JP6001809B2 - オンライン・ソーシャル・ネットワーク上での検索クエリ対話 - Google Patents
オンライン・ソーシャル・ネットワーク上での検索クエリ対話 Download PDFInfo
- Publication number
- JP6001809B2 JP6001809B2 JP2016511830A JP2016511830A JP6001809B2 JP 6001809 B2 JP6001809 B2 JP 6001809B2 JP 2016511830 A JP2016511830 A JP 2016511830A JP 2016511830 A JP2016511830 A JP 2016511830A JP 6001809 B2 JP6001809 B2 JP 6001809B2
- Authority
- JP
- Japan
- Prior art keywords
- query
- user
- nodes
- search
- social networking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
- G06F16/24564—Applying rules; Deductive queries
- G06F16/24565—Triggers; Constraints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2457—Query processing with adaptation to user needs
- G06F16/24578—Query processing with adaptation to user needs using ranking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Computing Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
- Operations Research (AREA)
- User Interface Of Digital Computer (AREA)
Description
るために「…によって“いいね!”の表明をされた(liked_by)」演算子を使用する代わりに、クエリを行うユーザの写真のユーザを検索するための「…について“いいね!”の表明をした(likers_of)」演算子を使用するように、構文解析され得る。このように、逆演算子は、特定のバーティカルの検索がより良好な検索結果を生み出すように使用され、こうした結果を生成するための処理効率を改善し得る。
図1は、ソーシャル・ネットワーキング・システムに関連付けられている例示的なネットワーク環境100を示している。ネットワーク環境100は、ネットワーク110によって互いにつながっているクライアント・システム130、ソーシャル・ネットワーキング・システム160、およびサードパーティ・システム170を含む。図1は、クライアント・システム130、ソーシャル・ネットワーキング・システム160、サードパーティ・システム170、およびネットワーク110の特定の構成を示しているが、本開示は、クライアント・システム130、ソーシャル・ネットワーキング・システム160、サードパーティ・システム170、およびネットワーク110の任意の適切な構成を想定している。限定ではなく、例として、クライアント・システム130、ソーシャル・ネットワーキング・システム160、およびサードパーティ・システム170のうちの複数は、ネットワーク110を迂回して、互いに直接つながることが可能である。別の例として、クライアント・システム130、ソーシャル・ネットワーキング・システム160、およびサードパーティ・システム170のうちの複数は、物理的にまたは論理的に、全体としてまたは部分的に互いに同一場所に配置されることが可能である。その上、図1は、特定の数のクライアント・システム130、ソーシャル・ネットワーキング・システム160、サードパーティ・システム170、およびネットワーク110を示しているが、本開示は、任意の適切な数のクライアント・システム130、ソーシャル・ネットワーキング・システム160、サードパーティ・システム170、およびネットワーク110を想定している。限定ではなく、例として、ネットワーク環境100は、複数のクライアント・システム130、ソーシャル・ネットワーキング・システム160、サードパーティ・システム170、およびネットワーク110を含むことができる。
ットワーク(WAN)、ワイヤレスWAN(WWAN)、メトロポリタン・エリア・ネットワーク(MAN)、インターネットの一部分、公衆交換電話網(PSTN)の一部分、セルラー電話ネットワーク、またはこれらのうちの複数の組合せを含むことができる。ネットワーク110は、1つまたは複数のネットワーク110を含むことができる。
ーザに提示するためにサーバからのHTMLファイルに基づいてウェブページをレンダリングすることができる。本開示は、任意の適切なウェブページ・ファイルを想定している。限定ではなく、例として、ウェブページは、特定のニーズに従って、HTMLファイル、拡張可能ハイパー・テキスト・マークアップ言語(XHTML)ファイル、または拡張可能マークアップ言語(XML)ファイルからレンダリングすることができる。そのようなページは、限定ではなく、例として、JAVASCRIPT(登録商標)、JAVA(登録商標)、MICROSOFT SILVERLIGHTで書かれたスクリプトなどのスクリプト、AJAX(Asynchronous JAVASCRIPT(登録商標)and XML)などのマークアップ言語とスクリプトの組合せなどを実行することもできる。本明細書においては、ウェブページへの参照は、適切な場合には、(そのウェブページをレンダリングするためにブラウザが使用することができる)1つまたは複数の対応するウェブページ・ファイルを含み、その逆もまた同様である。
グ・システム160は、オンライン・ソーシャル・ネットワークのユーザに、その他のユーザと通信および対話する能力を提供することができる。特定の実施形態においては、ユーザたちは、ソーシャル・ネットワーキング・システム160を通じてオンライン・ソーシャル・ネットワークに参加し、次いで、自分たちがつながりたいと望むソーシャル・ネットワーキング・システム160のその他の複数のユーザにつながり(すなわち、関係)を付加することができる。本明細書においては、「友達」という用語は、ユーザがソーシャル・ネットワーキング・システム160を通じて、つながり、関連付け、または関係を形成しているソーシャル・ネットワーキング・システム160のその他の任意のユーザを示すことができる。
ンテンツ・オブジェクト・プロバイダを含むことができる。サードパーティ・コンテンツ・オブジェクト・プロバイダは、コンテンツ・オブジェクトの1つまたは複数のソースを含むことができ、それらのソースは、クライアント・システム130に通信されることが可能である。限定ではなく、例として、コンテンツ・オブジェクトは、ユーザにとって関心がある物またはアクティビティに関する情報、たとえば、映画の開始時刻、映画のレビュー、レストランのレビュー、レストランのメニュー、製品の情報およびレビュー、またはその他の適切な情報などを含むことができる。限定ではなく、別の例として、コンテンツ・オブジェクトは、インセンティブ・コンテンツ・オブジェクト、たとえば、クーポン、ディスカウント・チケット、ギフト券、またはその他の適切なインセンティブ・オブジェクトを含むことができる。
よびコンテンツ(内部および外部の両方)の間におけるユーザ定義のつながりを含むこともできる。ネットワーク110を通じてソーシャル・ネットワーキング・システム160を1つもしくは複数のクライアント・システム130または1つもしくは複数のサードパーティ・システム170にリンクさせるために、ウェブ・サーバが使用されることが可能である。ウェブ・サーバは、ソーシャル・ネットワーキング・システム160と、1つまたは複数のクライアント・システム130との間においてメッセージを受け取って回送するためにメール・サーバまたはその他のメッセージング機能を含むことができる。API要求サーバは、サードパーティ・システム170が、1つまたは複数のAPIを呼び出すことによってソーシャル・ネットワーキング・システム160からの情報にアクセスすることを可能にすることができる。ソーシャル・ネットワーキング・システム160の上のまたは外のユーザのアクションに関してウェブ・サーバから通信を受け取るために、アクション・ロガーが使用されることが可能である。アクション・ログとともに、サードパーティコンテンツ・オブジェクトへのユーザの露出についてのサードパーティコンテンツオブジェクト・ログが保持されることが可能である。通知コントローラは、コンテンツ・オブジェクトに関する情報をクライアント・システム130に提供することができる。情報は、通知としてクライアント・システム130へ押し出されることが可能であり、または情報は、クライアント・システム130から受け取られた要求に応答してクライアント・システム130から引き出されることが可能である。ソーシャル・ネットワーキング・システム160のユーザの1つまたは複数のプライバシー設定を実施するために、認可サーバが使用されることが可能である。ユーザのプライバシー設定は、ユーザに関連付けられている特定の情報がどのように共有されることが可能であるかを特定する。認可サーバは、ユーザが、たとえば、適切なプライバシー設定を設定することなどによって、自分のアクションをソーシャル・ネットワーキング・システム160によって記録されること、またはその他のシステム(たとえば、サードパーティ・システム170)と共有されることのオプトインまたはオプトアウトを行うことを可能にすることができる。サードパーティ・システム170などのサードパーティから受け取られたコンテンツ・オブジェクトを記憶するために、サードパーティコンテンツオブジェクト・ストアが使用されることが可能である。ユーザに関連付けられているクライアント・システム130から受け取られたロケーション情報を記憶するために、ロケーション・ストアが使用されることが可能である。広告価格設定モジュールが、ソーシャルな情報、現在時刻、ロケーション情報、またはその他の適切な情報を組み合わせて、関連がある広告を、通知の形式でユーザに提供することができる。
図2は、例示的なソーシャル・グラフ200を示している。特定の実施形態においては、ソーシャル・ネットワーキング・システム160は、1つまたは複数のソーシャル・グラフ200を1つまたは複数のデータ・ストア内に記憶することができる。特定の実施形態においては、ソーシャル・グラフ200は、複数のノード(複数のユーザ・ノード202、または複数のコンセプト・ノード204を含むことができる)と、ノード同士をつなげる複数のエッジ206とを含むことができる。図2において示されている例示的なソーシャル・グラフ200は、教示上の目的から、2次元のビジュアル・マップ表示で示されている。特定の実施形態においては、ソーシャル・ネットワーキング・システム160、クライアント・システム130、またはサードパーティ・システム170は、適切なアプリケーションに関してソーシャル・グラフ200および関連したソーシャル・グラフ情報にアクセスすることができる。ソーシャル・グラフ200のノードおよびエッジは、データ・オブジェクトとして、たとえば(ソーシャル・グラフ・データベースなどの)データ・ストア内に記憶されることが可能である。そのようなデータ・ストアは、ソーシャル・グラフ200のノードまたはエッジの1つまたは複数の検索可能なまたはクエリ可能なインデックスを含むことができる。
「プロフィール・ページ」と呼ばれる場合もある)を表すこと、またはウェブページによって表されることが可能である。プロフィール・ページは、ソーシャル・ネットワーキング・システム160によってホストされること、またはソーシャル・ネットワーキング・システム160にとってアクセス可能であることが可能である。プロフィール・ページは、サードパーティ・サーバ170に関連付けられているサードパーティ・ウェブサイト上にホストされることも可能である。限定ではなく、例として、特定の外部ウェブページに対応するプロフィール・ページは、その特定の外部ウェブページであることが可能であり、そのプロフィール・ページは、特定のコンセプト・ノード204に対応することができる。プロフィール・ページは、その他のユーザのうちのすべてまたは選択されたサブセットによって閲覧できることが可能である。限定ではなく、例として、ユーザ・ノード202は、対応するユーザ・プロフィール・ページを有することができ、そのユーザ・プロフィール・ページにおいては、対応するユーザが、コンテンツを付加すること、言明を行うこと、またはその他の形で自分自身を表現することが可能である。限定ではなく、別の例として、コンセプト・ノード204は、対応するコンセプトプロフィール・ページを有することができ、そのコンセプトプロフィール・ページにおいては、1人または複数のユーザが、特にコンセプト・ノード204に対応するコンセプトに関連して、コンテンツを付加すること、言明を行うこと、または自分自身を表現することが可能である。
ジ206と、ユーザ「C」のユーザ・ノード202と、ユーザ「B」のユーザ・ノード202との間における友達関係を示すエッジとを含む。本開示は、特定のユーザ・ノード202同士をつなげる特定の属性を伴う特定のエッジ206を記述している、または示しているが、本開示は、ユーザ・ノード202同士をつなげる任意の適切な属性を伴う任意の適切なエッジ206を想定している。限定ではなく、例として、エッジ206は、友達関係、家族関係、ビジネスもしくは雇用関係、ファン関係、フォロワー関係、ビジター関係、サブスクライバ関係、上下関係、互恵的関係、非互恵的関係、別の適切なタイプの関係、または複数のそのような関係を表すことができる。その上、本開示は一般に、ノード同士をつながっているものとして記述しているが、本開示はまた、ユーザ同士またはコンセプト同士をつながっているものとして記述している。本明細書においては、つながっているユーザ同士またはコンセプト同士への言及は、適切な場合には、1つまたは複数のエッジ206によってソーシャル・グラフ200内でつながっているそれらのユーザ同士またはコンセプト同士に対応するノード同士を示すことができる。
02と、「SPOTIFY」を表すコンセプト・ノード204との間において示されているような)ユーザ・ノード202とコンセプト・ノード204との間におけるそれぞれのタイプの関係(または、単一の関係が複数集まったもの)を表すことができる。
図3は、ソーシャル・ネットワーキング・システム160のオブジェクトを記憶するための例示的なパーティショニングを示す。複数のデータ・ストア164(これは「バーティカル」とも呼ばれ得る)は、ソーシャル・ネットワーキング・システム160のオブジェクトを記憶し得る。データ・ストアにおいて記憶されるデータ(例えば、ソーシャル・グラフ200についてのデータ)の量は、非常に大きくなり得る。限定ではなく、例として、米国カリフォルニア州メンロー・パークのフェースブック(登録商標)・インコーポレイティッド社によって使用されるソーシャル・グラフは、108のオーダーの多数のノードと1010のオーダーの多数のエッジとを有し得る。典型的には、ビッグデータベースなどのビッグデータの集合は、多数のパーティションに分割され得る。データベースの各パーティションについてのインデックスは、データベース全体についてのインデックスよりも小さいため、パーティショニングは、データベースにアクセスする際のパフォーマンスを改善し得る。パーティションは、多くのサーバにわたって分散され得るため、パーティショニングは、データベースにアクセスする際のパフォーマンスおよび信頼性も改善し得る。通常は、データベースは、データベースの行(または列)を別個に記憶することによってパーティショニングされ得る。特定の実施形態において、データベースは、オブジェクト・タイプに基づいてパーティショニングされ得る。データ・オブジェクトは、複数のパーティションにおいて記憶され、各パーティションは、単一のオブジェクト・タイプのデータ・オブジェクトを保持する。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、期待される検索クエリの結果と同じオブジェクト・タイプのオブジェクトを記憶する特定のパーティションへ検索クエリを提出することによって、
検索クエリに応答する検索結果を取り出し得る。本開示は、オブジェクトを特定の方法で記憶することを説明するが、本開示は、オブジェクトを任意の適切な方法で記憶することも企図する。
へ提出されるデータ(例えば、写真および写真に関連付けられている情報)に基づいて、検索インデックスを更新し得る。インデックス・サーバ330は、検索インデックスを周期的に(例えば、24時間ごとに)も更新し得る。インデックス・サーバ330は、検索用語を備えるクエリを受信し、その検索用語に対応する1つまたは複数の検索インデックスからの検索結果にアクセスし、その検索結果を取り出す。いくつかの実施形態において、特定のオブジェクト・タイプに対応するバーティカルは、複数の物理的パーティションまたは論理的パーティションを備え、各々がそれぞれの検索インデックスを備える。
特定の実施形態において、1つまたは複数のクライアント側および/またはバックエンド(サーバ側)プロセスは、ソーシャル・グラフ要素(例えば、ユーザ・ノード202、コンセプト・ノード204、またはエッジ206)と、ソーシャル・ネットワーキング・システム160によってホストされ、またはソーシャル・ネットワーキング・システム160においてアクセス可能であり得る(例えば、ユーザ・プロフィール・ページ、コンセプトプロフィール・ページ、検索結果ウェブページ、またはオンライン・ソーシャル・ネットワークの別の適切なページなどの)要求されるウェブページと共にレンダリングされる入力フォームにおいてユーザによって現在入力されている情報とのマッチングを行うように自動的に試行し得る「タイプアヘッド(typeahead)」機能を実装および利用し得る。特定の実施形態において、ユーザが宣言を行うためにテキストを入力するにつれて、タイプアヘッド機能は、宣言において入力されているテキスト文字の文字列と、ユーザ、コンセプト、またはエッジに対応する文字の文字列(例えば、氏名、説明)およびソーシャル・グラフ200におけるそれらの対応する要素とを一致させようと試行し得る。特定の実施形態において、一致が見出される場合、タイプアヘッド機能は、既存のソーシャル・グラフ要素の(例えば、ノード名/タイプ、ノードID、エッジ名/タイプ、エッジID、または別の適切な参照もしくは識別子などの)ソーシャル・グラフ要素への参照でフォームを自動的に埋める(populate)。
名前に対応する1つもしくは複数の用語、または既存のソーシャル・グラフ要素に関連付けられている用語でフォームを自動的に埋めようと対話的に、かつ、実質的に瞬時に(ユーザには見えるように)試行し得る。ノードおよびエッジに関連付けられている情報を含む、ソーシャル・グラフ・データベースにおけるソーシャル・グラフ情報またはソーシャル・グラフ・データベースから抽出され、インデックス付けされた情報を利用することにより、タイプアヘッドプロセスは、ソーシャル・グラフ・データベースからの情報と共に、および、潜在的には、様々な他のプロセス、アプリケーション、またはソーシャル・ネットワーキング・システム160内に設置され、もしくはソーシャル・ネットワーキング・システム160内で実行されるデータベースと共に、ユーザの意図される宣言を高精度で予測することが可能になる。しかしながら、ソーシャル・ネットワーキング・システム160は、ユーザが望む本質的にいかなる宣言も入力するための自由をユーザに提供することもでき、ユーザがユーザ自身を自由に表現することを可能にする。
宣言「ポーカ」で自動的に埋め、または、ウェブ・ブラウザ132を自動的に埋め得る。特定の実施形態において、タイプアヘッドプロセスは、ドロップ・ダウン・メニューを表示するよりはむしろ、1位に順位付けされた一致の名前または他の識別子でフィールドを単に自動的に埋め得る。ユーザは、次いで、単に、ユーザのキーボード上の「Enter」をキー入力することによって、または自動的に埋めた宣言をクリックすることによって、自動的に埋めた宣言を確認し得る。
構造化検索クエリ
図4は、オンライン・ソーシャル・ネットワークの例示的なウェブページを示す。特定の実施形態において、ユーザは、クエリフィールド450内にテキストを入力することによって、ソーシャル・ネットワーキング・システム160へクエリを提出し得る。オンライン・ソーシャル・ネットワークのユーザは、特定の主題(例えば、ユーザ、コンセプト、外部コンテンツまたはリソース)に関係する情報を、「検索クエリ」と称されることが多い、その主題を説明する短い語句を検索エンジンに提供することによって、検索し得る。クエリは、非構造化テキストクエリであることがあり、1つまたは複数のテキスト文字列(これは、1つまたは複数のn−gramを含み得る)を備え得る。一般に、ユーザは、クエリフィールド450内に任意の文字列を入力して、テキストクエリに一致する、ソーシャル・ネットワーキング・システム160上のコンテンツを検索し得る。ソーシャル・ネットワーキング・システム160は、次いで、データ・ストア164(または、特に、ソーシャル・グラフ・データベース)を検索して、クエリに一致するコンテンツを識別し得る。検索エンジンは、様々な検索アルゴリズムを使用してクエリ語句に基づいて検索を実施し、検索クエリに最も関係がありそうなリソースまたはコンテンツ(例えば、ユーザ・プロフィール・ページ、コンテンツ・プロフィール・ページ、または外部リソース)を識別する検索結果を生成し得る。検索を実施するために、ユーザは、検索クエリを検索エンジンに入力または送信し得る。応答して、検索エンジンは、検索クエリに関係がありそうな1つまたは複数のリソースを識別し、それらの各々は、検索クエリに対応する「検索結果(search result)」と個々に称されても、または「検索結果(search results)」とまとめて称されてもよい。識別されたコンテンツは、例えば、ソーシャル・グラフ要素(すなわち、ユーザ・ノード202、コンセプト・ノード204、エッジ206)、プロフィール・ページ、外部ウェブページ、または、これらの任意の組み合わせを含み得る。ソーシャル・ネットワーキング・システム160は、次いで、識別されたコンテンツに対応する検索結果を用いて検索結果ウェブページを生成し、その検索結果ウェブページをユーザへ送信し得る。特定の実施形態において、検索エンジンは、その検索をオンライン・ソーシャル・ネットワーク上のリソースおよびコンテンツに限定し得る。しかしながら、特定の実施形態において、検索エンジンは、サードパーティ・システム170、インターネットもしくはワールド・ワイド・ウェブ、または他の適切なソースなどの他のソース上のリソースおよびコンテンツも検索し得る。本開示は、ソーシャル・ネットワーキング・システム160に特定の方法でクエリを行うことについて説明するが、本開示は、ソーシャル・ネットワーキング・システム160に任意の適切な方法でクエリを行うことも企図する。
たはエッジ206を識別しようと試行し得る。タイプアヘッドプロセスが、テキストクエリから文字列またはn−gramを含む要求またはコールを受信するにつれて、タイプアヘッドプロセスは、入力されたテキストに一致する、それぞれの名前、タイプ、カテゴリ、または他の識別子を有する既存のソーシャル・グラフ要素(すなわち、ユーザ・ノード202、コンセプト・ノード204、エッジ206)を識別するための検索を実施し、または実施させられ得る。タイプアヘッドプロセスは、1つまたは複数のマッチング・アルゴリズムを使用して、一致するノードまたはエッジを識別しようと試行し得る。1つまたは複数の一致が見出される場合、タイプアヘッドプロセスは、例えば、一致するノードの名前(名前文字列)と、潜在的には、一致するノードに関連付けられている他のメタデータとを含み得る応答をユーザのクライアント・システム130へ送信し得る。タイプアヘッドプロセスは、次いで、それぞれのユーザ・ノード202またはコンセプト・ノード204の一致するプロフィール・ページ(例えば、ページに関連付けられている名前または写真)への参照を表示し、一致するユーザ・ノード202またはコンセプト・ノード204につなげる一致するエッジ206の名前を表示するドロップ・ダウン・メニュー400を表示し得る。ユーザは、次いで、ドロップ・ダウン・メニュー400をクリックし、または、そうでなければ選択し、それによって、選択されたノードに対応する一致したユーザまたはコンセプト名を検索したい、または一致するエッジによって一致したユーザまたはコンセプトにつながっているユーザまたはコンセプトを検索したいという欲求を確認する。代替的に、タイプアヘッドプロセスは、ドロップ・ダウン・メニュー400を表示するよりもむしろ、1位に順位付けされた一致の名前または他の識別子でフォームを単に自動的に埋めてもよい。ユーザは、次いで、単に、キーボード上の「Enter」をキー入力することによって、または自動的に埋めた宣言をクリックすることによって、自動的に埋めた宣言を確認し得る。一致するノードおよび/またはエッジのユーザ確認があると、タイプアヘッドプロセスは、一致するソーシャル・グラフ要素を包含するクエリのユーザの確認をソーシャル・ネットワーキング・システム160に通知する要求を送信し得る。送信された要求に応答して、ソーシャル・ネットワーキング・システム160は、一致するソーシャル・グラフ要素、または、必要に応じて、一致するソーシャル・グラフ要素につながっているソーシャル・グラフ要素を自動的に(または、代替的に、要求内の命令に基づいて)呼び出し、または、そうでなければ、それらがないかソーシャル・グラフ・データベースを検索し得る。本開示は、特定の方法でタイプアヘッドプロセスを検索クエリに適用することについて説明するが、本開示は、任意の適切な方法でタイプアヘッドプロセスを検索クエリに適用することも企図する。
図5A〜図5Dは、オンライン・ソーシャル・ネットワークの例示的なクエリを示す。特定の実施形態において、第1のユーザ(すなわち、クエリを行うユーザ)から受信されるテキストクエリに応答して、ソーシャル・ネットワーキング・システム160は、テキストクエリを構文解析し、特定のソーシャル・グラフ要素に対応するテキストクエリの一部を識別し得る。ソーシャル・ネットワーキング・システム160は、次いで、構造化クエリのセットを生成し、ここで、各構造化クエリは、一致する可能性があるソーシャル・グラフ要素のうちの1つに対応する。これらの構造化クエリは、それらが関連性のあるソーシャル・グラフ要素を参照して自然言語構文においてレンダリングされるように、文法モデルによって生成される文字列に基づき得る。これらの構造化クエリは、クエリを行う
ユーザへ提示され、そのユーザは、次いで、構造化クエリの中から選択して、選択された構造化クエリがソーシャル・ネットワーキング・システム160によって実行されるべきであることを示し得る。図5A〜図5Dは、クエリフィールド450における様々な例示的なテキストクエリと、ドロップ・ダウン・メニュー400(ただし、他の適切なグラフィカル・ユーザ・インターフェースも可能である)における、応答して生成される様々な構造化クエリとを示す。ユーザのテキストクエリに応答して、提案される構造化クエリを提供することによって、ソーシャル・ネットワーキング・システム160は、オンライン・ソーシャル・ネットワークのユーザに、ソーシャル・グラフ200において表される要素を、それらのソーシャル・グラフ属性および様々なソーシャル・グラフ要素に対するそれらの関係性に基づいて検索するための強力な手法を提供し得る。構造化クエリは、クエリを行うユーザが、特定のエッジ・タイプによってソーシャル・グラフ200において特定のユーザまたはコンセプトにつながっているコンテンツを検索することを可能にし得る。構造化クエリは、第1のユーザへ送信され、(例えば、クライアント側タイプアヘッドプロセスを通じて)ドロップ・ダウン・メニュー400において表示され得る。ここで、第1のユーザは、次いで、適切なクエリを選択して、所望のコンテンツを検索し得る。本願明細書において説明される構造化クエリを使用する利点のうちのいくつかは、限定された情報に基づいてオンライン・ソーシャル・ネットワークのユーザを見出すこと、様々なソーシャル・グラフ要素に対するコンテンツの関係性に基づいて、オンライン・ソーシャル・ネットワークからそのコンテンツの仮想インデックスをまとめること、または、あなたおよび/もしくはあなたの友達に関係するコンテンツを見出すことを含む。本開示および図5A〜図5Dは、特定の構造化クエリを特定の方法で生成することを説明および示すが、本開示は、任意の適切な構造化クエリを任意の適切な方法で生成することも企図する。
特定の実施形態において、ソーシャル・ネットワーキング・システム160は、複数の文法を備える文脈自由文法モデルにアクセスし得る。文法モデルの各文法は、1つまたは複数の非終端トークン(または「非終端シンボル」)と、1つまたは複数の終端トークン(または「終端シンボル」/「クエリトークン」)とを備え、ここで、特定の非終端トークンは、終端トークンによって置換され得る。文法モデルは、公式言語における文字列のためのフォーメーション規則のセットである。本開示は、特定の文法にアクセスすることについて説明するが、本開示は、任意の適切な文法についても企図する。
基づく構造化クエリも自然言語においてレンダリングされるように、自然言語構文においてレンダリングされ得る。文脈自由文法は、各プロダクション規則の左辺が単一の非終端シンボルのみからなる文法である。確率的な文脈自由文法は、タプル(Σ、N、S、P)であり、ここで、互いに素な集合ΣおよびNは、それぞれ終端シンボルおよび非終端シンボルを特定し、S∈Nが開始シンボルである。Pは、プロダクションのセットであり、これは、E→ξ(p)の形式を取り、E∈N、ξ∈(Σ∪N)+、およびp=Pr(E→ξ)であり、Eが文字列ξに展開される確率である。所与の非終端Eの全ての展開にわたる確率pの和は、1でなければならない。本開示は、特定の方法で文字列を生成することについて説明するが、本開示は、任意の適切な方法で文字列を生成することについても企図する。
得る)。特定の実施形態において、構造化クエリについての順位は、クエリを行うユーザのユーザ・ノード202と、構造化クエリにおいて参照されている特定のソーシャル・グラフ要素との間の分離度合いに基づき得る。ソーシャル・グラフ200において、クエリを行うユーザにより近い(すなわち、要素とクエリを行うユーザのユーザ・ノード202との間の分離度合いがより小さい)ソーシャル・グラフ要素を参照する構造化クエリは、ユーザからより遠い(すなわち、分離度合いがより大きい)ソーシャル・グラフ要素を参照する構造化クエリよりも上位に順位付けされ得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、クエリを行うユーザに関連付けられている検索履歴に基づいて、構造化検索を順位付けし得る。クエリを行うユーザが以前にアクセスしたソーシャル・グラフ要素を参照し、またはクエリを行うユーザが以前にアクセスしたソーシャル・グラフ要素に関係する構造化クエリは、クエリを行うユーザの検索クエリの対象となる可能性が高くなり得る。したがって、これらの構造化クエリは、より上位に順位付けされ得る。限定ではなく、例として、クエリを行うユーザが、「スタンフォード大学」のプロフィール・ページに以前に訪問したことがあるが、「カリフォルニア州スタンフォード」のプロフィール・ページに訪問したことがない場合において、これらのコンセプトを参照する構造化クエリについての順位を決定するとき、ソーシャル・ネットワーキング・システム160は、「スタンフォード大学」についてのコンセプト・ノード204を参照する構造化クエリが比較的高い順位を有すると決定し得る。なぜならば、クエリを行うユーザが、その大学についてのコンセプト・ノード204に以前にアクセスしたことがあるためである。特定の実施形態において、構造化クエリは、構造化クエリにおいて参照されているソーシャル・グラフ要素のうちの1つまたは複数についての文脈情報のスニペットを含み得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、広告スポンサーシップに基づいて、構造化クエリを順位付けし得る。(例えば、特定のノードに対応する特定のプロフィール・ページのユーザまたは管理者などの)広告主は、特定のノードを参照する構造化クエリがより上位に順位付けされ得るように、そのノードのスポンサーになり得る。本開示は、特定の方法で構造化クエリを順位付けすることについて説明するが、本開示は、任意の適切な方法で構造化クエリを順位付けすることも企図する。
特定の実施形態において、ソーシャル・ネットワーキング・システム160は、クエリを行うユーザから受信される構造化クエリに基づいて、クエリコマンドを生成し得る。クエリコマンドは、次いで、ソーシャル・ネットワーキング・システム160のデータ・ストア164内のオブジェクトに対する検索において使用され得る。特定の実施形態において、クエリコマンドは、ソーシャル・ネットワーキング・システム160の1つまたは複数のデータ・ストアまたはバーティカルについての検索インデックスを使用する検索のために提供され得る。クエリコマンドは、1つまたは複数のクエリ制約を備え得る。各クエリ制約は、構造化クエリの構文解析に基づいて、ソーシャル・ネットワーキング・システム160によって識別され得る。各クエリ制約は、特定のオブジェクト・タイプについての要求であり得る。特定の実施形態において、クエリコマンドは、クエリ制約を記号式またはS式において備え得る。ソーシャル・ネットワーキング・システム160は、構造化クエリ「私が「いいね!」と言っている写真」を、クエリコマンド(photos_liked_by:<me>)に構文解析し得る。クエリコマンド(photos_liked_by:<me>)は、ユーザ(すなわち、<me>、これは、クエリを行うユーザに対応する)によって「いいね!」の表明をされた写真についてのクエリを単一の結果タイプの写真と共に表す。クエリ制約は、例えば、ソーシャル・グラフ制約(例えば、特定のノードもしくはノード・タイプについての要求、もしくは特定のエッジもしくはエッジ・タイプにつながっているノードについての要求)、オブジェクト制約(例えば、特定のオブジェクトもしくはオブジェクト・タイプについての要求)、ロケーション制約(例えば、特定の地理的ロケーションに関連付けられているオブジェクトもしくはソーシャル・グラフ・エンティティについての要求)、他の適切な制約、または、これらの任意の組み合わせを含み得る。特定の実施形態において、構造化クエリの構文解析は、構造化クエリを生成するために使用される文法に基づき得る。換言すれば、生成されたクエリコマンドおよびそのクエリ制約は、特定の文法(または、文法フォレストからのサブツリー)に対応し得る。特定の実施形態において、クエリコマンドは、プレフィックスおよびオブジェクトを備え得る。オブジェクトは、ソーシャル・グラフ200における特定のノードに対応し得る一方で、プレフィックスは、ソーシャル・グラフ200における特定のノードにつながっている特定のエッジ206またはエッジ・タイプ(特定のタイプの関係を示す)に対応し得る。限定ではなく、例として、クエリコマンド(pages_liked_by:<user>)は、プレフィックスpages_liked_byと、オブジェクト<user>とを備える。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、1つまたは複数の検索結果を識別するために、特定のノードから、特定のつながりエッジ(connecting edges)206(またはエッジ・タイプ)に沿って、クエリコマンドによって特定されるオブジェクトに対応するノードまで、ソーシャル・グラフ200を辿ることによって、クエリコマンドを実行し得る。限定ではなく、例として、クエリコマンド(pages_liked_by:<user>)は、<user>に対応するユーザ・ノード202から、「いいね!」タイプ・エッジ(like−type edge)206に沿って、<user>によって「いいね!」の表明をされたページに対応するコンセプト・ノード204まで、ソーシャル・グラフ200を辿ることによって、ソーシャル・ネットワーキング・システム160によって実行され得る。本開示は、特定のクエリコマンドを特定の方法で生成することを説明するが、本開示は、任意の適切なクエリコマンドを任意の適切な方法で生成することも企図する。
することによって改善され得る。限定ではなく、例として、図5Cに示されるような、「パロ・アルトで撮影された女性の写真」などの比較的複雑な構造化クエリは、女性であるユーザを識別するためにユーザ・バーティカル164がまず検索されて、次いで、それらの結果とパロ・アルトで撮影された写真の写真バーティカル164からの結果とを交差させるように、構文解析され得る。ユーザ・バーティカルは、数百人、または数千人もの女性ユーザに対応する結果を生み出し、これらの女性ユーザのうちの誰もパロ・アルトで撮影された写真においてタグ付けされていないことがあり、それによって、これらの結果の交差は、検索結果を生み出さない。代替的に、この構造化クエリは、構造化クエリ「パロ・アルトで撮影された女性の写真」が構文解析され得るように、例えば、女性であるユーザを識別するためにユーザ・バーティカルが検索されるように、クエリヒンティングを使用して、また、パロ・アルトにおける写真においてもタグ付けされている少なくとも何人かの女性ユーザを識別するために、「弱い論理積(weak and)」(WAND)演算子などの、いくつかの結果から引数が不在となることを可能にする演算子を使用することによって、構文解析され得る。次に、写真バーティカル164が検索されて、識別された女性ユーザのいずれかがタグ付けされている、パロ・アルトで撮影された写真が識別され得る。このように、外部制約によって要求されるオブジェクトに対応するバーティカルの検索は、検索クエリを満足させる結果を生成する可能性が高い。これは、ソーシャル・ネットワーキング・システム160がより良好な検索結果を生み出すことも可能にし、こうした結果を生成するための処理効率を改善し得る。特定の実施形態において、内部クエリ制約に応答して検索されたバーティカルからの結果は、得点付けまたは順位付けされ、それらのスコアは、外部クエリ制約に応答して検索されるバーティカルから識別されるオブジェクトを得点付けする際に使用され得る。本開示は、構造化クエリに一致するオブジェクトを特定の方法で識別することを説明するが、本開示は、構造化クエリに一致するオブジェクトを任意の適切な方法で識別することも企図する。
>)は、ユーザがタグ付けされている写真についてのクエリを単一の結果タイプの写真と共に表す。また別の例として、ソーシャル・ネットワーキング・システム160は、構造化クエリ「ビルによって「いいね!」の表明をされた投稿を書いた人々」を、例えば、(extract author (term posts_liked_by:<Bill>))などのネスト化されたクエリに変換し得る。クエリコマンドは、ユーザ「ビル」によって「いいね!」の表明をされている投稿についての1人または複数の作成者の検索結果を(extract演算子を用いて)要求し得る。ネスト化されたクエリは、ユーザ「ビル」によって「いいね!」の表明をされている投稿における検索結果を要求する検索用語に対応する内部クエリ(term posts_liked_by:<Bill>)を含み得る。つまり、外部制約は、第1のオブジェクト・タイプ(ユーザ)の第1の検索結果を要求する一方で、内部制約は、第2のオブジェクト・タイプ(投稿)の第2の検索結果を要求する。本開示は、クエリを特定の方法で構文解析することを説明するが、本開示は、クエリを任意の適切な方法で構文解析することも企図する。
く、例として、検索クエリ(photos_of:<17>)についての検索結果は、<1001>および<1002>(各々、写真識別子によって表現される)であり得る。検索クエリ(photos_of:<31>)についての検索結果は、<1001>、<1326>、<9090>、および<5200>であり得る。検索クエリ(photos_of:<59>)についての検索結果は、<9090>および<7123>であり得る。ソーシャル・ネットワーキング・システム160は、検索結果に対して論理和演算を実施し、<1001>、<1002>、<1326>、<9090>、<5200>、および<7123>という最終的な検索結果をもたらし得る。本開示は、特定の検索結果を特定の方法で識別することを説明するが、本開示は、任意の適切な検索結果を任意の適切な方法で識別することも企図する。
(WAND category:<coffee shop>
location:<Palo Alto>:optional−weight 0.3)
などのクエリコマンドを生成し得る。この例においては、検索結果がクエリコマンドの(category:<coffee shop>)部分と(location:<Pal
o Alto>)部分との双方に常に一致することを必要とする代わりに、クエリのパロ・アルト部分が、重み0.3を用いてオプション化される。この場合において、これは、検索結果の30%が項(location:<Palo Alto>)に一致しなければならず(すなわち、エッジ206によって、ロケーション「パロ・アルト」に対応するコンセプト・ノード204につなげられていなければならない)、検索結果の残りの70%は、その項を除外し得ることを意味する。したがって、Nが100である場合、30件の喫茶店の結果は、「パロ・アルト」のロケーションを有しなければならず、70件の喫茶店の結果は、いかなる場所に(例えば、喫茶店の静的順位によって決定されるグローバルな上位100件の喫茶店に)由来してもよい。特定の実施形態において、検索結果が「喫茶店」についてのソーシャル・グラフ要素に常に一致する必要はなく、いくつかの結果はソーシャル・ネットワーキング・システム160によって任意のオブジェクト(例えば、場所)となるように選ばれ得るように、項(category:<coffee shop>)も、随意的な重みを割り当てられ得る。
(AND category:<coffee shop>
(SOR location:<Palo Alto>:optional−weight 0.4
location:<Redwood City>:optional−weight 0.3))
などのクエリコマンドを転換し得る。この例において、クエリコマンドの(location:<Palo Alto>)部分または(location:<Redwood City>)部分のどちらかに一致する検索結果を許容する代わりに、クエリのパロ・アルト部分は、重み0.4を用いてオプション化され、クエリのレッドウッド・シティ部分は、重み0.3を用いてオプション化される。この場合において、これは、検索結果の40%が、項(location:<Palo Alto>)に一致しなければならず(すなわち、エッジ206によって、(location:<Palo Alto>)に対応するコンセプト・ノード204に各々つながっている、「喫茶店」に対応するコンセプト・ノード204である)、検索結果の30%は、項(location:<Redwood
City>)に一致しなければならず、検索結果の残りは、パロ・アルト制約またはレッドウッド・シティ制約のどちらかに(または、ある場合においては必要に応じて、双方に)一致することを意味する。したがって、Nが100である場合、40件の喫茶店の結果は、「パロ・アルト」のロケーションを有しなければならず、30件の喫茶店の結果は、「レッドウッド・シティ」のロケーションを有しなければならず、30件の喫茶店は、どちらのロケーションに由来してもよい。
る。このように、ソーシャル・ネットワーキング・システム160に関連付けられているオブジェクトのバーティカル164を検索するプロセスは、内部クエリ制約に一致するオブジェクトを識別する場合に外部クエリ制約が使用される、クエリヒンティングを使用するクエリコマンドを生成することによって改善され得る。これは、ソーシャル・ネットワーキング・システム160がより良好な検索結果を生み出すことも可能にし、こうした結果を生成するための処理効率を改善し得る。第1の数の識別されたノードが内部制約に一致し、または内部制約もしくは外部制約に一致すること、および第2の数の識別されたノードが双方の制約もしくは外部制約だけ、またはこれらの任意の組み合わせに一致することをクエリコマンドが必要とするように、クエリコマンドは、例えば、WAND演算子またはSOR演算子を使用して形成され得る。第1の数および第2の数は、例えば、実数、割合、または分数であってもよい。本開示は、特定のソーシャル・グラフ要素を特定のクエリ制約に一致するものとして特定の方法で識別することを説明するが、本開示は、任意の適切なソーシャル・グラフ要素を任意の適切なクエリ制約に一致するものとして任意の適切な方法で識別することも企図する。
(WAND
(term gender_to_user:<female>)
(term photo_place_tag_to_user:<Palo
Alto>:optional−weight 0.9))
などの内部クエリ制約を解決するためのクエリコマンドを生成し得る。この場合において、内部制約は、女性ユーザを識別するために存在し、外部制約は、パロ・アルト市で撮影された識別された女性ユーザの写真を識別するために存在する。ユーザ・バーティカル164を検索して、内部制約についての一致するユーザ・ノード202を識別する場合、女性ユーザが識別されるべきであることをただ特定すること(これは、パロ・アルトにおけるいかなる写真にもタグ付けされていない数多くの女性ユーザを識別し得る)よりはむしろ、クエリコマンドは、ユーザ結果の少なくとも90%が、パロ・アルトにおける写真においてタグ付けもされている女性でなければならないことを特定する。このように、インデックスは、付加的な制約(term photo_place_tag_to_user:<Palo Alto>:optional−weight 0.9)を追加することによって、非正規化される。ユーザ結果の残りの10%は、「女性」制約に一致しさえすればよい。したがって、内部クエリ制約を解決する場合に外部クエリ制約が考慮されるように、クエリヒンティングが使用される。次に、写真バーティカル164が検索されて、以前に識別された女性ユーザがタグ付けされている、パロ・アルトで撮影された写真が識別され得る。ユーザ・バーティカル164の検索によって識別されたノードの90%は、パロ・アルトにおける写真にタグ付け済みである女性ユーザとして既に識別されているため、写真バーティカル164の検索は、識別された女性がタグ付けされている比較的多数の写真を生み出すことができる可能性が高い。本開示は、特定のソーシャル・グラフ要素を特定のクエリ制約に一致するものとして特定の方法で識別することを説明するが、本開示は、任意の適切なソーシャル・グラフ要素を任意の適切なクエリ制約に一致するものとして任意の適切な方法で識別することも企図する。
(WAND
(term gender_to_user:<female>)
(SOR:optional−weight 0.8
(term friend_of:<Mark>:optional−weight 0.7)
(term non_friend_in_same_photo:<Mark>:optional−weight 0.1)))
などの内部クエリ制約を解決するためのクエリコマンドを生成し得る。この場合において、内部制約は、女性ユーザを識別するために存在し、外部制約は、ユーザ「マーク」と共に撮影された識別された女性ユーザの写真を識別するために存在する。ユーザ・バーティカル164を検索して、内部制約についての一致するユーザ・ノード202を識別する場合、女性ユーザが識別されるべきであることをただ特定すること(これは、ユーザ「マーク」と一緒のいかなる写真にもタグ付けされていない数多くの女性ユーザを識別し得る)よりはむしろ、クエリコマンドは、ユーザ結果の少なくとも80%がSOR制約における制約のうちの1つにも一致する女性でなければならないことを特定する。ここで、SOR制約は、ユーザ結果の70%が(friend_of:<Mark>)制約に一致しなければならず、ユーザ結果の10%が(non_friend_in_same_photo:<Mark>)制約に一致しなければならず、検索結果の残りは、どちらかの(または、必要に応じて、双方の)制約に一致することを特定する。したがって、Nが100である場合、20件のユーザ結果は単に女性でなければならず、56件のユーザ結果は、ユーザ「マーク」の友達である女性でなければならず、8件のユーザ結果は、「マーク」と一緒の写真にたまたまタグ付けされている、「マーク」の友達ではない女性でなければならず、16件のユーザ結果は、女性であって、「マーク」の友達であるか、または「マーク」と一緒の写真にタグ付けされている友達ではない人でなければならない。このように、インデックスは、様々な付加的な制約を追加することによって、非正規化され、これは、結果の多様性を生成することにも役立ち得る。したがって、内部クエリ制約を解決する場合に外部クエリ制約(すなわち、ユーザ「マーク」と一緒の写真に存在すること)が考慮されるように、クエリヒンティングが使用される。次に、写真バーティカル164が検索されて、以前に識別された女性ユーザのいずれかがタグ付けされている、ユーザ「マーク」と共に撮影された写真が識別され得る。ユーザ・バーティカル164の検索によって識別されたノードの80%は、ユーザ「マーク」と何らかのタイプの関係を有する女性ユーザとして既に識別されているため、写真バーティカル164の検索は、検索クエリを満足させる写真を生み出すことができる可能性が高い。本開示は、特定のソーシャル・グラフ要素を特定のクエリ制約に一致するものとして特定の方法で識別することを説明するが、本開示は、任意の適切なソーシャル・グラフ要素を任意の適切なクエリ制約に一致するものとして任意の適切な方法で識別することも企図する。
れたノードは、任意の適切な方法で得点付けされ得る。クエリコマンドが複数のクエリ制約を含む場合、ソーシャル・ネットワーキング・システム160は、各クエリ制約に一致するノードを独立してまたは共同で得点付けし得る。ソーシャル・ネットワーキング・システム160は、識別されたノードのオブジェクト・タイプに対応するデータ・ストア164にアクセスすることによって、識別されたノードの第1のセットを得点付けし得る。限定ではなく、例として、クエリ制約(extract authors:(term posts_liked_by:<Mark>))に一致する識別されたノードを生成する場合、ソーシャル・ネットワーキング・システム160は、ユーザ・バーティカル164においてユーザのセット(<Tom>、<Dick>、<Harry>)を識別し得る。ソーシャル・ネットワーキング・システム160は、次いで、ユーザ<Tom>、<Dick>、および<Harry>を、ユーザ<Mark>に対する彼らそれぞれの社会的親和性に基づいて得点付けし得る。例えば、投稿バーティカル164のソーシャル・ネットワーキング・システム160は、次いで、ユーザ<Tom>、<Dick>、および<Harry>の識別されたノードを、ユーザ<Mark>によって「いいね!」の表明をされた投稿のリストにおける投稿数に基づいて得点付けし得る。ユーザ<Tom>、<Dick>、および<Harry>は、ユーザ<Mark>によって「いいね!」の表明をされた下記の投稿を書き込み済みであり得る:<post1>、<post2>、<post3>、<post4>、<post5>、<post6>。ユーザ<Dick>が投稿<post1>、<post2>、<post3>を書き込み、ユーザ<Tom>が投稿<post5>、<post6>を書き込み、ユーザ<Harry>が<post4>を書き込んだ場合、ソーシャル・ネットワーキング・システム160は、ユーザ<Dick>を最も高く得点付けし得る。なぜならば、ユーザ<Dick>は、ユーザ<Mark>によって「いいね!」の表明をされた投稿のリスト中の大部分の投稿を書き込んでおり、<Tom>および<Harry>は、連続的により低いスコアを有するためである。限定ではなく、別の例として、先の例を使用すると、ソーシャル・ネットワーキング・システム160は、投稿をその投稿の「いいね!」の数にマッピングするフォワード・インデックス(forward index)にアクセスし得る。インデックス・サーバは、フォワード・インデックスにアクセスし、ユーザ<Mark>によって「いいね!」の表明をされた投稿のリストの投稿ごとの「いいね!」の数を取り出し得る。インデックス・サーバは、投稿のリスト中の投稿(すなわち、<post1>、<post2>、<post3>、<post4>、<post5>、<post6>)を、それぞれの「いいね!」の数に基づいて得点付けし、ソーシャル・ネットワーキング・システム160に、上位スコアの投稿(例えば、上位3つのスコアが付けられた、または最も「いいね!」の表明をされた投稿)の作成者を第1の識別されたノードとして返し得る。適切な各得点付け要因が特定の識別されたノードについて考慮された後、その識別されたノードについての全体的なスコアが決定され得る。ノードの得点付けに基づいて、ソーシャル・ネットワーキング・システム160は、次いで、識別されたノードの1つまたは複数のセットを生成し得る。限定ではなく、例として、ソーシャル・ネットワーキング・システム160は、閾値スコアよりも大きいスコアを有するノードに対応する識別されたノードのセットのみを生成し得る。限定ではなく、別の例として、ソーシャル・ネットワーキング・システム160は、得点付けされたノードを順位付けし、次いで、閾値順位(例えば、上位10位、上位20位など)よりも高い順位を有するノードに対応する識別されたノードのセットのみを生成し得る。本開示は、一致するノードを特定の方法で得点付けすることを説明するが、本開示は、一致するノードを任意の適切な方法で得点付けすることも企図する。
・システム160は、ノードの1つまたは複数の他のセットを得点付けする場合に、ノードの1つのセットからのスコアを利用してもよい。内部制約と外部制約とを有するクエリコマンドについては、ソーシャル・ネットワーキング・システム160は、内部クエリ制約に一致するノードの第1のセットを識別し、次いで、これらのノードを得点付けし得る。ソーシャル・ネットワーキング・システム160は、次いで、外部クエリ制約に一致するノードの第2のセットを識別し、ノードの第1のセットのスコアに少なくとも部分的に基づいて、ノードの第2のセットを得点付けし得る。限定ではなく、例として、構造化クエリ「私の友達によって「いいね!」の表明をされたページ」に応答して、ソーシャル・ネットワーキング・システム160は、例えば、(pages_liked_by:(friends_of:<me>))などのクエリコマンドを生成し得る。ソーシャル・ネットワーキング・システム160は、ユーザ・バーティカル164にアクセスし、クエリを行うユーザの友達であるユーザを要求する内部クエリ制約に対応するノードの第1のセットを識別することによって、内部クエリ制約をまず解決し得る。このユーザの第1のセットは、(<Tom>、<Dick>、<Harry>)を備え、彼らは各々、友達タイプ・エッジ206によって、クエリを行うユーザのユーザ・ノード202につながっている、それぞれのユーザ・ノード202に対応し得る。ソーシャル・ネットワーキング・システム160は、次いで、このノードの第1のセットを任意の適切な方法で得点付けし得る。例えば、ユーザのセットは、クエリを行うユーザに対するユーザのそれぞれのソーシャル・グラフ親和性に基づいて、得点付けされ得る。ここで、ユーザ「Dick」は、セットにおいて最も良好な親和性を有し、「Harry」は、2番目に良好な親和性を有し、「Tom」は、セットにおいて最も低い親和性を有し得る。次に、ソーシャル・ネットワーキング・システム160は、ページ・バーティカル164にアクセスし、第1のセット内のユーザによって「いいね!」の表明をされたページ(すなわち、「いいね!」タイプ・エッジ206によって、ユーザ「Tom」、「Dick」、および「Harry」に対応するユーザ・ノード202のうちの少なくとも1つにつながっているコンセプト・ノード204に対応するページ)を要求する外部クエリ制約に対応するノードの第2のセットを識別することによって、外部クエリ制約を解決し得る。ユーザ「Tom」、「Dick」、および「Harry」は、下記のページに「いいね!」済みであり得る:(<page1>、<page2>、<page3>、<page4>、<page5>)。ソーシャル・ネットワーキング・システム160は、次いで、このノードの第2のセットを任意の適切な方法で得点付けし得る。例えば、ページのセットは、オンライン・ソーシャル・ネットワーク上でのそれらの全体的な人気に基づいて、得点付けされ得る。ここで、グローバルにより人気のあるページは、より人気が低いページよりもそれぞれ高く得点付けされる。ページのセットは、ノードの第1のセットのスコアに少なくとも部分的に基づいて、得点付けされてもよい。例えば、<page1>は「Tom」によって「いいね!」の表明をされ、<page2>は「Dick」によって「いいね!」の表明をされ、<page3>は「Harry」によって「いいね!」の表明をされ、<page4>は「Tom」および「Harry」によって「いいね!」の表明をされ、<page5>は「Tom」、「Dick」、および「Harry」によって「いいね!」の表明をされ得る。この場合において、ソーシャル・ネットワーキング・システム160は、より良好な親和性と共にユーザによって「いいね!」の表明をされたページのスコアを改善し、より低い親和性と共にユーザによって「いいね!」の表明をされたページのスコアを低下させる(または、少なくとも程度を抑えて改善する)ことによって、ノードの第1のセットに部分的に基づいて、ノードの第2のセットを得点付けし得る。例えば、ユーザ「Dick」は、クエリを行うユーザに対して最良の親和性を有するため、「Dick」によって「いいね!」の表明をされたページ(当該ページは、<page2>、および<page5>である)は全て、それらのスコアが改善され得る。同様に、ユーザ「Tom」は、クエリを行うユーザに対して最低の親和性を有するため、「Tom」によって「いいね!」の表明をされたページ(当該ページは、<page1>、<page4>、および<page5>である)は全て、それらのスコアが低下され得る(または、少なくとも、同じだけは改
善されない)。適切な各得点付け要因が特定の識別されたノードについて考慮された後、その識別されたノードについての全体的なスコアが決定され得る。ノードの得点付けに基づいて、ソーシャル・ネットワーキング・システム160は、次いで、識別されたノードの1つまたは複数のセットを生成し得る。限定ではなく、例として、ソーシャル・ネットワーキング・システム160は、閾値スコアよりも大きいスコアを有するノードに対応する識別されたノードのセットのみを生成し得る。限定ではなく、別の例として、ソーシャル・ネットワーキング・システム160は、得点付けされたノードを順位付けし、次いで、閾値順位(例えば、上位10位、上位20位など)よりも高い順位を有するノードに対応する識別されたノードのセットのみを生成し得る。本開示は、ノードを特定の方法で得点付けすることを説明するが、本開示は、ノードを任意の適切な方法で得点付けすることも企図する。
・システム160は、第1のユーザから、複数のノードから選択された1以上のノードおよび複数のエッジから選択された1以上のエッジへの参照を含む構造化クエリを受信し得る。工程630において、ソーシャル・ネットワーキング・システム160は、構造化クエリに基づいて、クエリコマンドを生成し得る。クエリコマンドは、第1のクエリ制約と第2のクエリ制約と(例えば、内部制約と外部制約と)を備える。工程640において、ソーシャル・ネットワーキング・システム160は、第1のクエリ制約に一致し、かつ、第2のクエリ制約に少なくとも部分的に一致するノードの第1のセットを識別し得る。工程650において、ソーシャル・ネットワーキング・システム160は、第2のクエリ制約に一致するノードの第2のセットを識別し得る。工程660において、ソーシャル・ネットワーキング・システム160は、ノードの第1のセットおよびノードの第2のセットに基づいて、1つまたは複数の検索結果を生成し得る。各検索結果は、複数のノードのうちの1つのノードに対応し得る。特定の実施形態は、適切な場合には、図6の方法の1つまたは複数の工程を繰り返し得る。本開示は、図6の方法の特定の工程を特定の順序で発生するものとして説明および示すが、本開示は、図6の方法の任意の適切な工程が任意の適切な順序で発生することも企図する。さらに、本開示は、図6の方法の特定の工程を実行する特定のコンポーネント、デバイス、またはシステムを説明および示すが、本開示は、図6の方法の任意の適切な工程を実行する任意の適切なコンポーネント、デバイス、またはシステムの任意の適切な組み合わせも企図する。
に、クエリの処理順序を変化させる。次に、ユーザ・バーティカル164が検索されて、もしあれば、「いいね!」の表明をした人達のうちの誰が中国に住んでいるかが識別され得る。このように、第1のバーティカル164の検索がより良好な結果を生み出すように、逆演算子が使用され得る。これは、ソーシャル・ネットワーキング・システム160がより良好な検索結果を生み出すことも可能にし、こうした結果を生成するための処理効率を改善し得る。本開示は、構造化クエリに一致するオブジェクトを特定の方法で識別することを説明するが、本開示は、構造化クエリに一致するオブジェクトを任意の適切な方法で識別することも企図する。
・インデックスは、<photo>からの(commenters_of:<photo>)などの写真に関連付けられているクエリ語を、<photo>に対してコメントするユーザのリストにマッピングし得る。特定の実施形態において、フォワード・インデックスは、クエリ語についての1対1マッピングを備え得る。限定ではなく、例として、写真バーティカル164のフォワード・インデックスは、写真を、その写真の所有者(例えば、その写真をソーシャル・ネットワーキング・システム160へアップロードしたユーザ)にマッピングし得る。特定の実施形態において、フォワード・インデックスは、クエリ語についての1対少数マッピングを備え得る。限定ではなく、例として、写真バーティカル164におけるフォワード・インデックスは、写真を、その写真にタグ付けされている少数のユーザ(例えば、10人未満のユーザ)にマッピングし得る。本開示は、バーティカル164を特定の方法で検索することを説明するが、本開示は、バーティカルを任意の適切な方法で検索することも企図する。
し得る。前述されたように、ソーシャル・ネットワーキング・システム160は、クエリコマンドの1つまたは複数のクエリ制約にそれぞれ一致する、ノードの1つまたは複数の第2のセットも識別し得る。一致するノードは、例えば、既に論じられたように、検索インデックスを参照することなどによって、任意の適切な方法で識別され得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、構造化クエリにおいて参照されている1つまたは複数の選択されたエッジによって、ノードの第1のセットにおける1つまたは複数のノードにつながっている複数のノードのうちの1つまたは複数のノードを識別し得る。限定ではなく、例として、構造化クエリ「中国の人々によって「いいね!」の表明をされた私の写真」に応答して、ソーシャル・ネットワーキング・システム160は、例えば、(intersect(photos_of:<me>,photos_liked_by:(intersect(likers_of(photos_of:<me>),users_from:<China>))))などの逆制約を使用するクエリコマンドを生成し得る。ここで、構造化クエリにおける<me>と<China>とへの参照は、特定のソーシャル・グラフ要素、すなわち、クエリを行うユーザに対応するユーザ・ノード202と、ロケーション「中国」に対応するコンセプト・ノード204とを参照する。同様に、「私の写真」と「「いいね!」の表明をされた」とへの参照は、参照されるノードを所望の検索結果につなげている特定のエッジ・タイプを参照する。この場合において、クエリ制約(photos_liked_by:(intersect(likers_of(photos_of:<me>),users_from:<China>)))は、それ自体がネスト化されたクエリであり、そのネスト化されたクエリにおいて、内部制約は、クエリを行うユーザの写真の「likers_of」であるユーザと、中国からのユーザとを要求する。ユーザ・バーティカル164を検索して、制約(likers_of(photos_of:<me>))についての一致するユーザ・ノード202を識別する場合、ソーシャル・ネットワーキング・システム160は、ノードの比較的小さいセットを識別することが可能であり得る。なぜならば、クエリを行うユーザの写真に「いいね!」の表明をしたユーザの数は、おそらくは比較的小さい数(例えば、数十人から数百人のユーザ)であるためである。次に、ソーシャル・ネットワーキング・システム160は、ユーザ・バーティカル164を検索して、制約(users_from:<China>)についての一致するユーザ・ノード202を識別し得る。制約(users_from:<China>)は、数千件または数百万件の結果を生み出すことがあり、それらのうちの大部分が、おそらくはクエリコマンドを満足させないことに留意されたい。しかしながら、これを逆制約によって識別されたオブジェクトと交差させることによって、クエリを行うユーザの写真に「いいね!」の表明をする中国からのユーザに対応する、オブジェクトのより合理的なサイズのセットが識別される。いったんこの内部制約が解決されると、識別されたユーザのセットは、内部制約によって識別されたユーザによって「いいね!」の表明をされた写真を識別するための外部制約を解決するために使用され得る。写真のこのセットは、次いで、中国からのユーザによって「いいね!」の表明をされた、クエリを行うユーザの写真のセットが識別されるように、制約(photos_of:<me>)の結果と交差され得る。本開示は、特定のソーシャル・グラフ要素を特定の逆制約に一致するものとして特定の方法で識別することを説明するが、本開示は、任意の適切なソーシャル・グラフ要素を任意の適切な逆制約に一致するものとして任意の適切な方法で識別することも企図する。
結果が表示される検索結果ページとして、クエリを行うユーザへ提示および送信され得る。限定ではなく、例として、構造化クエリ「中国の人々によって「いいね!」の表明をされた私の写真」に応答して、図5Dに示されるように、ソーシャル・ネットワーキング・システム160は、逆制約に一致するノードの第1のセットを識別し得る。この例において、(逆制約によって修正されるような)内部制約は、クエリを行うユーザの写真に「いいね!」の表明をする人々でもある中国からのユーザを要求する。次に、ソーシャル・ネットワーキング・システム160は、外部クエリ制約に一致するノードの第2のセットを識別し得る。この例において、外部制約は、第1のセット内のユーザのうちの1人によって「いいね!」の表明をされた、クエリを行うユーザの写真を要求する。1つまたは複数の検索結果は、次いで、ノードの第2のセットにおいて識別されるノードに基づいて生成され得る。生成された検索結果は、次いで、構造化クエリ「中国の人々によって「いいね!」の表明をされた私の写真」に対応する検索結果ページの一部として、クエリを行うユーザに送信および表示され得る。検索結果ページは、検索結果を、例えば、第2のセットにおいて識別されたノードに対応する写真のサムネイルとして表示し得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、ノードの第1のセットとノードの第2のセットの双方において識別されたノードごとに検索結果を生成し得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160、ソーシャル・ネットワーキング・システム160によって生成された各検索結果は、構造化クエリにおいて参照されている1つまたは複数のエッジによって、ノードの第2のセットにつながっているノードの第1のセット(または、逆もまた同様)のノードに対応し得る。本開示は、特定の検索結果を特定の方法で生成することを説明するが、本開示は、任意の適切な検索結果を任意の適切な方法で生成することも企図する。
得る。そうでない場合、ソーシャル・ネットワーキング・システム160は、第1のクエリ制約を用いてクエリコマンドを生成し得る。換言すれば、構造化クエリの元の構文解析が、あまりにも多くのオブジェクトを識別するクエリコマンドを生み出す場合には、逆制約が代わりに使用されて、生成される結果の数が少なくされ得る。限定ではなく、別の例として、ソーシャル・ネットワーキング・システム160は、構造化クエリに基づいて、予備的クエリコマンドを生成し得る。この予備的クエリコマンドは、第1のクエリ制約と、1つまたは複数の第2のクエリ制約とを含み得る。このシナリオにおいて、予備的クエリコマンドは、構造化クエリのデフォルトの構文解析または通常の構文解析と見なされ得る。ソーシャル・ネットワーキング・システム160は、次いで、予備的クエリコマンドに基づいて、検索結果の第1のセットを生成し得る。検索結果の第1のセットが、検索結果の閾値数よりも少ない場合、ソーシャル・ネットワーキング・システム160は、第1の逆制約を用いてクエリコマンドを生成し、次いで、第1の逆制約を用いるクエリコマンドに基づいて(例えば、逆制約および外部制約に一致するノードの新たなセットを識別することによって)、検索結果の第2のセットを生成し得る。換言すれば、構造化クエリの元の構文解析が、あまりにも少ない検索結果を生成する場合には、逆制約が使用されて、検索結果が改善され得る。本開示は、特定のクエリコマンドを特定の方法で生成することを説明するが、本開示は、任意の適切なクエリコマンドを任意の適切な方法で生成することも企図する。
特定の実施形態において、クエリを行うユーザから受信される構造化クエリに応答して
、ソーシャル・ネットワーキング・システム160は、その構造化クエリに対応する、1つまたは複数の検索結果を生成し得る。ソーシャル・ネットワーキング・システム160は、構造化クエリを満足させる、または、そうでなければこれに一致するオブジェクト(例えば、ユーザ、写真、プロフィール・ページ(または、プロフィール・ページのコンテンツ)など)を識別し得る。識別された各オブジェクトに対応する検索結果が、次いで、生成され得る。限定ではなく、例として、構造化クエリ「マット(Matt)とステファニー(Stephanie)の写真(photos_of)」に応答して、ソーシャル・ネットワーキング・システム160は、ユーザ「マット」および「ステファニー」の双方がタグ付けされている写真を識別し得る。この写真に対応する検索結果が、次いで、生成され、ユーザへ送信され得る。特定の実施形態において、各検索結果は、1つまたは複数のオブジェクトに関連付けられ、ここで、構造化クエリの各クエリ制約は、その特定の検索結果に関連付けられているオブジェクトのうちの1つまたは複数によって満足させられる。限定ではなく、例として、先の例を続けると、構造化クエリ「マットとステファニーの写真」に応答して、ソーシャル・ネットワーキング・システム160は、クエリを構文解析して、クエリコマンド(intersect(photos_of:<Matt>),(photos_of:<Stephanie>))を生成し得る。このクエリコマンドは、実行されて、(双方共に構造化クエリにおいて参照された)ユーザ「マット」および「ステファニー」の双方がタグ付けされている(すなわち、彼らのユーザ・ノード同士202が、タグ付けタイプ・エッジ(tagged−in−type edges)206によって、写真に対応するコンセプト・ノード204につなげられている)写真に対応する検索結果を生成し得る。換言すれば、(photos_of:<Matt>)および(photos_of:<Stephanie>)についての制約の双方は、その写真によって満足させられる。なぜならば、その写真は、ユーザ「マット」および「ステファニー」についてのユーザ・ノード202につなげられているからである。本開示は、検索結果を特定の方法で生成することを説明するが、本開示は、検索結果を任意の適切な方法で生成することも企図する。
別したいと興味を持つ場合、ネットワーキング意図を有する検索クエリに応答して生成される検索結果は、クエリを行うユーザと同じ地理的領域内の企業で働くユーザが、地理的に離れた企業で働くユーザよりも上位に順位付けされるように、順位付けされ得る。特定の実施形態において、検索結果は、検索エンジンによって実装される特定の得点付け/順位付けアルゴリズムによって、得点付けまたは順位付けされ得る。限定ではなく、例として、検索クエリまたはユーザに対する関連性がより高い検索結果は、関連性がより低いリソースよりも高く得点付けされ得る。関連性が決定される手法は、ソーシャル・ネットワーキング・システム160によって識別される検索意図に基づいて修正され得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、1つまたは複数の検索結果を順位付けし得る。検索結果は、例えば、検索結果について決定されたスコアに基づいて、順位付けされ得る。最も関連性のある結果(例えば、最高の/最良のスコア)は、最上位に順位付けされ、残りの結果は、最も関連性の低い結果が最下位に順位付けされるように、それらのスコア/関連性と同等の、より低い順位を有し得る。本開示は、検索結果を検索意図に基づいて特定の方法で順位付けすることを説明するが、本開示は、検索結果を検索意図に基づいて任意の適切な方法で順位付けすることも企図する。
特定の検索意図に対応する特定のソーシャル・グラフ要素をインデックス付けするパターン検出モデルにアクセスし得る。インデックスは、例えば、特定のノードもしくはノード・タイプ、または特定のエッジもしくはエッジ・タイプが、単独でまたは組み合わせにおいて、特定の検索意図に対応することを示し得る。ソーシャル・ネットワーキング・システム160は、次いで、構造化クエリにおいて参照されているノードまたはエッジのうちのいずれかが、パターン検出モデルにおいてインデックス付けされたノードまたはエッジに一致するのかを決定し得る。インデックスにおいて見出された一致するノードまたはエッジごとに、ソーシャル・ネットワーキング・システム160は、パターン検出モデルにおいてインデックス付けされた検索意図を、構造化クエリにおいて参照されている一致するノードまたは一致するエッジに対応するものとして識別し得る。本開示は、特定の検索意図を特定の方法で決定することを説明するが、本開示は、任意の適切な検索意図を任意の適切な方法で決定することも企図する。
得る。このクエリに一致する識別されたユーザ・ノード202を得点付けする場合、ソーシャル・ネットワーキング・システム160は、典型的には、ソーシャル・グラフ親和性に基づいて得点付けし、クエリを行うユーザの一次のつながりを、より離れたつながりよりも高く得点付けし得る。しかしながら、ユーザが、ネットワーキング目的のためにクエリを行っている場合、ユーザは、クエリを行うユーザと識別されたユーザ・ノード202との間のつながりの度合いを気にしないことがあり得る。ネットワーキング目的のためにより有益なことは、例えば、ソフトウェア・エンジニアとして働く経験をより多く有するユーザ、または同じくソフトウェア・エンジニアである他のユーザ(特に、同じくパロ・アルトに住む他のソフトウェア・エンジニア)につながっているユーザを識別することであり得る。したがって、ネットワーキングの検索意図に基づいて検索結果を得点付けする場合、ソーシャル・ネットワーキング・システム160は、ソーシャル・グラフ200においてユーザの距離に対してはより小さい重みを与え、ユーザの職歴および関連性のある仕事関係のつながりに関係するソーシャル・グラフ情報に対してはより大きい重みを与える得点付けアルゴリズムを使用し得る。本開示は、検索結果を特定の方法で得点付けすることを説明するが、本開示は、検索結果を任意の適切な方法で得点付けすることも企図する。
タグ付けされている写真によって満足させられ得る。結果として、独身女性がタグ付けされている写真に対応する識別されたコンセプト・ノード204を得点付けする場合、ソーシャル・ネットワーキング・システム160は、1人で立っている独身女性の写真を、独身女性達のグループの写真(または、独身女性ではない1人または複数の他のユーザと一緒の独身女性の写真)よりも高く得点付けし得る。さらに、独身女性のプロフィール写真は、独身女性のプロフィール以外の写真よりも高く得点付けされ得る。本開示は、検索結果を検索結果数に基づいて特定の方法で得点付けすることを説明するが、本開示は、検索結果を検索結果数に基づいて任意の適切な方法で得点付けすることも企図する。
