[第1実施形態]
図1において、X線撮影システム10は、X線発生装置11と、X線撮影装置12とからなる。X線発生装置11は、X線源13と、X線源13を制御する線源制御装置14と、照射スイッチ15とで構成される。X線源13は、X線を照射するX線管13aと、X線管13aが照射するX線の照射野を限定する照射野限定器(コリメータ)13bとを有する。
X線管13aは、熱電子を放出するフィラメントからなる陰極と、陰極から放出された熱電子が衝突してX線を放射する陽極(ターゲット)とを有している。照射野限定器13bは、例えば、X線を遮蔽する複数枚の鉛板を井桁状に配置し、X線を透過させる照射開口が中央に形成されたものであり、鉛板の位置を移動することで照射開口の大きさを変化させて、照射野を限定する。
線源制御装置14は、X線源13に対して高電圧を供給する高電圧発生器と、X線源13が照射するX線の線質(エネルギースペクトル)を決める管電圧、単位時間当たりの線量を決める管電流、およびX線の照射時間を制御する制御部とからなる。高電圧発生器は、トランスによって入力電圧を昇圧して高圧の管電圧を発生し、高電圧ケーブルを通じてX線源13に駆動電力を供給する。管電圧、管電流、照射時間といった撮影条件は、線源制御装置14の操作パネルを通じて放射線技師などのオペレータにより手動で設定される。
照射スイッチ15は、線源制御装置14に信号ケーブルで接続されており、オペレータによって操作される。照射スイッチ15は二段階押しのスイッチであり、一段階押しでX線源13のウォームアップを開始させるためのウォームアップ開始信号を発生し、二段階押しでX線源13に照射を開始させるための照射開始信号を発生する。これらの信号は信号ケーブルを通じて線源制御装置14に入力される。
X線撮影装置12は、電子カセッテ21、撮影台22、撮影制御装置23、およびコンソール24から構成される。電子カセッテ21は、FPD25と、FPD25を収容する可搬型の筐体26とからなり、X線源13から照射されて患者などの被検体Hを透過したX線を受けて被検体HのX線画像を検出する、可搬型の放射線画像検出装置である。電子カセッテ21は、平面形状が略矩形の偏平な筐体を有し、平面サイズはフイルムカセッテやIPカセッテと略同様の大きさである。
電子カセッテ21は、後述するように、FPD25によってX線源13が照射するX線を受けて、X線の照射開始及び照射終了を自己検出する機能を有している。そのため、X線発生装置11とX線撮影装置12との間では、X線源13の照射タイミングとFPD25の動作タイミングを同期する同期信号の通信による同期制御は不要となる。
撮影台22は、電子カセッテ21が着脱自在に取り付けられるスロットを有し、X線が入射する入射面がX線源13と対向する姿勢で電子カセッテ21を保持する。電子カセッテ21は、筐体のサイズがフイルムカセッテやIPカセッテと略同様の大きさであるため、フイルムカセッテやIPカセッテ用の撮影台にも取り付け可能である。なお、撮影台22として、被検体Hを立位姿勢で撮影する立位撮影台を例示しているが、被検体Hを臥位姿勢で撮影する臥位撮影台でもよい。
撮影制御装置23は、有線方式や無線方式により電子カセッテ21と通信可能に接続されており、電子カセッテ21を制御する。具体的には、電子カセッテ21に対して撮影条件を送信して、FPD36の信号処理の条件などを設定させる。また、撮影制御装置23は、電子カセッテ21が出力する画像データを受信してコンソール24に送信する。
コンソール24は、患者の性別、年齢、撮影部位、撮影目的といった情報が含まれる検査オーダの入力を受け付けて、検査オーダをディスプレイに表示する。検査オーダは、HIS(病院情報システム)やRIS(放射線情報システム)といった患者情報や放射線検査に係る検査情報を管理するオーダリングシステムからネットワークを通じて入力されるか、あるいは、コンソール24のキーボードやマウスなどの操作部からオペレータにより手動入力される。
オペレータは、検査オーダの内容をディスプレイで確認し、その内容に応じて撮影条件を決定する。具体的には、患者の性別、年齢、撮影部位、撮影目的に応じて、照射すべきX線の線質や照射線量を判断して、線質を規定する管電圧や、照射線量を規定する管電流及び照射時間を撮影条件として決定する。撮影条件は、コンソール24の操作画面を通じて設定される。コンソール24は、撮影制御装置23を通じて電子カセッテ21に対して、管電圧、管電流、照射時間に加えて、撮影部位を含めた撮影条件を設定する。X線発生装置11に対する撮影条件の設定も、コンソール24に入力された撮影条件を元に行われる。
また、コンソール24は、撮影制御装置23から送信されるX線画像のデータに対して、ガンマ補正、周波数処理等の各種画像処理を施す。画像補正処理済みのX線画像はコンソール24のディスプレイに表示される他、そのデータがコンソール24内のハードディスクやメモリ、あるいはコンソール24とネットワーク接続された画像蓄積サーバといったデータストレージデバイスに格納される。
図2に示すように、線源制御装置14は、照射スイッチ15からの制御信号に基づいて、X線源13の動作を制御する。照射スイッチ15から照射開始信号(ON信号)を受けると、線源制御装置14は、X線源13に対して開始指令を発して電力供給を開始する。これによりX線源13は照射を開始する。線源制御装置14は、電力供給の開始とともに、タイマを作動させてX線の照射時間の計測を開始する。そして、タイマを監視して、撮影条件で設定された照射時間が経過すると、X線源13に対して停止指令を発して電力供給を停止する。X線源13は、停止指令を受けるとX線の照射を停止させる。X線の照射時間は、撮影条件に応じて変化するが、静止画撮影の場合には、X線の最大照射時間が約500msec〜約2s程度の範囲に定められている場合が多く、照射時間はこの最大照射時間を上限として設定される。
オペレータによって照射スイッチ15が押下される前の段階で、電子カセッテ21に対しては、コンソール24を通じてX線の照射開始を待機する待機指示が入力される。待機指示が入力されると、電子カセッテ21は、FPD25でX線の照射開始を検出する照射検出動作を開始する。この状態で、X線源13がX線の照射を開始すると、FPD25が入射するX線に基づいて照射開始を検出する。電子カセッテ21は、照射開始を検出すると、X線の入射量に応じた信号電荷を蓄積する蓄積動作へ移行する。そして、蓄積動作へ移行すると、蓄積動作と並行して、X線の照射終了を検出する照射終了検出動作が開始される。X線源13がX線の照射を停止すると、電子カセッテ21は照射終了を検出して、蓄積動作を終了して、X線画像の読み出しが行われる。
図3に示すように、FPD25は、X線の入射量に応じた信号電荷を蓄積する複数の画素PXを配列してなる撮像領域36aを有する画像検出パネル36を有している。複数の画素PXは、所定のピッチで二次元にn行(x方向)×m列(y方向)のマトリクスに配列されている。画素PXに付される符号11、12、21、22は、画素PXの撮像領域36a内のアドレスを表している。特定の画素について述べる場合以外は、アドレスを省略して単に画素PXとして説明する。
FPD25は、X線をいったん可視光に変換した後に光電変換を行う間接変換型であり、画像検出パネル36上には、撮像領域36aの全面と対向するようにシンチレータ(図示せず)が配置される。シンチレータは、X線を可視光に変換する、CsI(ヨウ化セシウム)やGOS(ガドリニウムオキシサルファイド)などの蛍光体からなる。画像検出パネル36は、例えば、画素PXに信号電荷を保持した状態で信号電荷に応じた電圧信号を読み出し可能な非破壊読み出し方式のイメージセンサである。例えば、単結晶シリコン基板に画素PXを形成したCMOSセンサチップを複数枚貼り合わせることにより、撮像領域36aを大面積化したイメージセンサである。
画素PXは、フォトダイオードPD、キャパシタCP、アンプAP、リセット用トランジスタTr1、画素選択用トランジスタTr2等の回路素子からなる。フォトダイオードPDは、シンチレータによって変換された可視光を光電変換し、X線の入射量に応じた信号電荷を蓄積する。キャパシタCPは信号電荷を保持するための補助容量である。キャパシタCPはフォトダイオードPDの電荷保持容量で十分な場合には不要である。アンプAPは、フォトダイオードPD及びキャパシタCPで蓄積される信号電荷に応じた電圧信号を増幅して出力する。アンプAPは画素PXに信号電荷が保持された状態で電圧信号を出力する。画素PXはリセットが行われない限り信号電荷を保持する。また、アンプAPは、ゲイン(増幅率)を変更することが可能な可変ゲインアンプである。
ゲインの値を変更すると、画素PXの感度が変化し、ゲインの値が高いほど画素PXの感度は上がる。同じ電荷蓄積量で比較すれば、感度が高いほど、出力される電圧信号の信号値は大きくなり、ゲインの大小と無関係に発生する回路ノイズに対してはS/N比が上がる。
アンプAPは、例えばオペアンプの出力を入力側に帰還させて入力電圧を増幅して出力するアンプであり、オペアンプの入力端子に接続する入力抵抗(図示せず)と、オペアンプの入力端子と出力端子の間に接続される帰還抵抗(図示せず)との抵抗値の比を変化させることにより、ゲインの変更が可能な可変ゲインアンプである。アンプAPには、ゲイン制御線GCが接続されており、ゲインの値は、ゲイン制御線GCから入力されるゲイン設定信号に基づいて、入力抵抗や帰還抵抗の抵抗値を変化させることにより設定される。汎用のデジタルカメラで使用するイメージセンサの撮像領域と比べて、X線のFPDでは、撮像領域が大きいので、このような可変ゲインアンプを画素毎に作る空間的な余裕もある。
リセット用トランジスタTr1は、画素PXをリセットするためのトランジスタである。リセット用トランジスタTr1のゲート電極にはリセット線RSTが接続されており、リセット用トランジスタTr1は、リセット線RSTからリセット信号が入力されると、フォトダイオードPD及びキャパシタCPに蓄積された信号電荷をドレインに掃き出して、画素PXをリセットする。
画素選択用トランジスタTr2は、ソース電極がアンプAPの出力端子に接続され、ゲート電極が行選択線SRに接続され、ドレイン電極が列信号線SCに接続されている。画素選択用トランジスタTr2は、ゲート電極に行選択信号が入力されるとオンして、列信号線SCに対してアンプAPの電圧信号を印加する。列信号線SCの下流側の出力端には、列選択用トランジスタ37のソース電極が接続されている。列選択用トランジスタ37は、ドレイン電極が出力線38に接続されており、列選択用トランジスタ37のゲート電極に列選択信号が入力されるとオンして、列信号線SCから印加される電圧信号が出力線38に出力される。
垂直走査回路41及び水平走査回路42は、出力線38に電圧信号を出力する画素PXを選択するための走査回路である。垂直走査回路41は、行選択線SRに行選択信号を入力する。行選択線SRに行選択信号が入力されると、その行選択線SRに接続された複数の画素選択用トランジスタTr2がオンする。水平走査回路42は、列選択用トランジスタ37に対して列選択信号を入力することで、列選択用トランジスタ37をオンする。各画素PXは、それぞれの画素選択用トランジスタTr2と、列信号線SCを介して接続されるそれぞれの列選択用トランジスタ37が同時にオンされると、各画素PXの電圧信号が出力線38に出力される。
画像読み出し動作においては、垂直走査回路41は、1行目から最終行までの行選択線SR1、SR2・・・に対して順次行選択信号を送出する。水平走査回路42は、行選択信号によって1行分の画素PX11、PX12・・・の各画素選択用トランジスタTr2がオンされている間に、各列の列選択用トランジスタ37を順次オンする。こうした手順が最終行まで繰り返されて、撮像領域36a内の全画素PXが順次選択される。各画素PXの電圧信号は出力線38に順次出力される。これにより、1画面分のX線画像を表す電圧信号が読み出される。
FPD25は、画像検出パネル36、垂直走査回路41、水平走査回路42に加えて、制御部46、タイミングジェネレータ(TG)47、A/D変換器48、メモリ49、照射検出部51、通信部52を備えている。
制御部46は、FPD25の各部を統括的に制御する。TG47は、制御部46からの制御信号に基づいてクロック信号を発生し、これを垂直走査回路41や水平走査回路42に入力する。垂直走査回路41と水平走査回路42は、クロック信号に同期してそれぞれ行選択信号及び列選択信号を発生する。
A/D変換器48は、出力線38から順次出力されるアナログの電圧信号をデジタル信号に変換する。メモリ49は、A/D変換器48から出力されるデジタル信号を一時的に格納する。画像読み出しが行われると、メモリ49にはX線画像を表すデジタル信号が格納される。通信部52は、撮影制御装置23から制御信号や撮影条件を受信して、制御部46に入力する。制御部46は、入力された制御信号や撮影条件を受け付ける。また、通信部52は、メモリ49から読み出したX線画像を撮影制御装置23に送信する。
照射検出部51は、画素PXを利用して、X線源13が照射するX線の照射開始及び照射終了を検出する。照射検出部51は、領域設定部51a、ゲイン設定部51b、照射判定部51cを有する。
図4に示すように、領域設定部51aは、撮像領域36a内において、照射検出に利用する少なくとも1つの画素PXを含む照射検出領域56を設定する。照射検出領域56は、撮像領域36a内に複数箇所設定される。本例においては、撮像領域36aの中央位置と、中央位置を中心とする四隅の合計5つの箇所に照射検出領域56が設定されている状態を示している。また、各照射検出領域56は、隣接する4つの画素PXから構成されている。
照射検出領域56は、撮像領域36aの任意の箇所に、任意のサイズ(画素PXの数)で設定することが可能である。領域設定部51aは、例えば、頭部、胸部、腹部といった撮影部位と照射検出領域56の位置情報やサイズ情報が対応付けられたテーブルデータを有しており、制御部46が受け付けた撮影条件に含まれる、頭部、胸部、腹部といった撮影部位に応じて、照射検出領域56の位置やサイズを決定する。もちろん、位置情報やサイズ情報の入力を直接的に受け付けて、入力された位置情報やサイズ情報に基づいて、照射検出領域56の位置やサイズを決定してもよい。こうすれば、予め設定されたテーブルデータとは無関係に照射検出領域56の位置やサイズを設定したり、テーブルデータで決定される照射検出領域56の位置やサイズを微調整することができる。
領域設定部51aは、照射開始及び終了の各検出動作において、決定した照射検出領域56内の位置やサイズ情報を制御部46に入力する。制御部46は、入力された位置やサイズ情報に基づいて照射検出領域56を判別して、照射検出領域56内の画素PXを特定する。そして、各検出動作において、制御部46は、垂直走査回路41及び水平走査回路42を制御して、特定した画素PXを順次選択させて、照射検出領域56内の画素PXから電圧信号を出力させる。
例えば、図3において、画素PX22が照射検出領域56内の画素PXとして特定されている場合には、制御部46は、垂直走査回路41及び水平走査回路42を通じて、画素PX22が接続される行選択線SR2と列信号線SC2に対してそれぞれ行選択信号及び列選択信号を入力する。これにより、画素PX22の画素選択用トランジスタTr2と列選択用トランジスタ37がオンして、画素PX22の電圧信号が出力線38に出力される。このように、制御部46、垂直走査回路41及び水平走査回路42は、出力信号読み出し部として機能する。
照射開始及び照射終了の各検出動作において、照射検出領域56内の画素PX22から読み出された電圧信号は、A/D変換器48によってデジタル信号に変換されてメモリ49に格納される。照射判定部51cは、メモリ49に格納されたデジタル信号を、照射検出を行うための出力信号として読み出して、読み出した出力信号に基づいて照射開始及び照射終了を判定する。各照射検出領域56からの出力信号の読み出しは、所定のサンプリングレートで繰り返し実行される。
なお、本例においては、各検出動作において、撮像領域36aの全画素PXではなく、各照射検出領域56内の画素PXを選択して出力信号を読み出しているが、全画素PXから出力信号を読み出して、デジタル信号に変換後の1画面分の出力信号から、各照射検出領域56内の出力信号を抽出してもよい。
ゲイン設定部51bは、アンプAPのゲインを設定する。ゲイン設定部51bは、ゲインの値を指定する指定情報を制御部46に入力する。制御部46は、領域設定部51aから入力された照射検出領域56の位置情報やサイズ情報と、ゲイン設定部51bから入力された指定情報とに基づいて、水平走査回路42を通じて、照射検出領域56内の画素PXのゲインを変更する。水平走査回路42は、照射検出領域56内の画素PXが接続されるゲイン制御線GCを選択して、選択したゲイン制御線GCを通じてアンプAPに対してゲイン設定信号を入力する。これにより、照射検出領域56内の画素PXのゲインが設定される。
なお、本例においては、水平走査回路42に接続されたゲイン制御線GCによってゲイン設定信号を入力するため、列毎にしかゲインを設定することができないが、例えば、ゲイン制御線GCを垂直走査回路41にも接続して、行と列の指定により画素PX毎にゲインを設定できるようにしてもよい。
図5(A)に示すように、X線源13が照射するX線の強度は、時刻t1において開始指令を受けると、徐々に立ち上がる。照射開始初期の段階では立ち上がりの傾きは緩やかであり、徐々に傾きを増して、時刻t2において管電流に応じたピークまで上昇する。そして、時刻t3において停止指令を受けるまでピーク付近においてほぼ定常な状態を保ち、停止指令を受けると徐々に下降して時刻t4においてゼロになる。このように、1回の撮影で照射されるX線の強度変化を表す曲線のプロファイルはほぼ台形状になる。
こうしたX線強度のプロファイルに対応して、画素PXに蓄積される信号電荷の蓄積量の変化は、図5(B)に示すようなプロファイルとなる。電荷蓄積量は、X線の強度の上昇に対応して時刻t1から増加を開始して、X線の強度がピークに達する時刻t2に近づくにつれて傾き(増加率)を増しながら増加する。X線の強度が定常状態となる時刻t2から時刻t3の間はほぼ一定の増加率で増加する。そして、X線の強度の下降に対応して時刻t3からは増加率が減少を開始するが、電荷蓄積量は、X線の強度がゼロになる時刻t4まで緩やかに増加を続ける。時刻t4以後においては電荷蓄積量は増加せずに一定となる。なお、正確には、X線が入射しない間も画素PXには暗電流に起因する電荷が発生するため、時刻t1以前及び時刻t4以後においても、電荷蓄積量は僅かではあるが増加する。
照射開始検出動作においては、所定のサンプリングレートで各照射検出領域56内の画素PXから出力信号が読み出される。照射検出部51は、照射検出領域56内の画素PXのゲインの初期値を高い値(高ゲインGnH)に設定して、画素PXの感度を上げた状態で検出動作を開始する。照射検出部51は、画素PXの感度を上げた状態で照射判定部51cに一次判定を行わせる。
一次判定において、照射判定部51cは、高ゲインで画素PXから読み出した出力信号の信号値SVを、予め設定された閾値Thと比較し、信号値が閾値Th以上となったときに照射開始と判定する。閾値Thと比較する信号値SVは、例えば、各照射検出領域56内のそれぞれの画素PXの平均値や中間値が使用される。複数の画素PXの平均値や中間値を使用することで異常値を排除することができる。そして、照射判定部51cは、各照射検出領域56の信号値SVを順次閾値Thと比較する。
感度が高い状態では、電荷蓄積量の僅かな増加が出力信号の信号値SVの大きな上昇として現れる。そのため、X線の照射が開始される時刻t1直後のように、電荷蓄積量が僅かな段階でも、図5(D)に示すように、高ゲインGnHで読み出された出力信号の信号値SVは大きくなり、低ゲインGnLの状態と比較すると、閾値Thとの差が大きく現れるため、信号値SVと閾値Thの比較を正確に行うことができる。
一方で、図5(C)に示すように、照射が開始される時刻t1以前においては、電荷蓄積量は暗電流に起因する電荷による僅かな増加しかないが、ゲインが高ゲインGnHに設定されている場合には、そのような僅かな増加でも、信号値SVが閾値Thを超えてしまう場合がある。また、衝撃や振動による振動ノイズもゲインが高いと大きな信号値SVとして現れるため、閾値Thを超えてしまう場合がある。
このような場合には誤検出となるため、照射検出部51は一次判定の判定結果を検証するために、一次判定において信号値SVが閾値Th以上であると判定された場合には、ゲインの値を高ゲインGnHから低ゲインGnLに落として、二次判定を行う。二次判定は、信号値SVが閾値Th以上と判定された照射検出領域56に対して行われる。
二次判定において、照射判定部51cは、低ゲインGnLで読み出された出力信号の信号値SVが増加して閾値Th以上になったかを判定する。照射判定部51cは、低ゲインGnLで複数回読み出される信号値SV同士を比較して、増加しているか否か、信号値SVが閾値Th以上になったかを調べる。図5(D)に示すように、低ゲインGnLで読み出される信号値SVが増加して、閾値Th以上になった場合には、一次判定の結果が誤検出ではないと判断し、一次判定の判定結果を確定する。
一方、図5(C)に示すように、二次判定において、低ゲインGnLで読み出される信号値SVが増加せず、閾値Th以上にならない場合には、一次判定の結果が誤検出であると判断する。二次判定においては、低ゲインGnLを読み出す回数(例えば3回など)の上限値を決めて、その回数の範囲で信号値SVが閾値Th以上に達しない場合には誤検出と判断する。なお、上限値は時間で決めてもよい。誤検出と判断した場合には、照射検出領域56内のすべての画素PXのゲインを高ゲインGnHに戻して、一次判定をやり直す。
照射検出部51は、二次判定において判定結果が確定されると、制御部46に照射開始を検出したことを表す検出信号を送る。制御部46は、検出信号を受けると、照射検出領域56の出力信号の読み出しを停止して、画素PXのリセットを行わずに信号電荷蓄積動作を開始する。そして、並行して照射終了検出動作を開始する。
また、照射検出部51cは、照射開始を検出した時点における信号値SVと、その信号値SVを読み出した照射検出領域56の位置情報とを内部メモリに記憶する。後述するように、内部メモリに記憶した信号値SVと位置情報は照射検出終了動作で使用される。
図6において、図6(A)及び(B)は、図5(A)及び(B)と同じであり、それぞれX線の強度変化のプロファイルと、電荷蓄積量の経時変化のプロファイルを示す。照射終了検出動作においては、出力信号の信号値SVに基づいて、照射が完全に停止してX線の強度がゼロになったことを検出する。図6(B)に示すように、電荷蓄積量は、X線の強度の下降に対応して、X線源13が停止指令を受ける時刻t3からは増加率が減少を開始するが、X線の強度がゼロになる時刻t4まで緩やかに増加を続ける。時刻t4以後においては電荷蓄積量は増加せずに一定となる。
照射終了検出動作においては、まず、照射検出部51は、照射開始検出の検出結果に基づいて、照射終了検出において使用する照射検出領域56と、ゲインの初期値を設定する。具体的には、照射開始検出動作において、照射検出部51の内部メモリに記憶した位置情報に基づいて照射終了検出動作に使用する照射検出領域56を決定する。照射開始検出において信号値SVがいち早く上昇する領域は、撮像領域36a内において被検体Hを透過せずに直接X線が入射するいわゆる素抜け領域と考えられる。素抜け領域は被検体HによるX線の減衰が少ないため、照射開始検出ばかりでなく、照射終了検出においても適している。そのため、照射検出部51は、照射開始検出時の照射検出領域56の位置情報を記憶して、それに対応する照射検出領域56を照射終了検出に使用する。
また、照射検出部51は、照射検出部51の内部メモリに記憶した信号値SVに基づいて、ゲインの初期値Gn1を設定する。信号値SVは、X線の照射開始初期の段階の信号値SVではあるが、その大きさに基づいておおよそのX線の強度のピークを予測することができる。X線の強度のピークが分かれば、照射終了検出において、出力信号が飽和しない範囲の高い値にゲインの初期値を設定することができる。照射検出部51は制御部46を通じて照射検出領域56と、その照射検出領域56内の画素PXのゲインの初期値を設定する。
このように照射終了検出において、照射検出部51は、照射開始検出の検出結果に基づいて、照射検出領域56とゲインの初期値Gn1について初期設定を行う。初期設定終了後、制御部46は、照射検出領域56内の画素PXから所定のサンプリングレートで出力信号の読み出しを開始する。
図6(B)に示すように、時刻t4以後においては電荷蓄積量は増加せずに一定となる。図6(C)、(D)に示すように、照射判定部51cは、同一のゲインGn1で連続して読み出される2つの出力信号の信号値SVを比較して、暗電流ノイズに起因する増加分を除いて、信号値SVがほぼ一定になったか否かを判定する。信号値SVがほぼ一定となった場合には、出力信号が飽和していないかを調べる。ゲインの初期値Gn1は、照射開始検出の結果に基づいて予測された値であるので、予測を上回って出力信号が飽和する場合もある。そのため、照射検出部51は、図6(C)のゲインGn1で読み出した信号値SVに示すように、出力信号が飽和している場合には、ゲイン設定部51b及び制御部46を通じてゲインの値を一段階下げて、ゲインGn2に変更する。
ゲインGn2に変更した後、照射判定部51cは、同一のゲインGn2で連続して読み出される2つの出力信号の信号値SVを比較して、信号値SVがほぼ一定になったか否かを判定する。ゲインGn2で読み出した出力信号も飽和した場合には、図6(D)に示すようにさらにゲインGn3、Gn4と段階的に下げていく。そして、図6(D)のゲインGn4の信号値SVのように、出力信号が飽和していない状態で、信号値SVがほぼ一定となった場合には、照射判定部51cは、照射終了と判定する。照射検出部51は、照射判定部51cが照射終了と判定した場合には、制御部46に照射終了を検出したことを表す検出信号を送る。制御部46は、検出信号を受けると画像読み出し動作を開始する。
上記構成による作用について、図7〜図9に示すフローチャートを参照しながら説明する。被検体Hの撮影を行う際には、電子カセッテ21がセットされた撮影台22の高さ調節などにより被検体Hの撮影部位と電子カセッテ21との相対位置のポジショニングや、撮影条件の設定などの撮影準備作業が行われる。図7に示すように、撮影条件が設定されて、待機指示の入力を受け付けると(S100)と、電子カセッテ21のFPD25は照射開始検出動作を開始する(S110)。撮影準備作業が終了後、照射スイッチ15が押下されると、X線源13はX線の照射を開始する。
図8に示すように、照射開始検出動作において、電子カセッテ21の制御部46は、撮像領域36aの全画素をリセットする(S111)。これにより画素PXから暗電流ノイズによる電荷が掃き出される。電子カセッテ21は、撮像領域36a内に照射検出領域56を設定し、照射検出領域56内の全画素PXのゲインの値を高ゲインGnHに設定する(S112)。ゲインの設定後、電子カセッテ21は、所定のサンプリングレートで各照射検出領域56内の画素PXからの出力信号の読み出しを開始する(S113)。
電子カセッテ21は、照射検出部51において、各照射検出領域56の出力信号の信号値SVと閾値Thを比較して、高ゲインGnHによる一次判定を行う。電子カセッテ21は、一次判定において、信号値SVが閾値Th以上になったか否かを監視する(S114)。信号値SVが閾値Th以上になった照射検出領域56がある場合には(S114でY)、その照射検出領域56のゲインを低ゲインGnLに変更する(S115)。そして、照射検出部51は、低ゲインGnLで読み出した出力信号の信号値SVが閾値Th以上になったかを監視する二次判定を行う(S116)。
二次判定において、図5(C)に示すように、低ゲインGnLで読み出した出力信号の信号値SVが閾値未満の場合には、照射検出部51は、一次判定が誤検出であると判定する。誤検出と判定した場合には(S116でN)、電子カセッテ21は、S111に戻って撮像領域36a内の全画素PXをリセットして、各照射検出領域56のゲインの値をすべて高ゲインGnHに戻して(S112)、一次判定を再開する(S113〜S116)。
一方、図5(D)に示すように、低ゲインGnLで読み出した出力信号の信号値SVが閾値以上となった場合には(S116でY)、照射検出部51は、一次判定の判定結果を確定して、照射が開始されたと判定する(S117)。照射検出部51は照射開始を判定した最終的な信号値SVと照射検出領域56の位置情報を内部メモリに記憶する。照射検出部51は、二次判定において照射が開始されたと判定すると、照射開始を検出したことを表す検出信号を制御部46に送る。電子カセッテ21は、照射開始を検出すると、照射検出領域56からの出力信号の読み出しを終了して、照射開始検出動作を終了する(S118)。
このように、電子カセッテ21は、高ゲインGnHで一次判定を行うため、電荷蓄積量が少ない段階でも大きな信号値SVが得られるので、照射が開始されているにも関わらず、照射開始と判定しないという検出逃しを減らすことができる。また、高ゲインGnHの場合と比べて、低ゲインGnLの場合には、電荷蓄積量がある程度大きな値にならないと、信号値SVが閾値Th以上にならないので、低ゲインGnLで二次判定を行うことで、照射開始の有無を正確に判定することができる。
また、一次判定においてX線の照射が開始されている場合には、次に信号値SVが読み出されるまでの間に電荷蓄積量は大きく増加する。そうすると、一次判定後に高ゲインGnHで出力信号を読み出すと、信号値SVはすぐに上限値STに達して飽和してしまう。飽和すると、信号値が増加しているか否かといった判定は不能となる。電子カセッテ21は、一次判定後、低ゲインGnLにすることで、このような判定不能の事態も回避することができる。このため、電子カセッテ21は、従来と比較して、迅速、正確に照射開始を検出することができる。
また、電子カセッテ21は、非破壊読み出し方式のFPD25を使用しており、二次判定において、照射開始と判定した場合には、画素PXのリセットを行わないので、一次判定から二次判定までの間に照射されたX線も無駄にならない。
図7において、電子カセッテ21は照射開始検出動作を終了すると、蓄積動作を開始する(S120)。そして、蓄積動作と並行して照射終了検出動作を開始する(S130)。
図9に示すように、照射終了検出動作において、電子カセッテ21は、照射開始検出動作の検出結果に基づいて初期設定を行う。初期設定において、照射検出部51は、内部メモリに記憶した照射検出領域56の情報と信号値SVに基づいて、制御部46を通じて照射終了検出動作において使用する照射検出領域56とゲインの初期値Gn1を設定する(S131)。こうすることで、素抜け領域と考えられる照射検出領域56を設定できるとともに、飽和しないと予測される範囲でゲインの初期値Gn1を高めに設定することができる。
初期設定後、電子カセッテ21は、所定のサンプリングレートで設定された照射検出領域56内の画素PXからの出力信号の読み出しを開始する(S132)。電子カセッテ21は、照射判定部51cにおいて、連続して読み出される2つの出力信号の信号値SVがほぼ一定になったかを監視する(S133)。図6(C)に示すように、ゲインGn1の信号値SVのように信号値SVが一定の場合には、出力信号が飽和しているか否かを調べる(S134)。電子カセッテ21は、出力信号が飽和している場合には(S134でY)、ゲインGn1を一段階下げてゲインGn2に変更する(S135)。そして、S133に戻って、信号値SVが一定になったかを監視する。図6(D)に示すように、信号値SVが一定で飽和もしていないと判定された場合には(S134でN)、照射判定部51cは、照射が終了したと判定する(S136)。照射検出部51は、制御部46に対して照射終了を検出したことを表す検出信号を送る。制御部46は照射検出領域56からの出力信号の読み出しを終了し(S137)、撮像領域36a内の全画素PXのゲインを画像読み出し用のゲインの値に設定する(S138)。
このように、照射終了検出においては、ゲインの初期値として高めのゲインを設定して、出力信号が飽和した場合には段階的にゲインの値を下げていくため、比較的大きな値(S/N比が高い状態)で信号値SVが一定となったか否かを判定できる。このため、X線の照射が完全に停止してX線の強度がゼロになるところを、迅速かつ正確に判定することができる。これにより、X線画像に反映されない無駄なX線を減らすことができる。また、X線の強度がゼロになった以後に発生する暗電流ノイズも減らせる。
図7において、電子カセッテ21は、照射検出動作が終了すると、画像読み出し動作を実行して、1画面分のX線画像を読み出す(S140)。X線画像は通信部52からコンソール24に送信される。次の撮影がある場合は、S100に戻り、上記手順を繰り返す。次の撮影が無い場合は終了する(S150)。X線画像は、照射されたX線が無駄なく反映されたものであるため、良好な画質が確保される。また、本発明では、照射されたX線を無駄なく反映できるため、撮影条件において予め設定される照射線量を少なめに設定できるので、被検体Hの被曝量の低減にも寄与する。
本例では、照射開始検出動作において、一次判定で閾値Th以上となった1つの照射検出領域56の信号値SVに対して二次判定を行って照射開始を検出しているが、より正確性を重視する場合には、例えば、二箇所以上の照射検出領域56の信号値SVに基づいて二次判定までの判断を行って、二箇所以上で二次判定を通過した場合に照射開始を検出してもよい。このように照射開始判定に時間を掛けても、リセットが行われない限り画素PXの信号電荷は保持されるのでX線の無駄もない。
また、一次判定において、高ゲインGnHで1回読み出した出力信号の信号値SVが閾値Th以上になったときに一次判定を通過させて二次判定を行っているが、より正確性を重視する場合には、例えば、高ゲインGnHの信号値SVが複数回連続して閾値Th以上になったときに一次判定を通過させて二次判定を行うようにしてもよい。
また、照射終了検出動作において、照射開始検出の結果を基に、素抜け領域と考えられる照射検出領域56を照射終了検出に使用する例で説明したが、素抜け領域ではなく、被検体Hが位置する照射検出領域56を照射終了検出に使用してもよい。被検体Hが位置する領域ではX線の減衰があるため、X線の入射量は少ない。そのため、電荷蓄積量も相対的に少ないので、素抜け領域と比べて、ゲインの値を高く設定することができる。出力信号を飽和させないということ及びゲインを段階的に下げる回数を減らすということを重視する場合には、被検体Hが位置する領域を照射終了検出時の照射検出領域56とするのがよい。
この場合には、照射開始検出動作中に、照射検出部51は、例えば、信号値SVが閾値Th未満の領域や閾値Thに達するのに時間がかかる照射検出領域56を調べることにより、被検体Hが位置すると考えられる照射検出領域56を特定して、その位置情報と信号値SVを内部メモリに記憶する。そして、照射終了動作を開始する際にその位置情報と信号値SVに基づいて照射検出領域56とゲインの初期設定を行う。
また、本例においては、照射開始検出の際に初期値として設定される高ゲインGnHの値については、撮影条件に関わらず一定としているが、撮影条件に含まれる照射線量(管電流や照射時間で規定される)に基づいて、高ゲインGnHの値を変更してもよい。
この場合には、ゲイン設定部51bは、制御部46が受け付けた撮影条件から管電流及び照射時間を読み出して、読み出した管電流及び照射時間に基づいて、高ゲインGnHの値を設定する。高ゲインGnHの値の算出に際しては、予め内部メモリに格納される、管電流及び照射時間とゲインの値との対応関係を表す関数式やテーブルデータを用いた演算や参照によって行われる。
ゲイン設定部51bは、例えば、照射線量が多いほど、高ゲインGnHの値が低くなるように設定する。照射線量が多いほど、電荷蓄積量も多くなるので、ゲインを低くしても信号値SVとして比較的大きな値が得られるからである。また、照射線量が多いほど、信号値SVの飽和の懸念も大きくなるため、ゲインを低くすることで飽和を抑制する効果がある。
なお、ゲイン設定部51bは、管電流と照射時間の積(mAs値と呼ばれる)である総線量に基づいて高ゲインGnHの値を設定してもよいし、単位時間当たりの線量を規定する管電流のみに基づいて設定してもよい。
また、高ゲインGnHの値に加えて又はそれに代えて低ゲインGnLの値も、照射線量に応じて設定してもよい。低ゲインGnLについても、高ゲインGnHの場合について説明したとおりの効果が期待できる。
さらに、照射終了検出の際のゲインの初期値について、照射開始検出の結果を基に設定する例について説明したが、照射開始検出の結果を利用しない場合には、照射終了検出の際に初期値として設定されるゲインGn1の値を、撮影条件に含まれる照射線量に応じて設定してもよい。この場合も、照射開始検出の際の高ゲインGnHの場合について説明したとおりの効果が期待できる。
また、本例では、照射開始検出動作において、撮像領域36a内の複数箇所に照射検出領域56を最初に設定し、各照射検出領域56の信号値SVに基づいて照射開始検出を行う例で説明したが、図10に示すように、撮像領域36aの全域を、照射検出領域56としてもよい。
この場合には、照射検出部51は、照射開始検出動作において、撮像領域36aの全画素PXの出力信号を読み出し、それらの信号値SVと閾値Thを比較する。閾値Thと比較する信号値SVは、画素PX毎の信号値SVでもよいし、隣接する複数の画素PX(例えば3×3の合計9個の画素PX)の信号値SVの平均値や中間値を閾値Thと比較する信号値SVとしてもよい。
そして、照射終了検出においては、照射開始と最終的に判定した信号値SVを出力した画素PXの位置を基準として、照射終了検出に使用する照射検出領域56を設定する。例えば、照射開始と最終的に判定した信号値SVを出力した画素PXが画素PX22の場合には、その画素PX22を中心とする領域59を照射終了検出に使用する照射検出領域56として設定する。
電子カセッテ21は可搬型であるため、撮影台22を使用しないで使用する場合も多い。手や足などの四肢撮影などを行う場合には、撮像領域36aの一部のみを照射領域として使用する場合もある。照射領域はX線源13の照射野限定器13bで設定される。照射領域の位置やサイズは、被検体Hの姿勢や撮影部位の大きさに応じて変わるため、撮像領域36a内で一定しない。図10に示すように撮像領域36aの全域を照射検出領域56として設定する方法は、こうした使われ方をする電子カセッテ21に対しては非常に有効である。
また、画素PX内のアンプAPを可変ゲインアンプとして構成する代わりに、図11に示すように、出力線38の後段、A/D変換器48の前段に、可変ゲインアンプ60を設けてもよい。この場合には、水平走査回路42と画素PXのアンプAPに接続されるゲイン制御線GCが不要になる。それ以外の構成は上記例と同様であるので、同一部分には同一符号を付して説明を省略する。
[第2実施形態]
第1実施形態は、照射開始検出において、設定した照射検出領域56の全画素PXを、一次判定のときには高ゲインGnHに、二次判定のときにはその照射検出領域56内の全画素PXを低ゲインGnLに変更する例で説明したが、図12に示す第2実施形態のように、1つの照射検出領域56内に、高ゲインGnHに設定される高感度領域56aと、低ゲインGnLに設定される低感度領域56b(ハッチングで示す)を設けてもよい。高感度領域56aと低感度領域56bは、照射開始検出動作中において、ゲインの値は変更されない。第2実施形態は、照射検出領域56が高感度領域56aと低感度領域56bに分かれている点を除いて第1実施形態と同様であるので、共通部分については説明を省略して、相違点についてのみ説明する。
図13のフローチャートに示すように、第2実施形態の電子カセッテ21は、照射開始検出動作において、照射検出領域56の設定に加えて、各照射検出領域56内において高感度領域56aと低感度領域56bを設定し、それぞれのゲインの値を高ゲインGnHと低ゲインGnLに設定する(S211)。設定後、第1実施形態のS111(図8参照)と同様に、撮像領域36aの全画素PXをリセットして(S212)、さらに、第1実施形態のS113(図8参照)と同様に、所定のサンプリングレートで照射検出領域56からの出力信号の読み出しを開始する(S213)。
そして、電子カセッテ21は、照射検出部51において、高感度領域56aから読み出した出力信号に基づいて一次判定を行い、高感度領域56aが出力する信号値SVと閾値Thを比較する(S214)。閾値Th以上の信号値SVがあると判定した場合(S214でY)には、その信号値SVを出力した高感度領域56aに対応する低感度領域56bの信号値SVを閾値Thと比較して二次判定を行う(S215)。
二次判定において、低感度領域56bの信号値SVが閾値Th未満の場合には(S215でN)、S212に戻って撮像領域36aの全画素PXをリセットして、一次判定を再開する。低感度領域56bの信号値SVが閾値Th以上である場合には(S215でY)、照射開始と判定する(S216)。照射検出部51は、出力信号の読み出しを終了して(S217)、制御部46に照射が開始されたことを表す照射検出信号を送信する。電子カセッテ21は、照射検出動作を終了して、第1実施形態の図7に示す同様の手順で、蓄積動作や画像読み出し動作を実行する。
第2実施形態のように、1つの照射検出領域56を高感度領域56aと低感度領域56bに分けることで、ほぼ同時に出力される出力信号に基づいて一次判定及び二次判定を行うことができる。
第1実施形態及び第2実施形態において、高低の2種類のゲインで読み出した2種類の出力信号に基づいて照射開始を検出する例で説明したが、高ゲイン、中ゲイン、低ゲインというようにゲインの値が異なる3種類以上のゲインで読み出した出力信号を用いてもよい。3種類以上のゲインの場合には、高ゲインと中ゲインで一次判定を行い、低ゲインで二次判定を行う、あるいは、高ゲインで一次判定を行い、中ゲインと低ゲインで二次判定を行うというように、一次判定と二次判定の少なくとも一方を2種類以上のゲインで行う。あるいは、照射終了検出において示したように、照射開始検出においても、出力信号が飽和した場合には高ゲインから中ゲインというように段階的にゲインを下げてもよい。これらは照射開始検出の正確性を重視する程度に応じて適宜変更される。
また、上記実施形態では、照射開始検出において、信号値SVと比較する閾値Thを一次判定と二次判定のどちらも同じ閾値Thを使用する例で説明したが、一次判定と二次判定の閾値Thを別の値に設定してもよい。例えば、二次判定におけるゲインGnLに比べて一次判定におけるゲインGnHの方が高いため、信号値SVも大きな値になる。そのため、一次判定の閾値Thを、二次判定の閾値Thよりも上げる。また、特許文献1に記載されているように、閾値Thと比較する信号値SVを、連続して読み出される2回の出力信号の差としてもよい。また、照射開始と照射終了の検出を両方行う例で説明したが一方だけ検出するのでもよい。
さらに、信号値SVを、A/D変換によりデジタル信号とした後で閾値Thと比較した例で説明したが、例えば、基準電圧と入力電圧の比較結果を出力するコンパレータを使用して、A/D変換前のアナログ信号のまま信号値SVと閾値Thを比較してもよい。
上記実施形態は1例であり、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、上記実施形態では、CMOS型のFPDを使用した例で説明したが、非破壊読み出しが可能なものであれば、ガラス基板上にTFTを含む画素が形成されたTFTマトリックス基板を使用するものなど、CMOS型以外のものでもよい。また、シンチレータでX線をいったん可視光に変換する間接変換型のFPDを例に使用したが、X線を直接電気信号に変換する直接変換型のFPDでもよい。
また、上記各実施形態では、X線画像検出装置である電子カセッテと、撮影制御装置及びコンソールをそれぞれ別体で構成した例で説明したが、撮影制御装置の機能を電子カセッテに内蔵したり、撮影制御装置に加えてコンソールの機能を電子カセッテに内蔵する等、電子カセッテと、撮影制御装置やコンソールを一体化してもよい。
また、X線画像検出装置は、電子カセッテに限らず、FPDが撮影台に内蔵された据え置き型のものでもよい。
また、本発明は、X線に限らず、γ線等の他の放射線を使用する放射線撮影システムにも適用することができる。