JP6660025B2 - Manufacturing method of grain-oriented electrical steel sheet - Google Patents
Manufacturing method of grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6660025B2 JP6660025B2 JP2017053362A JP2017053362A JP6660025B2 JP 6660025 B2 JP6660025 B2 JP 6660025B2 JP 2017053362 A JP2017053362 A JP 2017053362A JP 2017053362 A JP2017053362 A JP 2017053362A JP 6660025 B2 JP6660025 B2 JP 6660025B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- intermediate layer
- grain
- mass
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 92
- 239000002184 metal Substances 0.000 claims description 92
- 239000000843 powder Substances 0.000 claims description 54
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 238000010894 electron beam technology Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 230000003746 surface roughness Effects 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 description 69
- 239000010959 steel Substances 0.000 description 69
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 53
- 238000000137 annealing Methods 0.000 description 46
- 229910052742 iron Inorganic materials 0.000 description 25
- 238000000034 method Methods 0.000 description 25
- 238000001953 recrystallisation Methods 0.000 description 18
- 229910052839 forsterite Inorganic materials 0.000 description 16
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 16
- 238000005498 polishing Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000008119 colloidal silica Substances 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 8
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 8
- 239000004137 magnesium phosphate Substances 0.000 description 8
- 229960002261 magnesium phosphate Drugs 0.000 description 8
- 235000010994 magnesium phosphates Nutrition 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 230000005381 magnetic domain Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 7
- 239000011572 manganese Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、主に変圧器の鉄心に用いられる方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used for an iron core of a transformer.
電磁鋼板は、変圧器や発電機の鉄心材料として広く用いられている軟磁性材料であり、特に方向性電磁鋼板は、その結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れていることが特徴である。方向性電磁鋼板に要求される特性のうち、特に鉄損特性は、製品のエネルギーロスに直接つながるため、非常に重要視されている。 Electrical steel sheets are soft magnetic materials that are widely used as core materials for transformers and generators. In particular, grain-oriented electrical steel sheets have a highly integrated crystal orientation in the {110} <001> orientation called the Goss orientation. And is characterized by having excellent magnetic properties. Of the properties required for grain-oriented electrical steel sheets, iron loss properties, in particular, are very important because they directly lead to energy loss of products.
方向性電磁鋼板の鉄損を低減する手段としては、鋼の電気抵抗を高めたり、板厚を薄くしたり、さらには、結晶粒径を小さくしたりして渦電流損を低減する方法が従来から知られている。さらに、プラズマジェットやレーザ光、電子ビーム等を鋼板表面に照射し、鋼板表面に局所的に歪みを導入したり、鋼板表面に溝を形成したりすることによって、人工的に磁区幅を細分化し、渦電流損を低減する技術も開発されている。また、ヒステリシス損を低減する技術として、二次再結晶粒の結晶方位をより高度に揃えたり、鋼中の不純物を低減したりするなどの技術が提案されている。しかし、これらの技術は、今日まで様々な改善が加えられ、更なる改善の余地は少なくなってきており、新たな鉄損改善技術の開発が望まれている。 Conventional methods of reducing iron loss in grain-oriented electrical steel sheets include increasing the electrical resistance of the steel, reducing the thickness, and reducing the grain size to reduce eddy current loss. Known from. Furthermore, by irradiating the surface of the steel sheet with plasma jet, laser light, electron beam, etc., locally introducing strain on the steel sheet surface or forming grooves on the steel sheet surface, the magnetic domain width can be artificially subdivided. Also, techniques for reducing eddy current loss have been developed. Further, as a technique for reducing the hysteresis loss, a technique has been proposed in which the crystal orientation of secondary recrystallized grains is more highly aligned, and impurities in steel are reduced. However, these techniques have undergone various improvements to date, and there is less room for further improvement, and development of a new iron loss improvement technique is desired.
そこで、例えば、特許文献1および2には、電解研磨あるいは化学研磨によって鋼板表面を鏡面状態とし、鋼板表面の凹凸を低減することによってヒステリシス損を低減する技術が提案されている。この技術は、従来の方向性電磁鋼板の表面にはフォルステライト被膜が形成されており、鋼板素地とフォルステライト被膜の界面の凹凸が大きく、ヒステリシス損が大きくなる原因があることに着目したものである。しかし、この方法で鉄損を低減するためには、鋼板表面に対して強い張力を付与する被膜の存在が不可欠である。その理由は、鋼板表面が平滑なため、張力付与被膜が存在しない場合には、磁区幅の拡大が促進されて鉄損が大幅に増加してしまうからである。 Therefore, for example, Patent Literatures 1 and 2 propose a technique in which the surface of a steel sheet is mirror-finished by electrolytic polishing or chemical polishing, and the unevenness on the surface of the steel sheet is reduced to reduce hysteresis loss. This technology focuses on the fact that a forsterite film is formed on the surface of conventional grain-oriented electrical steel sheets, and the interface between the steel sheet substrate and the forsterite film has large irregularities, which causes a large hysteresis loss. is there. However, in order to reduce iron loss by this method, the presence of a coating that imparts a strong tension to the steel sheet surface is indispensable. The reason is that since the surface of the steel sheet is smooth, in the absence of a tension-imparting coating, the expansion of the magnetic domain width is promoted, and the iron loss increases significantly.
しかし、鋼板表面に強力な張力付与被膜を形成すると、鋼板表面と張力付与被膜との界面に強い剪断応力が発生するが、鏡面化状態の鋼板では被膜の密着性に乏しいため、被膜が剥落し易い。そのため、目的とする張力付与効果が発揮されず、結果として鉄損値の低減が達成されないという問題がある。 However, when a strong tension-imparting film is formed on the surface of a steel sheet, a strong shear stress is generated at the interface between the steel sheet surface and the tension-imparting film. However, in a mirror-finished steel sheet, the film peels off due to poor adhesion of the film. easy. Therefore, there is a problem that the intended effect of imparting tension is not exhibited, and as a result, the reduction of the iron loss value is not achieved.
この問題を解決する手段として、前述した特許文献1や、特許文献3には、鏡面化した鋼板表面上に金属めっきを施し、その上に張力付与被膜を塗布する方法が提案されている。また、特許文献4には、ゾル−ゲル法によって、セラミックス張力付与被膜を被成する方法が、また、特許文献5には、化学蒸着や真空蒸着によってセラミックス張力付与被膜を被成する方法が提案されている。 As means for solving this problem, Patent Literature 1 and Patent Literature 3 described above propose a method in which metal plating is applied to a mirror-finished steel sheet surface, and a tension-imparting coating is applied thereon. Patent Document 4 proposes a method of forming a ceramic tension applying film by a sol-gel method, and Patent Document 5 proposes a method of forming a ceramic tension applying film by chemical vapor deposition or vacuum vapor deposition. Have been.
しかしながら、上記特許文献1および3に開示の方法では、金属めっきを施した絶縁被膜は、焼付処理の際に剥落し易く、また、剥落が抑制される好適範囲が非常に狭い。また、仮に剥離を免れても、歪取焼鈍後の被膜密着性が大きく低下するなど、被膜の密着性に改善の余地が残されている。また、上記特許文献4および5に開示の方法では、セラミックス張力付与被膜の被成に時間がかかるため、製造コストが高く、いまだ実用化されていないのが実情である。 However, in the methods disclosed in Patent Literatures 1 and 3, the metal-plated insulating coating is easily peeled off during the baking treatment, and the suitable range in which the peeling is suppressed is very narrow. Further, even if the peeling is avoided, there is still room for improvement in the adhesion of the coating, such as a significant decrease in the adhesion of the coating after the strain relief annealing. Further, in the methods disclosed in Patent Documents 4 and 5, it takes a long time to form the ceramic tension-imparting film, so that the manufacturing cost is high and the method is not yet practically used.
本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、地鉄表面を鏡面化した鋼板表面上に、密着性に優れる張力付与被膜を、短時間かつ低コストで被成することができる方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the related art, and has an object of forming a tension-imparting coating having excellent adhesion on a steel sheet surface having a mirror-finished ground iron surface in a short time and at a low pressure. It is to propose a method of manufacturing a grain-oriented electrical steel sheet that can be formed at a low cost.
発明者らは、鏡面化された鋼板表面における張力付与被膜の密着性が極めて悪いという問題点を解決するため、従来から検討されている鋼板表面と張力付与被膜の間に中間層を形成する方法について鋭意検討を重ねた結果、以下のことを知見した。
1)張力付与被膜の密着性を高めるためには、中間層の表面粗さを大きくすることが重要である。
2)張力付与被膜を被成する時の熱処理や歪取焼鈍などによる密着性の低下を抑制するためには、中間層は無機成分であることが望ましい。
3)めっきなどのウエットプロセスでは、大規模な塗布設備や乾燥設備等が必要となるため、製造コストの観点から、ドライプロセスの方が有利である。
In order to solve the problem that the adhesion of the tension-imparting film on the mirror-finished steel sheet surface is extremely poor, the inventors have studied a method of forming an intermediate layer between the steel sheet surface and the tension-imparting film, which has been conventionally studied. As a result of intensive studies on, the following was found.
1) In order to increase the adhesion of the tension-imparting coating, it is important to increase the surface roughness of the intermediate layer.
2) In order to suppress a decrease in adhesion due to heat treatment or strain relief annealing when forming the tension imparting film, the intermediate layer is desirably an inorganic component.
3) In a wet process such as plating, a large-scale coating facility and a drying facility are required. Therefore, the dry process is more advantageous from the viewpoint of manufacturing cost.
そこで、上記の知見を前提として、高効率・低コストで中間層の形成が可能で、張力付与被膜の密着性も良好な張力付与被膜の被成技術についてさらに検討を重ねた。その結果、鏡面化した方向性電磁鋼板の表面上に平均粒径が0.1μm以上の金属粉末を供給し、該金属粉末に電子ビームやレーザビーム等の高エネルギービームを集中的に照射し、溶融して金属中間層を形成することで、上記課題を達成し得ることを見出し、本発明を開発するに至った。 Therefore, on the premise of the above findings, further studies have been made on a technique for forming a tension-imparting film that can form the intermediate layer with high efficiency and low cost and that has good adhesion to the tension-imparting film. As a result, a metal powder having an average particle size of 0.1 μm or more is supplied onto the surface of the mirror-oriented grain-oriented electrical steel sheet, and the metal powder is intensively irradiated with a high energy beam such as an electron beam or a laser beam, It has been found that the above-mentioned object can be achieved by melting to form a metal intermediate layer, and the present invention has been developed.
すなわち、本発明は、鏡面化処理を施した方向性電磁鋼板の素地上に、上記素地と組成が異なる金属中間層を有し、かつ、上記金属中間層の上に張力付与被膜を有する方向性電磁鋼板の製造方法であって、上記素地と張力付与被膜との間の金属中間層を、素地上に供給した平均粒径が0.1μm以上の金属粉末を溶融して形成することを特徴とする方向性電磁鋼板の製造方法を提案する。 That is, the present invention has a metal intermediate layer having a composition different from that of the above-described substrate on a substrate of a grain-oriented electrical steel sheet subjected to a mirror finishing treatment, and a directionality having a tension imparting coating on the metal intermediate layer. A method for producing an electrical steel sheet, characterized in that a metal intermediate layer between the substrate and the tension-imparting coating is formed by melting a metal powder having an average particle diameter of 0.1 μm or more supplied to the substrate. We propose a method for manufacturing grain-oriented electrical steel sheets.
本発明の上記方向性電磁鋼板の製造方法における上記金属粉末の溶融手段が、電子ビーム照射あるいはレーザビーム照射であることを特徴とする。 In the method for producing a grain-oriented electrical steel sheet according to the present invention, the means for melting the metal powder is electron beam irradiation or laser beam irradiation.
また、本発明の上記方向性電磁鋼板の製造方法は、上記金属中間層の表面粗さを算術平均粗さRaで0.1〜10μmの範囲とすることを特徴とする。 The method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that the surface roughness of the metal intermediate layer is in the range of 0.1 to 10 μm in terms of arithmetic average roughness Ra.
本発明によれば、鏡面化した方向性電磁鋼板表面に、平均粒径が0.1μm以上の金属粉末を供給し、電子ビームやレーザビーム等を照射し、溶融して表面粗さの大きい金属中間層を形成するようにしたので、張力付与被膜との密着性の向上、製造コストの低減および処理時間の短縮のすべてを満たす金属中間層を実現することができ、ヒステリシス損に優れる方向性電磁鋼板を安価に製造することが可能となる。 According to the present invention, a metal powder having an average grain size of 0.1 μm or more is supplied to a mirror-oriented grain-oriented electrical steel sheet surface, irradiated with an electron beam, a laser beam, or the like, and is melted to form a metal having a large surface roughness. Since the intermediate layer is formed, it is possible to realize a metal intermediate layer that satisfies all of the improvement of adhesion with the tension imparting film, the reduction of manufacturing cost and the reduction of processing time, and the directional electromagnetic layer with excellent hysteresis loss. Steel plates can be manufactured at low cost.
まず、本発明を開発する基礎となった実験について説明する。
<実験1>
Siを3mass%含有する最終板厚0.23mmに圧延された冷延板の片側表面に、磁区細分化処理のため、幅100μm×深さ25μmのエッチング溝を圧延方向に5mm間隔で形成した後、脱炭を兼ねた一次再結晶焼鈍を施し、MgOを主成分とし、塩化アンチモンを1mass%含有する焼鈍分離剤を塗布し、仕上焼鈍を施すことで、フォルステライト被膜のない平滑な表面を有する方向性電磁鋼板を製造した。なお、上記鋼板表面の鏡面化は、焼鈍分離剤中に添加した塩化アンチモンにより達成される。
First, an experiment on which the present invention is developed will be described.
<Experiment 1>
Etching grooves having a width of 100 μm and a depth of 25 μm are formed on one surface of a cold-rolled sheet rolled to a final sheet thickness of 0.23 mm containing Si at 3 mass% at intervals of 5 mm in the rolling direction for magnetic domain refining treatment. By performing primary recrystallization annealing also serving as decarburization, applying an annealing separator containing MgO as a main component and containing 1 mass% of antimony chloride, and performing finish annealing to have a smooth surface without a forsterite film. A grain-oriented electrical steel sheet was manufactured. In addition, the mirror finishing of the steel sheet surface is achieved by antimony chloride added to the annealing separator.
