JP6011740B2 - Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility - Google Patents
Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility Download PDFInfo
- Publication number
- JP6011740B2 JP6011740B2 JP2016501923A JP2016501923A JP6011740B2 JP 6011740 B2 JP6011740 B2 JP 6011740B2 JP 2016501923 A JP2016501923 A JP 2016501923A JP 2016501923 A JP2016501923 A JP 2016501923A JP 6011740 B2 JP6011740 B2 JP 6011740B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- molten metal
- steel strip
- wiping
- wiping nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims description 69
- 239000002184 metal Substances 0.000 title claims description 67
- 229910052751 metal Inorganic materials 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 35
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 17
- 239000008397 galvanized steel Substances 0.000 title claims description 17
- 239000007789 gas Substances 0.000 claims description 158
- 229910000831 Steel Inorganic materials 0.000 claims description 65
- 239000010959 steel Substances 0.000 claims description 65
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910018137 Al-Zn Inorganic materials 0.000 claims description 4
- 229910018573 Al—Zn Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 230000037303 wrinkles Effects 0.000 description 31
- 230000007547 defect Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011701 zinc Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 210000004894 snout Anatomy 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Description
本発明は、連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備に関する。 The present invention relates to a continuous molten metal plating method, a hot dip galvanized steel strip, and a continuous molten metal plating facility.
連続溶融めっきプロセスにおいては、図4に示すように、鋼帯1は、スナウト2内からめっき槽3内の溶融金属4に進入し、シンクロール5により方向転換されてめっき槽3から引き上げられる。次いで、めっき槽3上方に設置されたガスワイピングノズル6により余剰の溶融金属が掻き取られ、所定のめっき付着量に制御されるとともに、鋼帯1の表面に付着した溶融金属が板幅方向および板長手方向で均一化される。ガスワイピングノズル6は、多様な鋼帯幅に対応するため、また、鋼帯引き上げ時の幅方向の位置ズレなどに対応するため、通常、鋼帯幅より長く構成されており、鋼帯1の幅端部より外側まで延びている。
In the continuous hot dipping process, as shown in FIG. 4, the
このようなガスワイピング方式では、ワイピングガスの吹き付けによる鋼帯の微小振動やめっき層の不規則な湯流れなどのために、めっき表面に波形流紋状の湯ジワ(湯ダレとも呼ばれる)を発生することが多い。このような湯ジワが生じためっき鋼板は、外装板の用途においてめっき表面を塗装下地表面とした場合、塗膜の表面性状、特に平滑性が阻害され、外観の優れた塗装処理に適合すべき外装板に用いることが出来ず、めっき鋼板の歩留まりに大きな影響を及ぼす。 In such a gas wiping method, corrugated flow-shaped hot water wrinkles (also called hot water sagging) are generated on the plating surface due to the minute vibration of the steel strip caused by the wiping gas spraying and irregular hot water flow in the plating layer. Often to do. Plated steel sheets with such hot water wrinkles should be suitable for coating processes with excellent appearance when the surface of the coating, especially the smoothness, is obstructed when the plating surface is used as the coating base surface in the application of exterior panels. It cannot be used for an exterior plate, and has a great influence on the yield of plated steel plates.
上記に対して、溶融金属めっき鋼板の外観不良である湯ジワ欠陥を防止するため、以下のような方法が提案されている。 In contrast to the above, the following method has been proposed in order to prevent a hot metal wrinkle defect which is an appearance defect of a molten metal plated steel sheet.
特許文献1に示される方法は、鋼板めっき後の工程である調質圧延を行うに際して、調質圧延ロールの表面性状や圧延条件を変えることで、湯ジワを目立たなくする方法である。特許文献2に示される方法は、鋼板を溶融亜鉛めっき浴中に導入する前に、スキンパスミル及びテンションレベラー等を用いて鋼板表面の粗さをめっき付着量に応じて調整して湯ジワの発生を抑制する方法である。特許文献3に示される方法は、板厚に対して適正なラインスピード、ワイピングノズルの浴面からの高さを設定し、湯ジワの発生を抑制する方法である。
The method disclosed in
しかしながら、本発明者らが検討したところによれば、特許文献1に示された方法では軽微な湯ジワは改善されるが、重度の湯ジワ欠陥に対しては効果が見られなかった。また、特許文献2に示された方法では、溶融亜鉛めっき浴の前工程にスキンパスミル、テンションレベラー等を設置する必要性からコスト的な問題点がある。また、これらを設置した場合も、前処理設備及び焼鈍炉での酸洗及び再結晶化に伴う化学的・物理的変化によって理想とする表面粗度が得られにくく、湯ジワ発生を完全に防止することが困難であると考えられる。さらに、特許文献3に示された方法では、板厚の変化点に対してライン速度やワイピングノズル高さはすぐに追従できないため、湯ジワが発生する鋼板が出来てしまい、歩留まりロスに繋がってしまう。
However, according to a study by the present inventors, the method shown in
本発明は、上記実情に鑑みてなされたものであって、ガスワイピングノズルを用いてめっき付着量の制御を行う連続溶融金属めっき方法において、湯ジワ欠陥の発生を抑え、高品質の溶融金属めっき鋼帯をより低コストで安定して製造することができる連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a continuous molten metal plating method in which the amount of plating adhesion is controlled using a gas wiping nozzle, the occurrence of hot metal wrinkle defects is suppressed, and high quality molten metal plating is performed. It is an object of the present invention to provide a continuous hot metal plating method, hot dip galvanized steel belt, and continuous hot metal plating equipment capable of stably producing a steel strip at a lower cost.
本発明の要旨は以下のとおりである。
[1]溶融金属めっき浴に連続的に鋼帯を浸漬し、前記溶融金属めっき浴から引き出された直後の前記鋼帯にガスワイピングノズルから気体を吹きつけてめっき付着量を制御する連続溶融金属めっき方法において、前記ガスワイピングノズル先端と鋼帯との距離Dと、前記ガスワイピングノズルギャップBの比で表されるD/B値に応じて、前記ガスワイピングノズルから噴射されるワイピングガスの温度Tを制御する連続溶融金属めっき方法。
[2][1]に記載の連続溶融金属めっき方法において、前記ガスワイピングノズルから噴射されるワイピングガスは不活性ガスである連続溶融金属めっき方法。
[3][1]または[2]に記載の連続溶融金属めっき方法において、前記溶融金属めっき浴の溶融金属の融点をTMとすると、ワイピングガスの温度TをD/B値に応じて下記式(1)の範囲で制御する連続溶融金属めっき方法。The gist of the present invention is as follows.
[1] A continuous molten metal in which a steel strip is continuously immersed in a molten metal plating bath, and gas is blown from a gas wiping nozzle to the steel strip immediately after being drawn out of the molten metal plating bath, thereby controlling the amount of plating adhered. In the plating method, the temperature of the wiping gas injected from the gas wiping nozzle according to a D / B value represented by a distance D between the gas wiping nozzle tip and the steel strip and a ratio of the gas wiping nozzle gap B A continuous molten metal plating method for controlling T.
[2] The continuous molten metal plating method according to [1], wherein the wiping gas sprayed from the gas wiping nozzle is an inert gas.
[3] In the continuous molten metal plating method according to [1] or [2], when the melting point of the molten metal in the molten metal plating bath is T M , the temperature T of the wiping gas is set as follows according to the D / B value. A continuous molten metal plating method controlled in the range of the formula (1).
T:ガスワイピングノズルから噴射されるワイピングガスの温度[℃]
TM:溶融金属の融点[℃]
D:鋼帯とガスワイピングノズル先端の距離[m]
B:ガスワイピングノズルギャップ[m]
c1、c2、c3:定数
[4][1]〜[3]のいずれかに記載の連続溶融金属めっき方法により製造され、鋼帯表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.10質量%を含有し、残部がZn及び不可避的不純物からなるAl−Zn系めっき層を有する溶融亜鉛めっき鋼帯。
[5]鋼帯とガスワイピングノズル先端との距離を非接触で測定する距離計と、前記距離計により測定された距離Dと、前記ガスワイピングノズルのギャップBとに基づいて、ガスワイピングノズルから噴射するワイピングガスの目標温度Tを算出する制御装置と、ガスワイピングノズルから噴射する気体を前記制御装置により算出された目標温度Tまで昇温させる気体加熱装置とを有する連続溶融金属めっき設備。
[6]前記目標温度Tは、前記距離計により測定された距離Dと、前記ガスワイピングノズルのギャップBの比で表されるD/B値に応じて以下の式(1)により算出されることを特徴とする[5]に記載の連続溶融金属めっき設備。T: Temperature of wiping gas injected from the gas wiping nozzle [° C.]
T M : Melting point of molten metal [° C.]
D: Distance between steel strip and gas wiping nozzle tip [m]
B: Gas wiping nozzle gap [m]
c 1 , c 2 , c 3 : produced by the continuous molten metal plating method according to any one of constants [4] [1] to [3], Al: 1.0 to 10% by mass on the steel strip surface, A hot dip galvanized steel strip having an Al—Zn-based plating layer containing Mg: 0.2 to 1.0 mass%, Ni: 0.005 to 0.10 mass%, and the balance being Zn and inevitable impurities.
[5] Based on the distance meter that measures the distance between the steel strip and the gas wiping nozzle tip in a non-contact manner, the distance D measured by the distance meter, and the gap B of the gas wiping nozzle, from the gas wiping nozzle A continuous molten metal plating facility comprising: a control device that calculates a target temperature T of the wiping gas to be injected; and a gas heating device that raises the gas injected from the gas wiping nozzle to the target temperature T calculated by the control device.
[6] The target temperature T is calculated by the following equation (1) according to a D / B value represented by a ratio of the distance D measured by the distance meter and the gap B of the gas wiping nozzle. The continuous molten metal plating facility as described in [5].
T:ガスワイピングノズルから噴射されるワイピングガスの温度[℃]
TM:溶融金属の融点[℃]
D:鋼帯とガスワイピングノズル先端の距離[m]
B:ガスワイピングノズルギャップ[m]
c1、c2、c3:定数T: Temperature of wiping gas injected from the gas wiping nozzle [° C.]
T M : Melting point of molten metal [° C.]
D: Distance between steel strip and gas wiping nozzle tip [m]
B: Gas wiping nozzle gap [m]
c 1 , c 2 , c 3 : constant
本発明によれば、湯ジワと呼ばれるめっき表面欠陥の発生を抑え、高品質の溶融金属めっき鋼帯をより低コストで安定して製造することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the generation | occurrence | production of the plating surface defect called hot water wrinkles, and to manufacture a high quality hot-dip metal plating steel strip stably at lower cost.
以下、本発明について具体的に説明する。
本発明の連続溶融金属めっき設備は、鋼帯を、溶融金属めっき浴槽内のめっき浴に連続的に浸漬してめっき処理を行った後、めっき浴から引上げ、めっき浴上方に設置したガスワイピングノズルからめっき鋼帯にワイピングガスを吹付けてめっき金属付着量を調整する設備である。そして、本発明の連続溶融金属めっき設備は、溶融金属めっき装置において、鋼帯とガスワイピングノズル先端との距離を非接触で測定する距離計と、前記距離計により測定された距離Dと、前記ガスワイピングノズルのギャップBとに基づいて、ガスワイピングノズルから噴射するワイピングガスの目標温度Tを算出する制御装置と、ガスワイピングノズルから噴射する気体を前記制御装置により算出された目標温度Tまで昇温させる気体加熱装置とを有することを特徴とする。Hereinafter, the present invention will be specifically described.
The continuous molten metal plating facility of the present invention is a gas wiping nozzle that is pulled up from a plating bath after the steel strip is continuously immersed in a plating bath in a molten metal plating bath and then placed above the plating bath. This is a facility that adjusts the amount of plating metal adhesion by spraying wiping gas onto the plated steel strip. And the continuous molten metal plating equipment of the present invention is a molten metal plating apparatus, a distance meter for measuring the distance between the steel strip and the gas wiping nozzle tip in a non-contact manner, a distance D measured by the distance meter, Based on the gap B of the gas wiping nozzle, a control device for calculating the target temperature T of the wiping gas injected from the gas wiping nozzle, and the gas injected from the gas wiping nozzle is increased to the target temperature T calculated by the control device. And a gas heating device for heating.
図1は、本発明の実施の形態に係る連続溶融金属めっき装置である。図1において、1は鋼帯、2はスナウト、3はめっき槽、4は溶融金属、5はシンクロール、6はガスワイピングノズル、7は距離計、8は制御装置(CU:Control Unit)、9は気体加熱装置である。矢印は鋼帯1の移動方向を示す。鋼帯1は、スナウト2内からめっき槽3内の溶融金属4に進入し、シンクロール5により方向転換されてめっき槽3から引き上げられる。次いで、めっき槽3上方に設置されたガスワイピングノズル6により余剰の溶融金属が掻き取られ所定の付着量に制御される。
FIG. 1 is a continuous molten metal plating apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a steel strip, 2 is a snout, 3 is a plating tank, 4 is a molten metal, 5 is a sink roll, 6 is a gas wiping nozzle, 7 is a distance meter, 8 is a control unit (CU: Control Unit), 9 is a gas heating device. The arrow indicates the moving direction of the
図2はガスワイピングノズル6の先端の拡大図である。本発明では、便宜的に、ガスワイピングノズル6の先端と鋼帯1との距離をDで表す。また、ガスワイピングノズル6の上ノズル部材を6a、ガスワイピングノズルの下ノズル部材を6bとするとき、ガスワイピングノズル6のギャップをBで表す。
FIG. 2 is an enlarged view of the tip of the gas wiping nozzle 6. In the present invention, for the sake of convenience, the distance between the tip of the gas wiping nozzle 6 and the
距離計7は例えばガスワイピングノズル6の下方に設けられる。距離計7は、ガスワイピングノズル6の先端と鋼帯1との距離Dを連続的に測定し、その情報を制御装置8に入力する。制御装置8は、距離計7から送られてくる距離Dの測定情報に基づき、気体加熱装置9で加熱するワイピングガスの目標温度を算出する。気体加熱装置9では、制御装置8で算出した目標温度までワイピングガスを昇温させ、昇温したワイピングガスをガスワイピングノズル6に供給する機能を有する。なお、距離計7については、非接触の形式であればよい。制御装置8の形式は特に限定されない。気体加熱装置9についても形式は特に限定されず、ガスワイピングノズル6と鋼帯1との距離Dに合わせて遅滞無くワイピングガスを昇温する機能を有していればよい。また、気体加熱装置9における、ガスワイピングノズル6に供給するワイピングガスの昇温方法についても、特に限定されない。例えば、熱交換器で加熱昇温して供給する方法、焼鈍炉の燃焼排ガスと空気を混合する方法が挙げられる。
The distance meter 7 is provided below the gas wiping nozzle 6, for example. The distance meter 7 continuously measures the distance D between the tip of the gas wiping nozzle 6 and the
本発明では、ガスワイピングノズル6の先端と鋼帯1との距離Dと、ガスワイピングノズル6のギャップBの比で表されるD/B値に応じて、ガスワイピングノズル6から噴射されるワイピングガスの温度Tを制御することを特徴とする。D/B値に応じてワイピングガスの温度Tを制御することにより、溶融金属の流動性が向上する。その結果、溶融金属が規則的に流下するため、湯ジワ欠陥を防止する効果を十分に発揮することができる。
In the present invention, the wiping injected from the gas wiping nozzle 6 according to the D / B value represented by the ratio of the distance D between the tip of the gas wiping nozzle 6 and the
本発明では、ガスワイピングノズル6から噴射されるワイピングガスは、不活性ガスであることが好ましい。不活性ガスにすることで、鋼板表面上の溶融金属の酸化を防止できるため、溶融金属の流動性をさらに向上させることができる。不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられるが、これらに限定されるものではない。 In the present invention, the wiping gas injected from the gas wiping nozzle 6 is preferably an inert gas. By using an inert gas, oxidation of the molten metal on the surface of the steel sheet can be prevented, so that the fluidity of the molten metal can be further improved. Examples of the inert gas include, but are not limited to, nitrogen, argon, helium, carbon dioxide and the like.
ワイピングガス温度が低すぎると、溶融金属の流動性低下による湯ジワ欠陥が起きてしまう。また、ワイピングガスの温度が高すぎると合金化が促進され、鋼板の外観が悪化してしまう。このため、D/Bの値に応じて最適なワイピングガスの温度Tを選定する必要がある。そこで本発明では、湯ジワ欠陥の発生しない外観が良好な製品を得るためのD/B値とワイピングガスの温度Tとの関係について求めた。溶融亜鉛めっき浴の温度は460℃、ライン速度は100m/min、ノズルヘッダの圧力は30kPa、ガス種は空気として、板厚1.2mm×板幅1000mmの鋼帯を連続溶融金属めっき設備に通板させた。その結果、図3に示すような関係が得られた。なお、図3において、湯ジワの発生状況に関する判定基準は下記の基準により行った。Waは、JIS B0601−2001の規格に基づいて測定した算術平均うねりWa[μm]の値である。
×:不合格=目視で大きな湯ジワが確認できる亜鉛めっき鋼板(1.50<Wa)
△:不合格=目視で小さな湯ジワが確認できる亜鉛めっき鋼板(1.00<Wa≦1.50)
○:合格=目視で湯ジワが確認できない美麗な亜鉛めっき鋼板(0.50<Wa≦1.00)
図3の結果より、ワイピングガスの温度TをD/B値に応じて下記式(1)で示される範囲内で制御することが好ましい。If the wiping gas temperature is too low, hot water wrinkle defects will occur due to a decrease in fluidity of the molten metal. If the temperature of the wiping gas is too high, alloying is promoted and the appearance of the steel sheet is deteriorated. For this reason, it is necessary to select the optimum temperature T of the wiping gas according to the value of D / B. Therefore, in the present invention, the relationship between the D / B value and the temperature T of the wiping gas for obtaining a product having a good appearance free from hot water wrinkle defects was determined. The temperature of the hot dip galvanizing bath is 460 ° C., the line speed is 100 m / min, the pressure of the nozzle header is 30 kPa, the gas type is air, and a steel strip with a plate thickness of 1.2 mm × plate width of 1000 mm is passed through a continuous hot metal plating facility. I let it plate. As a result, the relationship shown in FIG. 3 was obtained. In addition, in FIG. 3, the criterion regarding the generation | occurrence | production state of a hot water wrinkle was performed by the following reference | standard. Wa is a value of the arithmetic average waviness Wa [μm] measured based on the standard of JIS B0601-2001.
×: Fail = Galvanized steel sheet (1.50 <Wa) where large hot water wrinkles can be confirmed visually
△: Fail = Galvanized steel sheet (1.00 <Wa ≦ 1.50) in which small hot water wrinkles can be visually confirmed
○: Pass = Beautiful galvanized steel sheet in which hot water wrinkles cannot be visually confirmed (0.50 <Wa ≦ 1.00)
From the result of FIG. 3, it is preferable to control the temperature T of the wiping gas within the range represented by the following formula (1) according to the D / B value.
T:ガスワイピングノズルから噴射されるワイピングガスの温度[℃]
TM:溶融金属の融点[℃]
D:鋼帯とガスワイピングノズル先端の距離[m]
B:ガスワイピングノズルギャップ[m]
c1、c2、c3:定数
なお、式(1)中の定数c1、c2、c3はワイピングノズルギャップBの大きさやノズル形状によって変化するため、事前にオフラインで求める必要がある。具体的には、鋼帯に見立てた板表面に温度計をセットし、その温度計の値を「ワイピングガスが鋼帯と衝突する衝突位置でのワイピングガスの温度」とする。D/Bの値を何条件か変更して、上記温度を測定し、c1〜c3の値を求める。
さらに、D/B値が60超えではワイピングガスの掻き落とし力がほとんどないため、ワイピングガスを加熱する意味がない。このため、D/B値の上限は、60以下とすることが好ましい。T: Temperature of wiping gas injected from the gas wiping nozzle [° C.]
T M : Melting point of molten metal [° C.]
D: Distance between steel strip and gas wiping nozzle tip [m]
B: Gas wiping nozzle gap [m]
c 1 , c 2 , c 3 : Constants Note that the constants c 1 , c 2 , c 3 in the formula (1) vary depending on the size of the wiping nozzle gap B and the nozzle shape, and therefore need to be obtained offline in advance. . More specifically, a thermometer is set on the surface of the plate that looks like a steel strip, and the value of the thermometer is defined as “the temperature of the wiping gas at the collision position where the wiping gas collides with the steel strip”. The D / B value is changed for some conditions, the temperature is measured, and the values of c1 to c3 are obtained.
Further, when the D / B value exceeds 60, there is almost no wiping gas scraping force, so there is no point in heating the wiping gas. For this reason, the upper limit of the D / B value is preferably 60 or less.
また、本発明では、ワイピングガスが鋼帯と衝突する衝突位置でのワイピングガスの温度を溶融金属の融点TMの上下200℃((TM±100)℃)以内に制御することが好ましい。ワイピングガスが鋼帯と衝突する衝突位置でのワイピングガスの温度を(TM−100)℃未満にすると、鋼板に付着している溶融金属の凝固割合が非常に高くなり、溶融金属の流動性が低下するため、湯ジワ欠陥が発生してしまう。なお、例えば、熱交換器を使用する際には、加熱側である気体や液体の温度を変更することで、被加熱側であるワイピングガスの温度を制御することができる。しかしながら、上記の制御方法に限定されない。In the present invention, it is preferred that wiping gas to control the temperature of the wiping gas in the collision position to collide with the steel strip within the upper and lower 200 ° C. of the melting point T M of the molten metal ((T M ± 100) ℃ ). When wiping gas is (T M -100) the temperature of the wiping gas in the collision position to collide with the steel strip to less than ° C., solidification rate of molten metal adhering to the steel sheet becomes very high, the fluidity of the molten metal As a result, the hot water wrinkle defect will occur. For example, when using a heat exchanger, the temperature of the wiping gas on the heated side can be controlled by changing the temperature of the gas or liquid on the heating side. However, it is not limited to the above control method.
一方で、ワイピングガスが鋼帯と衝突する衝突位置でのワイピングガスの温度を(TM+100)℃超えにすると、鋼帯と溶融金属の合金化を促進してしまい、鋼板の外観が悪化するのに加えて、狙いのめっき付着量よりも増加してしまう。さらに、気体の加熱に余分なエネルギーが消費されるため、エネルギー効率も悪化してしまう。また、非特許文献1(鉄と鋼 Vol.81 (1995) No.2、P49)のFig.5に示されているように、ワイピングガスのポテンシャルコアはD/B値に比例して減衰することが知られているため、D/B値に応じて適切なガス温度を設定する必要がある。On the other hand, when the temperature of the wiping gas at the collision position where the wiping gas collides with the steel strip exceeds (T M +100) ° C., alloying of the steel strip and the molten metal is promoted, and the appearance of the steel plate deteriorates. In addition to the above, the target amount of plating increases. Furthermore, since extra energy is consumed for heating the gas, energy efficiency is also deteriorated. Further, FIG. Of Non-Patent Document 1 (Iron and Steel Vol. 81 (1995) No. 2, P49). 5, it is known that the potential core of the wiping gas attenuates in proportion to the D / B value, so it is necessary to set an appropriate gas temperature according to the D / B value. .
なお、溶融金属めっき(めっき層)の成分が変わると融点が変化するため、ワイピングガス温度Tの最適範囲は変化する。 In addition, since the melting point changes when the component of the molten metal plating (plating layer) changes, the optimum range of the wiping gas temperature T changes.
また、鋼帯表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.10質量%を含有し、残部がZn及び不可避的不純物からなるAl−Zn系めっき層を有する溶融亜鉛めっき鋼帯の場合、AlやZnよりも酸化しやすいMgが入っているため、ワイピングガス温度が低い場合、特に溶融金属の流動性が悪化して湯ジワが発生しやすくなることが確認されている。その結果、表面外観が悪くなる。そのため、本発明のガスワイピング方法を用いて製造した溶融亜鉛めっき鋼帯であって、鋼帯表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.10質量%を含有し、残部がZn及び不可避的不純物からなるAl−Zn系めっき層を有する溶融亜鉛めっき鋼帯の場合、ワイピングガス温度を最適化することにより湯ジワ欠陥を防止する効果がより顕著に表れる。 Moreover, Al: 1.0-10 mass%, Mg: 0.2-1.0 mass%, Ni: 0.005-0.10 mass% are contained in the steel strip surface, and the remainder is Zn and unavoidable In the case of a hot-dip galvanized steel strip having an Al—Zn-based plating layer made of impurities, Mg, which is easier to oxidize than Al or Zn, is contained, so when the wiping gas temperature is low, the fluidity of the molten metal deteriorates. It has been confirmed that hot water wrinkles are likely to occur. As a result, the surface appearance is deteriorated. Therefore, it is a hot dip galvanized steel strip manufactured by using the gas wiping method of the present invention, on the surface of the steel strip, Al: 1.0 to 10 mass%, Mg: 0.2 to 1.0 mass%, Ni : In the case of a hot-dip galvanized steel strip having an Al—Zn-based plating layer containing 0.005 to 0.10% by mass and the balance consisting of Zn and inevitable impurities, by optimizing the wiping gas temperature, The effect of preventing defects appears more remarkably.
ガスワイピングノズルの最適な設置条件、実施形態を調査するため、溶融亜鉛めっき鋼帯の製造試験を行った。ガスワイピングノズルは、ノズルギャップB=1.2mmを備えるものを使用した。溶融亜鉛めっき浴面からガスワイピングノズル高さを350mmとし、ワイピングガスの噴射方向は鋼帯面に垂直とした。具体的には、板厚1.2mm×板幅1000mmの鋼帯を、ライン速度100m/minで通板し、めっき層の組成、ガスワイピングノズル先端と鋼帯間の距離D、ガスワイピングノズルから噴射するガス圧力(ノズルヘッダ圧力)、ガス設定温度、ガス種、めっき付着量を変化させ、鋼板の外観を評価した。溶融亜鉛めっき浴温度は460℃とした。なお、事前のオフラインテストで式(1)中の定数をそれぞれ求めたところ、c1=45、c2=1.5、c3=2.5であった。
また、ガスワイピングノズルへのガス供給方法として、常温のガスを熱交換器で所定温度まで加熱し、ブロアで所定圧力に加圧したものを供給する方法を採用した。なお、溶融金属の融点(TM)はAl=0.2質量%の場合はTM=420℃、Al=4.5質量%、Mg=0.5質量%、Ni=0.05質量%の場合はTM=375℃である。In order to investigate the optimum installation conditions and embodiments of the gas wiping nozzle, a production test of a hot-dip galvanized steel strip was conducted. A gas wiping nozzle having a nozzle gap B = 1.2 mm was used. The gas wiping nozzle height from the hot dip galvanizing bath surface was 350 mm, and the wiping gas injection direction was perpendicular to the steel strip surface. Specifically, a steel strip having a thickness of 1.2 mm and a plate width of 1000 mm is passed at a line speed of 100 m / min, the composition of the plating layer, the distance D between the tip of the gas wiping nozzle and the steel strip, and the gas wiping nozzle The appearance of the steel sheet was evaluated by changing the gas pressure to be injected (nozzle header pressure), the gas set temperature, the gas type, and the coating adhesion amount. The hot dip galvanizing bath temperature was 460 ° C. Incidentally, where in advance offline testing respectively determined the constants of the formula (1), c 1 = 45 ,
Further, as a gas supply method to the gas wiping nozzle, a method was used in which normal temperature gas was heated to a predetermined temperature with a heat exchanger and pressurized to a predetermined pressure with a blower. The melting point (T M ) of the molten metal is T M = 420 ° C. when Al = 0.2 mass%, T M = 375 ° C. when Al = 4.5 mass%, Mg = 0.5 mass% and Ni = 0.05 mass%. It is.
鋼板の外観評価については、以下の基準で合否を判断した。なお、Waは、JIS B0601−2001の規格に基づいて測定した算術平均うねりWa[μm]の値である。
×:不合格=目視で大きな湯ジワが確認できる亜鉛めっき鋼板(1.50<Wa)
△:不合格=目視で小さな湯ジワが確認できる亜鉛めっき鋼板(1.00<Wa≦1.50)
○:合格=目視で湯ジワが確認できない美麗な亜鉛めっき鋼板(0.50<Wa≦1.00)
◎:合格=目視で湯ジワが確認できない非常に美麗な亜鉛めっき鋼板(0<Wa≦0.50)
結果を表1に示す。About the external appearance evaluation of the steel plate, the acceptability was judged according to the following criteria. Wa is the value of the arithmetic average waviness Wa [μm] measured based on the standard of JIS B0601-2001.
×: Fail = Galvanized steel sheet (1.50 <Wa) where large hot water wrinkles can be confirmed visually
△: Fail = Galvanized steel sheet (1.00 <Wa ≦ 1.50) in which small hot water wrinkles can be visually confirmed
○: Pass = Beautiful galvanized steel sheet in which hot water wrinkles cannot be visually confirmed (0.50 <Wa ≦ 1.00)
A: Pass = A very beautiful galvanized steel sheet (0 <Wa ≦ 0.50) in which no hot water wrinkles can be visually confirmed.
The results are shown in Table 1.
発明例1は、D/B値に応じた最適なガス温度でワイピングすることにより、湯ジワ欠陥を防止できている。湯ジワ欠陥を防止できた理由としては、D/B値に応じた最適なガス温度でワイピングを行ったのに加え、ワイピングガスが鋼帯と衝突する衝突位置でのワイピングガスの温度が(TM−100)℃以上になることで、噴出ガスによる冷却効果を阻害し、鋼板に付着した溶融亜鉛が比較的凝固せず、規則的に流下できたためと考えられる。Invention Example 1 can prevent hot water wrinkle defects by wiping at an optimum gas temperature corresponding to the D / B value. The reason why the hot water wrinkle defect could be prevented is that the temperature of the wiping gas at the collision position where the wiping gas collides with the steel strip in addition to the wiping performed at the optimum gas temperature corresponding to the D / B value (T It is thought that by being M- 100) ° C. or higher, the cooling effect by the jet gas was hindered, and the molten zinc adhering to the steel sheet did not solidify relatively and could flow down regularly.
また、発明例2では、D/Bを変更し、その値に応じた最適なワイピングガスの温度Tでワイピングしており、発明例1と同じく湯ジワ欠陥を防止できている。発明例3〜8に各D/B値に対して、ワイピング温度を変更した際の結果を示している。 Further, in Invention Example 2, D / B is changed, and wiping is performed at the optimum temperature T of the wiping gas corresponding to the value, and hot water wrinkle defects can be prevented as in Invention Example 1. Inventive Examples 3 to 8 show the results when the wiping temperature is changed for each D / B value.
一方、比較例1及び比較例2では、D/B値から導出される最適ガス温度範囲を外れた場合の実施例を示している。比較例1で付着量が増加する原因として、D/B値に応じた最適ガス温度範囲を外れた温度でワイピングを行ったのに加え、ノズルから噴出されたワイピングガスが周囲の気体と混合され、鋼帯衝突位置でのワイピングガスの温度が(TM−100)℃を下回ったためと考えられる。比較例2では、発明例1よりも更に高いワイピングガスの温度に昇温しており、付着量は増加している。これはワイピングガス温度が高すぎるため、鋼帯表層の亜鉛めっきの合金化が促進されたためと考えられる。なおかつ、合金化の促進により、鋼板表面が白っぽく変色して外観も悪化してしまった。その他のワイピング条件での結果は、比較例3〜11に示す。On the other hand, Comparative Example 1 and Comparative Example 2 show examples when the optimum gas temperature range derived from the D / B value is deviated. The reason why the adhesion amount increases in Comparative Example 1 is that the wiping gas ejected from the nozzle is mixed with the surrounding gas in addition to wiping at a temperature outside the optimum gas temperature range according to the D / B value. , presumably because the temperature of the wiping gas in the strip collision position is below the (T M -100) ℃. In Comparative Example 2, the temperature of the wiping gas was raised to a higher temperature than that of Invention Example 1, and the amount of adhesion increased. This is presumably because the wiping gas temperature was too high and the alloying of the galvanized steel layer surface was promoted. Moreover, due to the promotion of alloying, the surface of the steel sheet turned whitish and the appearance deteriorated. The results under other wiping conditions are shown in Comparative Examples 3-11.
また、発明例10及び比較例12ではめっき層の組成を変更した実施例を示している。溶融亜鉛の成分を変更したことで亜鉛浴の融点が375℃に低下したため、ワイピングガスの最適温度範囲も変化している。比較例12では比較例1よりも、より大きな湯ジワの発生が確認できた。これは、めっき層成分中のMgが酸化しやすいため、湯ジワが発生しやすくなったと考えられる。発明例10では、ワイピングガスの温度Tを制御することで、発明例1と同じく湯ジワ欠陥を防止することができた。 Inventive Example 10 and Comparative Example 12 show examples in which the composition of the plating layer is changed. Since the melting point of the zinc bath was lowered to 375 ° C. by changing the component of the molten zinc, the optimum temperature range of the wiping gas was also changed. In Comparative Example 12, generation of larger hot water wrinkles than in Comparative Example 1 was confirmed. This is thought to be because hot water wrinkles are likely to occur because Mg in the plating layer component is easily oxidized. In Invention Example 10, by controlling the temperature T of the wiping gas, it was possible to prevent hot water wrinkle defects as in Invention Example 1.
さらに、発明例9及び発明例10では、ガス種を不活性ガスである窒素にしたため、発明例1と比べてより良好な外観を得られている。 Furthermore, in Invention Example 9 and Invention Example 10, since the gas species was nitrogen which is an inert gas, a better appearance was obtained compared to Invention Example 1.
以上より、適切なワイピングガスの温度でワイピングすることにより、湯ジワ欠陥防止効果が得られる。 As described above, the wiping defect prevention effect can be obtained by wiping at an appropriate wiping gas temperature.
1 鋼帯
2 スナウト
3 めっき槽
4 溶融金属
5 シンクロール
6 ガスワイピングノズル
6a ガスワイピングノズルの上ノズル部材
6b ガスワイピングノズルの下ノズル部材
7 距離計
8 制御装置(CU)
9 気体加熱装置DESCRIPTION OF
9 Gas heating device
Claims (6)
TM:溶融金属の融点[℃]
D:鋼帯とガスワイピングノズル先端の距離[m]
B:ガスワイピングノズルギャップ[m]
c1、c2、c3:定数 In the process a continuous molten metal plating according to claim 1 or 2, wherein when a melting point T M of molten metal in the molten metal plating bath, the following equation in accordance with the temperature T of the wiping gas to D / B value (1) Continuous molten metal plating method controlled by range.
T M : Melting point of molten metal [° C.]
D: Distance between steel strip and gas wiping nozzle tip [m]
B: Gas wiping nozzle gap [m]
c 1 , c 2 , c 3 : constant
TM:溶融金属の融点[℃]
D:鋼帯とガスワイピングノズル先端の距離[m]
B:ガスワイピングノズルギャップ[m]
c1、c2、c3:定数 The target temperature T is calculated by the following equation (1) according to a D / B value represented by a ratio of a distance D measured by the distance meter and a gap B of the gas wiping nozzle. The continuous molten metal plating equipment described in 1.
T M : Melting point of molten metal [° C.]
D: Distance between steel strip and gas wiping nozzle tip [m]
B: Gas wiping nozzle gap [m]
c 1 , c 2 , c 3 : constant
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206882 | 2014-10-08 | ||
JP2014206882 | 2014-10-08 | ||
PCT/JP2015/004715 WO2016056178A1 (en) | 2014-10-08 | 2015-09-16 | Continuous hot-dip metal plating method, hot-dip zinc-plated steel strip, and continuous hot-dip metal plating equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6011740B2 true JP6011740B2 (en) | 2016-10-19 |
JPWO2016056178A1 JPWO2016056178A1 (en) | 2017-04-27 |
Family
ID=55652818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016501923A Active JP6011740B2 (en) | 2014-10-08 | 2015-09-16 | Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3205741B1 (en) |
JP (1) | JP6011740B2 (en) |
KR (1) | KR101910756B1 (en) |
CN (1) | CN106795614B (en) |
MX (1) | MX2017004585A (en) |
TW (1) | TW201619411A (en) |
WO (1) | WO2016056178A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021256079A1 (en) | 2020-06-19 | 2021-12-23 | Jfeスチール株式会社 | Gas wiping nozzle and method for manufacturing molten metal-plated metal band |
US11655532B2 (en) | 2019-02-26 | 2023-05-23 | Jfe Steel Corporation | Gas wiping nozzle and method of manufacturing hot-dip metal coated metal strip |
US12084774B2 (en) | 2020-06-19 | 2024-09-10 | Jfe Steel Corporation | Gas wiping nozzle and method for manufacturing hot-dip metal coated metal strip |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6500846B2 (en) * | 2016-06-17 | 2019-04-17 | Jfeスチール株式会社 | Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment |
JP6372527B2 (en) * | 2016-07-13 | 2018-08-15 | Jfeスチール株式会社 | Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment |
JP6635086B2 (en) * | 2017-04-05 | 2020-01-22 | Jfeスチール株式会社 | Manufacturing method of hot-dip galvanized steel strip |
KR102371083B1 (en) | 2017-04-14 | 2022-03-07 | 현대자동차주식회사 | Method for Natural Ventilation Car Inside using Conditioned Link and Vehicle thereby |
DE102017216572A1 (en) * | 2017-09-19 | 2019-03-21 | Thyssenkrupp Ag | Hot dip coated steel strip with improved surface appearance and method of making the same |
KR102031466B1 (en) * | 2017-12-26 | 2019-10-11 | 주식회사 포스코 | Zinc alloy coated steel having excellent surface property and corrosion resistance, and method for manufacturing the same |
JP6414360B2 (en) * | 2018-05-25 | 2018-10-31 | Jfeスチール株式会社 | Manufacturing method of molten metal plated steel strip |
AU2019323956B2 (en) * | 2018-08-22 | 2021-11-11 | Jfe Steel Corporation | Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating line |
CN113195775B (en) * | 2018-12-11 | 2023-08-25 | 株式会社 M.E.C | Method for manufacturing hot dip galvanized steel sheet |
JP7573336B2 (en) * | 2020-06-17 | 2024-10-25 | Jfeスチール株式会社 | Coating weight control method, hot-dip galvanized steel sheet manufacturing method, and device for carrying out the same |
KR20220127594A (en) | 2021-03-11 | 2022-09-20 | (주)스텝이엔지 | Hot-dip galvanized bath burn hazard multi-level warning device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54135628A (en) * | 1978-04-13 | 1979-10-22 | Nippon Kokan Kk <Nkk> | Continuous type hot dipping method |
JPS5521564A (en) * | 1978-08-04 | 1980-02-15 | Kawasaki Steel Corp | Preparation of melted zinc plated steel plate for sheath plate |
JPH0941113A (en) * | 1995-07-31 | 1997-02-10 | Kawasaki Steel Corp | Production of thick-coated hot dip galvanized steel sheet excellent in surface characteristic |
JPH09195024A (en) * | 1996-01-19 | 1997-07-29 | Nkk Corp | Method for controlling coating weight of hot dip metal coating |
JP2004027263A (en) * | 2002-06-24 | 2004-01-29 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet with excellent surface appearance and method for producing the same |
JP2007302959A (en) * | 2006-05-12 | 2007-11-22 | Jfe Steel Kk | Manufacturing method of molten metal plated steel strip |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0707897B1 (en) * | 1993-04-28 | 2001-01-03 | Kawasaki Steel Corporation | Adhesion quantity regulation method by gas wiping |
JPH09195023A (en) * | 1996-01-11 | 1997-07-29 | Sumitomo Metal Ind Ltd | Gap variable type gas wiping nozzle device |
JP3779941B2 (en) * | 2002-01-09 | 2006-05-31 | 新日本製鐵株式会社 | Galvanized steel sheet with excellent post-painting corrosion resistance and paint clarity |
JP5942359B2 (en) * | 2011-08-25 | 2016-06-29 | Jfeスチール株式会社 | Continuous molten metal plating treatment method and continuous molten metal plating treatment apparatus |
JP6031906B2 (en) * | 2012-09-11 | 2016-11-24 | Jfeスチール株式会社 | Wiping method for continuous molten metal-plated steel strip. |
WO2014135753A1 (en) * | 2013-03-06 | 2014-09-12 | Arcelormittal Investigacion Y Desarrollo, S.L. | A method for manufacturing a metal sheet with a znal coating and with optimised drying, corresponding metal sheet, part and vehicle |
-
2015
- 2015-09-16 JP JP2016501923A patent/JP6011740B2/en active Active
- 2015-09-16 KR KR1020177009127A patent/KR101910756B1/en active Active
- 2015-09-16 CN CN201580054270.3A patent/CN106795614B/en active Active
- 2015-09-16 WO PCT/JP2015/004715 patent/WO2016056178A1/en active Application Filing
- 2015-09-16 EP EP15848228.1A patent/EP3205741B1/en active Active
- 2015-09-16 MX MX2017004585A patent/MX2017004585A/en unknown
- 2015-10-06 TW TW104132752A patent/TW201619411A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54135628A (en) * | 1978-04-13 | 1979-10-22 | Nippon Kokan Kk <Nkk> | Continuous type hot dipping method |
JPS5521564A (en) * | 1978-08-04 | 1980-02-15 | Kawasaki Steel Corp | Preparation of melted zinc plated steel plate for sheath plate |
JPH0941113A (en) * | 1995-07-31 | 1997-02-10 | Kawasaki Steel Corp | Production of thick-coated hot dip galvanized steel sheet excellent in surface characteristic |
JPH09195024A (en) * | 1996-01-19 | 1997-07-29 | Nkk Corp | Method for controlling coating weight of hot dip metal coating |
JP2004027263A (en) * | 2002-06-24 | 2004-01-29 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet with excellent surface appearance and method for producing the same |
JP2007302959A (en) * | 2006-05-12 | 2007-11-22 | Jfe Steel Kk | Manufacturing method of molten metal plated steel strip |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11655532B2 (en) | 2019-02-26 | 2023-05-23 | Jfe Steel Corporation | Gas wiping nozzle and method of manufacturing hot-dip metal coated metal strip |
WO2021256079A1 (en) | 2020-06-19 | 2021-12-23 | Jfeスチール株式会社 | Gas wiping nozzle and method for manufacturing molten metal-plated metal band |
US12084774B2 (en) | 2020-06-19 | 2024-09-10 | Jfe Steel Corporation | Gas wiping nozzle and method for manufacturing hot-dip metal coated metal strip |
Also Published As
Publication number | Publication date |
---|---|
MX2017004585A (en) | 2017-06-27 |
EP3205741A4 (en) | 2017-08-30 |
EP3205741B1 (en) | 2023-04-05 |
CN106795614B (en) | 2019-11-01 |
JPWO2016056178A1 (en) | 2017-04-27 |
KR20170048549A (en) | 2017-05-08 |
WO2016056178A1 (en) | 2016-04-14 |
TW201619411A (en) | 2016-06-01 |
CN106795614A (en) | 2017-05-31 |
KR101910756B1 (en) | 2018-10-22 |
EP3205741A1 (en) | 2017-08-16 |
TWI561675B (en) | 2016-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6011740B2 (en) | Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility | |
JP5764672B2 (en) | High corrosion resistant hot dip galvanized steel sheet and method for producing the same | |
CN108474093B (en) | Plated steel material having excellent friction resistance and white rust resistance, and method for producing same | |
JP6372527B2 (en) | Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment | |
KR102471806B1 (en) | Manufacturing method of hot-dip metal plating steel strip and continuous hot-dip metal plating equipment | |
JP6500846B2 (en) | Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment | |
JP2017508875A (en) | Method for producing sheets with ZnAlMg coating by optimized wiping and corresponding sheets | |
JP5824905B2 (en) | Manufacturing method of molten metal plated steel strip | |
KR20210104914A (en) | Metal coated steel strip | |
CN110100035A (en) | The excellent alloy plated steel product of cracking resistance and its manufacturing method | |
JP2015193879A (en) | Manufacturing method of molten-zinc/aluminum/magnesium alloy plated steel sheet | |
JP6772930B2 (en) | Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet | |
JP6394578B2 (en) | Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment | |
JP6635086B2 (en) | Manufacturing method of hot-dip galvanized steel strip | |
JPWO2020039869A1 (en) | Method for producing hot-dip galvanized steel strip and continuous hot-dip galvanizing equipment | |
JP6414360B2 (en) | Manufacturing method of molten metal plated steel strip | |
JP2016169430A (en) | Method for manufacturing hot-dip galvanized steel sheet | |
JP4835073B2 (en) | Manufacturing method of molten metal plated steel strip | |
JP7265217B2 (en) | Galvanized steel sheet for hot stamping | |
JP4777158B2 (en) | Hot-dip galvanized wire and its cooling device | |
JP2023156878A (en) | Manufacturing method of hot-dip galvanized steel sheet | |
JP2007070663A (en) | Hot dip metal coated steel strip manufacturing method, and continuous hot dip coating device | |
JP2000336466A (en) | Method for producing hot-dip Zn-Al-based alloy plated steel sheet | |
JP2008150642A (en) | Method and apparatus for manufacturing hot-dip galvanized steel sheet | |
JP6439755B2 (en) | Method for producing galvannealed steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6011740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |