[go: up one dir, main page]

JP6045446B2 - Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity - Google Patents

Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity Download PDF

Info

Publication number
JP6045446B2
JP6045446B2 JP2013127675A JP2013127675A JP6045446B2 JP 6045446 B2 JP6045446 B2 JP 6045446B2 JP 2013127675 A JP2013127675 A JP 2013127675A JP 2013127675 A JP2013127675 A JP 2013127675A JP 6045446 B2 JP6045446 B2 JP 6045446B2
Authority
JP
Japan
Prior art keywords
treatment
mass
alloy
cold
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127675A
Other languages
Japanese (ja)
Other versions
JP2015001021A (en
Inventor
政仁 谷津倉
政仁 谷津倉
得至 高木
得至 高木
完総 宮浦
完総 宮浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkeikin Aluminum Core Technology Co Ltd
Original Assignee
Nikkeikin Aluminum Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkeikin Aluminum Core Technology Co Ltd filed Critical Nikkeikin Aluminum Core Technology Co Ltd
Priority to JP2013127675A priority Critical patent/JP6045446B2/en
Publication of JP2015001021A publication Critical patent/JP2015001021A/en
Application granted granted Critical
Publication of JP6045446B2 publication Critical patent/JP6045446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lens Barrels (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、光学機器の鏡筒等に適用される外観の均一性に優れたアルミニウム合金材に関する。   The present invention relates to an aluminum alloy material having excellent appearance uniformity applied to a lens barrel or the like of an optical apparatus.

ライフル照準スコープや望遠鏡等の光学機器は、レンズを収容する鏡筒を備えている。これらの機器は、主に屋外環境で使用されるため、従来から強度のみならず軽量で耐食性を有するものが望まれていた。その要求を満たすために、例えば、特許文献1では、アルミニウム合金からなる鏡筒が提示されている。   Optical equipment such as a rifle scope and a telescope includes a lens barrel that houses a lens. Since these devices are mainly used in an outdoor environment, there has been a demand for a device that is lightweight and corrosion-resistant as well as strength. In order to satisfy this requirement, for example, Patent Document 1 presents a lens barrel made of an aluminum alloy.

アルミニウム合金は、軽量、且つ強度、耐久性に優れた素材であり、加工や熱処理を施して、所定の形状寸法や機械的性質を有する製品になる。JIS6000系の熱処理型Al−Mg−Si系合金は、高い機械的強度を有するので、構造用部品の素材として使用されている。例えば、特許文献2、3では、鋳塊またはその押出材を熱間鍛造した後、T6処理等の調質処理を施して鍛造製品が製造されている。   An aluminum alloy is a material that is lightweight and excellent in strength and durability, and is subjected to processing and heat treatment to become a product having predetermined shape dimensions and mechanical properties. A JIS6000-based heat-treatable Al—Mg—Si-based alloy has high mechanical strength and is used as a material for structural parts. For example, in Patent Documents 2 and 3, a forged product is manufactured by subjecting an ingot or its extruded material to hot forging and then subjecting it to a tempering treatment such as a T6 treatment.

特開平9−318296号公報Japanese Patent Laid-Open No. 9-318296 特開2001−107168号公報JP 2001-107168 A 特開平9−249952号公報Japanese Patent Laid-Open No. 9-249952

Al−Mg−Si系合金からなる鍛造製品は、その用途によっては、熱間鍛造ではなく、生産性や加工精度に優れる冷間鍛造で成形加工される。例えば、押出材を冷間鍛造した後、T6処理を施すことによって鍛造製品が製造され、その後、耐食性及び意匠性を向上させるために、陽極酸化塗装等の表面処理が施される。   A forged product made of an Al—Mg—Si alloy is formed by cold forging, which is excellent in productivity and processing accuracy, depending on the application, not hot forging. For example, after cold forging the extruded material, a forged product is manufactured by performing a T6 treatment, and thereafter, a surface treatment such as anodizing coating is performed in order to improve corrosion resistance and design properties.

しかし、上記の冷間鍛造や熱処理が施される過程において、再結晶が生じて金属組織が大きく変化することがある。冷間鍛造は、所定形状に成形するための加工処理であるが、製品形状に即して必要量の加工が施されるので、加工歪の蓄積が不均一に分布するに至る場合がある。加工歪の蓄積量が大きい領域では、微細な加工組織が得られ、その後の加熱で再結晶が起きても微細組織が維持される。加工歪の蓄積量が小さい領域は、再結晶する駆動力が足りず、結晶組織の回復が生じるに止まる。
それに対して、中程度の加工歪が蓄積された領域では、再結晶により結晶粒の粗大化が生じるため、製品外観や陽極酸化塗装後の製品色調に大きなムラを引き起こし、表面の美観を低下させる。狩猟用ライフルの照準スコープ、天体観測用の望遠鏡などの光学機器は、趣味や娯楽としても使用される製品であるため、製品素材のアルミニウム合金材の色調にムラが生じると、製品外観の意匠性や美観を損ない商品価値を減じることになる。
However, in the process of performing the cold forging or heat treatment, recrystallization may occur and the metal structure may change greatly. Cold forging is a processing for forming into a predetermined shape, but since a necessary amount of processing is performed according to the product shape, accumulation of processing strain may be unevenly distributed. In a region where the accumulated amount of processing strain is large, a fine processed structure is obtained, and the fine structure is maintained even if recrystallization occurs by subsequent heating. In the region where the accumulated amount of processing strain is small, the driving force for recrystallization is insufficient, and the recovery of the crystal structure only occurs.
On the other hand, in areas where moderate processing strain is accumulated, crystal grains become coarse due to recrystallization, causing a large unevenness in the product appearance and product color tone after anodized coating, and reducing the appearance of the surface. . Optical devices such as sighting scopes for hunting rifles and telescopes for astronomical observation are products that are also used as hobbies and entertainment, so if there is unevenness in the color of the aluminum alloy material, the appearance of the product And the product value will be reduced.

本発明は、このような課題に鑑みてなされたものであり、製品外観や陽極酸化塗装後の製品色調にムラがない優れた意匠性を有するAl−Mg−Si系合金の熱処理材を提供することを目的とする。   This invention is made in view of such a subject, and provides the heat processing material of the Al-Mg-Si type | system | group alloy which has the outstanding design property which is uniform in the product external appearance and the product color tone after anodic oxidation coating. For the purpose.

本発明者は、押出材に所定の加工度で冷間加工を行い、素材全体に十分な加工歪を蓄積した組織とすることにより、それに続いて、T6処理あるいは冷間鍛造及びT6処理を施しても、部分的な結晶粒粗大化が生じることがなく、色調のムラがない美麗な製品外観を呈することを見出し、本発明を完成するに至った。   The present inventor performs cold working on the extruded material at a predetermined degree of processing to form a structure in which sufficient working strain is accumulated in the entire material, and subsequently performs T6 treatment or cold forging and T6 treatment. However, the present inventors have found that the appearance of a beautiful product with no uneven color tone is exhibited without causing partial crystal grain coarsening, and the present invention has been completed.

(1)本発明は、Al−Mg−Si系合金からなる押出材を得た後、冷間鍛造を行い、次いでT6処理を施す工程を含むアルミニウム熱処理材の製造方法であって、前記冷間鍛造を行う前に、前記押出材に冷間加工を施す工程を含み、前記T6処理後のアルミニウム熱処理材の平均結晶粒径が50μm以上、1mm未満である光学部品用Al−Mg−Si系合金アルミニウム熱処理材の製造方法によって、前記の課題を解決するものである。 (1) The present invention is a method for producing an aluminum heat treatment material comprising a step of performing cold forging after obtaining an extruded material made of an Al—Mg—Si based alloy and then performing a T6 treatment, An Al—Mg—Si based alloy for optical parts, including a step of cold working the extruded material before forging, and an average crystal grain size of the aluminum heat treated material after the T6 treatment being 50 μm or more and less than 1 mm The above-described problems are solved by a method for producing an aluminum heat treatment material.

本発明は、冷間鍛造を行う前に、押出材に対して冷間加工を行うことにより、素材全体に十分な加工歪が蓄積されるので、それに続いて冷間鍛造を行った後に、T6処理を施しても、その溶体化処理時に生成される再結晶粒は、微細な加工組織によって粒成長が抑制されて粗大化することがない。そのため、平均結晶粒径を50μm以上、1mm未満の均一な微細組織が得られ、アルミニウム合金表面の色調にムラが生じず、均一な外観を呈する。   In the present invention, by performing cold working on the extruded material before performing cold forging, sufficient working strain is accumulated in the entire material. Therefore, after performing cold forging subsequently, T6 Even if the treatment is performed, the recrystallized grains generated during the solution treatment are not coarsened because the grain growth is suppressed by the fine processed structure. Therefore, a uniform fine structure having an average crystal grain size of 50 μm or more and less than 1 mm is obtained, and the color tone of the aluminum alloy surface is not uneven, and exhibits a uniform appearance.

(2)本発明は、Al−Mg−Si系合金からなる押出材を得た後、前記押出材に冷間引抜き加工を行い、次いでT6処理を施す工程を含み、前記T6処理後のアルミニウム熱処理材の平均結晶粒径が50μm以上、1mm未満であることを特徴とする、外観の均一性に優れたAl−Mg−Si系合金アルミニウム熱処理材の製造方法によって、前記の課題を解決するものである。 (2) The present invention includes a step of performing cold drawing on the extruded material after obtaining an extruded material made of an Al—Mg—Si based alloy, and then subjecting the extruded material to a T6 treatment, and an aluminum heat treatment after the T6 treatment. An average crystal grain size of the material is 50 μm or more and less than 1 mm, and solves the above-mentioned problems by a method for producing an Al—Mg—Si alloy aluminum heat treatment material with excellent appearance uniformity. is there.

本発明は、押出材に対して冷間で引抜き加工を行うことにより、素材全体に十分な加工歪が蓄積されるので、それに続いてT6処理を施しても、その溶体化処理時に生成される再結晶粒は、微細な加工組織によって粒成長が抑制されて粗大化することがない。そのため、平均結晶粒径を50μm以上、1mm未満の均一な微細組織が得られ、アルミニウム合金表面の色調にムラが生じず、均一な外観を呈する。   In the present invention, by performing cold drawing on the extruded material, sufficient processing strain is accumulated in the entire material. Therefore, even if the T6 treatment is subsequently performed, it is generated during the solution treatment. The recrystallized grains do not become coarse because grain growth is suppressed by a fine processed structure. Therefore, a uniform fine structure having an average crystal grain size of 50 μm or more and less than 1 mm is obtained, and the color tone of the aluminum alloy surface is not uneven, and exhibits a uniform appearance.

(3)本発明は、前記冷間加工が、断面減少率15%以上、60%以下の引抜き加工を行うことが好ましい。
冷間鍛造の前に行う冷間加工は、素材全体に十分な加工歪を付与するために、断面減少率(加工度)を15%以上で加工することが好ましい。一方、断面減少率が過大であると、変形量の増大により被処理材に割れ等が発生し、加工装置の負荷も大きくなるので、断面減少率60%以下が好ましい。
(3) In the present invention, it is preferable that the cold working is a drawing process with a cross-section reduction rate of 15% to 60%.
The cold working performed before the cold forging is preferably performed with a cross-sectional reduction rate (working degree) of 15% or more in order to impart sufficient working strain to the entire material. On the other hand, if the cross-section reduction rate is excessive, cracks or the like occur in the material to be processed due to an increase in the amount of deformation, and the load on the processing apparatus increases, so a cross-section reduction rate of 60% or less is preferable.

(4)本発明は、前記冷間鍛造が、断面減少率100%以下で行うことが好ましい。
冷間加工後、冷間鍛造を行って製品を所定形状及び寸法に成形するが、断面減少率が過大であると、変形量の増大により被処理材に割れ等が発生し、鍛造装置の負荷も大きくなるので、断面減少率100%以下が好ましい。
(4) In the present invention, the cold forging is preferably performed at a cross-sectional reduction rate of 100% or less.
After cold working, cold forging is performed to form the product into a predetermined shape and dimensions. However, if the cross-section reduction rate is excessive, the material to be processed is cracked due to an increase in deformation, and the load on the forging device is increased. Therefore, the cross-sectional reduction rate is preferably 100% or less.

(5)本発明は、前記冷間引抜き加工が、断面減少率15%以上、60%以下の引抜き加工を行う工程であることが好ましい。
前記冷間引抜き加工は、素材全体に十分な加工歪を付与するために、断面減少率(加工度)を15%以上で加工することが好ましい。一方、断面減少率が過大であると、変形量の増大により被処理材に割れ等が発生し、加工装置の負荷も大きくなるので、断面減少率60%以下が好ましい。
(5) In the present invention, it is preferable that the cold drawing process is a process of performing a drawing process with a cross-section reduction rate of 15% to 60%.
The cold drawing is preferably performed with a cross-sectional reduction rate (working degree) of 15% or more in order to impart sufficient working strain to the entire material. On the other hand, if the cross-section reduction rate is excessive, cracks or the like occur in the material to be processed due to an increase in the amount of deformation, and the load on the processing apparatus increases, so a cross-section reduction rate of 60% or less is preferable.

(6)本発明は、Si0.5〜1.0質量%、Fe0.1〜0.3質量%、Cu0.05〜1.0質量%、Mg0.5〜1.1質量%、Ti0.005〜0.2質量%、B0.0005〜0.05質量%を含有し、さらに、Mn0.03〜0.5質量%、Cr0.03〜0.3質量%、Zr0.03〜0.2質量%の内から少なくとも1種以上であって、その総量が0.03質量%以上、0.5質量%以下を含有する、残部Al及び不可避的不純物からなるアルミニウム材であることが好ましい。 (6) In the present invention, Si 0.5 to 1.0 mass%, Fe 0.1 to 0.3 mass%, Cu 0.05 to 1.0 mass%, Mg 0.5 to 1.1 mass%, Ti 0.005 -0.2 mass%, B0.0005-0.05 mass%, and Mn 0.03-0.5 mass%, Cr 0.03-0.3 mass%, Zr 0.03-0.2 mass It is preferable that it is an aluminum material consisting of the balance Al and unavoidable impurities, which contains at least one or more of the total amount of 0.03% by mass and 0.5% by mass or less.

Si及びMgは、T6処理時の時効処理によってMgSiがマトリックスに析出して、強度を向上させる元素であり、Si0.5重量%以上、Mg0.5質量%以上が必要である。一方、Siが1.0質量%を超えると、Siの粒界析出に起因した粒界脆化が生じ易く、加工性を低下させる。Mgが1.1質量%を超えると、析出硬化作用が飽和することに加えて、加工性を低下させる。 Si and Mg are elements that improve strength by precipitation of Mg 2 Si in the matrix by aging treatment during T6 treatment, and Si 0.5 wt% or more and Mg 0.5 wt% or more are required. On the other hand, when Si exceeds 1.0 mass%, grain boundary embrittlement due to grain boundary precipitation of Si is likely to occur, and workability is reduced. When Mg exceeds 1.1 mass%, in addition to saturation of precipitation hardening effect | action, workability will be reduced.

Feは、Al−Fe−Si系化合物の晶出物を形成して、強度を上昇させるが、0.3質量%を超えると、伸びや耐食性に悪影響を与えるので、0.1〜0.3質量%とした。
Cuは、固溶強化や析出強化によって強度を上昇させる元素であるが、1.0質量%を超えると耐食性を低下させるので、0.05〜1.0質量%とした。
Tiは、鋳造組織を微細化させる元素であるが、0.2質量%を超えると靭性を低下させるので、0.005〜0.2質量%とした。
Fe forms a crystallized product of an Al—Fe—Si compound and increases the strength. However, if it exceeds 0.3 mass%, the elongation and corrosion resistance are adversely affected. It was set as mass%.
Cu is an element that increases the strength by solid solution strengthening or precipitation strengthening, but if it exceeds 1.0 mass%, the corrosion resistance is reduced, so 0.05 to 1.0 mass% was set.
Ti is an element that refines the cast structure, but if it exceeds 0.2% by mass, the toughness is reduced, so 0.005 to 0.2% by mass was set.

Mn、Cr、Zrは、再結晶粒の成長を抑制し、T6処理後の微細組織を維持する上で有効な元素である。これらの元素は、鋳造及び均質化処理時に微細な金属間化合物を生成し、溶体化処理によっても固溶せず、T6処理の溶体化処理時に再結晶粒の粗大化を抑制する作用があるので、0.03質量%以上を必要とする。その一方で、過多に含有すると、加工性に悪影響があるので、上限をMn0.5質量%、Cr0.3質量%、Zr0.2質量%をとし、かつ、それら元素の総量を0.03〜0.5質量%とした。   Mn, Cr, and Zr are effective elements for suppressing the growth of recrystallized grains and maintaining the microstructure after the T6 treatment. These elements produce fine intermetallic compounds during casting and homogenization treatment, and are not dissolved by the solution treatment, and have the effect of suppressing recrystallization grain coarsening during the solution treatment of the T6 treatment. 0.03% by mass or more is required. On the other hand, if excessively contained, workability is adversely affected, so the upper limit is Mn 0.5 mass%, Cr 0.3 mass%, Zr 0.2 mass%, and the total amount of these elements is 0.03 to 0.03. The content was 0.5% by mass.

(7)本発明は、前記T6処理が、溶体化処理500℃〜580℃、水冷、時効処理160℃〜220℃であることが好ましい。溶体化処理は、その後の時効処理時に析出する化合物の成分を十分に固溶させるために、500℃以上を必要とするが、580℃を超えると、バーニング(溶損)が生じるので、500℃〜580℃とした。水冷により過飽和固溶体を形成した後、T6処理(人工時効)によりMgSi等の微細化合物を析出させるので、時効処理の温度を160℃〜220℃とした。 (7) In the present invention, the T6 treatment is preferably solution treatment 500 ° C to 580 ° C, water cooling, and aging treatment 160 ° C to 220 ° C. The solution treatment requires 500 ° C. or higher in order to sufficiently dissolve the components of the compound precipitated during the subsequent aging treatment, but if it exceeds 580 ° C., burning (melting loss) occurs. ˜580 ° C. After forming a supersaturated solid solution by water cooling, fine compounds such as Mg 2 Si are precipitated by T6 treatment (artificial aging), so the temperature of the aging treatment was set to 160 ° C. to 220 ° C.

(8)本発明は、前記アルミニウム熱処理材が、光学機器の鏡筒用素材であり、陽極酸化塗装後の外観の均一性に優れた光学部品を提供するものである。 (8) The present invention provides an optical component in which the aluminum heat treatment material is a material for a lens barrel of an optical device and has excellent appearance uniformity after anodic oxidation coating.

(9)本発明は、上記の製造方法によって製造されたAl−Mg−Si系合金からなる光学部品を提供するものである。 (9) This invention provides the optical component which consists of an Al-Mg-Si type alloy manufactured by said manufacturing method.

本発明の熱処理材は、表面外観の意匠性に優れているので、照準スコープ等の趣味や娯楽に使用される光学機器の鏡筒等の素材に適している。陽極酸化塗装をした場合でも、下地が均一な組織からなるので、均一性に優れた外観を呈する。   Since the heat treatment material of the present invention is excellent in the design of the surface appearance, it is suitable for materials such as a barrel of an optical instrument used for hobbies such as an aiming scope and entertainment. Even when anodized, the base is composed of a uniform structure, so that the appearance is excellent in uniformity.

本発明によれば、熱処理型アルミニウム合金において、T6処理あるいは冷間鍛造及びT6処理を施しても部分的な結晶粒粗大化が生じず、それに起因する色調ムラが生じないので、製品外観を損なうことがない。アルミニウム合金材の表面を陽極酸化塗装した後も、優れた意匠性を有するので、光学部品の素材として有用な効果を奏する。また、自転車の駆動シャフト等のように軽量で意匠性を必要とする構造部品の素材にも適している。   According to the present invention, in the heat-treatable aluminum alloy, even if the T6 treatment or the cold forging and the T6 treatment are performed, partial crystal grain coarsening does not occur, and color unevenness resulting therefrom does not occur. There is nothing. Even after anodizing the surface of the aluminum alloy material, it has an excellent design, so that it has a useful effect as a material for optical components. It is also suitable for materials for structural parts that are lightweight and require design, such as bicycle drive shafts.

冷間加工を施した押出管についてT6処理の前後の金属組織を示す図である。It is a figure which shows the metal structure before and behind T6 process about the extruded tube which performed the cold work. 図1の金属組織を拡大した図である。It is the figure which expanded the metal structure of FIG. 本発明の熱処理材と比較例の熱処理材の金属組織を示す図である。It is a figure which shows the metal structure of the heat processing material of this invention, and the heat processing material of a comparative example.

次に本発明の実施形態について説明する。
(試験例1)押出棒における冷間加工の影響
表1に示す本発明の合金No.1〜No.3、比較例の合金No.4の成分組成を有するアルミニウム合金を用いてDC鋳造を行い、直径325mmのビレットを得た。このビレットに560℃、4時間の均質化処理を施した後、表2に示す試験体No.1〜6を得た。前記試験体を押出加工して、直径65mmの押出棒(試験体No.1〜No.4、No.6)と直径56mmの押出棒(試験体No.5)を得た。前記押出棒に冷間引抜き加工を施して、直径54mmの引抜材を得た。この引抜き加工による断面減少率(引抜率)は、前者が約30%、後者が約7%に相当する。前記引抜材に対して、表2に示す熱処理条件により、溶体化処理、水冷、時効処理を施して、T6処理による熱処理材とした。
前記試験体を長手方向(引抜方向)に2分割し、その断面を研磨した後、エッチングし、その断面組織を観察した。そして、外周から10mm深さの部分で平均結晶粒径(mm)を測定した。平均結晶粒径は、切断法(一定長さで分断される結晶粒の数を計測する方法)で得られた結晶粒数を用いて算出した。さらに、前記試験体の外周から半径の1/2を中心にしてJIS4号試験片を採取し、引張試験を行い、引張強さ(MPa)を測定した。平均結晶粒径及び引張強さの測定結果を表2に示す。
Next, an embodiment of the present invention will be described.
(Test Example 1) Effect of cold working on extruded rod Alloy No. 1 of the present invention shown in Table 1 1-No. 3. Comparative Alloy No. DC casting was performed using an aluminum alloy having a component composition of 4 to obtain a billet having a diameter of 325 mm. The billet was subjected to a homogenization treatment at 560 ° C. for 4 hours, and then the specimen Nos. Shown in Table 2 were used. 1-6 were obtained. The test body was extruded to obtain an extruded bar having a diameter of 65 mm (test bodies No. 1 to No. 4, No. 6) and an extruded bar having a diameter of 56 mm (test body No. 5). The extruded bar was cold drawn to obtain a drawn material having a diameter of 54 mm. The cross-sectional reduction rate (drawing rate) by this drawing process corresponds to about 30% for the former and about 7% for the latter. The drawn material was subjected to solution treatment, water cooling, and aging treatment under the heat treatment conditions shown in Table 2 to obtain a heat treatment material by T6 treatment.
The test specimen was divided into two in the longitudinal direction (drawing direction), the cross section was polished, and then etched, and the cross sectional structure was observed. Then, the average crystal grain size (mm) was measured at a depth of 10 mm from the outer periphery. The average crystal grain size was calculated using the number of crystal grains obtained by a cutting method (a method for measuring the number of crystal grains divided at a certain length). Furthermore, a JIS No. 4 test piece was sampled from the outer periphery of the test body around a half of the radius, a tensile test was performed, and a tensile strength (MPa) was measured. The measurement results of the average crystal grain size and tensile strength are shown in Table 2.

表2に示すように、断面減少率30%の試験体は、平均粒径が0.2〜0.4mmであって、微細組織を有しており、外観の色調にムラがなく良好であった。それに対し、断面減少率7%の引抜き加工を行った試験体No.5は、T6処理の溶体化処理による再結晶過程で結晶粒の粗大化が部分的に起きて、平均粒径が2.0mmであった。そのため、色調にムラが生じており、外観の美観が損なわれていた。
さらに、合金No.1〜No.3のアルミニウム合金からなる試験体No.1〜No.3は、引張強さが300MPaを超えており、機械的強度の点でも優れた特性を示した。また、溶体化処理が500℃未満の試験体No.6は、合金No.1からなるアルミニウム合金であっても機械的強度が300MPaを下回った。
As shown in Table 2, the specimen having a cross-section reduction rate of 30% had an average particle size of 0.2 to 0.4 mm, had a fine structure, and had a good appearance with no uneven color tone. It was. On the other hand, the specimen No. 1 was subjected to drawing with a cross-section reduction rate of 7%. In No. 5, coarsening of crystal grains partially occurred in the recrystallization process by the solution treatment of the T6 treatment, and the average grain size was 2.0 mm. Therefore, the color tone is uneven, and the appearance of the appearance is impaired.
Furthermore, alloy no. 1-No. Specimen No. 3 made of aluminum alloy No. 3 1-No. No. 3 had a tensile strength exceeding 300 MPa and exhibited excellent characteristics in terms of mechanical strength. In addition, the specimen No. having a solution treatment of less than 500 ° C. 6 is Alloy No. Even the aluminum alloy consisting of 1 had a mechanical strength of less than 300 MPa.

(試験例2)押出管における冷間加工の影響
表1に示す本発明の合金No.1の成分組成を有するアルミニウム合金を用いてDC鋳造を行い、直径325mmのビレットを得た。このビレットに560℃、4時間の均質化処理を施した後、表3に示す試験体No.7〜No.10を得た。前記試験体を押出加工して、外径69.5mm、内径28mmの押出管(試験体No.7、No.8)と、外径73.5mm、内径28mmの押出管(試験体No.9)、径77.5mm、内径28mmの押出管(試験体No.10)を得た。このうち、試験体No.8〜10の押出管に、冷間引抜き加工を施して、外径64.5mm、内径22mmの引抜管を得た。この引抜き加工による断面減少率(引抜率)は、順に約10%、約20%、約30%に相当する。前記押出材(試験体No.7)及び前記引抜材(試験体No.8〜No.10)に対して、表3に示すように実施例1と同様の熱処理を施して、T6処理による熱処理材とした。
前記試験体を長手方向(引抜方向、押出方向)に2分割し、その断面を研磨した後、エッチングし、外周から5mm深さの部分で切断法により平均結晶粒径(mm)を測定した。さらに、前記試験体の拡管部から鍛造加工方向にJIS13B号試験片を採取し、引張試験を行い、引張強さ(MPa)を測定した。平均結晶粒径及び引張強さの測定結果を表3に示す。
(Test Example 2) Effect of cold working on extruded tube Alloy No. 1 of the present invention shown in Table 1 DC casting was performed using an aluminum alloy having a component composition of 1 to obtain a billet having a diameter of 325 mm. After this billet was homogenized at 560 ° C. for 4 hours, the specimen Nos. Shown in Table 3 were used. 7-No. 10 was obtained. The test body was extruded and extruded tubes (test bodies No. 7 and No. 8) having an outer diameter of 69.5 mm and an inner diameter of 28 mm, and extruded tubes (test body No. 9) having an outer diameter of 73.5 mm and an inner diameter of 28 mm. ), An extruded tube (test body No. 10) having a diameter of 77.5 mm and an inner diameter of 28 mm was obtained. Among these, test body No. The 8 to 10 extruded tubes were cold drawn to obtain a drawn tube having an outer diameter of 64.5 mm and an inner diameter of 22 mm. The cross-sectional reduction rate (drawing rate) by this drawing process corresponds to about 10%, about 20%, and about 30% in order. As shown in Table 3, the extruded material (test body No. 7) and the drawn material (test bodies No. 8 to No. 10) were subjected to the same heat treatment as in Example 1, and the heat treatment by the T6 treatment. A material was used.
The test specimen was divided into two in the longitudinal direction (drawing direction, extrusion direction), the cross section was polished, etched, and the average crystal grain size (mm) was measured by a cutting method at a depth of 5 mm from the outer periphery. Furthermore, a JIS13B test piece was collected from the expanded portion of the test body in the forging direction, subjected to a tensile test, and measured for tensile strength (MPa). Table 3 shows the measurement results of the average crystal grain size and tensile strength.

図1に、T6処理による熱処理材について、T6処理の前後における金属組織を示す。図2に、図1の拡大した金属組織を示す。
図1(a)、図2(a)に示すように、T6処理の前は、いずれの試験体も微細な組織を示している。T6処理後は、引抜き加工の断面減少率が0%、20%、30%の試験体は、ムラが生じていない。表3のとおり、その平均粒径は、0.7mm以下である。
それに対し、図1(b)、図2(b)から明らかなように、断面減少率10%の引抜き加工を行った試験体は、T6処理後は色調にムラが生じている。T6処理の溶体化処理によって再結晶が生じる過程で結晶粒の粗大化が起きて、平均粒径は、1.4mmに達している。
FIG. 1 shows the metal structure before and after the T6 treatment for the heat treated material by the T6 treatment. FIG. 2 shows the enlarged metal structure of FIG.
As shown in FIG. 1 (a) and FIG. 2 (a), before the T6 treatment, all specimens show a fine structure. After the T6 treatment, the test specimens with the cross-sectional reduction rate of the drawing process of 0%, 20%, and 30% are not uneven. As shown in Table 3, the average particle size is 0.7 mm or less.
On the other hand, as is apparent from FIGS. 1B and 2B, the specimen subjected to the drawing process with a cross-sectional reduction rate of 10% has uneven color tone after the T6 treatment. In the process in which recrystallization occurs due to the solution treatment of the T6 treatment, crystal grains become coarse, and the average particle size reaches 1.4 mm.

これらの結果は、断面減少率20%、30%の引抜き加工を施すことにより、その後の熱処理が行われても微細組織を維持できる、つまり、引抜き加工により一定量以上の加工歪が付与された場合は、その後のT6処理の溶体化処理により再結晶が生じても粗大化が起きないことを示している。   These results show that by performing a drawing process with a cross-section reduction rate of 20% and 30%, a fine structure can be maintained even if a subsequent heat treatment is performed. That is, a certain amount or more of processing strain is given by the drawing process. This indicates that no coarsening occurs even if recrystallization occurs due to the solution treatment of the subsequent T6 treatment.

よって、押出材あるいは冷間鍛造材にT6処理を施して色調のムラがない外観に優れた熱処理材を得るためには、押出材に対して一定量以上の加工歪を付与する冷間加工(冷間引抜き加工)を施すことが有用であり、その断面減少率として15%以上が必要であることは明らかである。   Therefore, in order to obtain a heat-treated material having an appearance that is free of uneven color tone by subjecting the extruded material or cold forged material to a T6 treatment, a cold working that imparts a certain amount of processing strain to the extruded material ( It is clear that it is useful to perform a cold drawing process, and the cross-section reduction rate needs to be 15% or more.

以上のことは、最終形状と寸法を実現するために冷間鍛造を行う場合は、冷間鍛造の前に15%以上の断面減少率により一定量以上の加工歪を付与すれば、その後の冷間鍛造による加工歪が素材全体に均一に分布していなくても、T6熱処理において粗大化が生じないことを意味する。そこで以下の試験を行った。   As described above, when cold forging is performed in order to realize the final shape and dimensions, if a certain amount or more of processing strain is applied by a cross-section reduction rate of 15% or more before cold forging, the subsequent cold forging is performed. It means that coarsening does not occur in the T6 heat treatment even if the processing strain due to hot forging is not uniformly distributed over the entire material. Therefore, the following tests were conducted.

(試験例3)押出管における冷間加工及び冷間鍛造の影響
表1に示す本発明の合金No.1の成分組成を有するアルミニウム合金を用いてDC鋳造を行い、直径325mmのビレットを得た。このビレットに560℃、4時間の均質化処理を施した後、表4に示す試験体No.11、No.12を得た。前記試験体を押出加工して、外径58.5mm、内径28mmの押出管(試験体No.11)と、外径48mm、内径22mmmの押出管(試験体No.12)を得た。前者の押出管(試験体No.11)に、冷間引抜き加工を施して、外径48mm、内径22mmの引抜管を得た。この引抜き加工による断面減少率(引抜率)は、約30%に相当する。次いで、前記引抜管(試験体No.11)及び前記押出管(No.12)に対して、加工度(拡管率)が約36%で冷間鍛造による拡管処理を施した。その後、表4に示すように実施例2と同様の熱処理を施して、T6処理による熱処理材とした。
実施例2と同様に、平均結晶粒径(mm)及び引張強さ(MPa)を測定した。その測定結果を表4に示す。
(Test Example 3) Effect of cold working and cold forging in extruded tube Alloy No. 1 of the present invention shown in Table 1 DC casting was performed using an aluminum alloy having a component composition of 1 to obtain a billet having a diameter of 325 mm. After this billet was homogenized at 560 ° C. for 4 hours, the test specimen Nos. Shown in Table 4 were used. 11, no. 12 was obtained. The test body was extruded to obtain an extruded tube (test body No. 11) having an outer diameter of 58.5 mm and an inner diameter of 28 mm, and an extruded tube (test body No. 12) having an outer diameter of 48 mm and an inner diameter of 22 mm. The former extruded tube (test body No. 11) was cold drawn to obtain a drawn tube having an outer diameter of 48 mm and an inner diameter of 22 mm. The cross-sectional reduction rate (drawing rate) by this drawing process corresponds to about 30%. Next, the drawn tube (test body No. 11) and the extruded tube (No. 12) were subjected to a tube expansion process by cold forging at a working degree (tube expansion rate) of about 36%. Thereafter, as shown in Table 4, the same heat treatment as in Example 2 was performed to obtain a heat treatment material by T6 treatment.
In the same manner as in Example 2, the average crystal grain size (mm) and the tensile strength (MPa) were measured. The measurement results are shown in Table 4.

表4に示すように、冷間加工(引抜加工)及び冷間鍛造(拡管)を行った本発明の試験体No.11は、平均粒径が0.5mmであり、T6処理後も微細組織を維持していた。それに対し、冷間加工(引抜加工)を行わなかった比較例の試験体No.12は、T6処理の溶体化処理により結晶粒粗大化が生じて、平均粒径が5mmに達していた。そのため、色調のムラが生じて外観の美観が損なわれた。   As shown in Table 4, the specimen No. 1 of the present invention was subjected to cold working (drawing) and cold forging (expanded tube). No. 11 had an average particle size of 0.5 mm and maintained a fine structure even after T6 treatment. On the other hand, the comparative specimen No. which was not subjected to cold working (drawing). In No. 12, crystal grain coarsening occurred due to the solution treatment of the T6 treatment, and the average particle size reached 5 mm. For this reason, uneven color tone occurs, and the appearance of the appearance is impaired.

(試験例4)光学部品の製造例
本発明の製造方法により、照準スコープの鏡筒を成形した。押出材に断面減少率30%の引抜き加工を行った後、冷間鍛造、T6処理を施した本発明の熱処理材と、押出材に冷間鍛造による拡管加工を行った後、T6処理を施した比較例の熱処理材について、それぞれのマクロ組織を図3に示す。各熱処理材は、長手方向(押出方向)の全長が295mmであった。
図3(a)に示すように、本発明の熱処理材は、断面減少率30%の引抜き加工で十分な加工歪が付与されて均一な微細組織が得られ、その後の冷間鍛造、T6処理によっても結晶粒の部分的粗大化が発生しないので、製品色調にムラが認められなかった。
それに対して、図3(b)に示すように、引抜き加工を施さなかった比較例は、冷間鍛造による加工歪の分布が素材全体で均一でなく、形状変化のない素材内部であっても圧縮方向に歪を受けて、中程度の加工歪が蓄積するので、その領域では、T6処理の溶体化処理によって結晶粒粗大化に起因する不均一な結晶粒組織を呈していた。そのため、製品色調に大きなムラが生じて外観が損なわれた。
(Test Example 4) Manufacturing Example of Optical Component A lens barrel of an aiming scope was formed by the manufacturing method of the present invention. After extruding the extruded material with a cross-section reduction rate of 30%, the heat-treated material of the present invention subjected to cold forging and T6 treatment, and the extruding material subjected to tube expansion processing by cold forging and then subjected to T6 treatment. The respective macrostructures of the heat treatment material of the comparative example are shown in FIG. Each heat-treated material had a total length of 295 mm in the longitudinal direction (extrusion direction).
As shown in FIG. 3 (a), the heat treatment material of the present invention is given a sufficient work strain by drawing with a cross-section reduction rate of 30% to obtain a uniform microstructure, and then cold forging and T6 treatment. As a result, no partial coarsening of the crystal grains occurred, so that no unevenness was observed in the product color tone.
On the other hand, as shown in FIG. 3B, in the comparative example in which the drawing process was not performed, the distribution of the processing strain due to cold forging is not uniform throughout the material, Due to strain in the compression direction and moderate processing strain accumulated, in that region, a non-uniform grain structure resulting from grain coarsening was exhibited by the solution treatment of the T6 treatment. Therefore, the product color tone was greatly uneven and the appearance was impaired.

Claims (6)

Al−Mg−Si系合金からなる押出材を得た後、冷間鍛造を行い、次いでT6処理を施す工程を含むアルミニウム熱処理材の製造方法であって、前記冷間鍛造を行う前に、前記押出材に冷間引抜き加工を施す工程を含み、前記T6処理後のアルミニウム熱処理材の平均結晶粒径が50μm以上、1mm未満であり、前記冷間引抜き加工が、断面減少率15%以上、60%以下の引抜き加工を行う工程であることを特徴とする、外観の均一性に優れたAl−Mg−Si系合金アルミニウム熱処理材の製造方法。 After obtaining an extruded material made of an Al-Mg-Si-based alloy, cold forging, and then a method for producing an aluminum heat treatment material including a step of performing T6 treatment, before performing the cold forging, includes a step of performing cold drawn to the extrusion material, the T6 average crystal grain size of the aluminum heat-treated after treatment 50μm or more, 1 mm less der is, the cold drawing processing, reduction of area of 15% or more, A method for producing an Al—Mg—Si alloy aluminum heat treatment material with excellent appearance uniformity, characterized by being a step of drawing at 60% or less . Al−Mg−Si系合金からなる押出材を得た後、前記押出材に冷間引抜き加工を行い、次いでT6処理を施す工程を含み、前記T6処理後のアルミニウム熱処理材の平均結晶粒径が50μm以上、1mm未満であり、前記冷間引抜き加工が、断面減少率15%以上、60%以下の引抜き加工を行う工程であることを特徴とする、外観の均一性に優れたAl−Mg−Si系合金アルミニウム熱処理材の製造方法。 After obtaining an extruded material made of an Al—Mg—Si based alloy, the extruded material is subjected to cold drawing and then subjected to T6 treatment, and the average crystal grain size of the aluminum heat treated material after the T6 treatment is 50μm or more, 1 mm less der is, the cold drawing processing, reduction of area of 15% or more, characterized in that it is a step of performing the following drawing 60 percent, excellent uniformity of appearance Al-Mg -Manufacturing method of Si alloy aluminum heat treatment material. 請求項1に記載のアルミニウム熱処理材の製造方法であって、前記冷間鍛造が、断面減少率100%以下で行うことを特徴とする、外観の均一性に優れたAl−Mg−Si系合金熱処理材の製造方法。 2. The method for producing an aluminum heat treatment material according to claim 1 , wherein the cold forging is performed with a cross-sectional reduction rate of 100% or less, and an Al—Mg—Si based alloy having excellent appearance uniformity. 3. Manufacturing method of heat treatment material. 請求項1〜のいずれか1項に記載のアルミニウム熱処理材の製造方法であって、Si0.5〜1.0質量%、Fe0.1〜0.3質量%、Cu0.05〜1.0質量%、Mg0.5〜1.1質量%、Ti0.005〜0.2質量%を含有し、さらに、Mn0.03〜0.5質量%、Cr0.03〜0.3質量%、Zr0.03〜0.2質量%の内から少なくとも1種以上であって、その総量が0.03質量%以上、0.5質量%以下を含有する、残部Al及び不可避的不純物からなるアルミニウム材であることを特徴とする、外観の均一性に優れたAl−Mg−Si系合金熱処理材の製造方法。 A manufacturing method of an aluminum heat-treated according to any one of claims 1~ 3, Si0.5~1.0 wt%, Fe0.1~0.3 wt%, Cu0.05~1.0 Mass%, Mg 0.5-1.1 mass%, Ti 0.005-0.2 mass%, Mn 0.03-0.5 mass%, Cr 0.03-0.3 mass%, Zr0. It is an aluminum material consisting of the balance Al and unavoidable impurities, which is at least one or more from 03 to 0.2% by mass, the total amount of which is 0.03% by mass or more and 0.5% by mass or less. A method for producing an Al—Mg—Si based alloy heat treated material having excellent appearance uniformity. 請求項に記載の製造方法であって、前記T6処理が、溶体化処理500℃〜580℃、水冷、時効処理160℃〜220℃であることを特徴とする、外観の均一性に優れたAl−Mg−Si系合金熱処理材の製造方法。 It is a manufacturing method of Claim 4 , Comprising: The said T6 process is solution treatment 500 degreeC-580 degreeC, water cooling, aging treatment 160 degreeC-220 degreeC, It was excellent in the uniformity of the external appearance characterized by the above-mentioned. A method for producing an Al—Mg—Si alloy heat treatment material. 請求項1〜のいずれか1項に記載のアルミニウム熱処理材の製造方法であって、前記アルミニウム熱処理材が、光学機器の鏡筒用素材であることを特徴とする、陽極酸化塗装後の外観の均一性に優れた光学部品用Al−Mg−Si系合金熱処理材の製造方法。
It is a manufacturing method of the aluminum heat processing material of any one of Claims 1-5 , Comprising: The said aluminum heat processing material is a raw material for lens barrels of an optical apparatus, The external appearance after anodic oxidation coating characterized by the above-mentioned For producing an Al—Mg—Si based alloy heat treatment material for optical parts having excellent uniformity of heat.
JP2013127675A 2013-06-18 2013-06-18 Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity Active JP6045446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127675A JP6045446B2 (en) 2013-06-18 2013-06-18 Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127675A JP6045446B2 (en) 2013-06-18 2013-06-18 Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity

Publications (2)

Publication Number Publication Date
JP2015001021A JP2015001021A (en) 2015-01-05
JP6045446B2 true JP6045446B2 (en) 2016-12-14

Family

ID=52295721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127675A Active JP6045446B2 (en) 2013-06-18 2013-06-18 Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity

Country Status (1)

Country Link
JP (1) JP6045446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025365A (en) * 2015-07-21 2017-02-02 昭和電工株式会社 Aluminum alloy material for communication terminal equipment case body
EP3350355B1 (en) * 2015-09-18 2020-08-19 Norsk Hydro ASA Method for the manufacturing of extruded profiles that can be anodized with high gloss surfaces, the profiles being extruded of an age hardenable aluminium a 7xxx alloy that can be recrystallized after cold deformation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086161B2 (en) * 1988-03-07 1996-01-24 日本軽金属株式会社 Manufacturing method of high strength A1-Mg-Si alloy member
JPH04354846A (en) * 1991-05-31 1992-12-09 Tokai Rubber Ind Ltd Aluminum pipeline for power steering
JPH1030158A (en) * 1996-07-18 1998-02-03 Furukawa Electric Co Ltd:The Production of automotive piping material made of aluminum alloy excellent in workability
JP4328996B2 (en) * 1999-06-16 2009-09-09 日本軽金属株式会社 Al-Mg-Si aluminum alloy cold forging manufacturing method
JP5561846B2 (en) * 2006-12-13 2014-07-30 株式会社Uacj押出加工 High strength aluminum alloy material and manufacturing method thereof
CN102666894B (en) * 2009-12-22 2015-05-27 昭和电工株式会社 Aluminum alloy for anodization and aluminum alloy component

Also Published As

Publication number Publication date
JP2015001021A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
JP5083816B2 (en) Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material
JP5901738B2 (en) Aluminum alloy forging and method for producing the same
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP2010189750A (en) High-strength aluminum alloy wire and rod material excellent in softening resistance and method of manufacturing the same
KR20150143856A (en) Copper-nickel-tin alloy with high toughness
JP6000988B2 (en) High-strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability, and method for producing the same
JP7003676B2 (en) Manufacturing method of hot forged aluminum alloy
US20170306454A1 (en) Isotropic plates made from aluminum-copper-lithium alloy for manufacturing aircraft fuselages
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2019143232A (en) Manufacturing method of flexure molded article using aluminum alloy
JP6612029B2 (en) High strength aluminum alloy extruded material with excellent impact resistance and method for producing the same
US20160362771A1 (en) High-strength aluminum alloy extruded material that exhibits excellent formability and method for producing the same
JP6045446B2 (en) Method for producing heat-treated Al-Mg-Si alloy with excellent appearance uniformity
JP6015536B2 (en) Heat treatment type aluminum alloy for cold plastic working and manufacturing method thereof
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
CN108699638A (en) Aluminum alloys and fastening components
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP2019019373A (en) Manufacturing method of aluminum alloy-made piston of compressor, and the aluminum alloy for piston
CN110284085B (en) A method for simultaneously improving the strength and elongation of 7xxx aluminum alloys
JP2018080355A (en) Aluminum alloy extrusion material
JP2016108653A (en) Aluminum alloy for extruded shape and extruded shape using the same
JP5931554B2 (en) Aluminum alloy material
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP2023548476A (en) Improved 6XXX aluminum alloy
JP2001342532A (en) Aluminum alloy piping material and its production

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250