次いで、上記鋼板を長さ方向に4分割し、第1の鋼板は、鏡面化処理を行ったままの状態で60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けし、鋼板1とした。
また、第2の鋼板は、vol%比でTiCl4:10%+H2:80%+CH4:10%の混合ガスからなる雰囲気中において、CVD法を用いて厚さが1μmのTiC被膜を両面に形成した後、60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けし、鋼板2とした。
また、第3の鋼板は、鏡面化した鋼板表面に平均粒径が1.0μmの純Ti粉末を供給してローラで均した後、上記Ti粉末に電子ビームを照射し、溶融して厚さが1μmのTiの中間層を形成し、その後、上記Ti中間層の上に、60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けし、鋼板3とした。なお、上記平均粒径は、レーザ回折/散乱式粒径分布測定装置を用いて測定した値である(以降、同様)。また、電子ビームの照射は、出力2kWで行い、適正な投入エネルギーになるよう、ビームの偏向速度(走査速度)を調整した。また、金属中間層の形成は、両面同時ではなく、片面ずつ2回に分けて行なった。
また、第4の鋼板は、有機結合剤(アクリル系バインダー)をコーティングした平均粒径が1.0μmの純Ti粉末を鋼板表面に供給してローラで均した後、上記Ti粉末にレーザビームを照射し、焼結することで厚さが1μmのTiの中間層を形成した。なお、レーザ照射は、出力600Wで行い、適正投入エネルギーになるよう、ビームの偏向速度(走査速度)を調整した。また、金属中間層の形成は両面同時ではなく、片面ずつ行なった。その後、60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けし、鋼板4とした。
なお、上記4種の鋼板の一部については、その後、窒素雰囲気下で800℃×3hrの歪取焼鈍を施した。
Next, the steel sheet is divided into four pieces in the length direction, and the first steel sheet is coated with a tension-imparting coating mainly composed of 60 mass% of colloidal silica and 40 mass% of magnesium phosphate while being subjected to mirror finishing. -It was baked to obtain a steel sheet 1.
The second steel sheet is coated with a 1 μm-thick TiC film using a CVD method in an atmosphere composed of a mixed gas of TiCl 4 : 10% + H 2 : 80% + CH 4 : 10% in vol% ratio. After that, a tension-imparting coating mainly composed of 60 mass% of colloidal silica and 40 mass% of magnesium phosphate was applied and baked to obtain a steel sheet 2.
Further, the third steel sheet is supplied with pure Ti powder having an average particle size of 1.0 μm on a mirror-finished steel sheet surface, leveled by a roller, and then irradiates the Ti powder with an electron beam to be melted and melted. Formed a 1 μm Ti intermediate layer, and then applied and baked a tension-imparting coating containing 60 mass% of colloidal silica and 40 mass% of magnesium phosphate as a main component on the Ti intermediate layer. . The average particle size is a value measured using a laser diffraction / scattering type particle size distribution measuring device (the same applies hereinafter). The irradiation of the electron beam was performed at an output of 2 kW, and the beam deflection speed (scanning speed) was adjusted so as to obtain an appropriate input energy. The formation of the metal intermediate layer was not performed simultaneously on both sides, but was performed twice on each side.
The fourth steel sheet is supplied with pure Ti powder coated with an organic binder (acrylic binder) and having an average particle diameter of 1.0 μm on the surface of the steel sheet, leveled by a roller, and then irradiated with a laser beam to the Ti powder. Irradiation and sintering formed an intermediate layer of Ti having a thickness of 1 μm. The laser irradiation was performed at an output of 600 W, and the beam deflection speed (scanning speed) was adjusted so that the input energy became appropriate. Further, the formation of the metal intermediate layer was performed not on both sides simultaneously but on one side. Thereafter, a tension-imparting coating mainly composed of 60 mass% of colloidal silica and 40 mass% of magnesium phosphate was applied and baked to obtain a steel sheet 4.
In addition, about a part of said 4 types of steel plates, 800 degreeC x 3 hours distortion relief annealing was given after that in nitrogen atmosphere.
上記のようにして得た4種類の鋼板について、磁気特性(磁束密度B8、鉄損W17/50)を測定するとともに、歪取焼鈍前後の試験片について、鋼板を円筒に巻き付けたときに被膜の剥離が認められない最小の円筒径(曲げ剥離径(mm))を測定し、張力付与被膜の密着性を評価した。
また、鋼板表面(素地上)に金属中間層を形成した鋼板2〜4について、金属中間層の厚みを実測し、金属中間層の形成に使用された金属粉末量を算出し、金属中間層の形成にために供給された金属粉末量に対する比率、すなわち、金属粉末の「歩留り(%)」を求めた。
上記の結果を表1に示した。また、表1中には、1m×1mの鋼板両面に厚さ1.0μmの金属中間層を形成するのに必要な処理時間についても示した。
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the four types of steel sheets obtained as described above were measured, and the test pieces before and after the strain relief annealing were wound around a cylinder. The minimum cylindrical diameter (bending peeling diameter (mm)) at which peeling of the coating was not observed was measured, and the adhesion of the tension-imparting coating was evaluated.
Further, for steel plates 2 to 4 having a metal intermediate layer formed on the surface of the steel plate (substrate), the thickness of the metal intermediate layer was actually measured, and the amount of metal powder used for forming the metal intermediate layer was calculated. The ratio to the amount of metal powder supplied for formation, that is, the “yield (%)” of the metal powder was determined.
The results are shown in Table 1. Table 1 also shows the processing time required to form a 1.0 μm thick metal intermediate layer on both sides of a 1 m × 1 m steel plate.
上記表1からわかるように、鋼板2および3においては、歪取焼鈍前後ともに、張力付与被膜の密着性が良好(曲げ剥離径が小さい)で、低鉄損が得られている。張力付与被膜が剥離する場合には、鋼板素地と金属中間層の界面で剥離する場合と、金属中間層と張力絶縁コーティング界面で剥離する場合があるが、張力付与被膜の密着性が良好というのは、両方の界面での密着性が良好であることを意味している。張力付与被膜と金属中間層の密着性が良好であった理由は、鏡面化された鋼板に対して金属中間層の表面粗さが大きくなっていたためと考えられる。両鋼板とも、鉄損特性および張力付与被膜の密着性が良好であるが、金属中間層の形成に要する処理時間および金属粉末の歩留りが大きく異なる。CVD法を採用した鋼板2では、素材となる金属を気化させた後、鋼板表面に蒸着させているが、炉壁などの鋼板以外の場所にも蒸着するため歩留りが低く、かつ、処理に長い時間を要しており、製造コストが高くなってしまう。一方、鋼板3は、鋼板上に供給された金属粉末に電子ビームを高速で偏向させながら直接エネルギーを集中的に投入し、溶融して金属中間層を形成することから、鋼板以外の部分に金属中間層が形成されることがないため、高い歩留りで、かつ、短時間で金属中間層の形成が可能であった。一方、鋼板4に関しては、金属粉末を溶融して金属中間層を形成するのではなく、金属粉末表面に粉末同士を結合させる有機バインダをコーティングし、焼結したものである。曲げ剥離性が悪く、低鉄損が得られなかった理由は、張力付与被膜形成時の熱処理および歪取焼鈍時に、バインダに含まれる有機物が分解されて、金属中間層と鋼板素地との間の密着性が低下したためと考えられる。 As can be seen from Table 1 above, in the steel plates 2 and 3, the adhesion of the tension imparting film is good (the bending peeling diameter is small) and low iron loss is obtained before and after the strain relief annealing. When the tension imparting coating peels off, there are cases where it peels off at the interface between the steel sheet base and the metal intermediate layer and cases where it peels off at the metal intermediate layer and the tension insulating coating interface. Means that the adhesion at both interfaces is good. The reason why the adhesion between the tension applying film and the metal intermediate layer was good is considered to be that the surface roughness of the metal intermediate layer was larger than that of the mirror-finished steel sheet. Although both steel sheets have good iron loss characteristics and good adhesion of the tension-imparting coating, the processing time required for forming the metal intermediate layer and the yield of metal powder are greatly different. In the steel plate 2 employing the CVD method, the metal as a material is vaporized and then vapor-deposited on the surface of the steel plate. However, vapor deposition is also performed on a place other than the steel plate such as a furnace wall, so that the yield is low and the treatment is long. This requires time and increases the manufacturing cost. On the other hand, since the steel sheet 3 directly intensively inputs energy while deflecting an electron beam at a high speed to the metal powder supplied on the steel sheet and melts to form a metal intermediate layer, the metal powder is applied to portions other than the steel sheet. Since the intermediate layer was not formed, the metal intermediate layer could be formed at a high yield and in a short time. On the other hand, the steel sheet 4 is obtained by coating the surface of the metal powder with an organic binder for binding the powder and sintering, instead of melting the metal powder to form a metal intermediate layer. Poor bending peelability, the reason why low iron loss was not obtained is that the organic matter contained in the binder is decomposed during heat treatment and strain relief annealing at the time of forming a tension imparting film, and between the metal intermediate layer and the steel sheet base. It is considered that the adhesion was reduced.
<実験2>
Siを3mass%含有する最終板厚0.20mmに圧延された冷延板の片側表面に、磁区細分化処理のため、幅50μm×深さ20μmのエッチング溝を圧延方向に5mm間隔で形成した後、脱炭を兼ねた一次再結晶焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布し、仕上焼鈍を施すことで、フォルステライト被膜を有する方向性電磁鋼板を製造した。その後、上記方向性電磁鋼板に、電解研磨でフォルステライト被膜を除去する鏡面化処理を施し、表面平滑性に優れた方向性電磁鋼板を得た。
上記のようにして得た、鏡面化した方向性電磁鋼板の表面(素地)上に、表2に示したように、平均粒径を0.01〜50μmの範囲で種々に変化させた純Feの粉末を供給し、ローラを用いて均した後、このFe粉末に直接レーザビームを照射し、溶融して純Feからなる金属中間層を形成した。この際、レーザ照射は、出力1kWの条件で行い、適正な投入エネルギーになるようにビームの偏向速度を調整した。また、実験1と同様、金属中間層の形成は両面同時ではなく、片面ずつ形成した。
その後、60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けし、製品板とした。
<Experiment 2>
Etching grooves having a width of 50 μm and a depth of 20 μm are formed on one surface of a cold-rolled sheet rolled to a final sheet thickness of 0.20 mm containing 3 mass% of Si at 5 mm intervals in the rolling direction for a magnetic domain refining treatment. A grain-oriented electrical steel sheet having a forsterite film was manufactured by performing primary recrystallization annealing also serving as decarburization, applying an annealing separator containing MgO as a main component, and performing finish annealing. Thereafter, the grain-oriented electrical steel sheet was subjected to a mirror finishing treatment for removing a forsterite film by electrolytic polishing to obtain a grain-oriented electrical steel sheet having excellent surface smoothness.
On the surface (base) of the mirror-oriented grain-oriented electrical steel sheet obtained as described above, as shown in Table 2, pure Fe having variously changed average particle diameters in the range of 0.01 to 50 μm. After the powder was supplied and leveled using a roller, the Fe powder was directly irradiated with a laser beam and melted to form a metal intermediate layer made of pure Fe. At this time, the laser irradiation was performed under the condition of an output of 1 kW, and the beam deflection speed was adjusted so as to obtain an appropriate input energy. Further, as in Experiment 1, the metal intermediate layer was formed not on both sides simultaneously but on one side.
Thereafter, a tension-imparting coating mainly composed of 60 mass% of colloidal silica and 40 mass% of magnesium phosphate was applied and baked to obtain a product plate.
斯くして得た各製品板からエプスタイン試験片を切り出し、鉄損W17/50および磁束密度B8を測定した。また、上記試験片の一部に対して、800℃×3hrの歪取焼鈍を施し、歪取焼鈍前後の曲げ剥離径を測定し、被膜密着性を評価した。その結果を表2に併記した。 An Epstein test piece was cut out from each of the product sheets thus obtained, and the iron loss W 17/50 and the magnetic flux density B 8 were measured. In addition, a part of the test piece was subjected to strain relief annealing at 800 ° C. for 3 hours, the bending peeling diameter before and after the strain relief annealing was measured, and the coating adhesion was evaluated. The results are shown in Table 2.
表2から、金属粉末の平均粒径が0.1μm未満では、絶縁被膜の密着性が悪く、期待通りの低鉄損が得られていないことがわかる。これらの鋼板表面を観察すると、張力付与被膜の厚み均一性が悪く、さらには部分的に張力被膜が剥離している部分も存在しており、鋼板への張力付与が不十分であったためと考えられる。張力付与被膜を塗布する前に、金属中間層の表面粗さを算術平均粗さRaで測定したところ、0.1μm未満と、非常に低く、これが密着不良の原因と考えられる。
一方、金属粉末の平均粒径が10μm超えでは、やや鉄損が悪くなる傾向が認められる。この原因は、平均粒径が10μm超えの場合、金属中間層の表面粗さが大きいため、張力付与被膜の厚みが金属中間層の凸部では薄く、凹部では厚くなり、ばらつきが大きくなってしまうため、付与される張力も不均一となり、鉄損が悪化したものと思われる。
上記の結果から、金属粉末の平均粒径と金属中間層の表面粗さとの間には相関があり、被膜の密着性を確保し、低鉄損を得るためには、金属中間層の形成に使用する金属粒子の平均粒径は0.1〜10μmの範囲のものを使用するのが好ましいことがわかった。
本発明は、上記の新規な知見に基き開発したものである。
From Table 2, it can be seen that when the average particle size of the metal powder is less than 0.1 μm, the adhesion of the insulating film is poor, and the expected low iron loss is not obtained. When observing the surface of these steel sheets, the thickness uniformity of the tension-imparting film was poor, and there were also parts where the tension film was partially peeled off. Can be Before applying the tension-imparting coating, the surface roughness of the metal intermediate layer was measured by arithmetic average roughness Ra, which was very low, less than 0.1 μm, which is considered to be the cause of poor adhesion.
On the other hand, when the average particle size of the metal powder exceeds 10 μm, a tendency that iron loss is slightly deteriorated is recognized. This is because, when the average particle size is more than 10 μm, the surface roughness of the metal intermediate layer is large, so that the thickness of the tension applying film is small at the convex portions of the metal intermediate layer and thick at the concave portions, and the variation is large. Therefore, it is considered that the applied tension was also non-uniform, and the iron loss was deteriorated.
From the above results, there is a correlation between the average particle size of the metal powder and the surface roughness of the metal intermediate layer, and in order to secure the adhesion of the coating and obtain a low iron loss, it is necessary to form the metal intermediate layer. It has been found that it is preferable to use metal particles having an average particle size in the range of 0.1 to 10 μm.
The present invention has been developed based on the above new findings.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明は、鏡面化処理した方向性電磁鋼板の表面(素地)上に、金属粉末を供給し、その金属粉末を溶融して表面粗さが適度に粗い金属中間層を形成することが特徴である。したがって、それ以外の製造条件については特に限定されるものではなく、従来公知の方法を用いることができる。
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described.
The present invention is characterized in that a metal powder is supplied onto the surface (base) of a grain-oriented electrical steel sheet subjected to mirror finishing, and the metal powder is melted to form a metal intermediate layer having an appropriately rough surface roughness. is there. Therefore, other manufacturing conditions are not particularly limited, and a conventionally known method can be used.
まず、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の好ましい成分組成について説明するが、優れた磁気特性を有する方向性電磁鋼板を得るためには、基本成分としてC、SiおよびMnを下記の範囲で含有するスラブを用いることが好適である。なお、鋼の溶製方法、スラブの製造方法については、常法に従えばよく、特に制限はない。 First, the preferred composition of the steel material (slab) used for producing the grain-oriented electrical steel sheet of the present invention will be described. In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, C, Si and It is preferable to use a slab containing Mn in the following range. The method for producing steel and the method for producing slabs may be in accordance with ordinary methods, and are not particularly limited.
C:0.01〜0.08mass%
Cは、一次再結晶時の集合組織の改善のために必要な元素であり、その効果を得るためには0.01mass%以上含有させるのが好ましい。一方、Cが0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.0050mass%以下に低減することが難しくなる。よって、Cは0.01〜0.08mass%の範囲とするのが好ましい。より好ましくは0.03〜0.07mass%の範囲である。
C: 0.01 to 0.08 mass%
C is an element necessary for improving the texture during primary recrystallization, and is preferably contained in an amount of 0.01 mass% or more in order to obtain the effect. On the other hand, when C exceeds 0.08 mass%, it becomes difficult to reduce the carbon aging to 0.0050 mass% or less at which magnetic aging does not occur by decarburizing annealing. Therefore, C is preferably set in the range of 0.01 to 0.08 mass%. More preferably, it is in the range of 0.03 to 0.07 mass%.
Si:2.0〜8.0mass%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、2.0mass%未満では、十分な鉄損低減効果が得られにくい。一方、8.0mass%を超えると、加工性が著しく低下し、圧延して製造することが難しくなり、また、磁束密度も低下する傾向にある。よって、Siは2.0〜8.0mass%の範囲とすることが好ましい。
より好ましくは2.5〜4.0mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element effective for increasing the electrical resistance of the steel and improving the iron loss, but if it is less than 2.0 mass%, it is difficult to obtain a sufficient iron loss reducing effect. On the other hand, if it exceeds 8.0 mass%, the workability is remarkably reduced, and it is difficult to manufacture by rolling, and the magnetic flux density tends to be reduced. Therefore, Si is preferably set in the range of 2.0 to 8.0 mass%.
More preferably, it is in the range of 2.5 to 4.0 mass%.
Mn:0.005〜1.0mass%
Mnは、熱間加工性を改善するのに有効な元素であるが、0.005mass%未満では、上記効果は得られず、一方、1.0mass%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とすることが好ましい。より好ましくは0.01〜0.2mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element effective for improving hot workability, but if the content is less than 0.005 mass%, the above effect cannot be obtained. On the other hand, if the content exceeds 1.0 mass%, the magnetic flux density decreases. Become. Therefore, Mn is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is in the range of 0.01 to 0.2 mass%.
また、本発明の方向性電磁鋼板の製造に用いる鋼素材の上記成分以外の基本成分は、二次再結晶を起こさせるためにインヒビタを利用する場合と、利用しない場合とで別れる。
二次再結晶を起こさせるためにインヒビタを用いる場合には、例えば、AlN系インヒビタを利用するときには、AlおよびNをそれぞれAl:0.01〜0.065mass%、N:0.005〜0.012mass%の範囲で含有させることが好ましく、また、MnS・MnSe系インヒビタを利用するときには、Seおよび/またはSを、それぞれS:0.005〜0.03mass%、Se:0.005〜0.03mass%の範囲で含有させることが好ましい。
Further, the basic components other than the above components of the steel material used for manufacturing the grain-oriented electrical steel sheet of the present invention are classified into a case where an inhibitor is used to cause secondary recrystallization and a case where the inhibitor is not used.
In the case where an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are respectively Al: 0.01 to 0.065 mass% and N: 0.005 to 0.5%. It is preferable to contain manganese in a range of 012 mass%. When a MnS · MnSe-based inhibitor is used, Se and / or S are respectively S: 0.005 to 0.03 mass% and Se: 0.005 to 0.5 mass%. It is preferable to contain it in the range of 03 mass%.
一方、二次再結晶を起こさせるためにインヒビタを利用しない場合には、インヒビタ形成成分であるAl,N,SおよびSeは、それぞれAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下に低減するのが好ましい。 On the other hand, when the inhibitor is not used to cause secondary recrystallization, Al, N, S, and Se, which are inhibitor-forming components, have Al: 0.0100 mass% or less, N: 0.0050 mass% or less, respectively. Preferably, S is reduced to 0.0050 mass% or less, and Se is reduced to 0.0050 mass% or less.
また、本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記した基本成分の他に、磁気特性の改善を目的として、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有させてもよい。
Niは、熱延板組織を改善して磁気特性を向上させるのに有用な元素である。しかし、0.03mass%未満では上記効果が小さく、一方、1.50mass%を超えると、二次再結晶が不安定となり、磁気特性が劣化する。また、Sn,Sb,Cu,P,MoおよびCrは、磁気特性の向上に有用な元素であるが、いずれも上記の下限値未満では磁気特性向上効果が小さく、一方、上記した各上限値を超えると、二次再結晶粒の発達が阻害されるようになるため、それぞれ上記範囲で含有させることが好ましい。
The steel material used for producing the grain-oriented electrical steel sheet of the present invention may further include Ni: 0.03 to 1.50 mass in addition to the basic components described above, for the purpose of improving magnetic properties, in addition to the above-described component composition. %, Sn: 0.01 to 1.50 mass%, Sb: 0.005 to 1.50 mass%, Cu: 0.03 to 3.0 mass%, P: 0.03 to 0.50 mass%, Mo: 0. One or two or more selected from 005 to 0.10 mass% and Cr: 0.03 to 1.50 mass% may be contained.
Ni is an element useful for improving the hot rolled sheet structure and improving the magnetic properties. However, when the content is less than 0.03 mass%, the above effect is small. On the other hand, when the content exceeds 1.50 mass%, the secondary recrystallization becomes unstable and the magnetic characteristics are deteriorated. Further, Sn, Sb, Cu, P, Mo and Cr are useful elements for improving the magnetic properties, but when all of them are less than the above lower limits, the effect of improving the magnetic properties is small. If it exceeds, the development of the secondary recrystallized grains is hindered.
本発明の方向性電磁鋼板の製造に用いる鋼素材において、上記成分以外の残部は、Feおよび不可避的不純物である。なお、Cは一次再結晶焼鈍で脱炭され、Al,N,SおよびSeは仕上焼鈍において純化されるため、仕上焼鈍後の鋼板では、これらの成分は不可避的不純物程度の含有量に低減される。 In the steel material used for manufacturing the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. Since C is decarburized by primary recrystallization annealing and Al, N, S and Se are purified in finish annealing, these components are reduced to a content of inevitable impurities in the steel sheet after finish annealing. You.
次に、上記成分組成を有する鋼素材(スラブ)を用いて、方向性電磁鋼板を製造する方法について説明する。
成分組成を上記適正範囲に調整したスラブは、その後、常法に従って所定の温度に再加熱し、熱間圧延し、必要に応じて熱延板焼鈍した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、その後、上記冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤を塗布した後、二次再結晶と純化のための仕上げ焼鈍を施して方向性電磁鋼板とする。なお、脱炭は、上記一次再結晶焼鈍を湿潤雰囲気とすることで行うことができるが、別途行ってもよい。
Next, a method of manufacturing a grain-oriented electrical steel sheet using a steel material (slab) having the above component composition will be described.
The slab whose component composition has been adjusted to the appropriate range is then reheated to a predetermined temperature according to a conventional method, hot-rolled, and if necessary, subjected to hot-rolled sheet annealing, and once or twice with intermediate annealing. The above cold rolling is performed to obtain a cold-rolled sheet having a final thickness, and thereafter, the above-mentioned cold-rolled sheet is subjected to primary recrystallization annealing also serving as decarburization, and after applying an annealing separating agent, is subjected to secondary recrystallization and purification. For a grain-oriented electrical steel sheet. The decarburization can be performed by setting the primary recrystallization annealing to a wet atmosphere, but may be performed separately.
なお、本発明の方向性電磁鋼板は、その表面が鏡面化(平滑化)したものであることが必要であるが、鏡面化を達成する手段としては、従来のフォルステライト被膜を形成させた後、機械研磨や化学研磨、電解研磨などを適用して行ってもよいし、フォルステライト被膜を形成させない焼鈍分離剤、例えば、主体のMgOにLi,Na,K,Mg,Ca,Sr,Ba,Fe,Ni,Sn,SbおよびBi等の塩化物、酸化物または水酸化物を添加した焼鈍分離剤、または、MgOの比率を低減し、Al2O3やCaSiO3等の比率を高めた焼鈍分離剤などを使用してもよい。また、フォルステライト被膜を形成させない焼鈍分離剤を使用した場合でも、平滑性をより高めるため、さらに機械研磨や化学研磨、電解研磨などを施してもよい。 The grain-oriented electrical steel sheet of the present invention is required to have a mirror-finished (smoothed) surface, but as a means for achieving the mirror-finish, a conventional forsterite film is formed. It may be performed by applying mechanical polishing, chemical polishing, electrolytic polishing, or the like, or an annealing separator that does not form a forsterite film, for example, Li, Na, K, Mg, Ca, Sr, Ba, Annealing separating agent to which chlorides, oxides or hydroxides such as Fe, Ni, Sn, Sb and Bi are added, or annealing in which the ratio of MgO is reduced and the ratio of Al 2 O 3 or CaSiO 3 is increased. A separating agent or the like may be used. Even when an annealing separator that does not form a forsterite film is used, mechanical polishing, chemical polishing, electrolytic polishing, or the like may be further performed to further improve smoothness.
上記仕上焼鈍における二次再結晶焼鈍後の純化焼鈍は、二次再結晶を起こさせるためにインヒビタを利用している場合には、最高到達温度を1100℃以上とする必要があり、均熱時間は3hr以上とするのが好ましい。1100℃未満の温度では、析出物が分解して鋼板表面まで拡散することができないため、十分な純化が得られないからである。
一方、二次再結晶にインヒビタを利用しない場合には、窒素などが十分に低減できれば、必ずしも純化焼鈍は必要ではないが、良好なフォルステライト被膜を形成させるためには、1100℃以上の高温焼鈍を施すことが好ましい。
In the case of the purification annealing after the secondary recrystallization annealing in the finish annealing, when an inhibitor is used to cause secondary recrystallization, the maximum temperature must be 1100 ° C. or higher. Is preferably 3 hours or more. If the temperature is lower than 1100 ° C., the precipitate cannot be decomposed and diffused to the surface of the steel sheet, so that sufficient purification cannot be obtained.
On the other hand, when the inhibitor is not used for the secondary recrystallization, purification annealing is not always necessary if nitrogen and the like can be sufficiently reduced. However, in order to form a good forsterite film, high-temperature annealing at 1100 ° C. or more is required. Is preferably applied.
次に、金属中間層の形成方法について説明する。
金属中間層の形成する材料には金属粉末を用いる。この金属粉末は、特に限定されず、Fe,Ti,Al,NiやCo等の純金属やそれらの合金など幅広い成分組成の粉末を使用することができる。これらの金属粉末は、単独で用いてもよいし、複数の種類の粉末を混合して用いてもよい。
Next, a method for forming the metal intermediate layer will be described.
Metal powder is used as a material for forming the metal intermediate layer. The metal powder is not particularly limited, and powders having a wide range of component compositions such as pure metals such as Fe, Ti, Al, Ni, and Co and alloys thereof can be used. These metal powders may be used alone or as a mixture of a plurality of types of powders.
金属粉末を溶融させるための熱エネルギーの投入手段としては、電子ビームやレーザビーム等の高エネルギービームを用いることが好ましい。これらの手段であれば、素材への熱エネルギー投入を抑制しつつ、金属粉末に熱エネルギーを集中的に投入することができるので、素材よりの融点の高い金属であっても中間層として形成することができるからである。投入する熱エネルギー量は、ビーム出力、走査速度を調整しながら適正条件を見極めればよい。 It is preferable to use a high energy beam such as an electron beam or a laser beam as a means for inputting thermal energy for melting the metal powder. With these means, thermal energy can be intensively applied to the metal powder while suppressing the input of thermal energy to the material, so that even a metal having a higher melting point than the material can be formed as an intermediate layer. Because you can do it. The amount of thermal energy to be input may be determined as appropriate while adjusting the beam output and the scanning speed.
鋼板表面への金属粉末の供給および溶融は、鋼板表面に金属粉末をノズル等から供給し、ローラやブレード等を用いて粉末を均一に敷き詰めた後、上記した手段で溶融処理を行ってもよいし、高エネルギービームを照射しながら、鋼板上の該ビーム照射部に金属粉末を供給し、供給と溶融を同時に行う方法を採用してよい。溶かした金属粉末を吹き付けるいわゆる「溶射」と比較すると、溶射の場合は、溶射範囲内の粒子密度が均一でないため、均一な被膜形成に課題があり、均一に鋼板表面上に金属粉末を供給する本技術の方が均一な被膜を形成し易い。さらに、本技術では、材料を鋼板上に直接供給することから、歩留りの点でも有利である。 The supply and melting of the metal powder to the surface of the steel sheet may be performed by supplying the metal powder to the surface of the steel sheet from a nozzle or the like, uniformly spreading the powder using a roller, a blade, or the like, and then performing the melting treatment by the above-described means. Then, a method may be adopted in which the metal powder is supplied to the beam irradiation part on the steel plate while irradiating the high energy beam, and the supply and the melting are simultaneously performed. Compared with the so-called "spraying" that sprays the melted metal powder, in the case of spraying, the particle density in the spraying range is not uniform, so there is a problem in forming a uniform coating, and the metal powder is uniformly supplied on the steel sheet surface According to the present technology, it is easier to form a uniform coating. Furthermore, in the present technology, since the material is directly supplied onto the steel plate, it is advantageous in terms of yield.
鋼板表面に形成する金属中間層の厚みは、粉末の供給量(敷き詰める場合は厚み、照射する場合は射出量)を調整することによって制御すればよいが、0.05〜5.0μmの範囲とするのが好ましい。
なお、金属粉末の平均粒径は、先述したように、密着性を確保する観点から0.1μm以上、磁気特性を確保する観点から10μm以下とするのが好ましい。
また、本発明の金属中間層の形成は、金属粉末の溶融させることで行うことがポイントである。金属粉末表面に有機結合剤を表面にコーティングし、焼結させて中間層を形成させた場合、有機物の存在が被膜密着性を劣化させるためである。
The thickness of the metal intermediate layer formed on the surface of the steel sheet may be controlled by adjusting the supply amount of powder (thickness when laying down, injection amount when irradiating), but is in the range of 0.05 to 5.0 μm. Is preferred.
As described above, the average particle size of the metal powder is preferably 0.1 μm or more from the viewpoint of ensuring adhesion, and is preferably 10 μm or less from the viewpoint of ensuring magnetic characteristics.
The point is that the metal intermediate layer of the present invention is formed by melting metal powder. This is because, when the surface of the metal powder is coated with an organic binder and sintered to form an intermediate layer, the presence of the organic substance deteriorates the adhesion of the coating.
鋼板の表面(素地)上に、金属中間層を形成した方向性電磁鋼板は、その後、公知の方法で、公知の張力付与被膜(絶縁被膜)を被成すればよく、例えば、コロイダルシリカと、リン酸マグネシウムやリン酸アルミニウム等のリン酸塩からなる張力付与被膜を好適に用いることができる。なお、上記張力付与被膜の塗布・焼付は、仕上焼鈍後の平坦化焼鈍と同一の工程で行ってもよいし、別の工程で行ってもよい。 The grain-oriented electrical steel sheet having the metal intermediate layer formed on the surface (base) of the steel sheet may be thereafter coated with a known tension-imparting coating (insulating coating) by a known method. For example, colloidal silica, A tension-imparting coating made of a phosphate such as magnesium phosphate or aluminum phosphate can be suitably used. The application and baking of the tension imparting film may be performed in the same step as the flattening annealing after the finish annealing or in another step.
上記のようにして張力付与被膜を形成した鋼板に、さらに、さらなる鉄損低減を目的として、電子ビームやレーザ、プラズマ炎等を照射して、磁区細分化処理を施してもよい。また、製造工程の任意の段階で、鋼板表面にエッチングや歯形ロール等を用いて一定の間隔の溝を形成し、磁区細分化処理を施してもよい。 The steel sheet on which the tension-imparting coating is formed as described above may be further subjected to a magnetic domain refining treatment by irradiating an electron beam, a laser, a plasma flame, or the like for the purpose of further reducing iron loss. Further, at an optional stage of the manufacturing process, grooves may be formed at regular intervals on the surface of the steel sheet by using etching, a toothed roll, or the like, and magnetic domain refinement may be performed.
C:0.05mass%、Si:3.0mass%、Mn:0.02mass%、Al:0.02mass%、N:0.01mass%、S:0.005mass%およびSe:0.01mass%からなる成分組成を有し、インヒビタ形成成分を含む鋼スラブを常法に従って熱間圧延し、冷間圧延して最終板厚が0.23mmの冷延板とした後、常法に従って脱炭を兼ねた一次再結晶焼鈍を施し、MgOを主成分とした焼鈍分離剤を塗布した後、二次再結晶焼鈍と、均熱温度1200℃で10hr均熱保持する純化焼鈍からなる仕上焼鈍を施し、鋼板表面にフォルステライト被膜を有する方向性電磁鋼板とした。次いで、上記方向性電磁鋼板の表面に、電解研磨してフォルステライト被膜を除去する鏡面化処理を施した。なお、上記方向性電磁鋼板の一部については、鏡面化処理を施さずに、フォルステライト被膜を有するままとし、比較材とした。
次いで、上記鏡面化処理した方向性電磁鋼板の表面に、種々の金属粉末を鋼板表面の全面に供給し、ローラで均した後、上記金属粉末に対して、適正な投入エネルギーになるようにビームの偏向速度を調整しながら、出力6kWで電子ビーム照射を行い、金属粉末を溶融させ、金属中間層を形成した。なお、表3には、この中間層の形成に使用した金属粉末の種類と、その平均粒径、および、1m×1mの面積に厚み1.0μmの金属中間層を形成するのに必要な処理時間(電子ビーム照射時間)を示した。
その後、上記金属中間層の上に、60%のコロイダルシリカと40%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けして製品板とした。
斯くして得た各製品板からエプスタイン試験片を切り出し、820℃×3Hrの歪取焼鈍を施した後、鉄損W17/50、磁束密度B8および被膜密着性評価のため曲げ剥離径の測定を行い、その結果を表3に示した。なお、フォルステライト被膜を有する比較材についても同様の測定を行い表3に示した。
C: 0.05 mass%, Si: 3.0 mass%, Mn: 0.02 mass%, Al: 0.02 mass%, N: 0.01 mass%, S: 0.005 mass%, and Se: 0.01 mass%. A steel slab having a component composition and containing an inhibitor-forming component was hot-rolled and cold-rolled into a cold-rolled sheet having a final thickness of 0.23 mm according to a conventional method, and then decarburized according to a conventional method. After performing a primary recrystallization annealing and applying an annealing separator containing MgO as a main component, a finish annealing including a secondary recrystallization annealing and a purification annealing in which a soaking temperature is maintained at 1200 ° C. for 10 hours is applied to the steel sheet surface. A grain-oriented electrical steel sheet having a forsterite coating. Next, the surface of the grain-oriented electrical steel sheet was subjected to a mirror finishing treatment for removing a forsterite film by electrolytic polishing. In addition, about a part of said grain-oriented electrical steel sheet, it did not perform a mirror-finish process and it had a forsterite film, and it was set as the comparative material.
Next, various metal powders are supplied to the entire surface of the steel sheet surface on the surface of the mirror-oriented grain-oriented electrical steel sheet, and after leveling with a roller, the beam is applied to the metal powder so as to have an appropriate input energy. While adjusting the deflection speed, the electron beam was irradiated at an output of 6 kW to melt the metal powder and form a metal intermediate layer. Table 3 shows the types of metal powder used for forming the intermediate layer, the average particle size thereof, and the processing required to form a metal intermediate layer having a thickness of 1.0 μm in an area of 1 m × 1 m. The time (electron beam irradiation time) is shown.
Thereafter, a tension-imparting coating mainly composed of 60% of colloidal silica and 40% of magnesium phosphate was applied and baked on the metal intermediate layer to obtain a product plate.
An Epstein test piece was cut out from each of the product sheets thus obtained, subjected to strain relief annealing at 820 ° C. × 3 Hr, and then subjected to the measurement of iron loss W 17/50 , magnetic flux density B 8 and bending peeling diameter for evaluating coating adhesion. The measurement was performed, and the results are shown in Table 3. In addition, the same measurement was performed on the comparative material having the forsterite film, and the results are shown in Table 3.
表3から、従来のフォルステライト被膜を有する方向性電磁鋼板(No.1)に対して、鏡面化した表面に、本発明に適合する条件で様々な金属粉末を使用して金属中間層を形成した方向性電磁鋼板(No.2〜8)は、いずれも高歩留りかつ短時間で金属中間層の形成が可能であり、しかも、No.1と同等レベルの被膜密着性を有した上で、さらに、良好な鉄損特性を有していることがわかる。 Table 3 shows that a metal intermediate layer was formed on a mirror-polished surface of a conventional grain-oriented electrical steel sheet (No. 1) having a forsterite coating using various metal powders under conditions compatible with the present invention. All of the grain-oriented electrical steel sheets (Nos. 2 to 8) can form a metal intermediate layer in a high yield and in a short time. It can be seen that in addition to having the same level of film adhesion as that of No. 1, it also has good iron loss characteristics.
実施例1と同じ鋼スラブを使用し、常法に従って熱間圧延し、冷間圧延して最終板厚が0.27mmの冷延板とした後、常法に従って脱炭を兼ねた一次再結晶焼鈍し、MgOを主成分とし塩化アンチモンを1mass%添加した焼鈍分離剤を塗布した後、二次再結晶焼鈍と、均熱温度1200℃で10hr均熱保持する純化焼鈍からなる仕上焼鈍を施し、フォルステライト被膜のない平滑な表面を有する方向性電磁鋼板とした。
次いで、上記鏡面化した方向性電磁鋼板の表面上にレーザビームを照射しながら、上記レーザビームの周辺に配設したノズルから金属粉末をレーザビーム照射エリアに連続的に噴射し、レーザビームの熱で金属粉末を溶融させて金属中間層を形成した。なお、表4には、上記中間層の形成に使用した金属粉末の種類、平均粒径を示した。
その後、上記金属中間層の上に、60mass%のコロイダルシリカと40mass%の燐酸マグネシウムを主成分とする張力付与被膜を塗布・焼き付けした後、圧延方向に4mmピッチの間隔で電子ビーム照射を行う磁区細分化処理を施して製品板とした。なお、比較材として、従来の方法でフォルステライト被膜を有する方向性電磁鋼板を作製し、同様の測定を行い表4に示した。
Using the same steel slab as in Example 1, hot-rolled according to a conventional method and cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.27 mm, and then primary recrystallization combined with decarburization according to a conventional method. After annealing and applying an annealing separator containing MgO as a main component and 1 mass% of antimony chloride added thereto, a secondary recrystallization annealing and a finish annealing including a purification annealing in which a soaking temperature of 1200 ° C. is maintained for 10 hours are applied. The grain-oriented electrical steel sheet had a smooth surface without a forsterite film.
Next, while irradiating the laser beam onto the surface of the mirror-oriented grain-oriented electrical steel sheet, metal powder is continuously injected into a laser beam irradiation area from a nozzle arranged around the laser beam, and the heat of the laser beam is increased. To melt the metal powder to form a metal intermediate layer. Table 4 shows the types and average particle diameters of the metal powders used for forming the intermediate layer.
Then, after applying and baking a tension-imparting coating containing 60 mass% of colloidal silica and 40 mass% of magnesium phosphate as main components on the metal intermediate layer, a magnetic domain in which electron beam irradiation is performed at intervals of 4 mm in the rolling direction. The product plate was subjected to the subdivision treatment. As a comparative material, a grain-oriented electrical steel sheet having a forsterite film was prepared by a conventional method, and the same measurement was performed.
表4から、金属粉末の平均粒径が本発明の範囲内の場合には、比較材のNo.1に対して、同レベルの被膜密着性を有した上で、優れた鉄損特性を有していることがわかる。特に、本発明の範囲内でも、金属粉末の平均粒径が0.1〜10μmのものを使用したものは、最も良好な鉄損特性を有していることがわかる。 From Table 4, when the average particle size of the metal powder is within the range of the present invention, the comparative material No. In contrast to No. 1, it has excellent iron loss characteristics while having the same level of film adhesion. In particular, it can be seen that, even within the scope of the present invention, a metal powder having an average particle size of 0.1 to 10 μm has the best iron loss characteristics.
Claims (1)
上記素地と張力付与被膜との間の金属中間層を、素地上に供給した平均粒径が0.1μm以上の金属粉末に電子ビームあるいはレーザビームを照射し、溶融して形成するとともに、上記金属中間層の表面粗さを算術平均粗さRaで0.1〜10μmの範囲とすることを特徴とする方向性電磁鋼板の製造方法。 A method for producing a grain-oriented electrical steel sheet having a metal intermediate layer having a composition different from that of the above-described base material, and having a tension-imparting coating on the metal intermediate layer, on a substrate of a grain-oriented electrical steel sheet subjected to a mirror finishing treatment. So,
The metal intermediate layer between the substrate and the tension-imparting coating is formed by irradiating an electron beam or a laser beam to a metal powder having an average particle diameter of 0.1 μm or more supplied to the substrate and melting the metal powder. A method for producing a grain- oriented electrical steel sheet, wherein the surface roughness of the intermediate layer is in the range of 0.1 to 10 μm in arithmetic average roughness Ra .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053362A JP6660025B2 (en) | 2017-03-17 | 2017-03-17 | Manufacturing method of grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053362A JP6660025B2 (en) | 2017-03-17 | 2017-03-17 | Manufacturing method of grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018154881A JP2018154881A (en) | 2018-10-04 |
JP6660025B2 true JP6660025B2 (en) | 2020-03-04 |
Family
ID=63717136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017053362A Active JP6660025B2 (en) | 2017-03-17 | 2017-03-17 | Manufacturing method of grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660025B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7188104B2 (en) * | 2019-01-16 | 2022-12-13 | 日本製鉄株式会社 | Oriented electrical steel sheet |
JP7355989B2 (en) * | 2019-01-16 | 2023-10-04 | 日本製鉄株式会社 | grain-oriented electrical steel sheet |
JP7368688B2 (en) * | 2019-01-16 | 2023-10-25 | 日本製鉄株式会社 | grain-oriented electrical steel sheet |
JP7639661B2 (en) | 2021-11-08 | 2025-03-05 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet |
-
2017
- 2017-03-17 JP JP2017053362A patent/JP6660025B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018154881A (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4840518B2 (en) | Method for producing grain-oriented electrical steel sheet | |
TWI605128B (en) | Non-directional electromagnetic steel plate manufacturing method | |
WO2016136095A9 (en) | Method for producing non-oriented electrical steel sheets | |
US11508501B2 (en) | Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet | |
JP5737483B2 (en) | Method for producing grain-oriented electrical steel sheet | |
RU2610204C1 (en) | Method of making plate of textured electrical steel | |
JP6660025B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2018066036A (en) | Hot rolled steel sheet for manufacturing electromagnetic steel sheet and manufacturing method therefor | |
JP5471839B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6768068B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5906654B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5729014B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2008063655A (en) | Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction | |
JP2007262540A (en) | Nozzle for supplying source gas in chemical vapor deposition treatment, film-forming method and grain-oriented electromagnetic steel sheet | |
JP7099648B1 (en) | Directional electrical steel sheet and its manufacturing method | |
JP2014152393A (en) | Method for producing grain-oriented magnetic steel sheet | |
JP4192399B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP5287641B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2015140470A (en) | Grain oriented silicon steel plate and production method thereof | |
JP7231888B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5845848B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5527094B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2020149332A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2019123936A (en) | Method for manufacturing grain-oriented electromagnetic steel sheets | |
JPWO2020158893A1 (en) | Directional electromagnetic steel sheet and iron core using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660025 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |