[go: up one dir, main page]

JP6047467B2 - 内視鏡システム及びその作動方法 - Google Patents

内視鏡システム及びその作動方法 Download PDF

Info

Publication number
JP6047467B2
JP6047467B2 JP2013182219A JP2013182219A JP6047467B2 JP 6047467 B2 JP6047467 B2 JP 6047467B2 JP 2013182219 A JP2013182219 A JP 2013182219A JP 2013182219 A JP2013182219 A JP 2013182219A JP 6047467 B2 JP6047467 B2 JP 6047467B2
Authority
JP
Japan
Prior art keywords
image data
image
light
blur amount
blur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013182219A
Other languages
English (en)
Other versions
JP2015047402A (ja
Inventor
禎之 守屋
禎之 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013182219A priority Critical patent/JP6047467B2/ja
Publication of JP2015047402A publication Critical patent/JP2015047402A/ja
Application granted granted Critical
Publication of JP6047467B2 publication Critical patent/JP6047467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は、同時方式と面順次方式との切り替えを可能とする内視鏡システム及びその作動方法に関する。
近年の医療においては、光源装置、電子内視鏡、プロセッサ装置を備える内視鏡システムを用いた診断等が広く行われている。光源装置は、照明光を発生して検体内に照射する。電子内視鏡は、照明光が照射されて検体内を撮像素子により撮像して画像信号を生成する。プロセッサ装置は、電子内視鏡により生成された撮像信号を画像処理してモニタに表示するための観察画像を生成する。
この内視鏡システムの照明方式には、面順次(時分割)方式と同時方式とがある。面順次方式は、例えば、赤(R)、緑(G)、青(B)の色の照明光を順番に検体に照射する方式であり、各照明光で照明された検体像は、モノクロ撮像素子により個別に撮像される。同時方式は、R,G,Bの照明光を検体に同時に照射(すなわち、白色光を照射)する方式であり、白色光が照射された検体像は、カラーフィルタを有する同時式撮像素子により撮像される。
面順次方式は、同時方式に比べて色再現性及び解像度の点で優れる。これに対して、同時方式は、面順次方式に比べて、フレームレートが高いため、画像ブレが生じにくい。面順次方式の場合は、フレームレートが低いことにより画像ブレが生じ易いことに加えて、R,G,Bの各画像が異なるタイミングで取得されるため、画像ブレが起因して、R,G,Bを合成した画像に色ズレが生じてしまう。
このように、面順次方式と同時方式とは一長一短であることから、同時式撮像素子を用いるとともに、照明方式を同時方式と面順方式とで切り替え可能とした内視鏡システムが提案されている(特許文献1)。この特許文献1では、面順次方式で動画撮影を行っている間にブレ量を常時検出し、ブレ量が一定以上となった場合に同時方式に切り替えられる。
また、特許文献2では、面順次方式の内視鏡システムにおいて、動画撮影を行っている間にブレ量を常時検出し、静止画を得るフリーズ指示が入力された際に、動画像の複数枚の画像の中から、ブレ量の最も小さい画像を静止画として選択することが提案されている。
特開2009−284959号公報 特許第4847250号公報
特許文献1,2に記載の内視鏡システムは、動画撮影は面順次方式で実行されているが、内視鏡検査中に動画像を観察する場合には、検体や内視鏡に動きが生じ易いため、一般にはフレームレートが高い同時方式が適している。また、静止画を取得する場合、熟練した医師は、内視鏡の動きを抑えてブレの少ない画像を撮影する能力に長けているため、同時方式よりもむしろ色再現性のよい面順次方式が好まれる。
したがって、内視鏡システムを使用する医師の要求に応じて、面順次方式から同時方式への切り替えだけでなく、同時方式から面順次方式への切り替えも可能とし、さらにブレの少ない静止画の取得が望まれている。
本発明は、同時方式と面順次方式とが相互に切り替え可能であるとともに、ブレの少ない静止画を取得することを可能とする内視鏡システム及びその作動方法を提供することを目的とする。
上記目的を達成するために、本発明の内視鏡システムは、複数色の照明光を発生する光源装置と、色分離フィルタを有する同時式撮像素子と、同時式撮像素子から読み出した画素信号に基づいて画像データを生成する画像信号処理部と、動画をフリーズさせて静止画とするためのフリーズ指示信号の入力に応じて、複数の照明光を同時照射させる同時方式と、複数の照明光を時分割照射させる面順次方式との間で光源装置の照明方式を切り替える制御部と、照明方式の切り替え後に生成された第1画像データ群の各画像データから第1ブレ量を算出し、照明方式の切り替え前に生成された第2画像データ群の各画像データから第2ブレ量を算出するブレ量算出部と、第1及び第2ブレ量に基づいて、第1及び第2画像データ群から、静止画とする画像データを選択する静止画選択部と、を備える。静止画選択部は、第1ブレ量の最小値が基準値より小さい場合には、第1画像データ群から該最小値を有する画像データを静止画として選択し、第1ブレ量の最小値が基準値以上である場合には、第2ブレ量の最小値が基準値より小さいか否かを判定して、該最小値が基準値より小さい場合には、第2画像データ群から該最小値を有する画像データを静止画として選択し、第2ブレ量の最小値が基準値以上である場合には、第1及び第2ブレ量の最小値のうち小さい方の画像データを、第1及び第2画像データ群から選択する。
面順次方式の場合に、複数色の各照明光の照射時に得られた画像データを合成して同時化された画像データを生成する同時化処理部を備え、同時化処理部は、照明方式が同時方式から面順次方式に切り替えられ、静止画選択部により面順次方式の画像データが選択された場合に、合成する複数の画像データを、それぞれ同時方式で得られた画像データの対応する色分解画像と比較することにより位置ズレ量をそれぞれ算出し、算出した位置ズレ量に基づいて位置合わせした上で合成することが好ましい。
光源装置に、赤色光、緑色光、青色光を発生させる通常光観察モードと、光源装置に、第1及び第2狭帯域光を発生させる狭帯域光観察モードとを有することが好ましい。
狭帯域光観察モードの場合に、同時化処理部は、同時方式で生成される画像データの第1狭帯域光または第2狭帯域光に対応する1つの色分解画像を、位置合わせ後に合成する複数の画像データのうちの1つに加算することが好ましい。
狭帯域光観察モードでかつ同時方式の場合に、静止画選択部は、第1ブレ量または第2ブレ量に加えて、コントラスト幅に関連する色分離量に基づいて、静止画とする画像データを選択することが好ましい。
ブレ量算出部は、同時方式で生成される画像データに含まれる1つの色信号と、面順次方式で上記色の照明光の照射時の画像データに含まれる上記色の色信号とに基づいて、第1及び第2ブレ量を算出することが好ましい。
ブレ量算出部は、画像データ中の空間周波数の高周波成分を積算した積算値に基づいて第1及び第2ブレ量を算出することが好ましい。
ブレ量算出部は、時間的に隣接する2つの画像データ間の差分を検出することにより、第1及び第2ブレ量を算出しても良い。
ブレ量算出部は、画像データに含まれる各色信号に基づいて画像ブレ量をそれぞれ算出し、各画像ブレ量に重み付け係数を乗じて加算することにより、第1及び第2ブレ量を算出しても良い。
色分離フィルタは、補色系であることが好ましい。
静止画選択部により静止画として選択された画像データと、この画像データに特殊画像処理を施したものとを、画像表示装置に同時に表示させるデュアルモードを有することが好ましい。
ブレ量算出部は、フリーズ指示信号が入力される以前に、画像信号処理部により画像データが生成されるたびに第2ブレ量を算出しても良い。
本発明の内視鏡システムの作動方法は、光源装置が、複数色の照明光を発生する第1ステップと、画像信号処理部が、色分離フィルタを有する同時式撮像素子から読み出した画素信号に基づいて画像データを生成する第2ステップと、制御部が、動画をフリーズさせて静止画とするためのフリーズ指示信号の入力に応じて、複数色の照明光を同時照射させる同時方式と、複数色の照明光を時分割照射させる面順次方式との間で光源装置の照明方式を切り替える第3ステップと、ブレ量算出部が、照明方式の切り替え後に生成された第1画像データ群の各画像データから第1ブレ量を算出し、照明方式の切り替え前に生成された第2画像データ群の各画像データから第2ブレ量を算出する第4ステップと、静止画選択部が、第1及び第2ブレ量に基づいて、第1及び第2画像データ群から、静止画とする画像データを選択する第5ステップと、を備える。第5ステップでは、静止画選択部は、第1ブレ量の最小値が基準値より小さい場合には、第1画像データ群から該最小値を有する画像データを静止画として選択し、第1ブレ量の最小値が基準値以上である場合には、第2ブレ量の最小値が基準値より小さいか否かを判定して、該最小値が基準値より小さい場合には、第2画像データ群から該最小値を有する画像データを静止画として選択し、第2ブレ量の最小値が基準値以上である場合には、第1及び第2ブレ量の最小値のうち小さい方の画像データを、第1及び第2画像データ群から選択する。

本発明によれば、フリーズ指示信号の入力に応じて、同時方式と面順次方式との間で光源装置の照明方式を切り替え、切り替え後に生成された第1画像データ群の各画像データから第1ブレ量を算出し、切り替え前に生成された第2画像データ群の各画像データから第2ブレ量を算出し、第1及び第2ブレ量のうちの少なくとも一方に基づき、第1及び第2画像データ群から、静止画とする画像データを選択するので、ブレの少ない静止画を取得することができる。
内視鏡システムの外観図である。 内視鏡システムの内部構成を示すブロック図である。 合波部の構成を説明する図である。 補色系色分離フィルタを示す模式図である。 補色系撮像素子からの出力信号を示す図である。 通常光観察モードで同時方式の場合の光源及び補色系撮像素子の駆動タイミングを示す図である。 通常光観察モードで面順次方式の場合の光源及び補色系撮像素子の駆動タイミングを示す図である。 制御部の照明方式の入力制御に関する構成を示すブロック図である。 画像信号処理部の構成を示すブロック図である。 通常光観察モードにおけるフリーズ指示信号の受信前後の画像データを示す図であり、(A)は同時方式、(B)は面順次方式の場合を示す。 静止画選択部による静止画選択処理手順を示すフローチャートである。 通常光観察モードにおいて同時方式から面順次方式に切り替えられる場合の画像データを示す図である。 内視鏡システムの作用を示すフローチャートである。 総ブレ量の算出手順を示すフローチャートである。 通常光観察モードにおける同時化処理時の位置ズレ補正を説明する図である。 狭帯域光観察モードにおける同時化処理時の位置ズレ補正を説明する図である。 有効領域について説明する図である。 デュアルモードについて説明する図である。 光源装置内に青色狭帯域フィルタを設けた例を示すブロック図である。
図1において、内視鏡システム10は、光源装置11と、プロセッサ装置12と、光源装置11及びプロセッサ装置12に着脱自在に接続可能な電子内視鏡(以下、単に内視鏡という)13により構成されている。光源装置11は、照明光を発生して内視鏡13に供給する。内視鏡13は、先端側が検体の体腔内等に挿入されて、体腔内を撮像する。プロセッサ装置12は、内視鏡13の撮像制御を行うと共に、内視鏡13が取得した撮像信号に対して信号処理を施す。
プロセッサ装置12には、画像表示装置14及び入力装置15が接続されている。画像表示装置14は、液晶モニタ等であり、プロセッサ装置12により生成された検体内の画像を表す検体画像を表示する。入力装置15は、キーボードやマウスにより構成され、プロセッサ装置12に対して各種情報を入力する。
内視鏡13は、挿入部16と、操作部17と、ユニバーサルケーブル18と、ライトガイドコネクタ19aと、信号コネクタ19bにより構成されている。挿入部16は、細長く、検体の体腔内等に挿入される。操作部17は、挿入部16の後端に接続されており、スコープスイッチや湾曲操作ダイヤル等が設けられている。スコープスイッチには、観察モードを切り替えるためのモード切替スイッチ17aと、画像表示装置14に表示される動画像をフリーズさせて静止画表示させるためのフリーズスイッチ17bとが含まれている。
ユニバーサルケーブル18は、操作部17から延出されている。ライトガイドコネクタ19a及び信号コネクタ19bは、ユニバーサルケーブル18の端部に設けられている。ライトガイドコネクタ19aは、光源装置11に着脱自在に接続される。信号コネクタ19bは、プロセッサ装置12に着脱自在に接続される。
内視鏡システム10は、観察モードとして、通常光観察モードと狭帯域光観察モードとを有する。通常光観察モードでは、波長域が青色帯域から赤色帯域に及ぶ通常光(白色光)を検体に照射して撮像が行われ、通常画像が生成される。狭帯域光観察モードでは、波長域の狭い狭帯域光(後述する青色狭帯域光Bnと緑色狭帯域光Gn)を検体に照射して撮像が行われ、特殊画像が生成される。
通常光観察モードと狭帯域光観察モードとは、前述のモード切替スイッチ17aにより切り替え可能であるが、プロセッサ装置12に接続可能なフットスイッチ(図示せず)や、プロセッサ装置12のフロントパネルに設けられたボタン、入力装置15等により切り替え可能としても良い。
図2において、光源装置11は、複数のLED(Light Emitting Diode)光源20と、光源制御部21と、緑色狭帯域フィルタ22と、フィルタ挿脱部23と、合波部24とを有している。LED光源20は、B(Blue)−LED20aと、G(Green)−LED20bと、R(Red)−LED20cとにより構成されている。
B−LED20aは、波長範囲420〜500nmの青色光BLを発生する。G−LED20bは、波長範囲500〜600nmの緑色光GLを発生する。R−LED20cは、波長範囲600〜650nmの赤色光RLを発生する。
光源制御部21は、各LED20a〜20cの点灯制御を行う。具体的には、光源制御部21は、通常光観察モード時には、全てのLED20a〜20cを同時または順次に駆動して照明光を発生させ、狭帯域光観察モード時には、B−LED20aとG−LED20bのみを同時または順次に駆動して照明光を発生させる。
光源制御部21は、LED光源20による照明方式として、通常光観察モードと狭帯域光観察モードとそれぞれの場合に、同時方式と面順次方式とを可能としている。通常光観察モードで同時方式の場合には、全てのLED20a〜20cを同時に点灯させる。通常光観察モードで面順次方式の場合には、LED20a〜20cをそれぞれ順番に時分割点灯させる。狭帯域光観察モードで同時方式の場合には、B−LED20aとG−LED20bとを同時に点灯させる。狭帯域光観察モードで面順次方式の場合には、B−LED20aとG−LED20bとを順番に時分割点灯させる。
緑色狭帯域フィルタ22は、フィルタ挿脱部23により、G−LED20bから射出される緑色光GLの光路上に挿脱される。具体的には、緑色狭帯域フィルタ22は、狭帯域光観察モード時には緑色光GLの光路上に挿入され、通常光観察モード時には緑色光GLの光路上から外される。緑色狭帯域フィルタ22は、530〜550nmの波長域の光を透過させる。
B−LED20aから射出される青色光BLは、半値幅が50nm程度と狭いので、狭帯域光観察モード時には、青色光BLがそのまま青色狭帯域光Bnとして用いられる。これに対して、G−LED20bから射出される緑色光GLは、波長域が広いため、緑色狭帯域フィルタ22を透過させることにより、波長域を20nm程度に波長制限する。狭帯域光観察モード時には、この波長制限された緑色光GLが緑色狭帯域光Gnとて用いられる。青色狭帯域光Bnは、445nm付近に中心波長を有する。緑色狭帯域光Gnは、540nm付近に中心波長を有する。これらの中心波長は、一般に狭帯域光観察で用いられる血液中のヘモグロビンに吸収されやすい波長域に含まれる。
合波部24は、図3に示すように、第1及び第2ダイクロイックミラー(DM)25a,25bと、第1〜第4レンズ26a〜26dとによって構成されている。第1〜第3レンズ26a〜26cは、それぞれLED20a〜20cに対応して配置されており、各LED20a〜20cから射出された光を集光して平行光とする
G−LED20bとR−LED20cとは、第2及び第3レンズ26b,26cにより平行光とされた緑色光GLと赤色光RLとの光路が直交するように配置されており、この交点に第1DM25aが配置されている。第1DM25aの一方の面に緑色光GLが45°の角度で入射し、他方の面に赤色光RLが45°の角度で入射する。第1DM25aは、緑色光GLを透過させ、赤色光RLを反射させる光学特性を有する。これにより、G−LED20bとR−LED20cとの同時点灯時には、第1DM25aを透過した緑色光GLと、第1DM25aにより反射された赤色光RLとが合波される。
第1レンズ26aにより平行光とされた青色光BLと、緑色光GLと赤色光RLとの合波(以下、第1合波という)とは、光路が直交し、この交点に第2DM25bが配置されている。第2DM25bの一方の面に青色光BLが45°の角度で入射し、他方の面に第1合波が45°の角度で入射する。第2DM25bは、青色光BLを反射させ、第1合波を透過させる光学特性を有する。これにより、第2DM25bにより反射された青色光BLと、第2DM25bを透過した第1合波とが合波される。この合波された光は、第4レンズ26dにより集光されて、内視鏡13のライトガイド27に入射する。
通常光観察モードで同時方式の場合には、合波部24により、青色光BL、緑色光GL、赤色光RLが、合波されて通常光(白色光)となり、ライトガイド27に入射する。一方、通常光観察モードで面順次方式の場合には、青色光BL、緑色光GL、赤色光RLがそれぞれ個別に生成されてライトガイド27に入射する。
また、狭帯域光観察モードで同時方式の場合には、前述の緑色狭帯域フィルタ22が第2レンズ26bと第1DM25aとの間に挿入され、B−LED20aから射出された青色狭帯域光Bnと、緑色狭帯域フィルタ22により生成された緑色狭帯域光Gnとが、合波されて、ライトガイド27に入射する。狭帯域光観察モードで面順次方式の場合には、青色狭帯域光Bnと緑色狭帯域光Gnとがそれぞれ個別に生成されてライトガイド27に入射する。
内視鏡13の挿入部16の先端には、照明窓と観察窓とが隣接して設けられており、照明窓に照明レンズ25が取り付けられており、観察窓に対物レンズ26が取り付けられている。内視鏡13内には、ライトガイド27が挿通されており、ライトガイド27の一端が照明レンズ25に対向している。ライトガイド27の他端は、ライトガイドコネクタ19aに配置され、光源装置11内に挿入される。
照明レンズ25は、光源装置11からライトガイド27に供給され、ライトガイド27から射出された光を集光して検体内に照射する。対物レンズ26は、検体の生体組織等からの反射光を集光して光学像を結像する。対物レンズ26の結像位置には、光学像を撮像して撮像信号を生成する補色系撮像素子28が配置されている。この補色系撮像素子28は、CCD(Charge Coupled Device)イメージセンサである。
補色系撮像素子28の撮像面には、光学像を光学的に画素毎に色分離する補色系色分離フィルタ28aが設けられている。この補色系色分離フィルタ28aは、図4に示すように、マゼンタ(Mg)、グリーン(G)、シアン(Cy)、イエロー(Ye)の4種のカラーフィルタセグメントを有し、各カラーフィルタセグメントは画素単位で取り付けられている。したがって、補色系撮像素子28は、Mg、G、Cy、Yeの4種の画素を有し、奇数列を、Mg画素、Cy画素、Mg画素、Ye画素、・・・の順番、偶数列を、G画素、Ye画素、G画素、Cy画素、・・・の順番とするように、奇数行にMg画素とG画素とが交互に配置され、偶数行にCy画素とYe画素とが交互に配置されている。このカラーフィルタ配列は、補色市松色差線順次方式と呼ばれている。
内視鏡13には、フラッシュメモリ等の不揮発性メモリで構成された情報記憶部29が設けられている。情報記憶部29は、内視鏡13の固有情報(撮像素子のカラーフィルタ配列や画素数)等を記憶している。
プロセッサ装置12は、制御部30と、撮像制御部31と、相関二重サンプリング(CDS)回路32と、A/D変換回路33と、明るさ検波回路34と、調光回路35と、画像信号処理部36と、ブレ量算出部37と、静止画選択部38と、静止画メモリ39と、表示制御部40とを有する。
制御部30は、プロセッサ装置12内の各部と、光源装置11との制御を行う。制御部30は、光源装置11及びプロセッサ装置12に内視鏡13が接続された際に、情報記憶部29から内視鏡13の固有情報を読み取る。撮像制御部31は、読み取った固有情報に基づいて補色系撮像素子28を駆動する。
撮像制御部31は、光源装置11の発光タイミングに合わせて、補色系撮像素子28をフィールド読み出し方式で駆動する。具体的には、フィールド読み出し方式では、奇数フィールドと偶数フィールドとの各読み出し時において、列方向に隣接する2画素を2行の各画素信号が混合(加算)して読み出される(図4参照)。この画素信号の混合は、CCDイメージセンサの水平転送路(図示せず)内で行われる。
このフィールド読み出し方式より、補色系撮像素子28からは、奇数フィールドと偶数フィールドとのそれぞれにおいて、図5に示すように、Mg画素とCy画素との混合画素信号(以下、第1混合画素信号という)M1と、G画素とYe画素との混合画素信号(以下、第2混合画素信号という)M2と、Mg画素とYe画素との混合画素信号(以下、第3混合画素信号という)M3と、G画素とCy画素との混合画素信号(以下、第4混合画素信号という)M4が出力される。
通常光観察モードで同時方式の場合には、図6に示すように、青色光BL、緑色光GL、赤色光RLが同時に照射され、この照射期間中に奇数フィールド及び偶数フィールドの読み出しが行われる。読み出された奇数フィールド及び偶数フィールドにより1フレーム分の画像が生成される。
通常光観察モードで面順次方式の場合には、図7に示すように、青色光BL、緑色光GL、赤色光RLがそれぞれ順番に照射され、各照射期間中に奇数フィールド及び偶数フィールドの読み出しが行われる。読み出された奇数フィールド及び偶数フィールドにより各照射期間につき1フレーム分の画像が生成される。なお、青色光BL、緑色光GL、赤色光RLの発光順序は、この順に限られず、適宜変更して良い。
狭帯域光観察モードの場合には、照明光が青色狭帯域光Bnと緑色狭帯域光Gnとの2種類になること以外は通常光観察モードと同一である。
補色系撮像素子28から出力された信号は、CDS回路32に入力される。CDS回路32は、入力された信号に対して相関二重サンプリングを行って、CCDイメージセンサで生じるノイズ成分を除去する。CDS回路32によりノイズ成分が除去された信号は、A/D変換回路33に入力されると共に、明るさ検波回路34に入力される。A/D変換回路33は、CDS回路32から入力された信号をデジタル信号に変換して、画像信号処理部36に入力する。
明るさ検波回路34は、CDS回路32から入力された信号に基づいて、明るさ(信号の平均輝度)を検出する。調光回路35は、明るさ検波回路34により検出された明るさ信号と、基準の明るさ(調光の目標値)との差分である調光信号を生成する。この調光信号は、光源制御部21に入力される。光源制御部21は、基準の明るさが得られるように、複数のLED光源20の発光量を調整する。
制御部30は、内視鏡13のモード切替スイッチ17aが操作された際に発せられるモード切替信号を受信し、受信したモード切替信号が示す観察モード(通常光観察モードまたは狭帯域光観察モード)に基づいて、光源制御部21を制御する。
また、制御部30は、検査開始時には、撮像制御部31及び光源制御部21を制御して、補色系撮像素子28及びLED光源20を繰り返し動作させることにより、動画撮影を実行させる。制御部30は、動画撮影中に、内視鏡13のフリーズスイッチ17bからフリーズ指示信号を受信すると、静止画選択部38に静止画の選択を実行させる。
動画撮影時と静止画撮影時との照明方式(同時方式または面順次方式)は、入力装置15から設定可能である。具体的には、制御部30には、図8に示すように、動画用照明方式入力部41と、動画用照明方式記憶部42と、静止画用照明方式入力部43と、静止画用照明方式記憶部44と、一括入力部45と、静止画撮影指示部46とが設けられている。動画用照明方式入力部41及び静止画用照明方式入力部43には、入力装置15からそれぞれ個別に照明方式が入力可能となっている。
また、一括入力部45は、動画撮影時と静止画撮影時との照明方式を一度の入力操作で設定可能とするように、複数のパターンを記憶している。このパターンは入力装置15から選択可能となっており、一括入力部45は、入力装置15により選択されたパターンに応じた照明方式を、動画用照明方式入力部41及び静止画用照明方式入力部43にそれぞれ入力する。
動画用照明方式入力部41及び静止画用照明方式入力部43に入力された照明方式は、動画用照明方式記憶部42及び静止画用照明方式記憶部44にそれぞれ記憶されて、光源制御部21に入力される。
静止画撮影指示部46には、フリーズスイッチ17bからフリーズ指示信号が入力される。静止画撮影指示部46は、フリーズ指示信号を受信すると、このフリーズ指示信号を、静止画選択部38及び光源制御部21に転送する。光源制御部21は、動画用照明方式記憶部42及び静止画用照明方式記憶部44から入力された動画用照明方式と静止画用照明方式が異なる場合に、フリーズ指示信号の入力を受けて照明方式を切り替える。また、静止画撮影が完了した場合に、照明方式を動画用照明方式に戻す。
画像信号処理部36には、図9に示すように、Y/C変換部50と、マトリクス演算部51と、フレーム生成部52と、画像メモリ53と、同時化処理部54とが設けられている。Y/C変換部50には、補色系撮像素子28からCDS回路32とA/D変換回路33とを介して、第1〜第4混合画素信号M1〜M4(図5参照)が入力される。
Y/C変換部50は、補色市松色差線順次方式に用いられる周知の演算によりY/C変換を行って輝度信号Y及び色差信号Cr,Cbを生成する。具体的には、輝度信号Y及び色差信号Cr,Cbは、行方向に隣接する第1画素信号M1と第2画素信号M2との加減算と、行方向に隣接する第3画素信号M3と第4画素信号M4との加減算とにより算出される。
マトリクス演算部51は、Y/C変換部50により生成された輝度信号Y及び色差信号Cr,Cbに対して所定のマトリクス演算を行うことにより、RGB信号を生成する。Y/C変換部50及びマトリクス演算部51は、Y/C変換及びマトリクス演算を、奇数フィールド及び偶数フィールドについてそれぞれ行う。
フレーム生成部52は、奇数フィールド及び偶数フィールドのそれぞれに対して得られたRGB信号を合成することにより、1フレームの画像データを生成する。画像メモリ53は、複数の画像データを記憶可能であり、フレーム生成部52により生成された画像データを順に記憶する。
照明方式が同時方式の場合には、1フレームの画像データには、検体が照明された各色成分(通常光観察モードの場合にはR,G,B成分、狭帯域光観察モードの場合にはB,G成分)が全て含まれている。これに対して、面順次方式の場合には、1フレームの画像データには、いずれか1つの照明光の色成分しか含まれていない。このため、同時方式の場合には、画像メモリ53に記憶された画像データが画像信号処理部36から出力される。面順次方式の場合には、画像メモリ53に記憶された画像データは、同時化処理部54に入力される。
同時化処理部54は、連続する複数フレーム分(通常光観察モードの場合には3フレーム分、帯域光観察モードの場合には2フレーム分)の画像データから、それぞれ照明光に対応した色成分を抽出し、抽出された各色成分の画像データを合成することにより、同時化された1フレーム分の画像データを生成する。面順次方式の場合には、この同時化された画像データが画像信号処理部36から出力される。
ブレ量算出部37は、画像メモリ53に記憶された画像データに基づき、画像ブレ量を算出する。本実施形態では、ブレ量算出部37は、同時方式の場合には、各画像データについて、画像データに含まれるG信号に基づいて画像ブレ量を算出する。一方、面順次方式の場合には、緑色光GL照射時の画像データに含まれるG信号に基づいて画像ブレ量を算出する。RGB信号のうち、G信号が最も輝度信号との相関が大きいことにより、ブレ量算出部37はG信号を用いて画像ブレ量を算出している。
画像ブレ量は、例えば、G信号の空間周波数から所定値以上の高周波成分を抽出し、この高周波成分を積算した積算値の逆数として表される。これは、ブレが生じた場合に、画像にボケが生じて高周波成分が少なり、高周波成分の積算値が低下することに基づいている。
静止画選択部38は、フリーズ指示信号の入力に伴って照明モードが切り替えられない場合には、画像メモリ53に記憶された複数の画像データのうち、例えば、フリーズ指示信号の受信前後の複数フレーム分の画像データから、画像ブレ量が最小の画像データを選択する。
例えば、通常光観察モードで同時方式の場合には、図10(A)に示すように、フリーズ指示信号の受信後の画像データP〜P,P−1〜P−6から画像ブレ量が最小の画像データが選択される。この選択された画像データは、静止画として静止画メモリ39に記憶される。一方、通常光観察モードで面順次方式の場合には、図10(B)に示す画像データP〜P,P−1〜P−6のうち、緑色光GL照射時の画像データP,P,P−3,−6から画像ブレ量が最小の画像データが選択される。この面順次方式で画像データが選択された場合には、その前後の画像データと共に同時化処理部54により同時化処理が行われる。この同時化された1フレーム分の画像データが静止画として静止画メモリ39に記憶される。
静止画選択部38は、フリーズ指示信号の入力に伴って照明モードが切り替えられた場合には、図11に示すフローチャートに示す手順で静止画を選択する。同時方式または面順次方式で動画撮影が開始すると、フリーズ指示信号の待ち受け状態となり、フリーズ指示信号を受信すると光源制御部21により照明方式が切り替えられる。例えば、図12に示すように、フリーズ指示信号の受信に応じて、同時方式から面順次方式に切り替えられ、切り替え前後の複数フレームの画像データP〜P,P−1〜P−6が画像メモリ53に格納される。
まず、ブレ量算出部37により、切り替え後の画像データP〜P(第1画像データ群)の各画像データから画像ブレ量(以下、切り替え後の画像データの画像ブレ量を「第1ブレ量」という)が算出される。静止画選択部38は、算出された複数の第1ブレ量のうちの最小値LV1を特定する。そして、静止画選択部38は、最小値LV1が基準値より小さいか否かを判定し、最小値LV1が基準値より小さい場合には、その最小値LV1の第1ブレ量が算出された画像データを静止画として選択する。
一方、最小値LV1が基準値以上である場合には、ブレ量算出部37により、切り替え前の画像データP−1〜P−6(第2画像データ群)の各画像データから画像ブレ量(以下、切り替え前の画像データの画像ブレ量を「第2ブレ量」という)が算出される。静止画選択部38は、算出された複数の第2ブレ量のうちの最小値LV2を特定する。そして、静止画選択部38は、最小値LV2が基準値より小さいか否かを判定し、最小値LV2が基準値より小さい場合には、その最小値LV2の第2ブレ量が算出された画像データを静止画として選択する。
さらに、最小値LV2が基準値以上である場合には、静止画選択部38は、最小値LV1と最小値LV2とを比較し、最小値LV1と最小値LV2とのうちの小さい方の最小値のブレ量が算出された画像データを静止画として選択する。静止画選択部38により選択された画像データは、静止画メモリ39に記憶される。
なお、本実施形態では、第1ブレ量の最小値LV1を比較する基準値と、第2ブレ量の最小値LV2を比較する基準値とは同じであるが、両者は異なっていてもよい。
以上説明した静止画選択部38による静止画選択動作は、面順次方式から同時方式に切り替えられる場合についても同様である。また、狭帯域光観察モードの場合についても照明光が2種類になること以外は同様である。
表示制御部40は、動画撮影時は、画像信号処理部36から順次に出力される画像データに基づく画像を画像表示装置14に表示(動画表示)させる。表示制御部40は、フリーズ指示信号の受信後、静止画として選択された画像データが静止画メモリ39に記憶された場合には、この画像データに基づく画像を画像表示装置14に表示(静止画表示)させる。この後、再度フリーズスイッチ17bが操作され、フリーズ解除信号が入力された場合には、表示制御部40は、静止画表示から動画表示に戻す。
次に、内視鏡システム10の作用を、図13に示すフローチャートに沿って説明する。まず、術者により、入力装置15を用いて前述の動画撮影時及び静止画撮影時の照明方式が設定される。この照明方式は、通常光観察モードと狭帯域光観察モードとで異なるように設定することも可能である。
術者は、内視鏡13の挿入部16を患者の体腔内に挿入することにより、内視鏡検査を行う。内視鏡13が光源装置11及びプロセッサ装置12に接続されると、光源装置11及びプロセッサ装置12が通常光観察モードに設定され、入力装置15により設定された照明方式に基づいて光源装置11により照明光が内視鏡13に供給されて検体に向けて射出されると共に、内視鏡13の補色系撮像素子28により撮像が行われる。この撮像は繰り返し行われ、画像信号処理部36により順次に生成される画像データが画像表示装置14に動画表示される。
術者によりフリーズスイッチ17bが操作されると、フリーズ指示信号が制御部30に入力され、入力装置15により設定された照明方式が動画撮影時と静止画撮影時とで異なる場合には、光源装置11の照明方式が切り替えられる。そして、ブレ量算出部37によりフリーズ指示信号の入力前後の複数フレームの各画像データについて画像ブレ量が算出され、この画像ブレ量に基づいて、静止画選択部38により静止画とする画像データが選択される。選択された画像データは、静止画メモリ39に記憶され、画像表示装置14に静止画表示が行われる。この後、術者により再度フリーズスイッチ17bが操作され、フリーズ解除信号が制御部30に入力されると、画像表示装置14に動画表示が再開される。
術者が、体腔内における患部等の検査対象組織の表層血管の走行状態等をより詳しく観察しようと思う場合には、モード切替スイッチ17aが操作される。モード切替スイッチ17aが操作された場合には、この操作信号が制御部30により検出されて、光源装置11及びプロセッサ装置12が狭帯域光観察モードに切り替えられる。狭帯域光観察モードでは、光源装置11から青色狭帯域光Bnと緑色狭帯域光Gnとが内視鏡13に供給され、同様に動画表示及び静止画表示が行われる。
以上のように、本発明の内視鏡システム10では、照明方式の切り替えに依らず、画像ブレの少ない画像データが静止画として選択される。面順次方式では、画像ブレが生じると、これに伴って色ズレが生じるため、色ズレも同時に低減される。
なお、上記実施形態では、ブレ量算出部37は、RGB信号のうちのG信号に基づいて画像ブレ量を算出しているが、RGB信号のうちの、1色の信号、2色の信号、または3色全ての信号を用いて画像ブレ量を算出しても良い。
通常光観察モードの場合には、図14に示すように、まず、画像データをR画像、G画像、B画像に色分解する。同時方式の場合には、1フレームの画像データをR画像、G画像、B画像に色分解する。面順次方式の場合には、赤色光RL照射時の画像データを色分解してR画像を生成し、緑色光GL照射時の画像データを色分解してG画像を生成し、青色光BL照射時の画像データを色分解してB画像を生成する。
R画像、G画像、B画像が得られると、各画像の色信号に基づいて前述の手順で画像ブレ量を算出し、算出した各色信号の画像ブレ量(それぞれブレ量Er,Eg,Ebという)を記憶する。そして、各ブレ量Er,Eg,Ebに重み付け係数Wr,Wg,Wbを乗じて加算することにより、総ブレ量E(=Wr×Er+Wg×Eg+Wb×Eb)を算出する。この総ブレ量Eを前述の画像ブレ量として用いる。ここで、重み付け係数Wr,Wg,Wbは、Wr+Wg+Wb=1の関係を満たすものとする。例えば、B信号とG信号との組み合わせで総ブレ量Eを算出する場合には、(Wr,Wg,Wb)=(0,0.5,0.5)とすれば良い。
狭帯域光観察モードの場合は、画像データから、G画像及びB画像のみを生成すること以外は、通常光観察モードの場合と同様である。この狭帯域光観察モードの場合には、青色狭帯域光Bnが粘膜の表層血管の画像化に寄与するため、表層血管を高画質で撮影するには、(Wg,Wb)=(0,1)とすれば良い。
重み付け係数Wr,Wg,Wbは、入力装置15から直接入力可能としても良いし、入力装置15により選択される観察モードや画像の種類等と対応付けてテーブル化し、このテーブルをブレ量算出部37内に予め記憶しておいても良い。
また、画像ブレ量を算出は、RGB信号に限られず、輝度信号Yに基づいて画像ブレ量を算出しても良い。この場合、画像データのRGB信号をY/C変換して輝度信号Yを生成する必要があるため、上記の場合と比べて画像ブレ量が算出されるまでの時間が長くなるが、色依存がなくなるため、画像ブレ量の算出精度が向上する。
また、上記実施形態では、空間周波数の高周波成分を積算することにより画像ブレ量を算出しているが、これに代えて、特許第3497231号公報に記載されているように、時間的に隣接する2つの画像データ間の差分(動き成分)を検出することにより、画像ブレ量を算出しても良い。
また、このように画像データの動き成分を検出する場合には、同時化処理部54が、各色成分の画像データを、各画像データの動き成分に基づいて位置合わせして合成(同時化)するように構成することにより、面順次方式の場合に画像ブレに起因して生じる色ズレを低減することができる。これにより、面順次方式にとっての欠点である色再現性が向上する。
具体的には、図15に示すように、通常光観察モードにおいて照明方式が同時方式から面順次方式に切り替えられた場合に、色ズレの問題がない同時方式で得られた1フレーム分の画像データを分解して得られるR画像、G画像、B画像をそれぞれ基準として、面順次方式で同時化に用いられるR画像、G画像、B画像の位置ズレ量Dr,Dg,Dbを算出する。この位置ズレ量は、例えば、各画像の画素毎の動き成分(動きベクトル)を平均化した値である。そして、位置ズレ量Dr,Dg,Dbを打ち消すように各画像を位置合わせ補正した上で合成(同時化)することにより、色ズレが低減された画像データが生成される。
狭帯域光観察モードの場合も同様な処理を行うことにより色ズレを低減することが可能である。また、狭帯域光観察モードの場合には、前述のように、青色狭帯域光Bnが粘膜の表層血管の画像化に寄与するため、表層血管を強調するために、図16に示すように、面順次方式において位置ズレを補正したB画像とG画像とを合成する際に、同時方式のB画像を加算しても良い。
また、上記実施形態では、ブレ量算出部37が画像ブレ量を算出し、静止画選択部38は、この画像ブレ量に基づいて静止画とする画像データを選択しているが、狭帯域光観察モード時に、画像ブレ量に加えて色分離量を考慮して静止画とする画像データを選択することも好ましい。この色分離量Cは、式(1)で表される。
Figure 0006047467
ここで、SbはB画像の画素値の標準偏差であり、SgはG画素の画素値の標準偏差である。したがって、色分離量Cは、標準偏差Sb,Sgの2乗平均平方根として表されており、B画像とG画像との合成画像のコントラスト幅に関連する値である。
狭帯域光観察モードでは、青色狭帯域光Bnと緑色狭帯域光Gnとが検体内に侵入する深さが異なり、B画像には表層の構造が多く含まれ、G画像には中深層の構造が多く含まれている。このため、特に、同時方式では、同時照射された青色狭帯域光Bnと緑色狭帯域光Gnとの両方を各画素が検出(すなわち、混色)して、B画像及びG画像に含まれる2つの異なる構造の像が混じり合う。例えば、表層は毛細血管などの微細構造を有し、中深層はこれより大きな構造を有するため、両者が混じり合うことにより、微細構造に含まれる高周波成分が減少する。このように、色分離性が悪い場合には、コントラスト幅が狭まり、色分離量Cが小さくなる。
そこで、静止画選択部38は、狭帯域光観察モードで同時方式の場合に、上記の総ブレ量Eと色分離量Cとに基づき、例えば、「H=W×E−W×C」で表される総合評価値Hを用いて、静止画とする画像データを選択することが好ましい。ここで、W,Wは重み付け係数である。また、狭帯域光観察モードで照明方式の切り替えが伴う場合には、同時方式で得られた複数の画像データから、1つの画像データを選択する場合(同時方式時のブレ量の最小値を特定する場合)に限って、色分離量Cを考慮する。
また、内視鏡13は、図17に示すように、補色系撮像素子28が撮像する矩形領域60のうち、観察窓に対応したほぼ円形の有効領域61が検体像の撮像に用いられる。矩形領域60のうちの有効領域61外は暗く、画素値がほぼ一定の値を取る(空間周波数が低い)ため、矩形領域60全体について画像ブレ量を算出したとしても、有効領域61外の画素値は、画像ブレ量の算出結果には殆ど影響を与えない。しかし、有効領域61外の画素値には色の偏りが存在することがあり、色分離量Cの算出結果に影響を及ぼす恐れがある。
そこで、色分離量Cは、検出精度を高めるために、有効領域61内のみを対象とすることが好ましい。有効領域61内の全体を対象として色分離量Cを算出してもよいが、処理の簡略化のために、有効領域61内の最大矩形を対象として色分離量Cを算出しても良い。また、検体の検査部位が、有効領域61内の中心付近に配置されることが多いため、有効領域61内の中心付近を対象として色分離量Cを算出しても良い。さらに、検体像は、有効領域61内のある一定の輝度範囲(暗すぎず明るすぎない領域)に存在するため、有効領域61内からこの輝度範囲の領域を抽出し、この領域のみを対象として色分離量Cを算出しても良い。
また、図18に示すように、プロセッサ装置内にFICE(Flexible spectral Imaging Color Enhancement)等の特殊画像を生成するための特殊画像処理部70を設けても良い。この場合、静止画メモリ39に記憶された第1静止画像71と、この第1静止画像71が特殊画像処理部70により画像処理された第2静止画像72とが画像表示装置14に表示される。これは、デュアルモード機能と呼ばれるものである。
また、第2静止画像72は、第1静止画像71に画像処理を施したものには限られず、入力装置15等により特殊画像用に別途指定された照明方式で得られた画像に画像処理を施したものとしても良い。例えば、FICEは、色を強調する処理であるため、色再現性よりはフレームレートを優先して、同時方式の画像データを特殊画像用として指定する。
また、上記実施形態では、フリーズ指示信号の受信に応じて照明方式が切り替えられる場合に、ブレ量算出部37は、切り替え前の画像データの第2ブレ量を、フリーズ指示信号が受信されてから算出しているが、フリーズ指示信号が受信される以前の動画撮影中に画像データが生成されるたびに逐次第2ブレ量を算出しておき、フリーズ指示信号が受信した後に、切り替え後の画像データの第1ブレ量の算出のみを行うようにしても良い。こうすることで、フリーズ指示から静止画表示までに要する時間が短縮される。
また、上記実施形態では、フリーズ指示信号の受信に応じて照明方式が切り替えられる場合に、静止画選択部38は、第1及び第2ブレ量に基づき、同時方式または面順次方式のいずれか一方の画像データを静止画として選択しているが、第1及び第2ブレ量の最小値が共に基準値より小さい場合には、同時方式及び面順次方式からそれぞれ該最小値を有する画像データを静止画として選択し、選択した2つの静止画を、選択的または同時に画像表示装置14に表示させても良い。
また、上記実施形態では、狭帯域光観察モード時に、B−LED20aから射出される青色光BLをそのまま青色狭帯域光Bnとして用いているが、青色光BLの波長域が比較的広い場合には、図19に示すように、光源装置11内に、青色狭帯域フィルタ80とフィルタ挿脱部81とを設けてもよい。
フィルタ挿脱部81は、青色狭帯域フィルタ80を、B−LED20aから射出される青色光BLの光路上に挿脱させる。青色狭帯域フィルタ80は、狭帯域光観察モード時には青色光BLの光路上に挿入され、通常光観察モード時には青色光BLの光路上から外される。狭帯域光観察モード時には、青色狭帯域フィルタ80は、B−LED20aから射出される青色光BLを波長制限して青色狭帯域光Bnを生成する。なお、フィルタ挿脱部81を省略し、前述の緑色狭帯域フィルタ22用のフィルタ挿脱部23によって、青色狭帯域フィルタ80を緑色狭帯域フィルタ22と連動して挿脱させてもよい。
また、上記実施形態では、狭帯域光観察モード時に、狭帯域光として青色狭帯域光Bnと緑色狭帯域光Gnとを用いているが、青色狭帯域光Bnに代えて、紫色狭帯域光(中心波長405nm付近)を用いても良い。
また、上記実施形態では、撮像制御部31、CDS回路32、A/D変換回路33等をプロセッサ装置12内に設けているが、これらを内視鏡13内に設けても良い。
また、上記実施形態では、補色系撮像素子28を用いているが、これに代えて、原色系撮像素子を用いても良い。また、撮像素子は、CMOSイメージセンサであっても良い。CMOSイメージセンサの場合には、イメージセンサが形成されたCMOS半導体基板内に、撮像制御部31、CDS回路32、A/D変換回路33等を形成することが可能である。
また、上記実施形態では、光源装置11にLED光源20を用いているが、LEDに代えてLD(Laser Diode)等のその他の半導体光源を用いても良い。
また、上記実施形態では、光源装置11とプロセッサ装置12とを別体の装置として構成しているが、これらを単一の装置としても良い。さらに、光源装置11を、内視鏡13内に組み込んでも良い。
10 内視鏡システム
11 光源装置
12 プロセッサ装置
13 内視鏡
14 画像表示装置
17a モード切替スイッチ
17b フリーズスイッチ
20 LED光源
21 光源制御部
22 緑色狭帯域フィルタ
27 ライトガイド
28 補色系撮像素子
28a 補色系色分離フィルタ
36 画像信号処理部
37 ブレ量算出部
38 静止画選択部
39 静止画メモリ
54 同時化処理部

Claims (13)

  1. 複数色の照明光を発生する光源装置と、
    色分離フィルタを有する同時式撮像素子と、
    前記同時式撮像素子から読み出した画素信号に基づいて画像データを生成する画像信号処理部と、
    動画をフリーズさせて静止画とするためのフリーズ指示信号の入力に応じて、前記複数の照明光を同時照射させる同時方式と、前記複数の照明光を時分割照射させる面順次方式との間で前記光源装置の照明方式を切り替える制御部と、
    前記照明方式の切り替え後に生成された第1画像データ群の各画像データから第1ブレ量を算出し、前記照明方式の切り替え前に生成された第2画像データ群の各画像データから第2ブレ量を算出するブレ量算出部と、
    前記第1及び第2ブレ量に基づいて、前記第1及び第2画像データ群から、静止画とする画像データを選択する静止画選択部と、
    を備え、
    前記静止画選択部は、前記第1ブレ量の最小値が基準値より小さい場合には、前記第1画像データ群から該最小値を有する画像データを静止画として選択し、前記第1ブレ量の最小値が基準値以上である場合には、前記第2ブレ量の最小値が基準値より小さいか否かを判定して、該最小値が基準値より小さい場合には、前記第2画像データ群から該最小値を有する画像データを静止画として選択し、前記第2ブレ量の最小値が基準値以上である場合には、前記第1及び第2ブレ量の最小値のうち小さい方の画像データを、前記第1及び第2画像データ群から選択することを特徴とする内視鏡システム。
  2. 前記面順次方式の場合に、前記複数色の各照明光の照射時に得られた画像データを合成して同時化された画像データを生成する同時化処理部を備え、
    前記同時化処理部は、前記照明方式が前記同時方式から前記面順次方式に切り替えられ、前記静止画選択部により前記面順次方式の画像データが選択された場合に、合成する複数の画像データを、それぞれ前記同時方式で得られた画像データの対応する色分解画像と比較することにより位置ズレ量をそれぞれ算出し、算出した位置ズレ量に基づいて位置合わせした上で合成することを特徴とする請求項に記載の内視鏡システム。
  3. 前記光源装置に、赤色光、緑色光、青色光を発生させる通常光観察モードと、前記光源装置に、第1及び第2狭帯域光を発生させる狭帯域光観察モードとを有することを特徴とする請求項2に記載の内視鏡システム。
  4. 前記狭帯域光観察モードの場合に、前記同時化処理部は、前記同時方式で生成される画像データの前記第1狭帯域光または前記第2狭帯域光に対応する1つの色分解画像を、前記位置合わせ後に合成する複数の画像データのうちの1つに加算することを特徴とする請求項に記載の内視鏡システム。
  5. 前記狭帯域光観察モードでかつ前記同時方式の場合に、前記静止画選択部は、前記第1ブレ量または前記第2ブレ量に加えて、コントラスト幅に関連する色分離量に基づいて、静止画とする画像データを選択することを特徴とする請求項に記載の内視鏡システム。
  6. 前記ブレ量算出部は、前記同時方式で生成される画像データに含まれる1つの色信号と、前記面順次方式で前記色の照明光の照射時の画像データに含まれる前記色の色信号とに基づいて、前記第1及び第2ブレ量を算出することを特徴とする請求項1からいずれか1項に記載の内視鏡システム。
  7. 前記ブレ量算出部は、画像データ中の空間周波数の高周波成分を積算した積算値に基づいて前記第1及び第2ブレ量を算出することを特徴とする請求項1からいずれか1項に記載の内視鏡システム。
  8. 前記ブレ量算出部は、時間的に隣接する2つの画像データ間の差分を検出することにより、前記第1及び第2ブレ量を算出することを特徴とする請求項1からいずれか1項に記載の内視鏡システム。
  9. 前記ブレ量算出部は、画像データに含まれる各色信号に基づいて画像ブレ量をそれぞれ算出し、前記各画像ブレ量に重み付け係数を乗じて加算することにより、前記第1及び第2ブレ量を算出することを特徴とする請求項1からいずれか1項に記載の内視鏡システム。
  10. 前記色分離フィルタは、補色系であることを特徴とする請求項1からいずれか1項に記載の内視鏡システム。
  11. 前記静止画選択部により静止画として選択された画像データと、この画像データに特殊画像処理を施したものとを、画像表示装置に同時に表示させるデュアルモードを有することを特徴とする請求項1から10いずれか1項に記載の内視鏡システム。
  12. 前記ブレ量算出部は、前記フリーズ指示信号が入力される以前に、前記画像信号処理部により画像データが生成されるたびに前記第2ブレ量を算出することを特徴とする請求項1から11いずれか1項に記載の内視鏡システム。
  13. 光源装置が、複数色の照明光を発生する第1ステップと、
    画像信号処理部が、色分離フィルタを有する同時式撮像素子から読み出した画素信号に基づいて画像データを生成する第2ステップと、
    制御部が、動画をフリーズさせて静止画とするためのフリーズ指示信号の入力に応じて、複数色の照明光を同時照射させる同時方式と、前記複数色の照明光を時分割照射させる面順次方式との間で光源装置の照明方式を切り替える第3ステップと、
    ブレ量算出部が、前記照明方式の切り替え後に生成された第1画像データ群の各画像データから第1ブレ量を算出し、前記照明方式の切り替え前に生成された第2画像データ群の各画像データから第2ブレ量を算出する第4ステップと、
    静止画選択部が、前記第1及び第2ブレ量に基づいて、前記第1及び第2画像データ群から、静止画とする画像データを選択する第5ステップと、
    を備え、
    前記第5ステップでは、前記静止画選択部は、前記第1ブレ量の最小値が基準値より小さい場合には、前記第1画像データ群から該最小値を有する画像データを静止画として選択し、前記第1ブレ量の最小値が基準値以上である場合には、前記第2ブレ量の最小値が基準値より小さいか否かを判定して、該最小値が基準値より小さい場合には、前記第2画像データ群から該最小値を有する画像データを静止画として選択し、前記第2ブレ量の最小値が基準値以上である場合には、前記第1及び第2ブレ量の最小値のうち小さい方の画像データを、前記第1及び第2画像データ群から選択することを特徴とする内視鏡システムの作動方法。
JP2013182219A 2013-09-03 2013-09-03 内視鏡システム及びその作動方法 Active JP6047467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182219A JP6047467B2 (ja) 2013-09-03 2013-09-03 内視鏡システム及びその作動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182219A JP6047467B2 (ja) 2013-09-03 2013-09-03 内視鏡システム及びその作動方法

Publications (2)

Publication Number Publication Date
JP2015047402A JP2015047402A (ja) 2015-03-16
JP6047467B2 true JP6047467B2 (ja) 2016-12-21

Family

ID=52697909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182219A Active JP6047467B2 (ja) 2013-09-03 2013-09-03 内視鏡システム及びその作動方法

Country Status (1)

Country Link
JP (1) JP6047467B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077335A (ja) * 2013-10-18 2015-04-23 三菱電機エンジニアリング株式会社 光源装置
JP6522539B2 (ja) 2016-03-18 2019-05-29 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2017221353A1 (ja) 2016-06-22 2017-12-28 オリンパス株式会社 画像処理装置、画像処理装置の作動方法及び画像処理装置の作動プログラム
JP2018192043A (ja) * 2017-05-18 2018-12-06 オリンパス株式会社 内視鏡及び内視鏡システム
JP6896543B2 (ja) * 2017-07-19 2021-06-30 オリンパス株式会社 計測装置および計測装置の作動方法
EP3708063B1 (en) * 2017-11-10 2024-10-09 FUJIFILM Corporation Endoscope system and method for operating same
JP6941233B2 (ja) * 2018-06-04 2021-09-29 富士フイルム株式会社 画像処理装置、内視鏡システム、及び画像処理方法
JP7224963B2 (ja) * 2019-03-01 2023-02-20 ソニー・オリンパスメディカルソリューションズ株式会社 医療用制御装置及び医療用観察システム
CN115279253A (zh) * 2020-03-13 2022-11-01 富士胶片株式会社 内窥镜系统及内窥镜系统的工作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118810B2 (ja) * 1988-05-06 1995-12-18 オリンパス光学工業株式会社 色ずれ防止装置
JP2902662B2 (ja) * 1989-02-13 1999-06-07 オリンパス光学工業株式会社 画像フリーズ用信号処理装置
JP3497231B2 (ja) * 1994-04-22 2004-02-16 オリンパス株式会社 フリーズ装置
JP3887453B2 (ja) * 1997-05-23 2007-02-28 オリンパス株式会社 内視鏡装置
JPH11225953A (ja) * 1998-02-12 1999-08-24 Olympus Optical Co Ltd 内視鏡装置
JP2001136540A (ja) * 1999-11-05 2001-05-18 Olympus Optical Co Ltd 画像処理装置
JP2009284959A (ja) * 2008-05-27 2009-12-10 Hoya Corp 内視鏡装置
JP5308884B2 (ja) * 2009-03-23 2013-10-09 富士フイルム株式会社 内視鏡用プロセッサ装置、およびその作動方法
JP5385188B2 (ja) * 2010-03-26 2014-01-08 富士フイルム株式会社 電子内視鏡システム

Also Published As

Publication number Publication date
JP2015047402A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6047467B2 (ja) 内視鏡システム及びその作動方法
JP5925169B2 (ja) 内視鏡システム及びその作動方法並びに内視鏡用光源装置
US9498153B2 (en) Endoscope apparatus and shake correction processing method
JP4009626B2 (ja) 内視鏡用映像信号処理装置
JP5997817B2 (ja) 内視鏡システム
JP5698878B2 (ja) 内視鏡装置
JP5670264B2 (ja) 内視鏡システム、及び内視鏡システムの作動方法
JP5143293B2 (ja) 内視鏡装置
WO2016121556A1 (ja) 内視鏡用のプロセッサ装置、及びその作動方法、並びに制御プログラム
JP6362274B2 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP6008812B2 (ja) 内視鏡システム及びその作動方法
CN111343898A (zh) 内窥镜系统及其工作方法
JP5930474B2 (ja) 内視鏡システム及びその作動方法
WO2016084257A1 (ja) 内視鏡装置
JP5041936B2 (ja) 生体観測装置
JP6285370B2 (ja) 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム、及び内視鏡システム
EP3238604B1 (en) Processor device and control program for an endoscope
JP6245710B2 (ja) 内視鏡システム及びその作動方法
JP6285373B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP3958761B2 (ja) 内視鏡用調光信号生成装置
CN111712178A (zh) 内窥镜系统及其工作方法
CN106714657A (zh) 摄像系统
WO2021172131A1 (ja) 内視鏡システム、及び内視鏡システムの作動方法
JP2023018543A (ja) 内視鏡システム及びその作動方法
CN114585292A (zh) 内窥镜系统及其工作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250