JP6015919B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6015919B2 JP6015919B2 JP2012222674A JP2012222674A JP6015919B2 JP 6015919 B2 JP6015919 B2 JP 6015919B2 JP 2012222674 A JP2012222674 A JP 2012222674A JP 2012222674 A JP2012222674 A JP 2012222674A JP 6015919 B2 JP6015919 B2 JP 6015919B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- oriented electrical
- cold
- grain
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 34
- 239000010959 steel Substances 0.000 claims description 34
- 230000003746 surface roughness Effects 0.000 claims description 26
- 238000005530 etching Methods 0.000 claims description 23
- 238000005097 cold rolling Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 18
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 238000000866 electrolytic etching Methods 0.000 description 17
- 229910052742 iron Inorganic materials 0.000 description 9
- 230000005381 magnetic domain Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910009043 WC-Co Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Metal Rolling (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、主として変圧器や電気機器の鉄心材料に用いられる方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet used mainly for iron core materials of transformers and electrical equipment.
方向性電磁鋼板の鉄損を低減する方法の一つに、磁区細分化処理がある。例えば、特許文献1には、インヒビタを含む珪素鋼素材に熱間圧延した後、1回または中間焼鈍を挟む2回の冷間圧延を施して最終製品板厚とした後、最終仕上焼鈍を施すまでの間において、鋼板表面に局所的なエッチング処理を施して溝を形成する方向性電磁鋼板の磁区細分化処理方法が開示されている。このようなエッチング処理方法としては、化学的エッチングと電解エッチングとが知られているが、溝深さのコントロールが容易である点で、電解エッチングが有利である。
One method for reducing the iron loss of grain-oriented electrical steel sheets is a magnetic domain refinement process. For example, in
また、特許文献2には、最終冷間圧延後、鋼板表面にエッチングレジストを塗布・焼付け、連続または非連続の線状の非塗布部領域を残存させ、電解エッチングを施して鋼板表面に線状溝を形成する方法が提案されている。この電解エッチングの方法は、予め鋼板表面にエッチングレジスト材(エッチングマスク)としてインキ等の絶縁材を塗布、焼付けた後、電解エッチングを施し、その後に絶縁材を除去するのが一般的であり、すでに工業的に実用化されている。 Further, in Patent Document 2, after the final cold rolling, an etching resist is applied and baked on the surface of the steel sheet, and a continuous or non-continuous linear non-applied portion region is left and subjected to electrolytic etching to form a linear shape on the steel sheet surface A method for forming a groove has been proposed. This electrolytic etching method is generally performed by applying an insulating material such as ink as an etching resist material (etching mask) on the surface of the steel sheet in advance, baking, then performing electrolytic etching, and then removing the insulating material. Already industrialized.
この方法において、良好な磁気特性を得るためには、溝の断面形状(溝幅、溝深さ)を適切に制御することが重要であり、溝深さが浅い場合には、磁区細分化の効果が不足し、鉄損低減効果が得られず、逆に、溝深さが深くなり過ぎた場合には、磁束の流れが妨げられ、B8で表される磁束密度が低下してしまう。
したがって、この溝形状を適切に制御することが重要であり、そのための技術が、これまでにも幾つか提案されている。
In this method, in order to obtain good magnetic characteristics, it is important to appropriately control the cross-sectional shape (groove width, groove depth) of the groove. When the groove depth is shallow, the magnetic domain fragmentation is performed. effect is insufficient, not the iron loss reducing effect is obtained, conversely, when the groove depth becomes too deep, impeded the flow of the magnetic flux, the magnetic flux density represented by B 8 is lowered.
Therefore, it is important to appropriately control the groove shape, and several techniques have been proposed so far.
例えば、特許文献3には、電解エッチング槽内の電極を板幅方向に多分割して、エッチング槽出側で板幅方向の溝深さを測定し、その測定値に基づいて板幅方向における溝深さが均一化するように、分割した各電極に通電する電流値を制御して均一な溝深さを得る方法が提案されている。また、特許文献4には、電解エッチング時の鋼帯の電気抵抗、電解液の電気抵抗等の変化によるエッチング溝深さのばらつきを低減するため、鋼帯の電気抵抗や電解液の電気抵抗に応じて設定電圧を補正して電解エッチングを行う方法が提案されている。 For example, in Patent Document 3, the electrode in the electrolytic etching tank is divided into multiple parts in the plate width direction, the groove depth in the plate width direction is measured on the exit side of the etching tank, and in the plate width direction based on the measured value. There has been proposed a method of obtaining a uniform groove depth by controlling the value of current applied to each divided electrode so that the groove depth is uniform. Further, in Patent Document 4, in order to reduce variations in the etching groove depth due to changes in the electrical resistance of the steel strip and the electrolytic solution during electrolytic etching, the electrical resistance of the steel strip and the electrical resistance of the electrolytic solution are reduced. Accordingly, there has been proposed a method of performing electrolytic etching by correcting the set voltage.
しかし、上記2つの方法は、電解エッチング過程でのばらつきを低減するには有効ではあるものの、必ずしも十分な効果が得られないことが多い。その理由は、溝形状不良の原因は、電解エッチング過程のみにあるわけではなく、レジスト塗布過程での塗布状態も大きく影響するためである。例えば、通常の冷延板には圧延歪が残留しているため、鋼板形状は必ずしも平坦ではない。このような鋼板にレジストを塗布した場合、レジスト液の濡れ拡がり挙動が変化し、本来、レジスト液が塗布されてはいけない非塗布部領域にまでレジスト液が塗布されてしまったり、非塗布部領域の寸法に変化が生じたりして、エッチング後の溝寸法が変化してしまうという問題が生じる。 However, although the above two methods are effective in reducing variation in the electrolytic etching process, sufficient effects are not always obtained. The reason for this is that the cause of the groove shape defect is not only in the electrolytic etching process, but also the application state in the resist coating process greatly affects. For example, since a rolling strain remains in a normal cold-rolled sheet, the steel sheet shape is not necessarily flat. When resist is applied to such a steel sheet, the wetting and spreading behavior of the resist solution changes, and the resist solution may be applied to the non-application area where the resist solution should not be applied. There arises a problem that the size of the groove changes and the groove size after etching changes.
このような問題を解決する方法としては、特許文献5には、レジスト塗布時に鋼板をロール表面に巻き掛け、鋼板形状を矯正した状態でエッチングレジストを塗布する方法が提案されている。 As a method for solving such a problem, Patent Document 5 proposes a method in which a steel plate is wound around a roll surface at the time of resist application, and an etching resist is applied in a state where the shape of the steel plate is corrected.
しかしながら、特許文献5に開示の従来技術を用いたエッチング法を用いた場合でも、工業的な量産過程においては、完全に溝形状のばらつきを低減することはできなかった。そのため、得られる方向性電磁鋼板(製品板)の鉄損や磁束密度のばらつきが大きく、安定した品質を確保することはできないという問題があった。 However, even when the etching method using the conventional technique disclosed in Patent Document 5 is used, the variation in the groove shape cannot be completely reduced in the industrial mass production process. For this reason, there has been a problem that the obtained grain-oriented electrical steel sheet (product plate) has a large variation in iron loss and magnetic flux density, and stable quality cannot be ensured.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、鉄損低減効果を安定して享受することができる方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to propose a method of manufacturing a grain-oriented electrical steel sheet that can stably enjoy the effect of reducing iron loss. .
発明者らは、上記課題を解決するべく鋭意検討を重ねた、その結果、電解エッチングする前の冷延板の表面粗さを適正に調整することが有効であることを見出し、本発明を開発するに至った。 The inventors have made extensive studies to solve the above problems, and as a result, found that it is effective to appropriately adjust the surface roughness of the cold rolled plate before electrolytic etching, and developed the present invention. It came to do.
すなわち、本発明は、方向性電磁鋼板用の鋼スラブを熱間圧延し、冷間圧延して最終板厚とした冷延板の表面にレジストを塗布し、エッチング処理を施して線状溝を形成した後、レジストを除去し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、前記エッチング処理前の冷延板の表面粗さを算術平均粗さRaで0.3μm以下とすることを特徴とする方向性電磁鋼板の製造方法である。 That is, the present invention hot-rolls steel slabs for grain-oriented electrical steel sheets , applies cold resist to the surface of the cold-rolled sheet to obtain the final sheet thickness by cold rolling, and performs an etching treatment to form linear grooves. After forming, in the method of manufacturing a grain-oriented electrical steel sheet that is subjected to resist removal , primary recrystallization annealing, and finish annealing, the surface roughness of the cold rolled sheet before the etching treatment is 0.3 μm or less in terms of arithmetic average roughness Ra It is a manufacturing method of the grain-oriented electrical steel sheet characterized by these.
本発明の方向性電磁鋼板の製造方法は、上記冷間圧延における最終パスのワークロールに、ロール表面粗さが算術平均粗さRaで0.2μm以下のものを用いることを特徴とする。 The method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that a roll having a roll surface roughness of arithmetic average roughness Ra of 0.2 μm or less is used for the work roll in the final pass in the cold rolling.
また、本発明の方向性電磁鋼板の製造方法は、上記冷間圧延における最終パスのワークロールに、弾性率が300GPa以上のものを用いることを特徴とする。 Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that an elastic modulus of 300 GPa or more is used for the work roll in the final pass in the cold rolling.
本発明によれば、電解エッチング処理によって、冷延鋼板の表面に幅、深さが安定した線状溝を形成することができるので、磁区細分化処理による鉄損低減効果が安定化し、低鉄損でかつバラツキの小さい方向性電磁鋼板を製造することが可能となる。 According to the present invention, a linear groove having a stable width and depth can be formed on the surface of a cold-rolled steel sheet by electrolytic etching treatment, so that the iron loss reduction effect by the magnetic domain refinement treatment is stabilized, and low iron It becomes possible to produce a grain-oriented electrical steel sheet with small loss and small variation.
前述したように、従来技術のエッチング法を用いる場合、工業的な量産過程においては、溝形状(幅、深さ)のばらつきを低減することは難しいという問題があった。図1は、グラビア印刷でエッチングレジストを塗布した後、電解エッチングで溝を形成した鋼板表面の溝形成部近傍を拡大した写真である。この写真の例では、圧延方向に3mmピッチで、板幅方向から圧延方向に10°傾いて線状溝が形成されているが、圧延方向の溝幅が変動しており、場所によっては完全に溝が途切れている箇所も認められる。このような溝が形成されると、鉄損や磁束密度のばらつきが大きくなり、安定した品質(磁気特性)の方向性電磁鋼板を得ることはできなくなる。 As described above, when the conventional etching method is used, there is a problem that it is difficult to reduce the variation in groove shape (width, depth) in an industrial mass production process. FIG. 1 is an enlarged photograph of the vicinity of a groove forming portion on the surface of a steel plate in which grooves are formed by electrolytic etching after applying an etching resist by gravure printing. In this example, linear grooves are formed at a pitch of 3 mm in the rolling direction and tilted by 10 ° from the sheet width direction to the rolling direction, but the groove width in the rolling direction varies, and depending on the location The part where the groove is broken is also recognized. When such a groove is formed, variations in iron loss and magnetic flux density increase, and it becomes impossible to obtain a grain-oriented electrical steel sheet having stable quality (magnetic characteristics).
発明者らは、上記のような溝形状のばらつきの原因について調査した結果、エッチングレジストを塗布する冷延板の表面粗さが、レジストの塗布状態に大きく影響していることを突き止めた。図2は、溝形状不良が発生した部分の近傍の表面凹凸分布を、触針式の3次元粗さ計を用いて測定し、表面の凹凸を白黒2色のコンター図(濃淡図)で示したものであり、黒色ほど凹んでいることを示している。この図から、溝の途切れが発生している部分は、その周辺部より鋼板表面が相対的に凹んでいることがわかる。塗布されたレジスト液は、鋼板表面の凹んだ部分に流入することから、溝形状不良の原因は、本来、非塗布部となるべき場所にレジスト液が流入して塗布されてしまったことによるものと推察された。したがって、このような問題を解決するには、鋼板表面の凹凸を小さくすることが有効であると考えられた。この結果に基き、発明者らは、種々の実験を重ねた結果、上記問題点の解決には、エッチング前の鋼板表面における圧延方向に対して直角方向の粗さを、Raで0.3μm以下とすることが有効であることを見出した。ここで、上記Raは、JIS B0601(2001)に規定された算術平均粗さのことである。(以降、同様) As a result of investigating the cause of the variation in the groove shape as described above, the inventors have found that the surface roughness of the cold-rolled plate to which the etching resist is applied greatly affects the application state of the resist. Fig. 2 shows the distribution of surface irregularities in the vicinity of the part where the groove shape defect occurred using a stylus type three-dimensional roughness meter, and the surface irregularities are shown in a black and white two-color contour diagram (shading diagram). This indicates that the black color is concave. From this figure, it can be seen that the steel plate surface is relatively recessed from the peripheral portion of the portion where the groove is interrupted. Since the applied resist solution flows into the recessed part of the steel plate surface, the cause of the groove shape failure is due to the resist solution flowing in and applied to the place that should be the non-applied part. It was guessed. Therefore, in order to solve such problems, it was considered effective to reduce the unevenness of the steel sheet surface. Based on this result, the inventors have conducted various experiments. As a result, in order to solve the above problems, the roughness in the direction perpendicular to the rolling direction on the steel sheet surface before etching is 0.3 μm or less in terms of Ra. And found that is effective. Here, the Ra is an arithmetic average roughness defined in JIS B0601 (2001). (Hereinafter the same)
一方、冷延板の表面粗さは、冷間圧延における最終パスによって大きく影響されることが知られている。したがって、鋼板の表面粗さRaを0.3μm以下に制御するためには、最終パス条件を適切に管理する必要がある。通常、冷延板の表面粗さは、冷間圧延時のワークロール表面粗さの転写と、オイルピットによってほぼ決定される。上記オイルピットとは、圧延時の荷重低減のために使用される潤滑油が、ワークロールと鋼板表面の界面に封入されることによって鋼板表面に形成される微小な凹み部のことであり、界面に導入される潤滑油量が多くなるほど増加し、鋼板表面の粗さが大きくなる。また、圧延機のワークロールの表面粗さは、経時的な摩耗などによって変化し、通常、初期の粗さが小さい場合には、圧延長の増加に伴い、次第に大きくなっていく。したがって、冷間圧延後の鋼板表面粗さをRaで0.3μm以下となるようにするためには、オイルピットやワークロールの表面粗さの変化を考慮した上で、最終パスの圧延条件を決定しなければならない。 On the other hand, it is known that the surface roughness of the cold rolled sheet is greatly influenced by the final pass in the cold rolling. Therefore, in order to control the surface roughness Ra of the steel sheet to 0.3 μm or less, it is necessary to appropriately manage the final pass condition. Usually, the surface roughness of the cold-rolled sheet is substantially determined by the transfer of the work roll surface roughness during cold rolling and the oil pits. The oil pit is a minute dent formed on the surface of the steel sheet when the lubricating oil used for reducing the load during rolling is sealed in the interface between the work roll and the steel sheet surface. As the amount of lubricating oil introduced into increases, the surface roughness increases. Further, the surface roughness of the work roll of the rolling mill changes due to wear over time, and usually increases gradually as the rolling length increases when the initial roughness is small. Therefore, in order for the surface roughness of the steel sheet after cold rolling to be 0.3 μm or less in Ra, the rolling conditions of the final pass should be set in consideration of changes in the surface roughness of oil pits and work rolls. Must be decided.
そこで、発明者らは、まず、ワークロールの表面粗さの経時変化の影響について、種々の実験を重ねて検討した結果、最終パスのワークロールの初期表面粗さを、算術平均粗さRaで0.2μm以下に管理することで、冷延後の鋼板表面粗さをRaで0.3μm以下に安定して制御できることを見出した。ここで、上記ロール表面の粗さRaは、ロール胴長方向の粗さである。 Therefore, the inventors first studied the influence of the change in the surface roughness of the work roll over time by various experiments, and as a result, the initial surface roughness of the work roll in the final pass was expressed by the arithmetic average roughness Ra. It was found that by controlling to 0.2 μm or less, the steel sheet surface roughness after cold rolling can be stably controlled to 0.3 μm or less by Ra. Here, the roughness Ra of the roll surface is a roughness in the roll body length direction.
また、発明者らは、オイルピットによる悪影響を低減することを検討した。ワークロールの表面粗さが圧延後の鋼板表面に及ぼす影響、すなわち、転写率は、ワークロールの材質によっても影響されることが知られている。そこで、発明者らは種々の材質のワークロールを使用して、その影響を調査した。その結果、弾性率が300GPa以上のワークロールを用いることが有効であることを見出した。 In addition, the inventors studied to reduce the adverse effects of oil pits. It is known that the influence of the surface roughness of the work roll on the surface of the steel sheet after rolling, that is, the transfer rate is also affected by the material of the work roll. Therefore, the inventors investigated the influence by using work rolls of various materials. As a result, it was found that it is effective to use a work roll having an elastic modulus of 300 GPa or more.
その理由について、発明者らは以下のように考えている。弾性率の高いワークロールを用いると、圧延荷重によるロール扁平量を小さくできるため、実際の圧延時のロール径とも言える扁平ロール径を小さくすることができる。また、圧延時にロールと鋼板の界面に封入される潤滑油量は、ロール径が小さいほど少なくなる。したがって、弾性率が高いワークロールを用いるほど、オイルピットの形成は抑制されると考えられる。 The inventors consider the reason as follows. When a work roll having a high elastic modulus is used, the roll flatness due to the rolling load can be reduced, so that the flat roll diameter, which can be said to be the roll diameter during actual rolling, can be reduced. Further, the amount of lubricating oil enclosed in the interface between the roll and the steel plate during rolling decreases as the roll diameter decreases. Therefore, it is considered that the oil pit formation is suppressed as the work roll having a higher elastic modulus is used.
通常、冷間圧延用のワークロール素材としては、Crを2〜10mass%程度含有する鋼が用いられており、その弾性率は205GPa程度でしかない。これに対して、現在、冷間圧延用のワークロールとして使用可能な高弾性率の材料としては、窒化珪素(Si3N4)やサイアロン(Si−Al−O−N)、超硬合金(WC−Co)等があり、それらの弾性率は、300〜540GPa程度である。したがって、これらを素材としたワークロールを用いることで、オイルピットを効果的に低減でき、鋼板の表面粗さを安定して小さくすることが可能となる。
本発明は、上記の知見に基づき開発したものである。
Usually, steel containing about 2 to 10 mass% of Cr is used as a work roll material for cold rolling, and its elastic modulus is only about 205 GPa. On the other hand, as a material having a high elastic modulus that can be used as a work roll for cold rolling, silicon nitride (Si 3 N 4 ), sialon (Si—Al—O—N), cemented carbide ( WC-Co) and the like, and their elastic modulus is about 300 to 540 GPa. Therefore, by using work rolls made of these materials, oil pits can be effectively reduced, and the surface roughness of the steel sheet can be stably reduced.
The present invention has been developed based on the above findings.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板は、所定の成分組成に調整した方向性電磁鋼板用の鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、鋼板表面に溝を形成して磁区細分化処理を施した後、一次再結晶焼鈍(脱炭焼鈍を兼ねることもある)し、焼鈍分離剤を鋼板表面に塗布し、最終仕上焼鈍した後、上塗コ−ティング(絶縁被膜)を被成する工程を経て製造する、通常公知の方法で製造することができる。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
In the grain-oriented electrical steel sheet of the present invention, a steel slab for grain-oriented electrical steel sheet adjusted to a predetermined component composition is hot-rolled, subjected to hot-rolled sheet annealing as necessary, and once or two times between intermediate annealings. After cold rolling as described above, a cold-rolled sheet with the final thickness is formed, grooves are formed on the steel sheet surface, magnetic domain subdivision treatment is performed, and then primary recrystallization annealing (sometimes also decarburization annealing) is performed and annealing separation After the agent is applied to the surface of the steel sheet and subjected to final finish annealing, it can be manufactured by a generally known method of manufacturing through a step of forming a top coating (insulating coating).
ただし、上記の製造工程における磁区細分化処理は、以下の条件を満たして行う必要がある。通常、冷間圧延後の鋼板に対する磁区細分化処理は、例えば、最終冷間圧延して製品板厚とした冷延板の表面に、グラビアオフセット印刷によって、エポキシ系樹脂を主成分とするエッチングレジストインキを、圧延方向に3〜10mm程度のピッチで、非塗布部領域の圧延方向の幅が0.05〜0.2mm程度で、板幅方向から圧延方向に0〜10°程度の傾きとなるように塗布し、温度200℃×30秒間程度で焼き付けた後、NaCl電解浴中で電解処理して所定の幅、深さの線状溝を形成し、その後、アルカリ液中に浸積してエッチングレジストを除去することでなされる。 However, the magnetic domain fragmentation process in the manufacturing process described above must be performed while satisfying the following conditions. Usually, the magnetic domain refinement process for a steel sheet after cold rolling is performed by, for example, etching resist containing epoxy resin as a main component by gravure offset printing on the surface of a cold-rolled sheet having a product sheet thickness by final cold rolling. The ink has a pitch of about 3 to 10 mm in the rolling direction, the width in the rolling direction of the non-applied part region is about 0.05 to 0.2 mm, and the inclination is about 0 to 10 ° from the sheet width direction to the rolling direction. After being baked at a temperature of about 200 ° C. for about 30 seconds, electrolytic treatment is performed in a NaCl electrolytic bath to form a linear groove having a predetermined width and depth, and then immersed in an alkaline solution. This is done by removing the etching resist.
ここで、本発明において重要なことは、磁区細分化処理前の最終冷間圧延において、圧延後の鋼板表面の粗さを算術平均粗さRaで0.3μm以下に制御することである。冷延板の表面粗さは、前述した通り、主に最終パス圧延時のワークロールの表面粗さと、オイルピットによって決定される。したがって、鋼板の表面粗さをRaで0.3μm以下に制御するためには、ワークロールの表面粗さをRaで0.2μm以下に管理するとともに、窒化珪素(Si3N4)やサイアロン(Si−Al−O−N)、超硬合金(WC−Co)等、弾性率が300GPa以上のセラミックス系のワークロールを用いてオイルピットを低減することが有効である。 Here, what is important in the present invention is to control the roughness of the surface of the steel sheet after rolling to 0.3 μm or less in terms of arithmetic average roughness Ra in the final cold rolling before the magnetic domain refinement treatment. As described above, the surface roughness of the cold-rolled sheet is mainly determined by the surface roughness of the work roll during the final pass rolling and the oil pit. Therefore, in order to control the surface roughness of the steel sheet to 0.3 μm or less with Ra, the surface roughness of the work roll is controlled to Ra with 0.2 μm or less, and silicon nitride (Si 3 N 4 ) or sialon ( It is effective to reduce oil pits by using a ceramic work roll having an elastic modulus of 300 GPa or more, such as Si—Al—O—N) or cemented carbide (WC—Co).
C:0.06mass%、Si:3.1mass%、Mn:0.15mass%、Al:0.021mass%、N:0.007mass%、S:0.003mass%およびSe:0.022mass%を含有する鋼スラブを常法に準じて熱間圧延して得た熱延板を、中間焼鈍を挟む2回の冷間圧延によって最終板厚0.22mm×板幅1160mmの冷延板(冷延コイル)とした。なお、上記冷間圧延は、ワークロール径が80mmφのリバースミルを用いて行い、最終パスのワークロールの材質および表面粗さを、表1に示したように変えることによって、最終冷延板の表面粗さを変化させた。なお、上記冷延板の表面粗さは、冷間圧延後のコイルの先端部、中間部および尾端部の3箇所からサンプルを採取し、触針式粗さ計を用いて、圧延方向と直角方向の算術平均粗さRaを板幅方向に15点(合計45点)測定し、それらのばらつき(標準偏差σ)を求めた。 Contains C: 0.06 mass%, Si: 3.1 mass%, Mn: 0.15 mass%, Al: 0.021 mass%, N: 0.007 mass%, S: 0.003 mass% and Se: 0.022 mass% A hot-rolled sheet obtained by hot-rolling a steel slab to be cold-rolled according to a conventional method is subjected to cold-rolling twice (cold-rolled coil) having a final sheet thickness of 0.22 mm and a sheet width of 1160 mm by cold rolling twice with intermediate annealing. ). The cold rolling is performed using a reverse mill having a work roll diameter of 80 mmφ, and the material and the surface roughness of the work roll in the final pass are changed as shown in Table 1 to obtain the final cold rolled sheet. The surface roughness was changed. In addition, the surface roughness of the cold-rolled sheet is obtained by taking samples from three locations of the tip portion, intermediate portion and tail end portion of the coil after cold rolling, and using a stylus roughness meter to determine the rolling direction and The arithmetic mean roughness Ra in the perpendicular direction was measured at 15 points (45 points in total) in the plate width direction, and the variation (standard deviation σ) was obtained.
その後、この冷延板の片表面に、グラビアオフセット印刷によりエッチングレジストを塗布した後、電解エッチング処理し、目標幅が0.1mm、目標深さが20μmの線状溝を、圧延方向に3mm間隔で板幅方向に対し10°の傾きを持たせて形成した。なお、上記エッチングレジストには、エポキシ系樹脂を主成分とするインキを用い、電解エッチングは、NaCl電解浴中で、電流密度10A/dm2×30秒の条件で行った。上記エッチング処理を施した冷延板は、その後、アルカリ液中に浸積してエッチングレジストを除去した後、コイルの先端部、中間部および尾端部から再度、サンプルを採取し、板幅方向に約200mmピッチで5分割した合計15枚の試験片について、各試験片3箇所ずつ、合計45箇所の溝形状(溝幅、溝深さ)を、触針式粗さ計を用いて測定し、それらのばらつき(標準偏差σ)を求めた。 Then, after applying an etching resist to one surface of the cold-rolled sheet by gravure offset printing, electrolytic etching is performed, and linear grooves having a target width of 0.1 mm and a target depth of 20 μm are spaced at intervals of 3 mm in the rolling direction. And having an inclination of 10 ° with respect to the plate width direction. The etching resist used was an ink mainly composed of an epoxy resin, and the electrolytic etching was performed in a NaCl electrolytic bath under a current density of 10 A / dm 2 × 30 seconds. After the cold-rolled plate subjected to the above etching treatment is immersed in an alkaline solution to remove the etching resist, samples are taken again from the tip, middle and tail ends of the coil, and the plate width direction For a total of 15 test pieces divided into 5 pieces at a pitch of about 200 mm, a total of 45 groove shapes (groove width and groove depth) were measured using a stylus roughness meter. The variation (standard deviation σ) was obtained.
その後、上記冷延板に脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を施した後、絶縁被膜をコーティングし、方向性電磁鋼板の製品板(コイル)とした。 After that, the cold-rolled sheet is subjected to primary recrystallization annealing that also serves as decarburization annealing, applied with an annealing separator mainly composed of MgO, and after final finish annealing, is coated with an insulating film, and is subjected to directional electromagnetic It was set as the product plate (coil) of the steel plate.
斯くして得られた製品コイルの先端部、中間部および尾端部の3箇所からサンプルを採取し、板幅方向に約200mmピッチで5分割した位置(合計15箇所)から幅30mm×長さ280mmのエプスタイン試片を採取し、800℃×5hrの歪取焼鈍を施した後、鉄損W17/50を測定し、そのばらつき(標準偏差σ)を求めた。
上記の結果を、冷間圧延の最終パスに用いたワークロールの仕様と併せて表1に示した。この表から、本発明に適合する条件においては、溝形状のばらつきが低減され、鉄損のばらつきも大きく低減していることがわかる。
Samples were taken from the three positions of the tip, middle and tail ends of the product coil thus obtained, and the width was 30 mm × length from the position (total of 15 positions) divided into five at a pitch of about 200 mm in the plate width direction. A 280 mm Epstein specimen was sampled and subjected to strain relief annealing at 800 ° C. × 5 hr, and then the iron loss W 17/50 was measured to determine the variation (standard deviation σ).
The above results are shown in Table 1 together with the specifications of the work roll used in the final cold rolling pass. From this table, it can be seen that, under conditions suitable for the present invention, the variation in groove shape is reduced and the variation in iron loss is also greatly reduced.
Claims (3)
前記エッチング処理前の冷延板の表面粗さを算術平均粗さRaで0.3μm以下とすることを特徴とする方向性電磁鋼板の製造方法。 A steel slab for grain-oriented electrical steel sheets is hot-rolled, cold-rolled to the final cold-rolled sheet surface, coated with a resist, etched to form linear grooves , and then resisted. In the manufacturing method of grain-oriented electrical steel sheet to be removed , primary recrystallization annealing, and finish annealing,
A method for producing a grain-oriented electrical steel sheet, characterized in that the surface roughness of the cold-rolled sheet before the etching treatment is 0.3 μm or less in terms of arithmetic average roughness Ra.
The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the work roll in the final pass in the cold rolling uses an elastic modulus of 300 GPa or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012222674A JP6015919B2 (en) | 2012-10-05 | 2012-10-05 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012222674A JP6015919B2 (en) | 2012-10-05 | 2012-10-05 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014073518A JP2014073518A (en) | 2014-04-24 |
JP6015919B2 true JP6015919B2 (en) | 2016-10-26 |
Family
ID=50748111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012222674A Active JP6015919B2 (en) | 2012-10-05 | 2012-10-05 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6015919B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109047330A (en) * | 2018-10-22 | 2018-12-21 | 武汉威华铝业有限公司 | Method for processing sheet material |
US12084736B2 (en) | 2018-12-19 | 2024-09-10 | Posco Co., Ltd | Grain-oriented electrical steel sheet and manufacturing method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107208223B (en) | 2015-04-20 | 2019-01-01 | 新日铁住金株式会社 | Grain-oriented magnetic steel sheet |
JP7028215B2 (en) * | 2019-03-28 | 2022-03-02 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
JP7406064B2 (en) * | 2019-08-01 | 2023-12-27 | 日本製鉄株式会社 | Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core |
JP7557127B2 (en) | 2020-06-24 | 2024-09-27 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
JP7620180B2 (en) | 2020-06-24 | 2025-01-23 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
WO2024219492A1 (en) * | 2023-04-20 | 2024-10-24 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657857B2 (en) * | 1986-08-06 | 1994-08-03 | 川崎製鉄株式会社 | Method for manufacturing low iron loss grain-oriented electrical steel sheet |
JPH11199933A (en) * | 1998-01-09 | 1999-07-27 | Kawasaki Steel Corp | Production of grain oriented magnetic steel sheet |
JP3382874B2 (en) * | 1998-03-24 | 2003-03-04 | 川崎製鉄株式会社 | Method for producing stainless steel cold rolled steel strip with high gloss |
JP5573175B2 (en) * | 2010-01-14 | 2014-08-20 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2012
- 2012-10-05 JP JP2012222674A patent/JP6015919B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109047330A (en) * | 2018-10-22 | 2018-12-21 | 武汉威华铝业有限公司 | Method for processing sheet material |
US12084736B2 (en) | 2018-12-19 | 2024-09-10 | Posco Co., Ltd | Grain-oriented electrical steel sheet and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2014073518A (en) | 2014-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015919B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR101921008B1 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
KR100297046B1 (en) | Very low iron loss oriented electrical steel sheet and its manufacturing method | |
CN103140604B (en) | Oriented electrical steel sheet | |
EP0539236B1 (en) | Low-iron loss grain oriented electromagnetic steel sheet and method of producing the same | |
KR101500887B1 (en) | Grain oriented electrical steel sheet | |
KR20160138253A (en) | Method for producing oriented electromagnetic steel sheet | |
CN103025896B (en) | The manufacture method of one-way electromagnetic steel plate | |
WO2022013960A1 (en) | Grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet | |
JP6194866B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
WO2018150791A1 (en) | Grain-oriented electromagnetic steel sheet | |
JP2020063510A (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
KR102200854B1 (en) | Material for metal mask and its manufacturing method | |
JP2017110292A (en) | Grain oriented silicon steel sheet and method for manufacturing the same | |
JPWO2020203928A1 (en) | Directional electrical steel sheet and its manufacturing method | |
JP2018154881A (en) | Production method of grain-oriented electromagnetic steel sheet | |
JP2022060749A (en) | Manufacturing method of grain-oriented electrical steel sheet | |
EP2243865B1 (en) | Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics | |
JP6947248B1 (en) | Directional electrical steel sheet | |
JP7435486B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
KR102582914B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2006257534A (en) | Super core loss grain-oriented magnetic steel sheet having excellent magnetic characteristic | |
KR20240152869A (en) | Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet | |
JP2006183118A (en) | Method for producing low core loss grain oriented silicon steel sheet | |
JP2019122997A (en) | Metal plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6015919 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |