JP2006257534A - Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties - Google Patents
Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties Download PDFInfo
- Publication number
- JP2006257534A JP2006257534A JP2005080597A JP2005080597A JP2006257534A JP 2006257534 A JP2006257534 A JP 2006257534A JP 2005080597 A JP2005080597 A JP 2005080597A JP 2005080597 A JP2005080597 A JP 2005080597A JP 2006257534 A JP2006257534 A JP 2006257534A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- steel sheet
- iron loss
- tin
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
【課題】TiN被膜の適正な膜厚分布範囲を規定することにより、コイル全面にわたって磁気特性が均一な超低鉄損方向性電磁鋼板を提供する。
【解決手段】鋼板の表裏面にTiN被膜を有する方向性電磁鋼板において、表裏面全体のTiN被膜の平均膜厚をt[ave.]、圧延直角方向におけるTiN膜厚分布で最大の膜厚差をΔt[C]、また同一位置での表裏面膜厚差の最大値をΔt[S]とするとき、これらについて次式(1)
(Δt[C]+2×Δt[S]) /(3×t[ave.])≦ 0.3
の関係を満足させる。
【選択図】図4An ultra-low iron loss directional electrical steel sheet having uniform magnetic properties over the entire surface of a coil by defining an appropriate film thickness distribution range of a TiN coating.
In a grain-oriented electrical steel sheet having TiN coatings on the front and back surfaces of a steel sheet, the average film thickness of the TiN coating on the entire front and back surfaces is t [ave.], And the maximum film thickness difference in the TiN film thickness distribution in the direction perpendicular to the rolling direction. Is Δt [C], and the maximum difference in thickness between the front and back surfaces at the same position is Δt [S].
(Δt [C] + 2 × Δt [S]) / (3 × t [ave.]) ≦ 0.3
Satisfy the relationship.
[Selection] Figure 4
Description
本発明は、鋼板表裏面にTiN被膜を有する磁気特性の均一性に優れた超低鉄損方向性電磁鋼板に関するものである。 The present invention relates to an ultra-low iron loss directional electrical steel sheet having excellent uniformity in magnetic properties having TiN coatings on the front and back surfaces of the steel sheet.
方向性電磁鋼板は、主に変圧器や発電機の鉄心材料として用いられる軟磁性材料である。近年、省エネルギーの観点から、これら電気機器のエネルギーロスを低減することに対する要求が高まっており、鉄心材料として用いられる方向性電磁鋼板にも、従来にも増して良好な磁気特性が求められるようになってきた。特に、地球温暖化防止の観点から、発電所からの送配電時の電力損失を最小限にするために、方向性電磁鋼板の鉄損低減に対する要請は年々厳しくなってきている。なお、鉄損は、ヒステリシス損と渦電流損とに大別される。 A grain-oriented electrical steel sheet is a soft magnetic material mainly used as a core material for transformers and generators. In recent years, from the viewpoint of energy saving, the demand for reducing the energy loss of these electrical devices is increasing, and the grain-oriented electrical steel sheets used as iron core materials are required to have better magnetic properties than before. It has become. In particular, from the viewpoint of preventing global warming, in order to minimize power loss during power transmission / distribution from power plants, demands for reducing iron loss of grain-oriented electrical steel sheets are becoming stricter year by year. Iron loss is roughly classified into hysteresis loss and eddy current loss.
方向性電磁鋼板の鉄損を低減するためには、
(1) 二次再結晶により鉄の磁化容易軸である<001>軸を一方向(圧延方向)に高度に揃えることにより、ヒステリシス損を低減する、
(2) 鋼板に含まれる不純物を低減したり、表面を平滑化することにより、ヒステリシス損を低減する、
(3) 鋼板に高比抵抗元素(主としてSi)を含有させて渦電流損を低減する、
(4) 鋼板の厚みを薄くして渦電流損を低減する
等が有効である。また、
(5) 鋼板の表面に特定形状の歪みや溝を形成することにより、磁区を細分化することで渦電流損を低減する方法
も有効である。
In order to reduce the iron loss of grain-oriented electrical steel sheets,
(1) Hysteresis loss is reduced by highly aligning the <001> axis, which is the easy axis of iron, in one direction (rolling direction) by secondary recrystallization.
(2) Reduce hysteresis loss by reducing impurities contained in the steel sheet or smoothing the surface,
(3) Reduce the eddy current loss by adding high resistivity element (mainly Si) to the steel sheet.
(4) It is effective to reduce the eddy current loss by reducing the thickness of the steel sheet. Also,
(5) A method of reducing eddy current loss by subdividing the magnetic domain by forming a specific shape of strain or groove on the surface of the steel sheet is also effective.
しかしながら、これら従来法による鉄損の低減は、もはや限界に達しており、新たな方法を開発することが必要な時期にきている。
最近、これまで以上の鉄損低減効果を得るために、表面を平滑化した方向性電磁鋼板に、物理蒸着(PVD)法や化学気相析出(CVD)法を用いて高張力のセラミック被膜を形成することが検討されている。
例えば、特許文献1には、PVD法(アーク放電方式イオンプレーティング法)を用いることにより、均一なTiN被膜を安定して形成する方法が提案されている。また、特許文献2には、CVD法を用いたTiN被膜について、膜中のCl含有量を規定することにより、経時劣化のない超低鉄損方向性電磁鋼板が提案されている。さらに、特許文献3には、TiN被膜の結晶形態を規定することにより、高温での歪み取り焼鈍にも耐え得る超低鉄損方向性電磁鋼板が提案されている。
However, the reduction of iron loss by these conventional methods has already reached its limit, and it is time to develop a new method.
Recently, in order to obtain an even greater iron loss reduction effect, a high-tensile ceramic coating is applied to a grain-oriented electrical steel sheet with a smoothed surface using physical vapor deposition (PVD) or chemical vapor deposition (CVD). It is being considered to form.
For example,
TiN被膜によって鋼板に付加される張力は、TiNと鋼板の物理的性質と被覆温度から概算することができる。例えば、CVD法により板厚:0.23mmの方向性電磁鋼板の表裏面にTiN被膜を被覆する場合、TiN膜厚が0.5μm以上あると張力効果により鉄損が15〜20%低減されるとされている。
しかしながら、これは張力付与型被膜であるTiN被膜の膜厚が鋼板の全面にわたって完全に均一であることを前提として算出されたものであるが、実際の工業生産においては、数千mに及ぶ鋼板コイルの全面にわたって膜厚差のない均一なTiN被膜を被覆するのは極めて難しい。
The tension applied to the steel sheet by the TiN coating can be estimated from the physical properties of TiN and the steel sheet and the coating temperature. For example, when the TiN film is coated on the front and back surfaces of a grain-oriented electrical steel sheet having a thickness of 0.23 mm by the CVD method, if the TiN film thickness is 0.5 μm or more, the iron loss is reduced by 15 to 20% due to the tension effect. ing.
However, this is calculated on the assumption that the thickness of the TiN film, which is a tension-imparting film, is completely uniform over the entire surface of the steel sheet. It is extremely difficult to coat a uniform TiN film having no film thickness difference over the entire surface of the coil.
例えば、膜の着きまわり性が良く、均一な被膜が安定して得られる熱CVD法においても、炉の温度変化やガス流れの変動、板の蛇行等の外乱因子の影響を受けるため、鋼板の幅方向および表裏面に関して膜厚差が生じる可能性がある。その他の被覆法、例えばプラズマCVD法やPVD法においても、同様に、コイル全面で均一な膜厚分布を得るのは困難と予想される。
従って、TiN被膜を被覆した超低鉄損方向性電磁鋼板を工業的に生産する場合、鋼板表裏面におけるTiN膜厚分布の許容範囲を明確にして、厳密に管理する必要がある。
ところが、上掲した各特許文献にはいずれも、磁気特性に及ぼすTiN膜厚分布の影響については触れられておらず、また従来そのような検討は全くなされてこなかった。
For example, even in the thermal CVD method in which the film has good throwing power and a uniform coating can be obtained stably, it is affected by disturbance factors such as furnace temperature change, gas flow fluctuation, plate meandering, etc. A film thickness difference may occur in the width direction and the front and back surfaces. Similarly, in other coating methods such as plasma CVD and PVD, it is expected that it is difficult to obtain a uniform film thickness distribution on the entire surface of the coil.
Therefore, when industrially producing an ultra-low iron loss grain-oriented electrical steel sheet coated with a TiN coating, it is necessary to clarify and to strictly manage the allowable range of the TiN film thickness distribution on the front and back surfaces of the steel sheet.
However, none of the above-mentioned patent documents mentions the influence of the TiN film thickness distribution on the magnetic properties, and no such studies have been made heretofore.
TiN被膜は、従来の被膜に比べて高い張力を鋼板に付与できるため、微小な膜厚差によっても鋼板内に不均一な応力分布が生じてしまう。このような不均一な応力分布が発生すると、板の形状や磁気特性が著しく劣化する。従って、工業生産ラインで方向性電磁鋼板コイルにTiN被膜を被覆する場合、可能な限り広い面積で均一な膜厚分布が得られるようにすることが望まれる。 Since the TiN film can apply a higher tension to the steel sheet than the conventional film, a non-uniform stress distribution is generated in the steel sheet even by a small difference in film thickness. When such a non-uniform stress distribution occurs, the shape and magnetic characteristics of the plate are significantly deteriorated. Therefore, when a TiN film is coated on a grain-oriented electrical steel sheet coil in an industrial production line, it is desired to obtain a uniform film thickness distribution in as wide an area as possible.
かようなTiN被膜は、従来から用いられている湿式の被膜塗布法では合成することができず、CVD法またはPVD法といった乾式成膜法によって合成、被覆せざるを得ない。しかしながら、鉄鋼業においては、従来、これらCVD法やPVD法が実用化された例は少なく、工業レベルでの膜厚管理に関する知見は殆どない。
従って、膜厚の均一性を重視するあまりの歩留り低下や、形状不良材および特性不良材の大量発生を防止するためには、実質的に超低鉄損(W17/50 ≦0.75W/kg)の材料が得られる適正な膜厚分布範囲を規定することが重要である。
Such a TiN film cannot be synthesized by a conventional wet film coating method, and must be synthesized and coated by a dry film forming method such as a CVD method or a PVD method. However, in the steel industry, these CVD methods and PVD methods have hitherto been rarely used, and there is almost no knowledge about film thickness management at an industrial level.
Therefore, in order to prevent a decrease in yield that places an emphasis on film thickness uniformity and a large amount of poorly shaped materials and poorly characterized materials, it is possible to substantially reduce the iron loss (W 17/50 ≦ 0.75 W / kg). It is important to define an appropriate film thickness distribution range in which the material (1) can be obtained.
本発明は、上記の実状に鑑み開発されたもので、TiN被膜の適正な膜厚分布範囲を規定して、コイル全面にわたって均一な鉄損を安定して得ることができる磁気特性の均一性に優れた超低鉄損方向性電磁鋼板を提案することを目的とする。 The present invention has been developed in view of the above-mentioned circumstances, and by defining an appropriate film thickness distribution range of the TiN film, it is possible to achieve uniform magnetic properties that can stably obtain uniform iron loss over the entire surface of the coil. The purpose is to propose an excellent ultra-low iron loss grain-oriented electrical steel sheet.
すなわち、本発明は、鋼板の表裏面にTiN被膜を有する方向性電磁鋼板であって、表裏面全体のTiN被膜の平均膜厚をt[ave.]、圧延直角方向におけるTiN膜厚分布で最大の膜厚差をΔt[C]、また同一位置での表裏面膜厚差の最大値をΔt[S]としたとき、これらが次式(1)
(Δt[C]+2×Δt[S]) /(3×t[ave.])≦ 0.3
の関係を満足することを特徴とする磁気特性の均一性に優れた超低鉄損方向性電磁鋼板である。
That is, the present invention is a grain-oriented electrical steel sheet having TiN films on the front and back surfaces of the steel sheet, wherein the average film thickness of the TiN film on the entire front and back surfaces is t [ave.], And the TiN film thickness distribution in the direction perpendicular to the rolling is maximum. Where Δt [C] is the film thickness difference and Δt [S] is the maximum thickness difference between the front and back surfaces at the same position.
(Δt [C] + 2 × Δt [S]) / (3 × t [ave.]) ≦ 0.3
It is an ultra-low iron loss grain-oriented electrical steel sheet with excellent magnetic property uniformity characterized by satisfying the following relationship.
この発明によれば、TiN被膜の適正な膜厚分布範囲を規定することにより、コイル全面にわたって磁気特性が均一な超低鉄損方向性電磁鋼板を安定して得ることができる。 According to this invention, by defining an appropriate film thickness distribution range of the TiN coating, it is possible to stably obtain an ultra-low iron loss directional electrical steel sheet having uniform magnetic characteristics over the entire surface of the coil.
まず、本発明を由来するに至った実験結果について説明する。
周波数:50Hzで磁束密度:1.7Tまで励磁した時の鉄損W17/50が0.85W/kgで、かつ表面が平滑化された板厚:0.23mmの方向性電磁鋼板の表面に、熱CVD法により膜厚が約0.2μm、約0.6μmおよび約1.0μmのTiN被膜を被覆し、その後各条件毎に幅:100mm、長さ:300mmの試料を切り出して、面内の膜厚分布を10mm間隔で測定し、その平均膜厚t[ave.]を求めた。
次に、この試料に、歪み取り焼鈍に相当する熱処理(N2ガス中にて800℃×3時間)を施した後、単板磁気測定器に挿入し、鉄損W17/50 を計測した。
First, the experimental results that led to the present invention will be described.
Frequency: 50Hz Magnetic flux density: Iron loss W 17/50 when excited to 1.7T is 0.85W / kg, and the surface is smoothed. Thickness: 0.23mm. A TiN film with a thickness of about 0.2, 0.6, and 1.0 μm is coated by the method, and then a sample with a width of 100 mm and a length of 300 mm is cut out for each condition, and the in-plane film thickness distribution is 10 mm. Measured at intervals, the average film thickness t [ave.] Was obtained.
Next, this sample was subjected to a heat treatment corresponding to strain relief annealing (800 ° C. × 3 hours in N 2 gas), and then inserted into a single-plate magnetometer, and the iron loss W 17/50 was measured. .
図1に、TiN被膜の平均膜厚と鉄損との関係を示す。
同図から明らかなように、TiN被覆の膜厚が増加するにつれて、素材の鉄損は減少する傾向が認められる。すなわち、TiN被覆の張力付与効果が確認できる。
しかしながら、膜厚がほとんど同じであるにもかかわらず、鉄損低減の度合いが試料により異なる。このような特性のバラツキは製品として好ましいものではない。とはいえ、製品特性の下限をクリアするために全体のTiN膜厚を増加すれば、原料であるTiCl4使用量の増加だけでなく、生産効率の低下を招く。
FIG. 1 shows the relationship between the average film thickness of the TiN film and the iron loss.
As is apparent from the figure, the iron loss of the material tends to decrease as the thickness of the TiN coating increases. That is, the tension imparting effect of the TiN coating can be confirmed.
However, although the film thickness is almost the same, the degree of iron loss reduction varies from sample to sample. Such variation in characteristics is not preferable as a product. However, increasing the total TiN film thickness to clear the lower limit of product characteristics not only increases the amount of TiCl 4 used as a raw material, but also decreases the production efficiency.
さらに、鉄損特性の悪い試料には反りが認められた。このような形状不良が生じると、鉄心材料として剪断・加工・組立される際、寸法精度が低下するため、鉄心として十分な特性が得られないおそれがある。
従って、鉄損特性のバラツキが生じた原因を明確にし、適切に対処する必要がある。
Further, warpage was observed in samples having poor iron loss characteristics. When such a shape defect occurs, dimensional accuracy decreases when shearing, processing, and assembling as an iron core material, and there is a possibility that sufficient characteristics as an iron core may not be obtained.
Therefore, it is necessary to clarify the cause of the variation in the iron loss characteristic and appropriately deal with it.
板の反りは、張力付与被膜の膜厚不均一が原因で生じたものと推測されるため、上記試料の中から、図2に示すように、平均膜厚が同レベル(約0.6μm)の試料を選出し、膜厚差に対する鉄損の変化について調査した。
ここで膜厚差とは、各試料の圧延直角方向(板幅方向ともいう)のTiN膜厚分布のグラフから、図3に示すように、板幅方向で最大の膜厚差をΔt[C] 、一方幅方向の同じ場所で表裏面膜厚差の最大のものをΔt[S]として、 (Δt[C]+2×Δt[S]) /(3×t[ave.])で定義した。
Since the warpage of the plate is presumed to be caused by the non-uniformity of the tension-imparting film, as shown in FIG. 2, the average film thickness is the same level (about 0.6 μm). Samples were selected and investigated for changes in iron loss with respect to film thickness differences.
Here, the film thickness difference means that the maximum film thickness difference in the sheet width direction is Δt [C from the graph of the TiN film thickness distribution in the rolling perpendicular direction (also referred to as the sheet width direction) of each sample, as shown in FIG. On the other hand, the maximum difference between the front and back film thicknesses at the same place in the width direction is defined as Δt [S] and defined as (Δt [C] + 2 × Δt [S]) / (3 × t [ave.]).
この膜厚差と鉄損との関係を整理して図4に示す。
同図に示したとおり、膜厚差が0.3を超えると鉄損が急激に上昇する、すなわち磁気特性が劣化するのが分かる。
従って、TiN被覆によって適切な磁気特性を得るための条件は、鋼板表面の膜厚差について、次式(1)
(Δt[C]+2×Δt[S]) /(3×t[ave.])≦ 0.3
の関係を満足させることである。
FIG. 4 shows the relationship between the film thickness difference and the iron loss.
As shown in the figure, it can be seen that when the film thickness difference exceeds 0.3, the iron loss rapidly increases, that is, the magnetic characteristics deteriorate.
Therefore, the conditions for obtaining appropriate magnetic properties by TiN coating are as follows:
(Δt [C] + 2 × Δt [S]) / (3 × t [ave.]) ≦ 0.3
To satisfy the relationship.
上記したように、鋼板表面の膜厚差を、式(1)を満足する範囲に制御することによって均一な磁気特性が得られる機構は、現段階では必ずしも明らかでないが、次のように推測している。
すなわち、表裏面に膜厚差が生じた場合、TiNの張力が表裏面で異なるため、膜厚の厚い側の鋼板表面がより強く、膜厚の薄い側の鋼板表面が弱く引っ張られ、相対的に張力の強い面が凸、弱い面が凹となるように板が反る。板に反りが発生すると、磁気特性は著しく劣化してしまう。
一方、板幅方向に膜厚分布が生じた場合、面内で張力の強い部分と弱い部分が形成されるが、表裏面膜厚差ほど板形状への影響は大きくなく、磁気特性に及ぼす影響も比較的小さい。しかしながら、板幅方向膜厚差が大きくなると、板形状は単純な反りではなく、中伸びや耳伸び等が顕著となり、その結果鋼板内に不均一な応力分布が発生するため、やはり鉄損特性を劣化させる。
従って、鉄損特性を改善するためには、表裏面のみならず板幅方向の膜厚分布も適正範囲内に収める必要がある。そこで、板の反り、すなわち応力分布に及ぼす表裏面膜厚差と板幅方向膜厚差の影響の違いを考慮して、本発明では、式(1)の左辺を膜厚差を表すパラメータと定義したのである。
As described above, the mechanism by which uniform magnetic properties can be obtained by controlling the film thickness difference on the steel sheet surface within the range satisfying Equation (1) is not necessarily clear at this stage, but is estimated as follows. ing.
That is, when there is a difference in film thickness between the front and back surfaces, the TiN tension differs between the front and back surfaces, so the steel sheet surface on the thicker side is stronger and the steel sheet surface on the thinner film side is pulled weaker. The plate warps so that the surface with strong tension is convex and the surface with weak is concave. When warping occurs in the plate, the magnetic properties are significantly degraded.
On the other hand, when the film thickness distribution occurs in the plate width direction, strong and weak parts are formed in the plane, but the effect on the plate shape is not as great as the difference in film thickness between the front and back surfaces, and the influence on the magnetic properties Relatively small. However, when the difference in thickness in the plate width direction becomes large, the plate shape is not a simple warp, and medium elongation, ear elongation, etc. become prominent, resulting in uneven stress distribution in the steel plate. Deteriorate.
Therefore, in order to improve the iron loss characteristics, it is necessary to keep not only the front and back surfaces but also the film thickness distribution in the plate width direction within an appropriate range. Therefore, in consideration of the difference between the front and back film thickness difference and the sheet width direction film thickness difference on the warp of the plate, that is, the stress distribution, in the present invention, the left side of Equation (1) is defined as a parameter representing the film thickness difference. It was.
なお、方向性電磁鋼板のコイル長手方向の膜厚分布は、調査した試料全てにおいて10%以内に収まっており、この範囲内では鉄損特性にに及ぼす影響は認められなかった。従って、長手方向の膜厚分布は特に限定しないが、10%以内に収めることが望ましいのは言うまでもない。 The film thickness distribution in the coil longitudinal direction of the grain-oriented electrical steel sheet was within 10% in all the investigated samples, and no influence on the iron loss characteristics was observed within this range. Accordingly, the film thickness distribution in the longitudinal direction is not particularly limited, but it goes without saying that it is preferably within 10%.
また、鉄損劣化を招くTiN膜厚の不均一を極力抑制し、バラツキの小さい製品を供給するためには、TiN被覆の際に効果的な対策を講じる必要がある。
この点について、発明者らは、鋭意研究を重ねた結果、板面に平行でかつ板の進行方向と直交する向きにスリットを有する筒状ノズルを、板面に対して表裏等間隔の位置に備えた連続CVD炉でTiN被膜を被覆する際、素材の板形状がTiN被膜の均一性に大きな影響を及ぼしていることを突き止めた。
Moreover, in order to suppress the nonuniformity of the TiN film thickness that causes iron loss deterioration as much as possible and supply products with small variations, it is necessary to take effective measures when coating TiN.
As a result of intensive research, the inventors have made a cylindrical nozzle having slits parallel to the plate surface and perpendicular to the traveling direction of the plate at positions at equal intervals on the plate surface. When the TiN film was coated with the continuous CVD furnace provided, it was found that the plate shape of the material had a great influence on the uniformity of the TiN film.
一般に、方向性電磁鋼板は、結晶方位を揃えるため、コイルの状態で1200℃前後の高温域で焼鈍する。その際、鋼板には巻き癖と呼ばれる反りや中伸びが発生し、板形状は必ずしも良好ではない。このような鋼板を、上述した連続CVD処理炉に通した場合、ノズルのガス噴出口と鋼板面との距離が表裏面で非対称となり、CVD反応で鋼板面に形成されるTiN被膜が不均一となり易い。しかも、鋼板のノズルに近い側(凸側)が遠い側(凹側)よりもTiNが厚く被覆される傾向があるため、鋼板に働く張力もTiN膜厚増加と共に上昇し、凸に反っていた部分はより凸に反ろうとして、CVD処理後の板形状はより悪化する。 Generally, grain oriented electrical steel sheets are annealed in a high temperature region around 1200 ° C. in a coil state in order to align the crystal orientation. At that time, warpage or middle elongation called a curl occurs in the steel plate, and the plate shape is not necessarily good. When such a steel plate is passed through the continuous CVD furnace described above, the distance between the nozzle gas outlet and the steel plate surface becomes asymmetrical on the front and back surfaces, and the TiN film formed on the steel plate surface by the CVD reaction becomes non-uniform. easy. Moreover, since the TiN coating tends to be thicker on the side closer to the nozzle of the steel plate (convex side) than on the far side (concave side), the tension acting on the steel plate also increases as the TiN film thickness increases and warps convexly. The part tends to warp more convexly, and the plate shape after the CVD process becomes worse.
そこで、TiN被膜を被覆する際、膜厚分布に及ぼす素材板形状の影響について調査したところ、ノズルと鋼板面の距離に対して反り(板幅方向の反り量)を30%以内に収めれば、実質的に均一な膜厚のTiNが得られることが判明した。 Therefore, when coating the TiN film, the influence of the material plate shape on the film thickness distribution was investigated, and if the warp (the warp amount in the plate width direction) was within 30% of the distance between the nozzle and the steel plate surface. It was found that TiN having a substantially uniform film thickness can be obtained.
また、CVD処理に供する方向性電磁鋼板の板形状が良好でない場合、事前に別の工程で形状矯正を行う必要がある。さらに、CVD処理炉に装入する前に形状矯正された方向性電磁鋼板であっても、TiN被覆を行うために必要な1000℃前後の高温に加熱した際、形状劣化を生じる場合もある。このような場合には、その場で形状矯正することが可能となるように、素材板の形状矯正機能を有する連続CVD処理炉で製造することが好ましい。なお、形状矯正の具体的手段は、通板するときの炉内張力アップでも良いし、炉の入側に形状矯正のためのレベラ−装置を設置してもよい。 Moreover, when the plate | board shape of the grain-oriented electrical steel plate used for CVD processing is not favorable, it is necessary to perform shape correction in another process in advance. Furthermore, even a grain-oriented electrical steel sheet whose shape has been corrected before being charged into the CVD processing furnace may be deteriorated when heated to a high temperature of about 1000 ° C. necessary for performing TiN coating. In such a case, it is preferable to manufacture in a continuous CVD processing furnace having a function of correcting the shape of the material plate so that the shape can be corrected on the spot. In addition, the specific means of shape correction may be an increase in the tension in the furnace when the plate is passed, or a leveler device for shape correction may be installed on the entrance side of the furnace.
以下、本発明を具体的に説明する。
本発明で対象とする方向性電磁鋼板としては従来公知のものいずれもが適合するが、特に好適な成分組成を掲げると次のとおりである。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
本発明では、Siを1.5〜7.0%の範囲で含有することが望ましい。すなわち、Siは、製品の電気抵抗を高め鉄損を低減するのに有効な成分であるが、含有量が7.0%を超えると硬度が高くなって製造や加工が困難となる。一方、1.5%に満たないと、最終仕上焼鈍中に変態を生じて安定した2次再結晶組織が得られない。
The present invention will be specifically described below.
As the grain-oriented electrical steel sheet to be used in the present invention, any conventionally known grain-oriented electrical steel sheet can be used, and particularly preferred component compositions are as follows. Unless otherwise specified, “%” in relation to ingredients means mass%.
In this invention, it is desirable to contain Si in 1.5 to 7.0% of range. That is, Si is an effective component for increasing the electrical resistance of the product and reducing the iron loss. However, if the content exceeds 7.0%, the hardness becomes high and it becomes difficult to manufacture and process. On the other hand, if it is less than 1.5%, transformation occurs during final finish annealing, and a stable secondary recrystallized structure cannot be obtained.
また、鋼中には、上記の元素の他に、公知の方向性電磁鋼板の製造に適するインヒビター成分として、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびIn等を単独または複合して含有させることができる。
さらに、かようなインヒビターを使用しない方法によって製造される方向性電磁鋼板に対しても、本発明の適用は可能である。
In addition to the above-mentioned elements, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, as inhibitor components suitable for the manufacture of known grain-oriented electrical steel sheets are contained in steel. Ti, Cu, Pb, Zn and In can be contained alone or in combination.
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets manufactured by such a method that does not use an inhibitor.
一方、C,S,Se,N等は不純物として磁気特性上有害な元素であり、特に鉄損を劣化させるため、最終製品とする際には、それぞれC:0.003%以下、SおよびSe:0.002%以下、N:0.002%以下とすることか好ましい。 On the other hand, C, S, Se, N and the like are harmful elements in terms of magnetic properties as impurities. Particularly, in order to deteriorate the iron loss, C: 0.003% or less, S and Se: 0.002 respectively in the final product. % Or less and N: 0.002% or less are preferable.
また、上記の成分組成に調整した方向性電磁鋼板は、仕上焼鈍後、表面にフォルステライト被膜がない状態としておく必要がある。
そのための方法としては、従来法により形成されたフォルステライト被膜を酸洗や研磨等により除去する方法、または焼鈍分離剤の組成を調整して、鋼板表面上のフォルステライト被膜の生成を抑制し、もしくは容易に剥落するように形成させた後、洗浄・除去するといった方法により、実質的に金属外観を有する状態とする方法を適用することができる。
さらに、表面に平滑化処理を施すことが、鉄損値の低減により有効である。例えば、酸洗、サーマルエッチングや化学研磨等により表面粗さを極力小さくし、鏡面状態に仕上げた表面や、ハロゲン化物水溶液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。
なお、フォルステライト被膜がない状態とは、フォルステライトが離散的、もしくは島状等部分的に微量存在しているような、実質的に被膜を形成していない場合も含まれる。
Moreover, the grain-oriented electrical steel sheet adjusted to the above component composition needs to be in a state in which there is no forsterite film on the surface after finish annealing.
As a method for that, the method of removing the forsterite film formed by the conventional method by pickling or polishing, or adjusting the composition of the annealing separator, to suppress the production of forsterite film on the steel sheet surface, Alternatively, it is possible to apply a method of substantially having a metal appearance by a method of forming the film so as to be easily peeled off and then cleaning and removing.
Furthermore, it is effective to reduce the iron loss value by subjecting the surface to a smoothing treatment. For example, the surface roughness is made as small as possible by pickling, thermal etching, chemical polishing, etc., and the surface is mirror finished, and the graining surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution It is done.
In addition, the state without a forsterite film includes a case where a film is not substantially formed, such as a small amount of forsterite being discrete or partly in the form of islands.
また、磁区細分化のための溝形成を、最終冷間圧延から製品出荷までの任意の段階で行うことは、低鉄損化に有効であるので推奨される。また、磁区細分化は溝形成法に限らず歪付与法等も有効である。 In addition, it is recommended to form grooves for magnetic domain subdivision at any stage from the final cold rolling to the product shipment because it is effective in reducing iron loss. Further, the magnetic domain subdivision is not limited to the groove forming method, and a strain applying method is also effective.
かくして得られた膜なしの方向性電磁鋼板ストリップの表面に、TiN被膜を形成する。
TiN被膜の被覆方法としては、CVD法およびPVD法のいずれでも良い。
特に連続CVD法により、TiN被膜を被覆する場合には、前述したように、ノズルと鋼板面の距離に対して反り(板幅方向の反り量)を30%以内に収めた条件下で被覆操業を実施することが、実質的に均一な膜厚のTiNを得る上で重要である。
また、連続CVD処理炉の入側に形状矯正装置を設置して、炉内に供給される鋼板の反りを予め低減することは特に有利である。
A TiN film is formed on the surface of the directional electrical steel sheet strip having no film thus obtained.
As a method for coating the TiN film, either a CVD method or a PVD method may be used.
In particular, when coating a TiN film by continuous CVD, as described above, the coating operation is performed under a condition in which the warp (the warp amount in the plate width direction) is within 30% with respect to the distance between the nozzle and the steel plate surface. It is important to obtain TiN having a substantially uniform film thickness.
In addition, it is particularly advantageous to install a shape correction device on the entry side of the continuous CVD processing furnace to reduce the warpage of the steel sheet supplied into the furnace in advance.
実施例1
鉄損W17/50が0.845W/kgで、表面が平滑化された板厚:0.23mmの方向性電磁鋼板を、炉内を1100℃に加熱した連続CVD炉に通板し、種々の条件でTiCl4ガスを供給して鋼板の表裏面にTiN被膜を被覆した。その後、幅:100mm×長さ:300mmの試料を切り出し、10mm間隔で膜厚分布を測定した。
ついで、得られた試料に厚さ:約1μmの絶縁被膜を塗布、焼付けし、さらにN2ガス中で800℃×3時間の歪み取り焼鈍を施した。
かくして得られた試料を単板磁気測定器に挿入し、鉄損W17/50 を計測した。
得られた結果をTiN膜厚分布との関係で表1に示す。
Example 1
The iron loss W 17/50 is 0.845 W / kg and the surface is smoothed. The directional electrical steel sheet with a surface thickness of 0.23 mm is passed through a continuous CVD furnace heated to 1100 ° C in various conditions. TiTi 4 gas was supplied to coat the TiN coating on the front and back surfaces of the steel plate. Thereafter, a sample of width: 100 mm × length: 300 mm was cut out, and the film thickness distribution was measured at intervals of 10 mm.
Subsequently, an insulating film having a thickness of about 1 μm was applied and baked on the obtained sample, and further subjected to strain relief annealing in N 2 gas at 800 ° C. for 3 hours.
The sample thus obtained was inserted into a single plate magnetometer, and the iron loss W 17/50 was measured.
The obtained results are shown in Table 1 in relation to the TiN film thickness distribution.
同表に示したとおり、全体的にTiN被覆によって鉄損は低減しているが、特に発明例においては10%以上の顕著な鉄損低減効果が認められた。 As shown in the table, the iron loss was reduced as a whole by the TiN coating, but a remarkable iron loss reduction effect of 10% or more was recognized particularly in the inventive examples.
実施例2
板面に平行でかつ板の進行方向と直交する向きにスリットを有する筒状ノズルを、板面に対して表裏等間隔の位置に備えた連続CVD炉において、炉温:1100℃で一定の供給ガス条件で板厚:0.23mm、板幅:350mmで幅方向の反り量の異なる種々の鋼板を通板し、それぞれTiN被膜の被覆を行った。その後、鋼板表裏面で板幅方向のTiN膜厚分布を調査した。
得られた結果を素材反り量との関係で表2に示す。
Example 2
In a continuous CVD furnace equipped with cylindrical nozzles that have slits parallel to the plate surface and perpendicular to the direction of plate travel, at a constant distance from the plate surface, supply at a constant temperature of 1100 ° C Under the gas conditions, various steel plates with a thickness of 0.23 mm and a width of 350 mm and different amounts of warpage in the width direction were passed, and each was coated with a TiN coating. Thereafter, the TiN film thickness distribution in the plate width direction was investigated on the front and back surfaces of the steel plate.
The obtained results are shown in Table 2 in relation to the amount of material warpage.
同表から明らかなように、板幅方向の反り量がノズル−板間隔の30%未満の条件で被覆操業を行った場合に、膜厚差を低く抑制することができた。その結果として効果的な鉄損低減が期待される。 As apparent from the table, when the coating operation was performed under the condition that the warpage amount in the plate width direction was less than 30% of the nozzle-plate interval, the film thickness difference could be suppressed to a low level. As a result, effective iron loss reduction is expected.
Claims (1)
(Δt[C]+2×Δt[S]) /(3×t[ave.])≦ 0.3
の関係を満足することを特徴とする磁気特性の均一性に優れた超低鉄損方向性電磁鋼板。 A grain-oriented electrical steel sheet having TiN coatings on the front and back surfaces of the steel plate, wherein the average film thickness of the TiN coating on the entire front and back surfaces is t [ave.], And the maximum film thickness difference in the TiN film thickness distribution in the direction perpendicular to the rolling is Δt. [C] and when the maximum difference in thickness between the front and back surfaces at the same position is Δt [S], these are expressed by the following equation (1)
(Δt [C] + 2 × Δt [S]) / (3 × t [ave.]) ≦ 0.3
An ultra-low iron loss grain-oriented electrical steel sheet with excellent magnetic property uniformity characterized by satisfying the above relationship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005080597A JP2006257534A (en) | 2005-03-18 | 2005-03-18 | Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005080597A JP2006257534A (en) | 2005-03-18 | 2005-03-18 | Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006257534A true JP2006257534A (en) | 2006-09-28 |
Family
ID=37097110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005080597A Pending JP2006257534A (en) | 2005-03-18 | 2005-03-18 | Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006257534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007138956A1 (en) | 2006-05-26 | 2007-12-06 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength, high electric conductivity and excellent bending workability |
JP2009235472A (en) * | 2008-03-26 | 2009-10-15 | Jfe Steel Corp | Grain-oriented electrical steel sheet and manufacturing method therefor |
WO2012017671A1 (en) * | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | Directional magnetic steel plate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0982695A (en) * | 1995-09-12 | 1997-03-28 | Toshiba Corp | Semiconductor manufacturing equipment and manufacture of semiconductor device |
JP2004060039A (en) * | 2002-07-31 | 2004-02-26 | Jfe Steel Kk | Manufacturing method of ultra-low iron loss grain-oriented electrical steel sheet |
-
2005
- 2005-03-18 JP JP2005080597A patent/JP2006257534A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0982695A (en) * | 1995-09-12 | 1997-03-28 | Toshiba Corp | Semiconductor manufacturing equipment and manufacture of semiconductor device |
JP2004060039A (en) * | 2002-07-31 | 2004-02-26 | Jfe Steel Kk | Manufacturing method of ultra-low iron loss grain-oriented electrical steel sheet |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007138956A1 (en) | 2006-05-26 | 2007-12-06 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength, high electric conductivity and excellent bending workability |
EP2426225A2 (en) | 2006-05-26 | 2012-03-07 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength, high electrical conductivity, and excellent bendability |
EP2426224A2 (en) | 2006-05-26 | 2012-03-07 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength, high electrical conductivity, and excellent bendability |
JP2009235472A (en) * | 2008-03-26 | 2009-10-15 | Jfe Steel Corp | Grain-oriented electrical steel sheet and manufacturing method therefor |
WO2012017671A1 (en) * | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | Directional magnetic steel plate |
JP2012052228A (en) * | 2010-08-06 | 2012-03-15 | Jfe Steel Corp | Directional magnetic steel plate |
CN103080352A (en) * | 2010-08-06 | 2013-05-01 | 杰富意钢铁株式会社 | Directional magnetic steel plate |
KR101530450B1 (en) * | 2010-08-06 | 2015-06-22 | 제이에프이 스틸 가부시키가이샤 | Grain oriented electrical steel sheet |
US9240266B2 (en) | 2010-08-06 | 2016-01-19 | Jfe Steel Corporation | Grain oriented electrical steel sheet |
EP2602343A4 (en) * | 2010-08-06 | 2017-05-31 | JFE Steel Corporation | Directional magnetic steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2532539C2 (en) | Method for plate manufacture from textured electrical steel | |
JP2009018573A (en) | Grain-oriented electromagnetic steel sheet including electrically insulating coating | |
JP6471807B2 (en) | Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet | |
EP3530770A1 (en) | Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same | |
KR20200120736A (en) | Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet | |
JP7269504B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
CN103930584B (en) | Very thin electromagnetic steel plate | |
JP6443355B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6660025B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2017110292A (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2007262540A (en) | Nozzle for supplying gas for chemical vapor deposition, film forming method and grain-oriented electrical steel sheet | |
JP3736125B2 (en) | Oriented electrical steel sheet | |
WO2020149351A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP6859935B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR102230629B1 (en) | Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet | |
JP2006257534A (en) | Super low iron loss directional electrical steel sheet with excellent uniformity of magnetic properties | |
JP6791389B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and continuous film forming equipment | |
KR20100092019A (en) | Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics | |
JP6856080B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH11335794A (en) | Directional silicon steel sheet with low hysteresis loss and method of manufacturing the same | |
JP5047466B2 (en) | Super low iron loss directional electrical steel sheet with excellent coating adhesion | |
JP4725711B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
JP5063862B2 (en) | Super low iron loss directional electrical steel sheet with excellent coating adhesion | |
JP3380775B2 (en) | Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties | |
EP4335938A1 (en) | Method for producing grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090907 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110301 |