JP6037676B2 - Cordyceps culture method and culture apparatus used therefor - Google Patents
Cordyceps culture method and culture apparatus used therefor Download PDFInfo
- Publication number
- JP6037676B2 JP6037676B2 JP2012141073A JP2012141073A JP6037676B2 JP 6037676 B2 JP6037676 B2 JP 6037676B2 JP 2012141073 A JP2012141073 A JP 2012141073A JP 2012141073 A JP2012141073 A JP 2012141073A JP 6037676 B2 JP6037676 B2 JP 6037676B2
- Authority
- JP
- Japan
- Prior art keywords
- anesthesia
- carbon dioxide
- container
- cordyceps
- dioxide gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000190633 Cordyceps Species 0.000 title claims description 32
- 238000012136 culture method Methods 0.000 title description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 203
- 206010002091 Anaesthesia Diseases 0.000 claims description 114
- 230000037005 anaesthesia Effects 0.000 claims description 114
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 99
- 239000001569 carbon dioxide Substances 0.000 claims description 99
- 241000238631 Hexapoda Species 0.000 claims description 37
- 238000011081 inoculation Methods 0.000 claims description 22
- 230000003444 anaesthetic effect Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 241001248610 Ophiocordyceps sinensis Species 0.000 claims description 13
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 241000233866 Fungi Species 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 3
- 244000025254 Cannabis sativa Species 0.000 claims 1
- 239000007789 gas Substances 0.000 description 49
- 208000015181 infectious disease Diseases 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 15
- 206010036790 Productive cough Diseases 0.000 description 13
- 210000003802 sputum Anatomy 0.000 description 13
- 208000024794 sputum Diseases 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 241000255789 Bombyx mori Species 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 235000011089 carbon dioxide Nutrition 0.000 description 5
- 210000000744 eyelid Anatomy 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 3
- 241001264174 Cordyceps militaris Species 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 206010022489 Insulin Resistance Diseases 0.000 description 2
- 240000000249 Morus alba Species 0.000 description 2
- 235000008708 Morus alba Nutrition 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000008260 defense mechanism Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000009366 sericulture Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- 241000254032 Acrididae Species 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 241000254173 Coleoptera Species 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 241000510032 Ellipsaria lineolata Species 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 241000578422 Graphosoma lineatum Species 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 241000193160 Isaria tenuipes Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000238633 Odonata Species 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000382353 Pupa Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000001315 anti-hyperlipaemic effect Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 201000011529 cardiovascular cancer Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007087 memory ability Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は、冬虫夏草の培養方法及びそれに用いる培養装置に関する。 The present invention relates to a method for cultivating cordyceps and a culture apparatus used therefor.
冬虫夏草(コルディセプス属(Cordyceps spp.)とペキロマイセス属(Paecilomyces spp.))は、昆虫寄生真菌類である。
冬虫夏草とその生産物は、よい科学的根拠が乏しいながらも、糖尿病、心血管疾患や癌や代謝病を防ぎ、そして/または、それらの疾病を遅らせるのに有益であると主張される栄養剤として広く利用されている(非特許文献1)。
サナギタケ(Cordyceps militaris)の水抽出物によるインシュリン抵抗性の減少とインシュリン分泌物の増加効果に関するIn vivo効果(非特許文献2)、Phellinus linteusのプルテオグルカン複合物による抗腫瘍活性(非特許文献3)、チベット産冬虫夏草(Cordyceps sinensis)の熱水抽出による抗高脂血症効果(非特許文献4)などは、科学的根拠があり注目に値する。
非特許文献5はチベット産冬虫夏草抽出物がD−ガラクトースを投与されたマウスの学習・記憶能力を向上させる可能性のあることを示している。
非特許文献6は、カイコを特異的に宿主として昆虫体内で培養されたハナサナギタケ(Paecilomyces tenuipes)の熱水抽出物が、高齢化マウスの脳機能低下を防ぐ可能性のあることを示している。
しかしながら、冬虫夏草(コルディセプス属とペキロマイセス属)は、既に自然界での採取量は極めて少なく、希少資源である。また、チベット産冬虫夏草の採取による自然破壊は、社会問題となっている。従って、冬虫夏草の人工栽培が注目されている。
我が国では、島根県津和野町(旧日原町)において、カイコを特異的に宿主とした昆虫体内での冬虫夏草(サナギタケ、ハナサナギタケ及びコナサナギタケ)の培養方法(特許文献1)が確立している。同地域では、津和野の培養方法による冬虫夏草に、桑葉で飼育したカイコを用いており、津和野の培養方法による冬虫夏草に関する新たな生理活性機能を見い出すための研究も平行して進められている(非特許文献7)。
津和野の培養方法による冬虫夏草は、生きたカイコの蛹に植菌を行って栽培することを特徴としている。カイコ体内で確実に菌核を作った後に子実体が形成されるため、臭みが少ないだけでなく、高い生理活性機能も期待されている。
植菌は、カイコが上蔟から羽化(通常、上蔟日から16日程度)した蛹に行わなければならない。しかし、上蔟から7日までは、蛹の体表面は柔らかく植菌過程で傷つくおそれがある。更に、たとえ7日から16日前であっても、成育が進んだ蛹は感染することなく羽化してしまう。よって、植菌期間は非常に限られている。
島根県津和野町では、高齢化に伴う同地域内での養蚕農家の減少から、2010年に他地域から20万頭の蛹を搬入したが、その大半が感染することなく羽化してしまい、冬虫夏草の生産に大きな打撃を受けた。そして、その後の研究で、その原因が蛹の成育が進んだことであると分かった。
ところで、炭酸ガスを用いた麻酔は、動物に用いられる(特許文献2)他、魚に対しても用いられている(特許文献3、特許文献4)。
また、炭酸ガス麻酔は、研究現場において昆虫にも利用されている(非特許文献8)。
Cordyceps spp. (Cordyceps spp. And Paecilomyces spp.) Are insect parasitic fungi.
Cordyceps and its products are nutrients that are claimed to be beneficial in preventing and / or delaying diabetes, cardiovascular disease, cancer and metabolic diseases, but lacking good scientific evidence. Widely used (Non-Patent Document 1).
In vivo effect on decrease in insulin resistance and increase in insulin secretion by water extract of Cordyceps militaris (Non-patent document 2), anti-tumor activity by Plutenoglucan plutoglucan complex (Non-patent document 3) ), The antihyperlipidemic effect (Non-patent Document 4) of hot water extraction of Tibetan Cordyceps sinensis is worthy of attention.
Non-Patent Document 5 shows that the Tibetan Cordyceps extract may improve the learning and memory ability of mice administered with D-galactose.
Non-Patent Document 6 shows that a hot water extract of Paecilomyces tenuipes cultured in an insect body specifically using silkworms as a host may prevent brain function decline in aging mice.
However, Cordyceps (Cordiseptus and Pekyromyces) are already rare resources and are rarely collected in nature. In addition, the destruction of nature by collecting Tibetan cordyceps is a social problem. Therefore, artificial cultivation of cordyceps is attracting attention.
In Japan, in Tsuwano Town (former Hihara Town), Shimane Prefecture, a method for cultivating Cordyceps sinensis (Sanatake, Sasatake and Sasatake) in insects with silkworms as a specific host has been established (Patent Document 1). In the same area, silkworms bred on mulberry leaves are used for cordyceps by the Tsuwano culture method, and research is also being conducted in parallel to find new bioactive functions related to cordyceps by the Tsuwano culture method. Patent Document 7).
Cordyceps by the Tsuwano culture method is characterized by inoculating and cultivating silkworms of live silkworms. Since the fruiting body is formed after the fungal nuclei are reliably produced in the silkworm, not only the smell is low, but also a high bioactivity function is expected.
Inoculation should be performed on silkworms that have emerged from the upper silkworm (usually about 16 days from the upper silkworm day). However, from the upper eyelid to the seventh day, the body surface of the eyelid is soft and may be damaged during the inoculation process. Furthermore, even if it is 7 to 16 days ago, the pupae that have grown will emerge without infection. Therefore, the inoculation period is very limited.
In Tsuwano Town, Shimane Prefecture, due to the decline in sericulture farmers in the area due to aging, 200,000 cocoons were brought from other areas in 2010. The production of was hit hard. In subsequent studies, it was found that the cause was the growth of the cocoon.
By the way, anesthesia using carbon dioxide gas is used not only for animals (Patent Document 2) but also for fish (Patent Documents 3 and 4).
Carbon dioxide anesthesia is also used for insects at research sites (Non-patent Document 8).
特許文献2の炭酸ガス麻酔は、屠殺処理する際に生鳥が暴れることを防止するものである。
また、特許文献3及び特許文献4にて提案されている活魚に対する炭酸ガス麻酔は、薬物による麻酔と同様に、暴れを防止して魚体の損傷や体力消耗を防止するために用いられており、食用の際の安全性や残存毒性の問題から薬物に代わるものとして用いている。
非特許文献8の場合にも、炭酸ガスを昆虫の動きを停止させるために用いている。
このように、炭酸ガス麻酔は、一般には動きを静止させるために用いられる。
津和野式冬虫夏草の培養によれば、昆虫は菌に対する生体防御機構が働き、冬虫夏草の菌は昆虫の生体防御機構に対する突破機構が働いており、麻酔作用が昆虫と菌との両者に作用しては感染率を向上させることはできない。
例えば、実験用の昆虫においては、炭酸ガス麻酔とともに冷蔵麻酔が用いられることがあるが、冷蔵麻酔によれば、昆虫とともに菌の活動も停止してしまい、菌の感染率を上げることはできない。
ところで、成育が進んだ蛹は、菌が感染せずに羽化してしまうが、羽化の発生は、歩留まりだけの問題ではなく、蛾尿による環境悪化の問題があることから、生育が進んだ蛹での感染の実現が強く望まれている。
The carbon dioxide anesthesia of Patent Document 2 prevents live birds from rampaging when slaughtering.
In addition, carbon dioxide anesthesia for live fish proposed in Patent Document 3 and Patent Document 4 is used to prevent damage and physical exhaustion of the fish body by preventing rampage in the same manner as anesthesia with drugs. It is used as an alternative to drugs because of edible safety and residual toxicity issues.
In the case of Non-Patent Document 8, carbon dioxide is used to stop the movement of insects.
Thus, carbon dioxide anesthesia is generally used to stop movement.
According to the Tsuwano-style cordyceps culture, insects have a biological defense mechanism against fungi, and Cordyceps fungus has a breakthrough mechanism against the insect's biological defense mechanism. Anesthesia acts on both insects and fungi. The infection rate cannot be improved.
For example, in experimental insects, chilled anesthesia is sometimes used together with carbon dioxide anesthesia. However, refrigerated anesthesia stops the fungal activity together with the insects, and the infection rate of the bacteria cannot be increased.
By the way, the cocoon that has grown has emerged without being infected by bacteria, but the occurrence of emergence is not only a problem of yield but also a problem of environmental deterioration due to urine, so that the cocoon has grown Realization of infection is strongly desired.
そこで本発明は、成育が進んだ蛹であっても、羽化を抑制して冬虫夏草の大量安定生産を実現できることを目的とする。 Therefore, an object of the present invention is to realize mass stable production of cordyceps by suppressing emergence even in the case of growing cocoons.
請求項1記載の本発明の冬虫夏草の培養方法は、昆虫を寄主とした冬虫夏草の培養方法であって、前記昆虫として蚕の蛹を用い、前記冬虫夏草の菌を、前記蛹に植菌した後に、羽化前の前記蛹に対して、43%以上の濃度の炭酸ガスを作用させて前記蛹を麻酔状態とすることを特徴とする。
請求項2記載の本発明の培養装置は、請求項1に記載の冬虫夏草の培養方法に用いる培養装置であって、植菌した後の前記昆虫を入れる麻酔室と、前記麻酔室に前記炭酸ガスを導入するガス発生源とを備え、前記麻酔室として、少なくとも2つの麻酔容器を用い、上流側の前記麻酔容器と、下流側の前記麻酔容器とを、連結管で連結し、前記ガス発生源からの前記炭酸ガスを上流側の前記麻酔容器に導入し、下流側の前記麻酔容器には、前記連結管によって前記炭酸ガスが導かれ、少なくとも下流側の前記麻酔容器の上部には、空気導出孔を設けたことを特徴とする。
The method for cultivating Cordyceps sinensis of the present invention according to claim 1 is a method for cultivating Cordyceps sinensis using an insect as a host, using a cocoon moth as the insect, and inoculating the Cordyceps fungus on the moth , to the pupae before emergence, by the action of 43% or more of the concentration of carbon dioxide gas, characterized in anesthesia and to Rukoto the pupae are.
The culture device of the present invention described in claim 2, a culture apparatus for use in a method of culturing Cordyceps claim 1, and anesthesia chamber to put the insects after the inoculation, the carbon dioxide gas to the anesthesia chamber And at least two anesthesia containers as the anesthesia chamber, the anesthesia container on the upstream side and the anesthesia container on the downstream side are connected by a connecting pipe, and the gas generation source The carbon dioxide gas is introduced into the anesthesia container on the upstream side, the carbon dioxide gas is guided to the downstream anesthesia container by the connecting pipe, and at least the upper part of the anesthesia container on the downstream side is led out of air A hole is provided.
本発明によれば、冬虫夏草の菌を、昆虫に植菌した後に、昆虫に対して炭酸ガスを作用させることで昆虫の生命活動が抑制され、菌が感染しやすくなる。 According to the present invention, after the fungus of Cordyceps is inoculated into insects, the biological activity of the insects is suppressed by causing carbon dioxide to act on the insects, so that the bacteria are easily infected.
以下本発明の実施の形態による冬虫夏草の培養方法について説明する。
本発明による冬虫夏草は、中国において冬虫夏草と呼ばれるチベット産冬虫夏草に限らず、子嚢菌類のバッカクキン科などの昆虫にとりつく昆虫寄生菌であり、カメムシ目、チョウ目、コウチュウ目、ハチ目、バッタ目、トンボ目、ハエ目など、寄主昆虫も多岐にわたる。
しかし、本発明における冬虫夏草の培養方法は、生きた状態の昆虫に冬虫夏草の菌を植菌するものを対象とする。
植菌には、冬虫夏草の子実体に形成された子嚢胞子又は分生胞子を用いる他、菌糸体を用いることもできる。また植菌は、昆虫体内への直接接種の他、体表面への散布や、餌への散布でもよい。
Hereinafter, a method for cultivating Cordyceps sinensis according to an embodiment of the present invention will be described.
Cordyceps according to the present invention is not limited to Tibetan cordyceps, which is referred to as Cordyceps in China, but is an insect parasite that clings to insects such as the Ascomycetes, Bacchikinidae, stink bug, butterfly, coleoptera, bee, grasshopper, Host insects such as dragonflies and flies are also diverse.
However, the method for cultivating cordyceps in the present invention is intended for inoculating cordyceps fungus on living insects.
In addition to using ascospores or conidia formed on the fruit bodies of Cordyceps sinensis, mycelium can also be used for inoculation. In addition to direct inoculation of insects, inoculation may be performed on the body surface or on food.
本発明は、昆虫への植菌の後に、昆虫に対して炭酸ガス麻酔を用いることを特徴とするが、ここでの炭酸ガス麻酔は、炭酸ガスの作用によって、昆虫が仮死状態、入眠状態、麻痺状態に陥ることを意味し、何らかの生命活動の抑制が生じているものである。
後述するように、蚕の蛹にあっては、麻酔後において完全に覚醒して羽化する場合もあるが、例えば覚醒はしても、その後羽化に至らない場合もある。
すなわち、本発明における麻酔状態とは、寄主である昆虫に対して何らかの生命活動が抑制される状態をいい、炭酸ガスを作用させない場合と比較して、昆虫を冬虫夏草の菌に感染しやすい状態とするものである。
The present invention is characterized in that carbon dioxide anesthesia is used for insects after inoculation to the insects. Carbon dioxide anesthesia here is characterized by the action of carbon dioxide gas, the insects in the assassination state, the sleep state, It means falling into a paralyzed state, and some kind of suppression of life activity has occurred.
As will be described later, in the case of a sputum, there is a case where it completely awakens and emerges after anesthesia, but for example, even if it awakens, it may not emerge after that.
That is, the state of anesthesia in the present invention refers to a state in which some vital activity is suppressed with respect to the host insect, and compared to a case where carbon dioxide gas is not allowed to act, To do.
本発明の第1の実施の形態による冬虫夏草の培養方法は、冬虫夏草の菌を、蛹に植菌した後に、羽化前の蛹に対して、43%以上の濃度の炭酸ガスを作用させて蛹を麻酔状態とするものである。本実施の形態によれば、炭酸ガスが作用することで昆虫の生命活動が抑制され、菌が感染しやすくなる。また、蚕を寄主とする、ハナサナギタケ、コナサナギタケ、サナギタケ、ウスキサナギタケ(Cordyceps takaomontana)において、特に生育の進んだ蛹に対して羽化を抑えて感染させることができる。また、蚕の蛹の外観上の活動が停止し、羽化直前の蛹であっても確実に感染させることができる。 The method of culturing Cordyceps according to the first embodiment of the present invention, the fungus Cordyceps sinensis, after inoculated into pupae, against pupae before emergence, the pupa by the action of 43% or more of the concentration of carbon dioxide anesthesia is a state and you shall. According to the present embodiment, the action of carbon dioxide suppresses the life activity of insects, and bacteria are likely to be infected. In addition, in the case of a bamboo shoot, which is a moth, it is possible to infect the cocoon that has progressed particularly in the pupae that has been grown. In addition, the appearance activity of the moth moth stops, and even the moth just before its emergence can be reliably infected.
本発明の第2の実施の形態は、第1の実施の形態による冬虫夏草の培養方法に用いる培養装置において、植菌した後の昆虫を入れる麻酔室と、麻酔室に炭酸ガスを導入するガス発生源とを備え、麻酔室として、少なくとも2つの麻酔容器を用い、上流側の麻酔容器と、下流側の麻酔容器とを、連結管で連結し、ガス発生源からの炭酸ガスを上流側の麻酔容器に導入し、下流側の麻酔容器には、連結管によって炭酸ガスが導かれ、少なくとも下流側の麻酔容器の上部には、空気導出孔を設けたものである。本実施の形態によれば、麻酔室内の空気を導出して炭酸ガス雰囲気とすることができるとともに、圧力の上昇による昆虫への影響を無くすことができる。また、ガスバリアー性の低い材質の麻酔室であっても、確実に炭酸ガスを作用させることができる。 According to a second embodiment of the present invention, there is provided an anesthesia room in which an insect after inoculation is placed and a gas generation for introducing carbon dioxide gas into the anesthesia room in the culture apparatus used for the method for cultivating cordyceps by the first embodiment. An anesthesia chamber using at least two anesthesia containers, and connecting an upstream anesthesia container and a downstream anesthesia container with a connecting pipe, and carbon dioxide from a gas generation source is used for anesthesia on the upstream side. Carbon dioxide gas is introduced into the container and the downstream anesthesia container is guided by a connecting pipe, and an air outlet hole is provided at least in the upper part of the downstream anesthesia container . According to the present embodiment, the air in the anesthesia chamber can be led out to form a carbon dioxide gas atmosphere, and the influence on insects due to an increase in pressure can be eliminated. Further, even in an anesthesia room made of a material having a low gas barrier property, carbon dioxide gas can be made to act reliably.
カイコ(春嶺×鐘月(しゅんれい×しょうげつ))は、4令まで人工飼料で育てられ、4令の後に桑葉で育てられた。
冬虫夏草の菌(コルディセプスミリタリス(NBRC No.100741))は(独立行政法人製品評価技術基盤機構)から購入した。
Silkworms (Shunrei x Shogetsu) were grown on artificial feed up to 4 years and on mulberry leaves after 4 years.
Cordyceps militaris (NBRC No.1000074) was purchased from (National Institute of Technology and Evaluation Technology).
まず、炭酸ガス麻酔による実験方法について説明する。
図1に、炭酸ガス麻酔による実験方法を示す。
上蔟日の後8日目に繭から蛹を取り出した。1回の実験では、同じ日に眼点が発現した蛹を200頭用いた。
眼点発現後5日間(図2の「1日後」から「5日後」まで)、毎日40頭の蛹に植菌を行った。40頭の内の20頭を炭酸ガス麻酔装置に入れ、残りの20頭を対照区とした。植菌は、蛹に注射器を用いて行った。
炭酸ガス麻酔装置内の蛹は、植菌の2日後に炭酸ガス麻酔装置から取り出し、感染確認は、眼点発現後10日〜25日に行った。その後は、対照区と同じ条件の下で行った。感染は、蛹の硬化によって判断し、植菌から25日を越えても硬化しないものについては腐敗と判断した。
図1に示す方法で、6回の実験を行った。
First, an experimental method using carbon dioxide anesthesia will be described.
FIG. 1 shows an experimental method using carbon dioxide anesthesia.
The cocoon was taken out of the cocoon on the eighth day after the upper eve. In one experiment, 200 wrinkles with eye spots developed on the same day were used.
Forty days were inoculated into 40 pupae every day for 5 days (from “1 day after” to “5 days after” in FIG. 2) after the onset of eye spots. Twenty of the 40 were placed in a carbon dioxide anesthesia apparatus, and the remaining 20 were used as a control group. The inoculation was performed using a syringe in the sputum.
The sputum in the carbon dioxide anesthesia apparatus was taken out of the carbon dioxide anesthesia apparatus two days after the inoculation, and infection was confirmed on the 10th to 25th days after the onset of the eye point. Thereafter, the test was performed under the same conditions as in the control group. Infection was judged by hardening of sputum, and those that did not harden even after 25 days from inoculation were judged to be spoiled.
Six experiments were performed by the method shown in FIG.
次に、冷蔵麻酔による実験方法について説明する。
図2に、冷蔵麻酔による実験方法を示す。
上蔟日の後8日目に繭から蛹を取り出した。1回の実験では、同じ日に眼点が発現した蛹を200頭用いた。
眼点発現後5日間(図2の「1日後」から「5日後」まで)、毎日40頭の蛹に植菌を行った。40頭の内の20頭を冷蔵麻酔装置(5℃の冷蔵)に入れ、残りの20頭を対照区とした。植菌は、蛹に注射器を用いて行った。
冷蔵麻酔装置内の蛹は、植菌の2日後に冷蔵麻酔装置から取り出し、感染確認は、眼点発現後10日〜25日に行った。その後は、対照区と同じ条件の下で行った。感染は、蛹の硬化によって判断し、植菌から25日を越えても硬化しないものについては腐敗と判断した。
図2に示す方法で、3回の実験を行った。
また、3回の実験で羽化した蛹については、羽化日を確認した。
Next, an experimental method using refrigerated anesthesia will be described.
FIG. 2 shows an experimental method using refrigerated anesthesia.
The cocoon was taken out of the cocoon on the eighth day after the upper eve. In one experiment, 200 wrinkles with eye spots developed on the same day were used.
Forty days were inoculated into 40 pupae every day for 5 days (from “1 day after” to “5 days after” in FIG. 2) after the onset of eye spots. Twenty of the 40 were placed in a refrigerated anesthesia apparatus (refrigerated at 5 ° C.), and the remaining 20 were used as a control group. The inoculation was performed using a syringe in the sputum.
The sputum in the refrigerated anesthesia apparatus was taken out of the refrigerated anesthesia apparatus two days after the inoculation, and the infection was confirmed on the 10th to 25th days after the onset of the eye point. Thereafter, the test was performed under the same conditions as in the control group. Infection was judged by hardening of sputum, and those that did not harden even after 25 days from inoculation were judged to be spoiled.
Three experiments were performed by the method shown in FIG.
In addition, the date of emergence of cocoons that emerged in three experiments was confirmed.
炭酸ガス麻酔による感染効果はANOVA with Dunnett testを用い、冷蔵麻酔による感染効果はStudent t検定を用い、冷蔵麻酔による羽化率はKaplan-Meier method (failure rate plot)を用いた。P<0.05の場合、統計的に有意差があるとした。 ANOVA with Dunnett test was used for the infection effect by carbon dioxide anesthesia, Student t test was used for the infection effect by chilled anesthesia, and Kaplan-Meier method (failure rate plot) was used for the emergence rate by chilled anesthesia. When P <0.05, it is considered that there is a statistically significant difference.
図3に、炭酸ガス麻酔による実験結果を示す。
蛹の成長が進むと、対照区に現れるように感染数は減少した(1日目に対して4日目でP< 0.001、5日目でP<0.0001)。この減少のほとんどは羽化によるものであった。対照区の6グループ合計は600頭であり、羽化が286頭であり腐敗が7頭であった。
これに対して、炭酸ガス麻酔区では、蛹の成長が進んだ後に植菌を行ったものもほとんどが感染している(1日目に対して4日目でP=0.7817、5日目でP=0.2441)。炭酸ガス麻酔区の6グループ合計は600頭であり、羽化が10頭であり腐敗が15頭であった。
以上の結果より、炭酸ガス麻酔区では、眼点発現から日数が経過して蛹の成長が進んでも、感染率は低下しなかった。
In FIG. 3, the experimental result by carbon dioxide anesthesia is shown.
As the wrinkle grew, the number of infections decreased as shown in the control group (P <0.001 on the 4th day versus P <0.0001 on the 5th day). Most of this decrease was due to emergence. The total of the 6 groups in the control group was 600, the emergence was 286, and the corruption was 7.
On the other hand, in the carbon dioxide anesthesia group, most of the plants that were inoculated after the growth of the sputum were infected (P = 0.817, 5 days on the 4th day compared to the 1st day). Eye P = 0.2441). The total of 6 groups in the carbon dioxide anesthesia group was 600, 10 emergence and 15 rot.
From the above results, in the carbon dioxide anesthesia group, the infection rate did not decrease even when the growth of the eyelids progressed after days from the onset of eye point.
図4に、冷蔵麻酔による実験結果を示す。
蛹の成長が進むと、対照区に現れるように感染数は減少した。この減少のほとんどは羽化によるものであった。対照区の3グループ合計は300頭であり、羽化が158頭であり腐敗が9頭であった。
また、冷蔵麻酔区においても、対照区と同様に感染数は減少した。この減少のほとんどは羽化によるものであった。対照区の3グループ合計は300頭であり、羽化が142頭であり腐敗が21頭であった。
冷蔵麻酔区と対象区とを比較すると、1日目から5日目いずれにおいても、Student t検定では両者の間に統計学上の有意差(significance)は認められなかった。
In FIG. 4, the experimental result by refrigeration anesthesia is shown.
As the pupae grew, the number of infections decreased as it appeared in the control. Most of this decrease was due to emergence. The total of the three groups in the control group was 300, the emergence was 158, and the corruption was 9.
In the refrigerated anesthesia group, the number of infections decreased as in the control group. Most of this decrease was due to emergence. The total of the three groups in the control group was 300, 142 emerged and 21 spoiled.
When comparing the refrigerated anesthesia group and the target group, the Student t test showed no statistically significant difference between the two from the first day to the fifth day.
図5に、対照区で羽化した158頭と冷蔵麻酔区で羽化した142頭について、羽化率を示す。対照区(平均7.025、標準誤差0.108)に対して冷蔵麻酔区(平均8.845、標準誤差0.118)では、明らかに羽化が遅れていることが分かる(P<0.0001)。
以上の結果より、冷蔵麻酔区では、対照区に対して羽化の発生時期に遅れは生じるが、感染率の向上は見られなかった。
FIG. 5 shows the rate of emergence of 158 animals that emerged in the control group and 142 animals that emerged in the refrigerated anesthesia group. It can be seen that the emergence was clearly delayed in the refrigerated anesthesia group (average 8.845, standard error 0.118) compared to the control group (average 7.025, standard error 0.108) (P <0.0001). ).
From the above results, in the refrigerated anesthesia group, the occurrence of emergence was delayed compared to the control group, but the infection rate was not improved.
図6は、炭酸ガス麻酔による蛹の羽化への影響を示す図であり、縦軸には羽化数を、横軸には炭酸ガス麻酔日数を示している。
炭酸ガス麻酔日数を1日、2日、3日と変えた場合の、それぞれ羽化を確認したものである。植菌は行っていない、各10頭の蛹を用いた。
1日では、9頭が羽化したが、3日ではほとんどが羽化に至らなかった。確実に羽化を押さえるには長期間炭酸ガス環境下に置くことがよいが、蛹へのダメージを極力抑えることで腐敗を抑えることができることから、麻酔期間は、2日以下とすることが好ましい。なお、本実験では、炭酸ガス濃度は、高濃度ガス検知器(XP−3140 株式会社レックス)で測定し、85%以上に設定した。炭酸ガス濃度を低くする場合には、麻酔期間が長期化しても、羽化数は増加した。
なお、本実験では、炭酸ガス濃度を85%以上としたが、43%以上で蛹の活動が停止し麻酔状態となることを確認している。
FIG. 6 is a diagram showing the influence of cocoon gas anesthesia on the emergence of wrinkles, where the vertical axis indicates the number of emergence and the horizontal axis indicates the number of days of carbon dioxide anesthesia.
In this case, the emergence was confirmed when the number of days of carbon dioxide anesthesia was changed to 1, 2, and 3. Ten cocoons, each not inoculated, were used.
On the 1st, 9 animals emerged, but on the 3rd, most did not emerge. In order to suppress the emergence with certainty, it is preferable to leave it in a carbon dioxide gas environment for a long period of time. However, it is preferable to keep the anesthesia period to 2 days or less because it is possible to suppress the spoilage by suppressing damage to the sputum as much as possible. In this experiment, the carbon dioxide gas concentration was measured with a high concentration gas detector (XP-3140 Rex Corporation) and set to 85% or more. When the carbon dioxide concentration was lowered, the number of emergence increased even if the anesthetic period was prolonged.
In this experiment, the carbon dioxide gas concentration was set to 85% or more, but it was confirmed that the activity of the sputum stopped and anesthesia was reached at 43% or more.
図7は、炭酸ガス麻酔日数を1日と2日とした場合の感染への影響を示す図であり、縦軸には感染数を、横軸には植菌日(眼点発生からの経過日数)を示している。
本実験では、各20頭の蛹を用い、上蔟から11日目に眼点が発現した蛹を用いた。
感染数は、炭酸ガス麻酔日数が1日の場合、対照区と比較すると向上したが、2日と比較すると劣った。
従って、麻酔期間は、2日とすることが好ましい。
FIG. 7 is a diagram showing the effects on infection when the number of days of carbon dioxide anesthesia is 1 and 2. The vertical axis represents the number of infections, and the horizontal axis represents the date of inoculation (the course from the occurrence of eye spots). Number of days).
In this experiment, 20 wrinkles were used, and wrinkles in which eye points developed on the 11th day from the upper eyelid were used.
When the number of days of carbon dioxide anesthesia was 1, the number of infections was improved compared to the control group, but was inferior compared to 2 days.
Therefore, the anesthetic period is preferably 2 days.
次に、上記実施例に用いた炭酸ガス麻酔装置の構成について以下に説明する。
図8は、本実施例に用いた炭酸ガス麻酔装置の構成図である。
炭酸ガス麻酔装置は、炭酸ガス発生容器(ガス発生源)1と、植菌後の蛹2を炭酸ガス雰囲気中に露出させる麻酔容器(麻酔室)3とをビニールチューブ(連結管)4で接続し、ドライアイス5を炭酸ガス発生容器1に入れ、ドライアイス5から発生する炭酸ガスを麻酔容器3に連続供給した。
ドライアイス(株式会社大陸)は、1.5kg×2(3kgセット)/日を用いた。
Next, the configuration of the carbon dioxide anesthesia apparatus used in the above embodiment will be described below.
FIG. 8 is a configuration diagram of the carbon dioxide anesthesia apparatus used in this example.
The carbon dioxide anesthesia device connects a carbon dioxide generation container (gas generation source) 1 and an anesthesia container (anesthetic room) 3 that exposes the inoculated sputum 2 in a carbon dioxide atmosphere with a vinyl tube (connecting pipe) 4. Then, the dry ice 5 was put in the carbon dioxide generating container 1, and the carbon dioxide generated from the dry ice 5 was continuously supplied to the anesthetic container 3.
Dry ice (Continental Corporation) used 1.5 kg × 2 (3 kg set) / day.
炭酸ガス発生容器1には、11Lの容器(250mm×300mm×150mm)を用い、麻酔容器3には350Lの容器(440mm×740mm×350mm)を用いた。
炭酸ガス発生容器1内で炭酸ガスを発生させ、炭酸ガス発生容器1の下部から炭酸ガスを導出し、麻酔容器3の下部から炭酸ガスを供給した。確実に炭酸ガスを供給するために、炭酸ガス発生容器1と麻酔容器3とは、所定の高低差(80cm)を付けるとともに、ドライアイス5による冷却の影響を避けるために、ビニールチューブ4を十分に長くして炭酸ガスを常温まで昇温して麻酔容器3に供給した。
麻酔容器3は、上蓋式とし、上蓋3aには小孔(空気導出孔)3bを設けた。麻酔容器3を上蓋式とすることで、蛹2の出し入れ時の外部への炭酸ガスの流出影響を少なくした。また、上蓋3aに小孔3bを設けることによって、窒素及び酸素を麻酔容器3から抜けやすくすることで、麻酔容器3の内圧が上昇することを防ぎ、圧力による影響を無くした。
An 11 L container (250 mm × 300 mm × 150 mm) was used as the carbon dioxide generating container 1, and a 350 L container (440 mm × 740 mm × 350 mm) was used as the anesthetic container 3.
Carbon dioxide gas was generated in the carbon dioxide gas generation container 1, carbon dioxide gas was led out from the lower part of the carbon dioxide gas generation container 1, and carbon dioxide gas was supplied from the lower part of the anesthetic container 3. In order to reliably supply carbon dioxide gas, the carbon dioxide generating container 1 and the anesthetic container 3 are provided with a predetermined height difference (80 cm), and in order to avoid the influence of cooling by the dry ice 5, the vinyl tube 4 is sufficient. The carbon dioxide gas was heated to room temperature and supplied to the anesthesia container 3.
The anesthesia container 3 is an upper lid type, and a small hole (air outlet hole) 3b is provided in the upper lid 3a. By making the anesthesia container 3 an upper lid type, the influence of the outflow of carbon dioxide gas to the outside when the basket 2 is put in and out is reduced. Further, by providing a small hole 3b in the upper lid 3a, nitrogen and oxygen can be easily removed from the anesthesia container 3, thereby preventing the internal pressure of the anesthesia container 3 from rising and eliminating the influence of the pressure.
次に、本発明の他の実施例による炭酸ガス麻酔装置の構成について以下に説明する。
図9は、本実施例に用いた炭酸ガス麻酔装置の構成図である。
本実施例では、炭酸ガス発生容器1に代えて炭酸ガスボンベ7を用いたものを示している。本実施例のように炭酸ガスの発生源として炭酸ガスボンベ7を用いることもでき、炭酸ガスボンベ7には、レギュレータ6を介してビニールチューブ4を接続する。
その他の構成は、先の実施例と同一構成であるので同一符号を付して説明を省略する。
Next, the configuration of a carbon dioxide anesthesia apparatus according to another embodiment of the present invention will be described below.
FIG. 9 is a configuration diagram of the carbon dioxide anesthesia apparatus used in this example.
In this embodiment, a carbon dioxide cylinder 7 is used instead of the carbon dioxide generating container 1. As in the present embodiment, a carbon dioxide gas cylinder 7 can be used as a carbon dioxide gas generation source, and a vinyl tube 4 is connected to the carbon dioxide gas cylinder 7 via a regulator 6.
Other configurations are the same as those of the previous embodiment, and thus the same reference numerals are given and description thereof is omitted.
次に、本発明の更に他の実施例による炭酸ガス麻酔装置の構成について以下に説明する。
図10は、本実施例に用いた炭酸ガス麻酔装置の構成図である。
本実施例では、炭酸ガスボンベ7を用い、レギュレータ6から複数経路に分岐させ、それぞれの経路に、直列に麻酔容器3を併設している。最下流側の麻酔容器3には,上蓋3aに小孔(空気導出孔)3bを形成している。各麻酔容器3同士は、上方位置を接続する連結管4と下方位置を接続する連結管4で連結している。上方位置を連結する連結管4は、麻酔容器3の両端付近に一対設け、下方位置を連結する連結管4も、麻酔容器3の両端付近に一対設けている。
濃度測定器8は、最下流側の麻酔容器3に設けている。
Next, the configuration of a carbon dioxide anesthesia apparatus according to still another embodiment of the present invention will be described below.
FIG. 10 is a configuration diagram of the carbon dioxide anesthesia apparatus used in this example.
In the present embodiment, a carbon dioxide gas cylinder 7 is used, and the regulator 6 is branched into a plurality of paths, and the anesthesia container 3 is provided in series in each path. A small hole (air outlet hole) 3b is formed in the upper lid 3a of the anesthesia container 3 on the most downstream side. Each anesthesia container 3 is connected by a connecting pipe 4 that connects the upper position and a connecting pipe 4 that connects the lower position. A pair of connecting pipes 4 that connect the upper positions are provided near both ends of the anesthetic container 3, and a pair of connecting pipes 4 that connect the lower positions are also provided near both ends of the anesthetic container 3.
The concentration measuring device 8 is provided in the anesthesia container 3 on the most downstream side.
本実施例のように、複数の麻酔容器3を併設することで、それぞれの麻酔容器3を独立させることができ、蛹の出し入れ時の炭酸ガス濃度の低下を、開放する麻酔容器3だけにとどめ、他の麻酔容器3への影響を少なくすることができる。また、連結管4を麻酔容器3の上方位置に設けることで、麻酔容器3の上方空間に酸素が残留することを防止することができる。また、連結管4を麻酔容器3の下方位置にも設けることで、下流側に位置する麻酔容器3への炭酸ガスの供給速度を早くすることができる。
また、最下流の麻酔容器3に小孔3bを形成することで、上流から下流に向けた炭酸ガスの流れを促進することができる。更に、小孔3bは、上蓋3aに形成するため、比重の重い炭酸ガスを麻酔容器3内に滞留させた状態で、酸素を排出することができる。
By providing a plurality of anesthesia containers 3 as in this embodiment, each anesthesia container 3 can be made independent, and the decrease in carbon dioxide gas concentration when the sputum is put in and out is limited only to the anesthesia container 3 to be opened. The influence on other anesthesia containers 3 can be reduced. In addition, by providing the connecting tube 4 at a position above the anesthetic container 3, it is possible to prevent oxygen from remaining in the upper space of the anesthetic container 3. Further, by providing the connecting pipe 4 also at a position below the anesthetic container 3, the supply speed of carbon dioxide gas to the anesthetic container 3 located on the downstream side can be increased.
Further, by forming the small hole 3b in the most downstream anesthetic container 3, the flow of carbon dioxide gas from the upstream to the downstream can be promoted. Further, since the small hole 3b is formed in the upper lid 3a, oxygen can be discharged in a state where carbon dioxide gas having a high specific gravity is retained in the anesthetic container 3.
上記実施例では、植菌を行った直後(数時間以内)に、蛹を炭酸ガス麻酔装置に入れた場合を説明したが、植菌日から9日目で、生きている蛹に対して炭酸ガス麻酔の有効性について実験を行った。
図11に結果を示す。
植菌から9日目で、未羽化状態で生きている蛹を炭酸ガス装置に入れ、炭酸ガス麻酔を行った。炭酸ガス麻酔期間は、2日間、3.5日間、5日間で行った。
2日間の麻酔では、16頭は羽化したが、9頭は感染した。なお、総数に対して、羽化数と感染数の合計が少ないのは、羽化せずに腐敗したためであった。
なお、図11には示していないが、比較例として、植菌日から9日目で、未羽化状態で生きている蛹25頭に対して炭酸ガス麻酔を行わず放置したが、25頭全てが羽化した。
従って、植菌から日数が経過しても、羽化前であれば炭酸ガス麻酔が有効に作用することが明らかとなった。
In the above embodiment, the case where the sputum is put into the carbon dioxide anesthesia apparatus immediately after the inoculation (within several hours) has been explained. Experiments were conducted on the effectiveness of gas anesthesia.
The results are shown in FIG.
On the 9th day after inoculation, the pupae that were alive in an unemerged state were placed in a carbon dioxide device and carbon dioxide anesthetized. The period of carbon dioxide anesthesia was 2 days, 3.5 days, and 5 days.
With 2 days of anesthesia, 16 animals emerged, but 9 animals were infected. The reason why the sum of the number of emergence and the number of infections was small compared to the total number was because of decay without emergence.
Although not shown in FIG. 11, as a comparative example, on the 9th day from the inoculation date, 25 pupae living in an unemerged state were left without carbon dioxide anesthesia. Has emerged.
Therefore, it has been clarified that carbon dioxide anesthesia works effectively even before days have passed since the inoculation.
上記実施例では、炭酸ガスを連続して供給する場合を説明したが、麻酔容器3内が所定濃度の炭酸ガス濃度に達した後に、ビニールチューブ4からの導入を停止し、小孔(空気導出孔)3bを閉塞して、麻酔容器3を密閉してもよい。ただし、密閉容器3がガスバリアー機能を備えていない場合には、時間の経過とともに炭酸ガス濃度が低下するため、断続的に炭酸ガスを供給することが好ましい。
また、麻酔容器3に代えて、ビニール袋やナイロン袋を用いて炭酸ガスを封入してもよいが、この場合にもガスバリアー機能を備えていなければ、炭酸ガス濃度の低下に留意する必要がある。
In the above embodiment, the case where carbon dioxide gas is continuously supplied has been described. After the inside of the anesthesia container 3 reaches a predetermined concentration of carbon dioxide gas, the introduction from the vinyl tube 4 is stopped, and a small hole (air derivation) is performed. The hole 3b may be closed and the anesthetic container 3 may be sealed. However, when the airtight container 3 does not have a gas barrier function, the carbon dioxide gas concentration decreases with the passage of time, so it is preferable to intermittently supply the carbon dioxide gas.
Further, instead of the anesthesia container 3, carbon dioxide gas may be sealed using a plastic bag or a nylon bag. However, in this case as well, it is necessary to pay attention to a decrease in carbon dioxide gas concentration if the gas barrier function is not provided. is there.
全国に残存する養蚕農家からの蚕の蛹の供給を受けて冬虫夏草を培養するためには、搬送期間における蚕の生育を考慮しなければならない。冷蔵搬送によって生育を押さえることはできるが、大量の繭の搬送にあっては、十分な冷却効果を得ることができず、冷却効果を得るために少量ずつに小分けすると、莫大な搬送費用が発生してしまう。
また、生きた蚕での冬虫夏草の培養において、羽化の発生は、蛾尿による汚染対策を行わなければならず、臭気による作業環境の悪化も作業員にとっては大きな苦痛を伴う。
従って、本発明によって、生育の進んだ蛹の羽化発生を抑えられることは、生きた蚕による冬虫夏草の培養において極めて有効である。
今回の炭酸ガス麻酔により、今まで困難であった種類の冬虫夏草の培養が安定して行える可能性があり、また、蚕以外の昆虫への応用によって、今まで培養ができていなかった新たな冬虫夏草の培養が期待できる。
本実施例では、冬虫夏草の菌としてサナギタケを用いたが、サナギタケとは子実体の形態が異なるハナサナギタケやコナサナギタケを用いた蚕蛹への感染メカニズムは、ほぼ同じであることを既に確認しており、本発明はハナサナギタケやコナサナギタケをはじめとする他の冬虫夏草の菌に適用できる。
In order to cultivate cordyceps by receiving cocoon moths from sericulture farmers who remain in the country, it is necessary to consider the growth of moths during the transportation period. Although the growth can be suppressed by refrigerated transport, it is not possible to obtain a sufficient cooling effect when transporting a large amount of strawberries, and if it is subdivided into small portions to obtain a cooling effect, enormous transport costs are incurred. Resulting in.
In addition, in the cultivation of Cordyceps sinensis in living moths, emergence must be dealt with by contamination with manure, and deterioration of the working environment due to odor is also very painful for workers.
Therefore, it is very effective in the culture of Cordyceps medicinal plants by living moths to suppress the emergence of wings that have grown by the present invention.
With this carbon dioxide anesthesia, it may be possible to stably cultivate the kind of cordyceps that was difficult until now, and a new cordyceps that could not be cultured until now by applying to insects other than moths. Can be expected.
In this example, Sanagitake was used as a fungus of Cordyceps sinensis, but it has already been confirmed that the mechanism of infection of moths using Hananagitake and Konanagitake which is different from the shape of fruit bodies from Sanagitake is almost the same, The present invention can be applied to other Cordyceps fungus fungi, such as Hanasa Nagatake and Konasa Nagatake.
本発明は、生きた昆虫を用いた冬虫夏草の培養方法に適している。 The present invention is suitable for a method for cultivating cordyceps using live insects.
1 炭酸ガス発生容器(ガス発生源)
2 蛹
3 麻酔容器(麻酔室)
3a 上蓋
3b 小孔(空気導出孔)
4 ビニールチューブ(連結管)
5 ドライアイス
6 レギュレータ
7 炭酸ガスボンベ
1 Carbon dioxide gas generation container (gas generation source)
2 3 3 Anesthesia container (anesthesia room)
3a Top lid 3b Small hole (Air outlet hole)
4 Vinyl tube (connecting tube)
5 Dry ice 6 Regulator 7 Carbon dioxide gas cylinder
Claims (2)
前記昆虫として蚕の蛹を用い、
前記冬虫夏草の菌を、前記蛹に植菌した後に、羽化前の前記蛹に対して、43%以上の濃度の炭酸ガスを作用させて前記蛹を麻酔状態とすることを特徴とする冬虫夏草の培養方法。 A method for cultivating Cordyceps sinensis using an insect as a host,
Using insect moths as the insects,
After inoculating the fungus of Cordyceps sinensis on the cocoon , the cocoon soy grass is anesthetized by acting carbon dioxide at a concentration of 43% or more on the cocoon before emergence. Method.
植菌した後の前記昆虫を入れる麻酔室と、
前記麻酔室に前記炭酸ガスを導入するガス発生源と
を備え、
前記麻酔室として、少なくとも2つの麻酔容器を用い、
上流側の前記麻酔容器と、下流側の前記麻酔容器とを、連結管で連結し、
前記ガス発生源からの前記炭酸ガスを上流側の前記麻酔容器に導入し、
下流側の前記麻酔容器には、前記連結管によって前記炭酸ガスが導かれ、
少なくとも下流側の前記麻酔容器の上部には、空気導出孔を設けたことを特徴とする培養装置。 A culture apparatus for use in the method for cultivating Cordyceps as claimed in claim 1 ,
An anesthesia room for placing the insect after inoculation;
A gas generation source for introducing the carbon dioxide gas into the anesthesia room,
As the anesthesia room, at least two anesthesia containers are used,
The upstream anesthetic container and the downstream anesthetic container are connected by a connecting pipe,
Introducing the carbon dioxide gas from the gas generation source into the anesthetic container upstream;
The carbon dioxide gas is guided by the connecting pipe to the anesthetic container on the downstream side,
An culturing apparatus comprising an air outlet hole at least in an upper part of the anesthesia container on the downstream side .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012141073A JP6037676B2 (en) | 2012-06-22 | 2012-06-22 | Cordyceps culture method and culture apparatus used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012141073A JP6037676B2 (en) | 2012-06-22 | 2012-06-22 | Cordyceps culture method and culture apparatus used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014003932A JP2014003932A (en) | 2014-01-16 |
JP6037676B2 true JP6037676B2 (en) | 2016-12-07 |
Family
ID=50102312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012141073A Active JP6037676B2 (en) | 2012-06-22 | 2012-06-22 | Cordyceps culture method and culture apparatus used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6037676B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6695143B2 (en) * | 2016-01-04 | 2020-05-20 | 津和野町 | Method for culturing Cordyceps sinensis and apparatus used therefor |
CN108293590A (en) * | 2017-09-15 | 2018-07-20 | 缪建 | A kind of cordyceps flower efficient industrial cultural method |
JP2020000229A (en) * | 2018-06-22 | 2020-01-09 | 株式会社峯樹木園 | Method for producing plant worm fruit body, and plant worm fruit body, and supplement, functional food, pharmaceutical composition and capsule agent |
CN111172095B (en) * | 2020-02-24 | 2021-01-19 | 广东省科学院动物研究所 | Application of methyl farnesyl ester in promoting cordyceps sinensis to produce budding spores |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008113605A (en) * | 2006-11-06 | 2008-05-22 | Nakamura Kazuo | Method for breeding, supplying and raising japanese indigenous bumblebees |
JP5268086B2 (en) * | 2007-10-02 | 2013-08-21 | 国立大学法人岩手大学 | Cordyceps culture method and immunostimulant, cancer cell growth inhibitor, anti-inflammatory agent, or antioxidant containing Cordyceps as an active ingredient |
JP5704544B2 (en) * | 2013-05-01 | 2015-04-22 | 国立大学法人岩手大学 | Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient |
-
2012
- 2012-06-22 JP JP2012141073A patent/JP6037676B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014003932A (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103430776B (en) | Silkworm pupa-worm grass culture method capable of improving yield and quality | |
CN103262751B (en) | A kind of method utilizing Cordyceps militaris spawn infected silkworm larva to cultivate silkworm Chinese caterpillar fungus | |
CN103371056B (en) | Cultivation method of Cordyceps militaris (pupa) | |
CN102363750B (en) | Insecticidal fungus and application thereof | |
CN106614423B (en) | Artificial preparation method of white muscardine silkworm | |
JP6037676B2 (en) | Cordyceps culture method and culture apparatus used therefor | |
CN106810366A (en) | A kind of cultural method for improving cordycepin content in Cordyceps militaris mycelia and silkworm chrysalis Cordyceps sinensis | |
CN105638244B (en) | A kind of breeding method of silkworm grass | |
CN109105153B (en) | A kind of efficient cultivation method of tussah cordyceps militaris | |
CN107155736A (en) | A kind of diseases and pests of tea tree prevention and controls | |
CN101849477A (en) | Cassava silkworm chrysalis cordyceps sinensis cultured by taking cassava silkworm chrysalis as host and culturing method thereof | |
CN101491290B (en) | Method for producing livestock birds health cultivation green feed additive using distilled grain | |
CN103122314A (en) | Isaria fumosoroseus and application thereof for preventing and treating bemisia tabaci | |
JP2676502B2 (en) | Artificial cultivation method of fruiting body of Cordyceps sinensis | |
CN107372370A (en) | Hatching solution for hatching Aedes albopictus eggs and hatching method for Aedes albopictus eggs | |
CN109496988B (en) | A method and culture device for large-scale cultivation of entomopathogenic nematodes | |
CN106818206A (en) | A kind of artificial culturing method of snowy peak Chinese caterpillar fungus | |
CN108207484A (en) | A kind of breeding method of silkworm chrysalis cordyceps sinensis | |
CN106489997A (en) | A kind of process for preparing microbial insecticide | |
CN105027984B (en) | One kind cultivation high temperature resistant lung shape is picked up the ears method | |
CN103755417A (en) | Production method of selenium-rich hericium erinaceus mycelia through liquid fermentation | |
CN103405479B (en) | A kind of Lemonal for prevention and control cultivation later stage shrimp pond vibrios | |
CN103865802B (en) | A kind of method improving Cordyceps takaomontana fruiting body yield | |
CN109618811B (en) | Industrialized artificial cultivation method for cordyceps sinensis | |
KR20120077691A (en) | A cordycepin producing method using unhatched egg |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150618 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6037676 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |