の比較。Comparison of lattice oxygen utilization rates when various oxygen carrier materials are reacted at 900 ° C. for 100 seconds.

本発明は、特定の酸化物イオン伝導体を含む酸素キャリア材料に関し、当該酸素キャリア材料は特にケミカルループ法の触媒として好適に使用される。   The present invention relates to an oxygen carrier material containing a specific oxide ion conductor, and the oxygen carrier material is particularly suitably used as a catalyst for a chemical loop method.

本発明の酸素キャリア材料は、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体を含む。
、ABO、ABOは、夫々、ブラウンミラライト型、ペロブスカイト型、スピネル型の構造を有する酸化物イオン伝導体である。本発明においては、好ましくは、Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。
The oxygen carrier material of the present invention includes at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3 or ABO 4 .
A 2 B 2 O 5 , ABO 3 , and ABO 4 are oxide ion conductors having a brown mirrorite type, a perovskite type, and a spinel type structure, respectively. In the present invention, preferably, A represents Ca, Ba, Sr, or Mg, and B represents Fe, Cu, or Mn.

本発明の一つの態様は、酸素キャリア材料が、酸素キャリア及び担体を含み、担体が、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体である。ここで、Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。 In one embodiment of the present invention, the oxygen carrier material includes an oxygen carrier and a carrier, and the carrier is at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3, or ABO 4. . Here, A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn.

本発明においては、酸素キャリアとして、ケミカルループ法に使用される任意の酸素キャリアを用いることができるが、好ましくは、Fe 、NiO、CuO、CuO、Ti/Fe鉱石、及びTiOからなる群から選択される1以上の酸素キャリアが用いられる。特に好ましくは、酸素キャリアとして、Fe 又はNiOが用いられる。 In the present invention, any oxygen carrier used in the chemical loop method can be used as the oxygen carrier, but preferably Fe 2 O 3 , NiO, CuO, Cu 2 O, Ti / Fe ore, and TiO. One or more oxygen carriers selected from the group consisting of 2 are used. Particularly preferably, Fe 2 O 3 or NiO is used as the oxygen carrier.

本発明の特に好ましい実施形態において、酸素キャリア材料は、AがCaであり、BがFeである、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体からなる担体を含む。本発明においては、とりわけ、担体として、CaFeを用いるのが特に好ましい。 In a particularly preferred embodiment of the invention, the oxygen carrier material is at least one oxide ion conducting material selected from A 2 B 2 O 5 , ABO 3 or ABO 4 wherein A is Ca and B is Fe. Includes a body carrier. In the present invention, it is particularly preferable to use Ca 2 Fe 2 O 5 as the carrier.

本発明においては、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体におけるBサイトは、他の金属イオンでドープされていてもよい。ドープする金属イオンとしては、Ti、Al、Mn等があげられる。ドープする方法としては、公知の方法(例えば、合金法、拡散法、イオン注入法)を使用することができる。 In the present invention, the B site in at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3, or ABO 4 may be doped with other metal ions. Examples of metal ions to be doped include Ti, Al, and Mn. As a method for doping, a known method (for example, an alloy method, a diffusion method, or an ion implantation method) can be used.

本発明の酸素キャリア材料には、製法の過程において、酸素キャリアと担体以外に、多孔剤やバインダー等を含有させることができる。多孔剤としては、グラファイト、活性炭等、バインダーとしては、エチルセルロース、テレピネオール等を用いることができる。   The oxygen carrier material of the present invention can contain a porous agent, a binder and the like in addition to the oxygen carrier and the carrier in the course of the production method. As the porous agent, graphite, activated carbon or the like can be used, and as the binder, ethyl cellulose, terpineol or the like can be used.

本発明の酸化物イオン伝導体の製法として、例えば、以下の固相法で合成することができる。例えば、CaFeの場合、CaOとFeを化学両論比で混合し、例えば、600〜800℃で2〜5時間で仮焼成を行い、その後、例えば、900〜1100℃で2〜10時間の条件で本焼成を行なうことで調製することができる。 As a manufacturing method of the oxide ion conductor of this invention, it is compoundable with the following solid-phase methods, for example. For example, in the case of Ca 2 Fe 2 O 5 , CaO and Fe 2 O 3 are mixed at a stoichiometric ratio, for example, calcined at 600 to 800 ° C. for 2 to 5 hours, and thereafter, for example, 900 to 1100 ° C. It can prepare by performing this baking on the conditions for 2 to 10 hours.

本発明の酸素キャリア及び担体を含む酸素キャリア材料は、例えば、以下の含浸法で調製することができる。酸素キャリアと担体である酸化物イオン伝導体を、酸素キャリアの重量分率が、例えば5%〜40%の割合になるように所定量混合し、所定時間ボールミルで粉砕・混合し、乾燥、例えば、600〜800℃で2〜5時間で仮焼成を行い、その後、例えば、900〜1100℃で2〜10時間の条件で本焼成を行い調製することができる(酸素キャリア/担体複合試料粉末)。   The oxygen carrier material of the present invention and the oxygen carrier material containing the carrier can be prepared, for example, by the following impregnation method. Oxygen carrier and oxide ion conductor as a carrier are mixed in a predetermined amount so that the weight fraction of oxygen carrier is, for example, 5% to 40%, pulverized and mixed in a ball mill for a predetermined time, and dried. Can be prepared by calcining at 600 to 800 ° C. for 2 to 5 hours, followed by main firing at 900 to 1100 ° C. for 2 to 10 hours (oxygen carrier / carrier composite sample powder). .

本発明のもう一つ別の態様は、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体からなる酸素キャリアを含む酸素キャリア材料である。ここで、Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。
前記の通り、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体は、酸素キャリア材料の担体としての機能を有するが、これら酸化物イオン伝導体は、還元反応においてそれ自体が還元されることが見出された。従って、当該酸化物イオン伝導体は、単独でも酸素キャリアとしての機能を有するものである。更に、上記酸化物イオン伝導体は、一旦還元された場合でも、酸化反応過程において元の酸化物イオン伝導体に再生することができる。
Another aspect of the present invention is an oxygen carrier material comprising an oxygen carrier comprising at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3 or ABO 4 . Here, A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn.
As described above, at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3 or ABO 4 has a function as a carrier of an oxygen carrier material. It has been found that the reduction reaction itself is reduced. Therefore, the oxide ion conductor alone has a function as an oxygen carrier. Furthermore, even if the oxide ion conductor is once reduced, it can be regenerated to the original oxide ion conductor in the oxidation reaction process.

本発明のもう一つ別の態様において、A、ABO又はABOから選択される少なくとも1以上の酸化物イオン伝導体を酸素キャリアとして使用する場合には、別の担体を用いても用いなくてもよい。別の担体を用いる場合には、例えば、アルミナ(Al)等を使用することができる。 In another embodiment of the present invention, when at least one oxide ion conductor selected from A 2 B 2 O 5 , ABO 3 or ABO 4 is used as an oxygen carrier, another carrier is used. It may or may not be used. When another carrier is used, for example, alumina (Al 2 O 3 ) or the like can be used.

上記本発明のもう一つ別の態様においても、前記と同様に、製法の過程において、酸素キャリアと担体以外に、多孔剤やバインダー等を含有させることができる。   In another embodiment of the present invention as described above, a porous agent, a binder, and the like can be contained in addition to the oxygen carrier and the carrier in the course of the production method.

本発明の酸素キャリア材料、即ち、(1)A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体である担体及び酸素キャリアを含む酸素キャリア材料、(2)A、ABO又はABO(A、Bは上記の通り。)から選択される少なくとも1以上の酸化物イオン伝導体である酸素キャリア及び場合により担体を含む酸素キャリア材料は、何れもケミカルループ法に好適に使用することができる。 The oxygen carrier material of the present invention, that is, (1) A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn). (2) A 2 B 2 O 5 , ABO 3, or ABO 4 (A and B are as described above). Any oxygen carrier which is at least one oxide ion conductor selected from the above and optionally an oxygen carrier material containing a carrier can be suitably used in the chemical loop method.

本発明のもう一つの態様は、本発明の酸素キャリア材料を使用したケミカルループ法に関わる。   Another aspect of the invention relates to a chemical loop process using the oxygen carrier material of the invention.

ケミカルループ法とは、金属粒子を酸化する酸化反応系と金属酸化物を還元する還元反応系との間で金属粒子および金属酸化物を循環させることで熱あるいは水素を得るケミカルループ燃焼あるいはケミカルループ改質を実施するためのシステムである。従って、本発明の好ましい一つの実施形態は、酸素キャリア材料を酸化する酸化反応系と酸素キャリア材料を還元する還元反応系との間で酸素キャリア材料を循環させることで熱を得るケミカルループ燃焼を実施するためのシステムであって、酸素キャリア材料が、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む、ケミカルループ燃焼システムである。
本発明のケミカルループ燃焼システムおよびケミカルループ改質システムでは、酸化反応系を司る酸化反応系装置と還元反応系を司る還元反応系装置とがそれぞれ独立した施設として設置されている。また、両装置間での金属粒子および金属酸化物の移送を行う移送系装置をさらに備えていてもよい。
The chemical loop method is a chemical loop combustion or chemical loop that obtains heat or hydrogen by circulating metal particles and metal oxide between an oxidation reaction system that oxidizes metal particles and a reduction reaction system that reduces metal oxides. It is a system for carrying out reforming. Accordingly, one preferred embodiment of the present invention provides chemical loop combustion in which heat is obtained by circulating the oxygen carrier material between an oxidation reaction system that oxidizes the oxygen carrier material and a reduction reaction system that reduces the oxygen carrier material. A system for carrying out, wherein the oxygen carrier material is A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn. A chemical loop combustion system comprising at least one oxide ion conductor selected from:
In the chemical loop combustion system and the chemical loop reforming system of the present invention, the oxidation reaction system device that controls the oxidation reaction system and the reduction reaction system device that controls the reduction reaction system are installed as independent facilities. Moreover, you may further provide the transfer system apparatus which transfers the metal particle and metal oxide between both apparatuses.

ケミカルループ燃焼では、還元反応系装置に燃料が供給されて還元反応により排ガス成分の二酸化炭素と水が排出される。本発明のケミカルループ法(ケミカルループ燃焼システムおよびケミカルループ改質システム)においては、燃料として、メタンなどの炭化水素、石油、固体燃料、液体燃料、バイオマス等を使用することができる。   In chemical loop combustion, fuel is supplied to a reduction reaction system device, and carbon dioxide and water as exhaust gas components are discharged by a reduction reaction. In the chemical loop method (chemical loop combustion system and chemical loop reforming system) of the present invention, hydrocarbons such as methane, petroleum, solid fuel, liquid fuel, biomass and the like can be used as fuel.

以下、実施例により本発明を更に具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.

1.合成実施例(酸素キャリア材料の合成)
担体として格子酸素欠陥を持つ酸化物イオン伝導体CaFe(CFO)とCe0.9Gd0.12−δ(GDC)を用いた。また、比較例として、一般的に担体として利用されているα−Alを用いた。
CFOは、次の手順で固相法により合成した。CaOとFeを化学両論比で混合し、15時間ボールミルで粉砕・混合し、乾燥後、メノウ乳鉢で30分間粉砕した。次に、仮焼成(800℃、2時間)し、更にメノウ乳鉢で粉砕混合してから、本焼成(1000℃、5時間)を行なうことでCFOを得た。また、α−AlとGDCは、それぞれ関東化学、第一稀元素株式会社から購入したものを用いた。
次に、Fe/担体複合試料を以下の手順で含浸法により調製した。各担体と30重量%のFeを混合し、15時間ボールミルで粉砕・混合し、乾燥後、メノウ乳鉢で30分間粉砕した後、仮焼成(800℃、2時間)した。仮焼成した試料に、グラファイト(多孔剤)を、Fe/担体複合試料とグラファイト(多孔剤)が所定の体積割合(多孔度 = 0.4)になるように添加し、さらにエチルセルロース(バインダー)を所定の重量割合(1wt%)で混合し、錠剤成型した(10mmφ、3t/cm)。その後、焼成(1100℃、3時間)の工程を経て、Fe/担体複合試料(酸素キャリア材料)を得た。
以下、担体として、CFOを用いて得られたFe/担体複合試料を実施例1と、GDCを用いて得られた複合試料を参考例1と、α−Alを用いて得られた複合試料を比較例1とする。
1. Example of synthesis (synthesis of oxygen carrier material)
The oxide ion conductors Ca 2 Fe 2 O 5 (CFO) and Ce 0.9 Gd 0.1 O 2 -δ (GDC) having lattice oxygen defects were used as carriers. As a comparative example, α-Al 2 O 3 generally used as a carrier was used.
CFO was synthesized by the solid phase method according to the following procedure. CaO and Fe 2 O 3 were mixed at a stoichiometric ratio, pulverized and mixed in a ball mill for 15 hours, dried, and then pulverized in an agate mortar for 30 minutes. Next, after pre-baking (800 ° C., 2 hours) and further pulverizing and mixing in an agate mortar, CFO was obtained by performing main baking (1000 ° C., 5 hours). Further, α-Al 2 O 3 and GDC used were purchased from Kanto Chemical Co., Ltd. and Daiichi Rare Element Co., Ltd.
Next, an Fe 2 O 3 / support composite sample was prepared by an impregnation method according to the following procedure. Each carrier and 30% by weight of Fe 2 O 3 were mixed, pulverized and mixed with a ball mill for 15 hours, dried, pulverized with an agate mortar for 30 minutes, and then calcined (800 ° C., 2 hours). To the calcined sample, graphite (porous agent) is added so that the Fe 2 O 3 / support composite sample and graphite (porous agent) have a predetermined volume ratio (porosity = 0.4), and ethyl cellulose (binder) Were mixed at a predetermined weight ratio (1 wt%) and molded into tablets (10 mmφ, 3 t / cm 2 ). Thereafter, firing (1100 ° C., 3 hours) through the steps to obtain Fe 2 O 3 / carrier complex samples (oxygen carrier material).
Hereinafter, the Fe 2 O 3 / support composite sample obtained using CFO as the support was used in Example 1, the composite sample obtained using GDC was used as Reference Example 1, and α-Al 2 O 3 was used. The obtained composite sample is referred to as Comparative Example 1.

2.酸素キャリア材料の同定
1で得られた試料の同定をX線回折(XRD)及びSEMにより行なった。XRDは、SmartLab(Rigaku社製)を使用し、SEMは、JSK5600(JEOL社製)を使用した。
担体としてCFOを用いて得られた複合試料のXRDの測定結果を図2に示す。図2から、CFOに特有なピークを確認することができる。
また、担体として、CFO、GDC、α−Alを用いて得られた複合試料のSEM観察結果と平均粒子径を図3に示す。なお、平均粒子径は、SEM観測により求めた。
2. Identification of the oxygen carrier material was performed by X-ray diffraction (XRD) and SEM. SmartLab (manufactured by Rigaku) was used for XRD, and JSK5600 (manufactured by JEOL) was used for SEM.
The XRD measurement results of the composite sample obtained using CFO as the carrier are shown in FIG. From FIG. 2, a peak peculiar to CFO can be confirmed.
Moreover, the SEM observation result and average particle diameter of the composite sample obtained using CFO, GDC, and α-Al 2 O 3 as the carrier are shown in FIG. The average particle diameter was determined by SEM observation.

3.水素還元反応の特性評価
各酸素キャリア/担体複合試料に対して、3%H(無加湿)による昇温還元TG測定から得られたTG曲線を比較した結果を図4に示す。比較例1、実施例1、参考例1の各試料において、夫々、600℃、550℃、350℃付加からの大きな重量減少が確認された。この重量減少は、Feの水素還元により、Fe中の格子酸素の引き抜きによるものである。また、30重量%担持された全てのFeがFeまで完全還元された場合の理論重量減少量は0.090であり、参考例1と比較例1の試料の実験結果とほぼ一致した。一方、実施例1(30重量%Fe/CFO)については他の2つの試料とは異なる水素還元挙動を示し、重量減少量が最大で0.22と著しく大きな値を示した。この結果は、Feの還元と共に担体として用いたCFO自体も還元され、分解していることを示している。
次に、還元後の試料についてXRD測定から試料成分を同定したところ、CFOは検出されず、原料物質(Fe、CaO)のみが検出され、水素還元反応におけるCFOの分解が確認された(図5の中段のスペクトルを参照)。また、実施例1の重量減少からも、30重量%Fe/CFO中の鉄由来の格子酸素の全量が引き抜かれた際の重量減少は0.22であることから、鉄からの選択的な酸素の引き抜きが行なわれたことが示される。
更に、還元後の実施例1の試料を空気中で酸化したところ、CFOのピークが再び検出され(図5の下段のスペクトルを参照)、ケミカルループ法における酸化還元サイクルにおいてCFOは分解と再生を繰り返すことが示唆される。
3. Characteristic Evaluation of Hydrogen Reduction Reaction FIG. 4 shows a result of comparing TG curves obtained from temperature-reduction TG measurement with 3% H 2 (no humidification) for each oxygen carrier / carrier composite sample. In each sample of Comparative Example 1, Example 1, and Reference Example 1, large weight reductions were confirmed after addition of 600 ° C., 550 ° C., and 350 ° C., respectively. The weight loss by hydrogen reduction of Fe 2 O 3, is due to the withdrawal of the lattice oxygen in the Fe 2 O 3. Further, the theoretical weight reduction when all of the Fe 2 O 3 supported by 30% by weight was completely reduced to Fe was 0.090, which almost coincided with the experimental results of the samples of Reference Example 1 and Comparative Example 1. . On the other hand, Example 1 (30 wt% Fe 2 O 3 / CFO) showed a hydrogen reduction behavior different from the other two samples, and the weight loss amount was a maximum value of 0.22, which was a maximum. This result shows that the CFO itself used as the carrier is reduced and decomposed together with the reduction of Fe 2 O 3 .
Next, when the sample components were identified from the XRD measurement for the reduced sample, CFO was not detected, only the raw material (Fe, CaO) was detected, and the decomposition of CFO in the hydrogen reduction reaction was confirmed (FIG. 5). (See the middle spectrum.) Further, from the weight reduction of Example 1, the weight reduction when the total amount of lattice oxygen derived from iron in 30 wt% Fe 2 O 3 / CFO was withdrawn was 0.22, so selection from iron It is shown that a typical oxygen withdrawal has occurred.
Furthermore, when the sample of Example 1 after reduction was oxidized in air, the CFO peak was detected again (see the lower spectrum in FIG. 5), and CFO decomposed and regenerated in the redox cycle in the chemical loop method. It is suggested to repeat.

4.メタン還元反応の特性評価
4−1.昇温還元実験による評価
熱重量分析法により、加湿CHを用いた還元反応実験における各酸素キャリア材料試料の重量変化を測定した。測定装置は、図6に示す熱重量・示差熱同時分析装置(TG−DTA)を用いた。
反応器(reactor)内の試料台の上に、実施例1、参考例1、比較例1の各酸素キャリア/担体複合試料を15〜20mg装填した。メタン/HO/空気=1:2:17(5%CH、S/C=2)の燃料を流速200sccmで供給して、室温〜1000℃にかけて2〜20℃/分の間で昇温速度を変化させて測定を行なった。10℃/分で行なった結果を図7に示す。
図7から、重量減少は、比較例1では950℃付近、実施例1では820℃付近、GDCでは720℃付近から始まっていることが確認され、それぞれの還元開始温度が求められた。図8に各試料での還元開始温度を比較した結果を示す。
また、この温度域では、CFOとGDCを担体として用いると、重量減少が多段階で進行していることが確認された。段階1及び2の反応は、夫々、以下の式(1)、(2)に相当すると考えられる。

Figure 0006048951
なお、上記実験の温度域においては式(3)の挙動は観察されなかったが、還元反応温度を上げることでFeまで完全に還元されると考えられる。 4). Characterization of methane reduction reaction
4-1. The change in weight of each oxygen carrier material sample in a reduction reaction experiment using humidified CH 4 was measured by an evaluation thermogravimetric analysis method based on a temperature reduction experiment . As a measuring device, a thermogravimetric / differential thermal simultaneous analyzer (TG-DTA) shown in FIG. 6 was used.
15-20 mg of each oxygen carrier / carrier composite sample of Example 1, Reference Example 1, and Comparative Example 1 was loaded on a sample stage in a reactor. Methane / H 2 O / air = 1: 2: 17 (5% CH 4 , S / C = 2) was supplied at a flow rate of 200 sccm, and the temperature increased from 2 to 20 ° C./min from room temperature to 1000 ° C. Measurements were performed while changing the temperature rate. Results obtained at 10 ° C./min are shown in FIG.
From FIG. 7, it was confirmed that the weight reduction started from around 950 ° C. in Comparative Example 1, around 820 ° C. in Example 1, and around 720 ° C. in GDC, and the respective reduction start temperatures were obtained. FIG. 8 shows the result of comparing the reduction start temperatures of the respective samples.
Further, in this temperature range, it was confirmed that weight loss proceeded in multiple stages when CFO and GDC were used as carriers. The reactions in stages 1 and 2 are considered to correspond to the following formulas (1) and (2), respectively.
Figure 0006048951
In addition, although the behavior of Formula (3) was not observed in the temperature range of the said experiment, it is thought that it reduces to Fe completely by raising reduction reaction temperature.

4−2.メタン還元反応の温度依存性の評価
750〜950℃の温度域において、メタン/HO/空気=10:20:170(5%CH、10%HO一定)の濃度の燃料を流速200sccmで供給して、定温での還元反応TGを測定した。図9に、900℃での5%CH(10%HO)による還元反応の結果を示す。
ここで、縦軸のX(転化率)は、上記式(1)〜(3)の各段階の転化率の和、即ち、X=X+X+Xで定義され、以下の式(4)で表される。

Figure 0006048951
m:重量(mg)、mred:完全還元状態(Fe)での重量(mg)
oxi:完全酸化状態(Fe)での重量(mg) 4-2. Evaluation of temperature dependency of methane reduction reaction In a temperature range of 750 to 950 ° C., a flow rate of fuel having a concentration of methane / H 2 O / air = 10: 20: 170 (5% CH 4 , 10% H 2 O constant) The reduction reaction TG at a constant temperature was measured by supplying at 200 sccm. FIG. 9 shows the results of the reduction reaction with 5% CH 4 (10% H 2 O) at 900 ° C.
Here, X (conversion rate) on the vertical axis is defined by the sum of the conversion rates at the respective stages of the above formulas (1) to (3), that is, X = X 1 + X 2 + X 3. ).
Figure 0006048951
m: weight (mg), m red : weight in a completely reduced state (Fe) (mg)
m oxi : Weight in fully oxidized state (Fe 2 O 3 ) (mg)

図9における反応初期の傾きから、Feの還元反応速度は、実施例1が比較例1より顕著に大きいことが分かる。また、転化率についても、実施例1が比較例1より向上していること分かる。このことから、本発明の酸素キャリア材料を使用することにより、格子酸素利用率が向上することが示される。
また、各試料について、750℃、800℃、850℃、900℃、950℃の定温で還元反応TGを測定した結果を図10に示す。
From the initial reaction slope in FIG. 9, it can be seen that the reduction reaction rate of Fe 2 O 3 is significantly higher in Example 1 than in Comparative Example 1. Moreover, also about the conversion rate, it turns out that Example 1 is improving rather than the comparative example 1. FIG. This indicates that the lattice oxygen utilization rate is improved by using the oxygen carrier material of the present invention.
Moreover, about each sample, the result of having measured reduction reaction TG at the constant temperature of 750 degreeC, 800 degreeC, 850 degreeC, 900 degreeC, and 950 degreeC is shown in FIG.

4−3.繰り返し還元反応挙動の評価
900℃で定温還元反応(雰囲気:加湿5%CH/空気(SC=2))を行い、その後に、900℃で定温酸化反応(空気中雰囲気)を行なう繰り返し酸化還元反応の試験を行った。実施例1の試料を用いて、5回の繰り返し試験を行った結果を図11に示す。同図から、5回の繰り返し酸化還元反応後においても反応速度は概ね変化がないことが示される。
4-3. Evaluation of repeated reduction reaction behavior Constant temperature reduction reaction (atmosphere: humidified 5% CH 4 / air (SC = 2)) at 900 ° C., followed by repeated oxidation reduction (atmosphere in air) at 900 ° C. The reaction was tested. FIG. 11 shows the results of repeated tests using the sample of Example 1 five times. From the figure, it is shown that the reaction rate is almost unchanged even after 5 repeated redox reactions.

5.メタン還元反応速度解析
(1)未反応核モデルによる解析
上記で得られた750〜950℃の温度域での定温還元反応の測定結果を用いて、未反応核モデル(Shrinking core model、式(5)〜(7))より反応速度定数及び活性化エネルギーを算出した。得られた結果を表1に示す。

Figure 0006048951
5. Methane reduction reaction rate analysis (1) Analysis by unreacted nucleus model Using the measurement results of the constant temperature reduction reaction in the temperature range of 750 to 950 ° C. obtained above, the unreacted nucleus model (Shrinking core model, equation (5) ) To (7)), the reaction rate constant and the activation energy were calculated. The obtained results are shown in Table 1.
Figure 0006048951

Figure 0006048951
Figure 0006048951

(2)段階1の反応完結時間の比較
表1で得られたデータを用いて、750〜950℃の反応温度域における、段階1の反応完結時間を求めた。その結果を図12−1に示す。また、900℃における各試料の反応完結時間の比較を図12−2に示す。
図12−1から、実施例1は比較例1に対し、反応完結時間が顕著に短縮されていることが分かる。特に、図12−2に示すように、900℃において、比較例1の反応完結時間が687秒に対し、実施例1では53秒と大幅に短縮されている。
(2) Comparison of Stage 1 Reaction Completion Time Using the data obtained in Table 1, the stage 1 reaction completion time in the reaction temperature range of 750 to 950 ° C. was determined. The result is shown in FIG. Moreover, the comparison of the reaction completion time of each sample at 900 ° C. is shown in FIG.
From FIG. 12-1, it can be seen that Example 1 has a significantly shorter reaction completion time than Comparative Example 1. In particular, as shown in FIG. 12-2, at 900 ° C., the reaction completion time of Comparative Example 1 is significantly shortened to 53 seconds in Example 1 compared to 687 seconds.

(3)格子酸素利用率の比較
次に、表1で得られたデータを用いて、750〜950℃の反応温度域における、100秒反応させた時の格子酸素利用率を求めた。その結果を図13−1に示す。また、各試料についての900℃で100秒反応させた時の格子酸素利用率の比較を図13−2に示す。
図13−1から、実施例1は比較例1に対し、100秒反応させた時の格子酸素利用率も顕著に向上していることが分かる。特に、図13−2に示すように、900℃で100秒反応させた時の格子酸素利用率は、比較例1では0.03に対し、実施例1では0.18と格段に向上している。
(3) Comparison of Lattice Oxygen Utilization Rate Next, using the data obtained in Table 1, the lattice oxygen utilization rate when the reaction was performed for 100 seconds in the reaction temperature range of 750 to 950 ° C. was obtained. The result is shown in FIG. Further, FIG. 13-2 shows a comparison of lattice oxygen utilization rates when the samples are reacted at 900 ° C. for 100 seconds.
From FIG. 13-1, it turns out that the lattice oxygen utilization rate when Example 1 is made to react with respect to the comparative example 1 for 100 second remarkably improves. In particular, as shown in FIG. 13-2, the lattice oxygen utilization rate when reacted at 900 ° C. for 100 seconds was significantly improved to 0.08 in Comparative Example 1 and 0.18 in Example 1. Yes.

上記の実施例で示したように、本発明の酸素キャリア材料を用いると、担体としてAlを用いた従来の酸素キャリア材料に比べて、還元反応開始温度を低くできるとともに、反応完結時間を大幅に短縮し、格子酸素利用率を格段に高めることができる。また、材料のコスト面でみると、比較例1の酸素キャリア材料が960〜1200(円/1mol)であり、参考例1では330〜390(円/1mol)であるのに対し、実施例1の酸素キャリア材料では30〜35(円/1mol)と格段に廉価で調製できる。
このように、本発明の酸素キャリア材料は、従来技術に対して、低コストで、かつ還元活性を大幅に高めることができることから、ケミカルループ法の実用化に向けて大きく寄与できるものである。
更に、本発明の酸化物イオン伝導体を用いると、それ自体が酸素キャリアの機能を有し、更に、ケミカルループ法における酸化還元サイクルにおいてCFOは分解と再生を繰り返すことができる。従って、本発明の酸化物イオン伝導体単独でも酸素キャリア材料を構成することが可能である。
As shown in the above examples, when the oxygen carrier material of the present invention is used, the reduction reaction start temperature can be lowered and the reaction completion time can be reduced as compared with the conventional oxygen carrier material using Al 2 O 3 as a carrier. Can be greatly shortened, and the lattice oxygen utilization rate can be significantly increased. In terms of the cost of the material, the oxygen carrier material of Comparative Example 1 is 960 to 1200 (yen / 1 mol), and in Reference Example 1, it is 330 to 390 (yen / 1 mol). This oxygen carrier material can be prepared at a very low price of 30 to 35 (yen / 1 mol).
As described above, the oxygen carrier material of the present invention can greatly contribute to the practical use of the chemical loop method because the reduction activity can be greatly increased at a lower cost than the conventional technology.
Furthermore, when the oxide ion conductor of the present invention is used, the oxide ion conductor itself has a function of an oxygen carrier, and CFO can be repeatedly decomposed and regenerated in a redox cycle in the chemical loop method. Therefore, it is possible to constitute an oxygen carrier material with the oxide ion conductor of the present invention alone.

Claims (5)

酸素キャリア及び担体を含み、前記担体が、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体であり、前記酸素キャリアが、Fe 、NiO、CuO、Cu O、Ti/Fe鉱石、及びTiO からなる群から選択される1以上であるケミカルループ法に使用される酸素キャリア材料。 Includes oxygen carriers and carrier, wherein said carrier, A 2 B 2 O 5, ABO 3 or ABO 4 (A represents Ca, Ba, Sr, or Mg, B is, Fe, represents. Cu or Mn) from Ri least one or more oxide ion conductor der selected, 1 wherein the oxygen carrier, Fe 2 O 3, NiO, selected CuO, Cu 2 O, Ti / Fe ore, and from the group consisting of TiO 2 This is the oxygen carrier material used in the chemical loop method . AがCaであり、BがFeである、請求項に記載の酸素キャリア材料。 A is Ca, B is Fe, the oxygen carrier material according to claim 1. 前記酸化物イオン伝導体におけるBサイトが他の金属イオンでドープされている、請求項1又は2に記載の酸素キャリア材料。 The oxygen carrier material according to claim 1 or 2 , wherein a B site in the oxide ion conductor is doped with another metal ion. 酸素キャリア及び担体を含む酸素キャリア材料を用いることを特徴とするケミカルループ法であって、前記担体が、、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む酸素キャリア材料であり、前記酸素キャリアが、Fe 、NiO、CuO、Cu O、Ti/Fe鉱石、及びTiO からなる群から選択される1以上である、ケミカルループ法。 A chemical loop method using an oxygen carrier material including an oxygen carrier and a carrier, wherein the carrier is A 2 B 2 O 5 , ABO 3 or ABO 4 (A is Ca, Ba, Sr or Mg). And B represents Fe, Cu, or Mn.) Is an oxygen carrier material containing at least one oxide ion conductor selected from the group consisting of Fe 2 O 3 , NiO, CuO, A chemical loop method which is one or more selected from the group consisting of Cu 2 O, Ti / Fe ore, and TiO 2 . 酸素キャリア材料を酸化する酸化反応系と酸素キャリア材料を還元する還元反応系との間で酸素キャリア材料を循環させることで熱あるいは水素と同時に二酸化炭素や窒素を得るケミカルループ燃焼あるいはケミカルループ改質を実施するためのシステムであって、酸素キャリア材料が、A、ABO又はABO(Aは、Ca、Ba、Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む、前記ケミカルループ燃焼あるいはケミカルループ改質を実施するためのシステム。 Chemical loop combustion or chemical loop reforming that obtains carbon dioxide and nitrogen simultaneously with heat or hydrogen by circulating oxygen carrier material between an oxidation reaction system that oxidizes oxygen carrier material and a reduction reaction system that reduces oxygen carrier material The oxygen carrier material is A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn. A system for performing said chemical loop combustion or chemical loop reforming , comprising at least one oxide ion conductor selected from:
JP2012170908A 2012-08-01 2012-08-01 Highly active oxygen carrier material in chemical loop process Active JP6048951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170908A JP6048951B2 (en) 2012-08-01 2012-08-01 Highly active oxygen carrier material in chemical loop process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170908A JP6048951B2 (en) 2012-08-01 2012-08-01 Highly active oxygen carrier material in chemical loop process

Publications (2)

Publication Number Publication Date
JP2014031282A JP2014031282A (en) 2014-02-20
JP6048951B2 true JP6048951B2 (en) 2016-12-21

Family

ID=50281430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170908A Active JP6048951B2 (en) 2012-08-01 2012-08-01 Highly active oxygen carrier material in chemical loop process

Country Status (1)

Country Link
JP (1) JP6048951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375644B2 (en) 1991-04-08 2003-02-10 株式会社日立製作所 Processing execution method and valve remote operation method
KR102595475B1 (en) * 2021-08-17 2023-10-31 한국전력공사 Water splitting material, composition for water splitting material and manufacturing method for water splitting material using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326982B2 (en) * 2013-06-21 2018-05-23 東京瓦斯株式会社 Chemical loop combustion method and oxygen carrier
JP6390333B2 (en) * 2014-10-15 2018-09-19 株式会社Ihi Chemical loop combustion equipment
JP6204547B1 (en) * 2016-08-01 2017-09-27 国立大学法人 東京大学 Method for producing highly active oxygen carrier material
JPWO2020175426A1 (en) * 2019-02-27 2021-09-30 国立大学法人東北大学 Hydrocarbon low temperature reforming system, and method for producing hydrogen and / or syngas at low temperature
EP4334019A4 (en) * 2021-05-07 2025-03-12 Baker Hughes Oilfield Operations, LLC Methane and carbon dioxide reduction with integrated direct air capture systems
KR102768984B1 (en) * 2021-12-29 2025-02-20 한국전력공사 A composition for oxygen carrier material, oxygen carrier using the same and manufacturing method thereof
KR102719862B1 (en) * 2022-08-31 2024-10-22 한국전력공사 A composition for oxygen carrier material, oxygen carrier using the same and manufacturing method thereof
CN116903039A (en) * 2023-07-12 2023-10-20 西北大学 A kind of low-quality blue carbon tail gas and closed calcium carbide furnace gas chemical chain hydrogen production oxygen carrier and its preparation method and application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281061B2 (en) * 2004-04-15 2009-06-17 独立行政法人産業技術総合研究所 Active oxygen storage material and method for producing the same
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
FR2889248B1 (en) * 2005-07-29 2007-09-07 Inst Francais Du Petrole NOVEL OXYDO-REDUCTIVE ACTIVE MASS FOR A LOOP OXYDO-REDUCTION PROCESS
JP4859701B2 (en) * 2007-02-22 2012-01-25 関西電力株式会社 Hydrogen-containing gas production equipment
JP5105544B2 (en) * 2008-07-31 2012-12-26 日産自動車株式会社 Steam reforming catalyst
FR2945034B1 (en) * 2009-04-29 2012-06-08 Inst Francais Du Petrole INTEGRATED METHOD OF GENERATING ENERGY AND / OR SYNTHESIS GAS BY IN SITU OXYGEN PRODUCTION, CHEMICAL LOOP COMBUSTION AND GASIFICATION
JP2011224488A (en) * 2010-04-21 2011-11-10 Kobe Steel Ltd Catalyst for accelerating gasification reaction of solid carbonaceous substance
JP5720558B2 (en) * 2011-12-15 2015-05-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5972678B2 (en) * 2012-06-14 2016-08-17 三菱化学株式会社 Synthesis gas production catalyst and synthesis gas production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375644B2 (en) 1991-04-08 2003-02-10 株式会社日立製作所 Processing execution method and valve remote operation method
KR102595475B1 (en) * 2021-08-17 2023-10-31 한국전력공사 Water splitting material, composition for water splitting material and manufacturing method for water splitting material using the same

Also Published As

Publication number Publication date
JP2014031282A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP6048951B2 (en) Highly active oxygen carrier material in chemical loop process
Galinsky et al. Effect of support on redox stability of iron oxide for chemical looping conversion of methane
Chen et al. Investigation of perovskite supported composite oxides for chemical looping conversion of syngas
Bell et al. Influence of synthesis route on the catalytic properties of La1− xSrxMnO3
He et al. The use of La1− xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane
Zeng et al. Iron oxides with gadolinium-doped cerium oxides as active supports for chemical looping hydrogen production
Kosaka et al. Iron oxide redox reaction with oxide ion conducting supports for hydrogen production and storage systems
Huang et al. Enhancing cathode performance for CO2 electrolysis with Ce0. 9M0. 1O2− δ (M= Fe, Co, Ni) catalysts in solid oxide electrolysis cell
US9970118B2 (en) Method for preparing fuel electrode of solid oxide electrolysis cells embedded with bimetallic catalyst
Fornasiero et al. Laser-excited luminescence of trivalent lanthanide impurities and local structure in CeO2− ZrO2 mixed oxides
Bian et al. An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2
JP2007039327A (en) A novel solid redox active material for chemical looping combustion
Vecino‐Mantilla et al. Nickel exsolution‐driven phase transformation from an n= 2 to an n= 1 Ruddlesden‐Popper manganite for methane steam reforming reaction in SOFC conditions
Ma et al. Enhanced hydrogen generation for Fe2O3/CeO2 oxygen carrier via rare-earth (Y, Sm, and La) doping in chemical looping process
Dasari et al. Hydrogen production from water-splitting reaction based on RE-doped ceria–zirconia solid-solutions
Sun et al. Effect of Ce on the structural features and catalytic properties of La (0.9− x) CexFeO3 perovskite-like catalysts for the high temperature water–gas shift reaction
Li et al. A Highly Efficient and Robust Perovskite Anode with Iron–Palladium Co‐exsolutions for Intermediate‐Temperature Solid‐Oxide Fuel Cells
Gan et al. Structural and electrochemical properties of B-site Mg-doped La0. 7Sr0. 3MnO3− δ perovskite cathodes for intermediate temperature solid oxide fuel cells
Guo et al. Impact of synthesis technique on the structure and electrochemical characteristics of Pr0. 6Sr0. 4Co0. 2Fe0. 8O3− δ (PSCF) cathode material
Oh et al. Rocking chair-like movement of ex-solved nanoparticles on the Ni-Co doped La0. 6Ca0. 4FeO3-δ oxygen carrier during chemical looping reforming coupled with CO2 splitting
Gao et al. Study on the reaction performance of Ce‐doped NiFe2O4 oxygen carriers in the process of chemical looping hydrogen production
CN102443453A (en) Composite oxide oxygen carrier for chemical chain combustion as well as preparation method and application thereof
Bu et al. New insights into intermediate-temperature solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition
CN103372436B (en) Oxygen carrier, preparation method and applications
Gao et al. Gd, La co-doped CeO2 as an active support for Fe2O3 to enhance hydrogen generation via chemical looping water gas shift

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6048951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250