k)と男性(male)によって「いいね!」の表明をされた(liked_by)レストラン(restaurants)」に応答して、ソーシャル・ネットワーキング・システム160は、構造化クエリを、例えば、(intersect(locations:<restaurants>),(intersect(locations(liked_by:<Mark>),locations(liked_by(user_gender:<male>)))などのクエリコマンドとして構文解析し、このクエリの検索意図は、ユーザ「マーク」と、男性でもある少なくとも1人の他の人物とによって「いいね!」の表明をされたレストランを識別することであると決定し得る。この場合において、ユーザ「マーク」も男性であると仮定する。ソーシャル・ネットワーキング・システム160は、第1のクエリ制約に一致するオブジェクトの第1のセットを識別し得る。第1のクエリ制約は、レストランであるロケーション(すなわち、ロケーション・タイプ・エッジ(location type edges)206によって、「レストラン」に対応するコンセプト・ノード204につながっているロケーションに対応するコンセプト・ノード204)である。次に、ソーシャル・ネットワーキング・システム160は、これらの結果を、第2のクエリ制約(第2のクエリ制約自体が複数の制約を有する)に一致するものとして識別されたオブジェクトの第2のセットと交差させ得る。これは、ユーザ「マーク」と男性ユーザとの双方によって「いいね!」の表明をされたロケーションとなる。しかしながら、ユーザ「マーク」も男性であるため、「マーク」によって「いいね!」の表明をされたロケーションも、オブジェクトのこの第2のセットにおいて識別され得る。この場合において、ユーザ「マーク」のみが「いいね!」の表明をするレストランは、オブジェクトの第1のセットとオブジェクトの第2のセットとの双方に存在し得るため、ソーシャル・ネットワーキング・システム160は、そのロケーションに「いいね!」の表明をする唯一のユーザがユーザ「マーク」(または、「マーク」と女性ユーザのみ)であるロケーションに対応する検索結果を生成することが可能である。しかし、クエリを行うユーザが、「マーク」によって「いいね!」の表明をされたレストランのみに対応する検索結果を眺めたいと望む可能性は低い(この場合には、クエリを行うユーザは、単に「マークによって「いいね!」の表明をされたレストラン」を検索できたはずである)。ユーザは、少なくとも2人のユーザ、すなわち、「マーク」と、男性である少なくとも1人の他のユーザとによって「いいね!」の表明をされたレストランを見つけようとしている可能性が高い。したがって、ソーシャル・ネットワーキング・システム160は、クエリコマンドを満足させるために1つまたは2つの「いいね!」タイプ・エッジ206が使用されているか(すなわち、「マーク」だけにつながっている「いいね!」タイプ・エッジ206が使用されているか、または、1つは「マーク」から、もう1つは別のユーザ」からの、少なくとも2つの異なる「いいね!」タイプ・エッジ206が使用されているか)を数え得る。したがって、双方のクエリ制約を満足させるために単一の「いいね!」タイプ・エッジ206のみが使用されているレストランは、それらの制約を満足させるために2つの異なる「いいね!」タイプ・エッジ206が使用されているレストランよりも、低く得点付けされ得る。本開示は、検索結果をクエリ制約意図に基づいて特定の方法で得点付けすることを説明するが、本開示は、検索結果をクエリ制約に基づいて任意の適切な方法で得点付けすることも企図する。
形態において、ソーシャル・ネットワーキング・システム160は、親和性係数(これは、本願明細書において「係数」と称され得る)を使用して、ソーシャル・グラフ親和性を測定または定量化し得る。係数は、オンライン・ソーシャル・ネットワークに関連付けられている特定のオブジェクト間の関係の強度を表現または定量化し得る。係数は、ユーザが特定のアクションを実施する予測される確率を、そのユーザのそのアクションへの興味に基づいて測定する確率または関数も表現し得る。特定の実施形態において、ソーシャル・グラフ親和性は、検索結果を得点付けする際の要因として使用され得る。限定ではなく、例として、構造化クエリ「私の友達の写真」に応答して、ソーシャル・ネットワーキング・システム160は、クエリコマンド(photos_of(users:<friends>))を生成し、このクエリの検索意図が、ユーザの友達が写っているグループ写真を眺めることであると決定し得る。ユーザの友達がタグ付けされている写真に対応する識別されたコンセプト・ノード204を得点付けする場合、ソーシャル・ネットワーキング・システム160は、クエリを行うユーザに対する、写真にタグ付けされているユーザの、クエリを行うユーザとの(例えば、親和性係数によって測定されるような)それぞれのソーシャル・グラフ親和性に基づいて、その写真をより高く得点付けし得る。さらに、クエリを行うユーザの友達がより多く写っている写真は、そのユーザの友達がより少なく写っている写真よりも高くタグ付けされ得る。なぜならば、より多くの友達が写真にタグ付けされていることは、その特定の写真に対する、クエリを行うユーザの親和性を増加させ得るためである。本開示は、検索結果を親和性に基づいて特定の方法で得点付けすることを説明するが、本開示は、検索結果を親和性に基づいて任意の適切な方法で得点付けすることも企図する。さらに、ソーシャル・グラフ親和性および親和性係数に関連して、特定の実施形態は、2006年8月11日に出願された米国特許出願第11/503093号、2010年12月22日に出願された米国特許出願第12/977027号、2010年12月23日に出願された米国特許出願第12/978265号、および2012年10月1日に出願された米国特許出願第13/632869号において開示される1つまたは複数のシステム、コンポーネント、要素、機能、方法、動作、または工程を利用し、これらの出願の各々が、本願明細書に援用される。
補と見なされ得る。本開示は、検索結果をソーシャル・グラフ情報に基づいて特定の方法で得点付けすることを説明するが、本開示は、検索結果をソーシャル・グラフ情報に基づいて任意の適切な方法で得点付けすることも企図する。
によって、会社「フェースブック」についてのコンセプト・ノード204につながっているユーザ・ノード202)である。次に、ソーシャル・ネットワーキング・システム160は、外部クエリ制約に一致するオブジェクトの第2のセットを識別し得る。外部クエリ制約は、ユーザの第1のセットの友達であるユーザ(すなわち、友達タイプ・エッジ206によって、第1のセット内のユーザ・ノード202につながっているユーザ・ノード202)である。この場合において、フェースブック社の従業員の友達である多くのユーザ(外部制約についての一致)も、フェースブック社の従業員であり得る(内部制約についての一致)が、クエリを行うユーザが、フェースブック社の従業員に対応する検索結果を眺めたいと望む可能性は低い(この場合には、クエリを行うユーザは、ただ「フェースブック社の従業員である人々」を検索できたはずである)。ユーザは、フェースブック社の従業員と友達である、フェースブック社の従業員ではない人を識別しようとしている可能性が高い。したがって、ソーシャル・ネットワーキング・システム160は、クエリの検索意図のうちの1つが、内部クエリ制約に一致する検索結果である内部検索結果を排除することであると決定し得る。先の例を続けると、内部検索結果は、フェースブック社の従業員に対応する検索結果であり得る。したがって、多くのフェースブック社の従業員が他のフェースブック社の従業員と友達である場合であっても、フェースブック社の従業員に対応する検索結果についてのスコアは、クエリを行うユーザへ実際に返される検索結果から排除されるように、または、フェースブック社の従業員の友達である、フェースブック社の従業員ではない人に対応する検索結果よりも低く順位付けされるように少なくとも得点付けされるように、低下され得る。本開示は、特定の検索結果を特定の方法で得点付けすることを説明するが、本開示は、任意の適切な検索結果を任意の適切な方法で得点付けすることも企図する。
しかし、クエリを行うユーザが、「マーク」のみの写真に対応する検索結果を眺めたいと望む可能性は低い(この場合には、クエリを行うユーザは、単に「マークの写真」を検索できたはずである)。ユーザは、少なくとも2人のユーザ、すなわち、「マーク」と、フェースブック社の従業員である少なくとも1人の他のユーザとを含む写真を識別しようとしている可能性が高い。したがって、ソーシャル・ネットワーキング・システム160は、クエリの検索意図のうちの1つが、重複する検索結果を排除することであると決定し得る。重複する検索結果は、検索結果の同じ属性が2つの異なるクエリ制約を満足させるために使用されている検索結果である。先の例を続けると、第1の制約は、マーク(マークは、この例では、たまたまフェースブック社の従業員である)の写真に対応する検索結果を生成し、第2の制約は、フェースブック社の従業員の写真に対応する検索結果を生成する。換言すれば、特定の写真に対応するコンセプト・ノード204は、単に、タグ付けタイプ・エッジ206によって、ユーザ「マーク」に対応する単一のユーザ・ノード202につながっていることによって、双方の制約を満足させ得る。なぜならば、そのユーザ・ノード202は、従業者タイプ・エッジ206によって、会社「フェースブック」についてのコンセプト・ノードにつながっているためである。したがって、ユーザ「マーク」がフェースブック社の従業員である場合であっても、検索結果を得点付けするときには、「マーク」だけ(または、フェースブック社の従業員ではない他者と一緒の「マーク」)の写真に対応する検索結果は、クエリを行うユーザへ返される検索結果からは排除されるように、または、同じくフェースブック社の従業員である少なくとも1人の他のユーザと一緒のユーザ「マーク」の写真に対応する検索結果よりも低く順位付けされるように少なくとも得点付けされるように、低下され得る。本開示は、特定の検索結果を特定の方法で得点付けすることを説明するが、本開示は、任意の適切な検索結果を任意の適切な方法で得点付けすることも企図する。
特定の実施形態において、広告は、(HTMLリンクされ得る)テキスト、(HTMLリンクされ得る)1つもしくは複数の画像、1つもしくは複数の映像、オーディオ、1つもしくは複数のADOBE FLASHファイル、これらの任意の組み合わせ、または、1つもしくは複数のウェブページ上に、1つもしくは複数の電子メールにおいて、またはユーザによって要求される検索結果に関連して提示される任意の適切なデジタル・フォーマットにおける任意の他の適切な広告であり得る)。付加的に、または代替案として、広告は、1つまたは複数のスポンサー付きのストーリ(例えば、ソーシャル・ネットワーキング・システム160上のニュース・フィードまたはティッカー・アイテム)であり得る。スポンサー付きのストーリは、例えば、広告主が、社会的なアクションを、ユーザのプロフィール・ページまたは他のページの所定の領域内に提示させること、その広告主に関連付けられている付加的な情報と共に提示させること、他のユーザのニュース・フィードもしくはティッカー内でバンプ・アップ(bump up)もしくはそうでなければハイライトさせること、または、促進させることによって促進する、(ページに「いいね!」の表明をすること、ページ上の投稿に「いいね!」の表明をすることもしくはコメントをすること、ページに関連付けられているイベントに対して返信すること、ページ上に投稿された質問に対して投票すること、ある場所にチェックインすること、アプリケーションを使用することもしくはゲームで遊ぶこと、または、ウェブサイトに「いいね!」の表明をすることもしくはこれを共有することなどの)ユーザによる社会的アクションであり得る。広告主は、社会的アクションを促進させるために代金を支払い得る。限定ではなく、例として、広告は、スポンサー付きのコンテンツがスポンサーなしのコンテンツよりも促進される、検索結果ページの検索結果の中に含まれ得る。限定ではなく、別の例として、広告は、提案される検索クエリの中に含まれ得る。ここで、広告主またはそのコンテンツ/製品を参照する、提案されるクエリは、スポンサーなしのクエリよりも促進され得る。特定の実施形態において、ソーシャル・ネットワーキング・システム160は、ユーザから受信される検索クエリに関連付けられている検索意図に基づいて、ユーザに表示する広告を選択し得る。異なる広告(または広告のタイプ)は、ユーザの検索意図に応じて、ユーザに表示され得る。
図9は、例示的なコンピュータ・システム900を示している。特定の実施形態においては、1つまたは複数のコンピュータ・システム900が、本明細書において記述されているまたは示されている1つまたは複数の方法の1つまたは複数の工程を実行する。特定の実施形態においては、1つまたは複数のコンピュータ・システム900が、本明細書において記述されているまたは示されている機能を提供する。特定の実施形態においては、1つまたは複数のコンピュータ・システム900上で稼働するソフトウェアが、本明細書において記述されているもしくは示されている1つもしくは複数の方法の1つもしくは複数の工程を実行し、または本明細書において記述されているもしくは示されている機能を提供する。特定の実施形態は、1つまたは複数のコンピュータ・システム900の1つまたは複数の部分を含む。本明細書においては、コンピュータ・システムへの言及は、適切な場合には、コンピューティング・デバイスを包含することができる。その上、コンピュータ・システムへの言及は、適切な場合には、1つまたは複数のコンピュータ・システムを包含することができる。
04内の命令のみを実行し、(ストレージ906またはその他の場所ではなく)1つもしくは複数の内部レジスタもしくは内部キャッシュ内の、またはメモリ904内のデータ上でのみ機能する。1つまたは複数のメモリ・バス(それらはそれぞれ、アドレス・バスおよびデータ・バスを含むことができる)は、プロセッサ902をメモリ904に結合することができる。バス912は、以降で記述されているような1つまたは複数のメモリ・バスを含むことができる。特定の実施形態においては、1つまたは複数のメモリ管理ユニット(MMU)が、プロセッサ902とメモリ904との間に常駐し、プロセッサ902によって要求されるメモリ904へのアクセスを容易にする。特定の実施形態においては、メモリ904は、ランダム・アクセス・メモリ(RAM)を含む。このRAMは、適切な場合には、揮発性メモリであることが可能である。適切な場合には、このRAMは、ダイナミックRAM(DRAM)またはスタティックRAM(SRAM)であることが可能である。その上、適切な場合には、このRAMは、シングルポートRAMまたはマルチポートRAMであることが可能である。本開示は、任意の適切なRAMを想定している。メモリ904は、適切な場合には、1つまたは複数のメモリ904を含むことができる。本開示は、特定のメモリについて記述し、示しているが、本開示は、任意の適切なメモリを想定している。
うちの1つまたは複数を駆動することを可能にする1つまたは複数のデバイス・ドライバまたはソフトウェア・ドライバを含むことができる。I/Oインタフェース908は、適切な場合には、1つまたは複数のI/Oインタフェース908を含むことができる。本開示は、特定のI/Oインタフェースについて記述し、示しているが、本開示は、任意の適切なI/Oインタフェースを想定している。
な場合には、1つもしくは複数の半導体ベースのもしくはその他の集積回路(IC)(たとえば、フィールドプログラマブル・ゲート・アレイ(FPGA)もしくは特定用途向け集積回路(ASIC)など)、ハード・ディスク・ドライブ(HDD)、ハイブリッド・ハード・ドライブ(HHD)、光ディスク、光ディスク・ドライブ(ODD)、光磁気ディスク、光磁気ドライブ、フロッピー(登録商標)・ディスケット、フロッピー(登録商標)・ディスク・ドライブ(FDD)、磁気テープ、ソリッドステート・ドライブ(SSD)、RAMドライブ、セキュア・デジタル・カードもしくはドライブ、その他の任意の適切な非一時的なコンピュータ可読記憶媒体、またはこれらのうちの複数の組合せを含むことができる。非一時的なコンピュータ可読記憶媒体は、適切な場合には、揮発性、不揮発性、または揮発性と不揮発性の組合せであることが可能である。
Claims (20)
- 1以上のコンピューティング・デバイスによって実行される方法であって、前記方法は、 前記1以上のコンピューティング・デバイスが、複数のノードと、前記ノード同士をつなげている複数のエッジとを備えるソーシャル・グラフにアクセスする工程であって、前記ノードのうちの2つの間の前記エッジの各々は、それらの間の単一の分離度合いを表現しており、前記ノードは、
オンライン・ソーシャル・ネットワークに関連付けられている第1のユーザに対応している第1のノードと、
前記オンライン・ソーシャル・ネットワークに関連付けられているコンセプトまたは第2のユーザに各々が対応している複数の第2のノードと、
を含む、アクセスする工程と、
前記1以上のコンピューティング・デバイスが、前記複数のノードから選択された1以上のノードおよび前記複数のエッジから選択された1以上のエッジへの参照を含む構造化クエリを前記第1のユーザから受信する工程と、
前記1以上のコンピューティング・デバイスが、前記構造化クエリに基づいてクエリコマンドを生成する工程であって、前記クエリコマンドは、内部クエリ制約および外部クエリ制約を含む、生成する工程と、
前記1以上のコンピューティング・デバイスが、前記内部クエリ制約に一致し、かつ、前記第外部クエリ制約に少なくとも部分的に一致するノードの第1のセットを識別する、ノードの第1のセットを識別する工程と、
前記1以上のコンピューティング・デバイスが、前記外部クエリ制約に一致するノードの第2のセットを識別する工程と、
前記1以上のコンピューティング・デバイスが、ノードの前記第1のセットおよび第2のセットに基づいて1以上の検索結果を生成する工程であって、前記検索結果は、前記複数のノードのうちの1つのノードに対応している、生成する工程と、
を備える、方法。 - 前記内部クエリ制約は、第1のオブジェクト・タイプについてのものであり、前記外部クエリ制約は、第2のオブジェクト・タイプについてのものである、請求項1に記載の方法。
- 前記第1のオブジェクト・タイプおよび前記第2のオブジェクト・タイプは各々、ユーザ、写真、投稿、ウェブページ、アプリケーション、ロケーション、およびユーザ・グループから成る群から選択される、請求項2に記載の方法。
- 前記1以上のコンピューティング・デバイスが、ノードの前記第1のセットを得点付けする工程と、
前記1以上のコンピューティング・デバイスが、ノードの前記第1のセットの得点に少なくとも部分的に基づいて、ノードの前記第2のセットを得点付けする工程と、
をさらに備える、請求項1に記載の方法。 - 前記内部クエリ制約は、前記複数のノードのうちの1以上のノードについてものであり、選択された前記エッジのうちの第1のエッジによって、選択された前記ノードのうちの第1のノードにつなげられており、
前記外部クエリ制約は、前記複数のノードのうちの1以上のノードについてものであり、選択された前記エッジのうちの第2のエッジによって、選択された前記ノードのうちの第2のノードにつなげられている、
請求項1に記載の方法。 - ノードの第1のセットを識別する前記工程は、
前記1以上のコンピューティング・デバイスが、少なくとも前記内部クエリ制約に一致するノードの数である第1の数を識別する工程と、
前記1以上のコンピューティング・デバイスが、前記内部クエリ制約および前記外部クエリ制約の双方に一致するノードの数である第2の数を識別する工程とを含む、
請求項1に記載の方法。 - 前記第1の数は第1の割合であり、前記第2の数は第2の割合である、
請求項6に記載の方法。 - ノードの第1のセットを識別する前記工程は、
前記1以上のコンピューティング・デバイスが、前記内部クエリ制約および前記外部クエリ制約のうちのいずれかに一致する前記ノードの第1の数を識別する工程と、
前記1以上のコンピューティング・デバイスが、前記内部クエリ制約および前記外部クエリ制約の双方に一致する前記ノードの第2の数を識別する工程とを含む、
請求項1に記載の方法。 - 前記1以上のコンピューティング・デバイスが、前記検索結果を得点付けする工程をさらに備える、
請求項1に記載の方法。 - 前記1以上のコンピューティング・デバイスが、前記構造化クエリにおいて参照されている選択された前記ノードの1以上または選択された前記エッジの1以上に基づいて、1以上の検索意図を決定する工程をさらに備える、
請求項1に記載の方法。 - 前記1以上のコンピューティング・デバイスが、前記検索意図のうちの1以上に基づいて、前記検索結果を得点付けする工程をさらに備える、
請求項10に記載の方法。 - 前記1以上の検索意図は、反対の検索結果を排除する意図を含み、前記検索結果を得点
付けする工程は、前記1以上のコンピューティング・デバイスが、前記構造化クエリにおいて参照されている選択されたノードのうちの少なくとも1つに対応している各検索結果の得点を低くする工程を含む、
請求項11に記載の方法。 - 前記1以上の検索意図は、内部検索結果を排除する意図を含み、前記検索結果を得点付けする工程は、前記1以上のコンピューティング・デバイスが、ノードの前記第1のセットのノードのうちの少なくとも1つに対応している各検索結果の得点を低くする工程を含む、
請求項11に記載の方法。 - 前記1以上の検索意図は、重複する検索結果を排除する意図を含み、前記検索結果を得点付けする工程は、前記1以上のコンピューティング・デバイスが、前記内部クエリ制約および前記外部クエリ制約の双方に一致するノードに対応している各検索結果の得点を低くする工程を含む、
請求項11に記載の方法。 - 前記クエリコマンドを生成する工程は、前記1以上の検索意図にさらに基づく、
請求項10に記載の方法。 - 前記内部クエリ制約および前記外部クエリ制約のうちの1以上は、前記検索意図のうちの1以上に基づく、
請求項10に記載の方法。 - 前記1以上の検索結果は、前記外部クエリ制約に一致するノードの前記第2のセットの1以上のノードを含み、第2のノードに対応している各検索結果は、前記クエリコマンドの制約によって前記内部クエリ制約に一致しているノードの前記第1のセットのうちの少なくとも1つに関連している、
請求項1に記載の方法。 - 前記内部クエリ制約は、前記外部クエリ制約内にネスト化される、
請求項1に記載の方法。 - ソフトウェアを具現化している1以上のコンピュータ読取可能非一時的記憶媒体であって、前記ソフトウェアは、実行されるとき、
複数のノードと、前記ノード同士をつなげている複数のエッジとを備えるソーシャル・グラフにアクセスする工程であって、前記ノードのうちの2つの間の前記エッジの各々は、それらの間の単一の分離度合いを表現しており、前記ノードは、
オンライン・ソーシャル・ネットワークに関連付けられている第1のユーザに対応している第1のノードと、
前記オンライン・ソーシャル・ネットワークに関連付けられているコンセプトまたは第2のユーザに各々が対応している複数の第2のノードと、
を含む、アクセスする工程と、
前記複数のノードから選択された1以上のノードおよび前記複数のエッジから選択された1以上のエッジへの参照を含む構造化クエリを前記第1のユーザから受信する工程と、
前記構造化クエリに基づいてクエリコマンドを生成する工程であって、前記クエリコマンドは、内部クエリ制約および外部クエリ制約を含む、生成する工程と、
前記内部クエリ制約に一致し、かつ、前記外部クエリ制約に少なくとも部分的に一致するノードの第1のセットを識別する、ノードの第1のセットを識別する工程と、
前記外部クエリ制約に一致するノードの第2のセットを識別する工程と、
ノードの前記第1のセットおよび第2のセットに基づいて1以上の検索結果を生成する工程であって、前記検索結果は、前記複数のノードのうちの1つのノードに対応している、生成する工程と、
が行われるように動作可能である、媒体。 - 1以上のプロセッサと、前記プロセッサによって実行可能な命令を含み、前記プロセッサに結合されているメモリとを備えるシステムであって、前記プロセッサは、前記命令が実行されるとき、
複数のノードと、前記ノード同士をつなげている複数のエッジとを備えるソーシャル・グラフにアクセスする工程であって、前記ノードのうちの2つの間の前記エッジの各々は、それらの間の単一の分離度合いを表現しており、前記ノードは、
オンライン・ソーシャル・ネットワークに関連付けられている第1のユーザに対応している第1のノードと、
前記オンライン・ソーシャル・ネットワークに関連付けられているコンセプトまたは第2のユーザに各々が対応している複数の第2のノードと、
を含む、アクセスする工程と、
前記複数のノードから選択された1以上のノードおよび前記複数のエッジから選択された1以上のエッジへの参照を含む構造化クエリを前記第1のユーザから受信する工程と、
前記構造化クエリに基づいてクエリコマンドを生成する工程であって、前記クエリコマンドは、内部クエリ制約および外部クエリ制約を含む、生成する工程と、
前記内部クエリ制約に一致し、かつ、前記外部クエリ制約に少なくとも部分的に一致するノードの第1のセットを識別する、ノードの第1のセットを識別する工程と、
前記外部クエリ制約に一致するノードの第2のセットを識別する工程と、
ノードの前記第1のセットおよび第2のセットに基づいて1以上の検索結果を生成する工程であって、前記検索結果は、前記複数のノードのうちの1つのノードに対応している、生成する工程と、
が行われるように動作可能である、システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/887,049 | 2013-05-03 | ||
US13/887,049 US9367625B2 (en) | 2013-05-03 | 2013-05-03 | Search query interactions on online social networks |
PCT/US2014/036105 WO2014179426A1 (en) | 2013-05-03 | 2014-04-30 | Search query interactions on online social networks |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016170773A Division JP6087015B2 (ja) | 2013-05-03 | 2016-09-01 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016521419A JP2016521419A (ja) | 2016-07-21 |
JP6001809B2 true JP6001809B2 (ja) | 2016-10-05 |
Family
ID=51842065
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016511830A Expired - Fee Related JP6001809B2 (ja) | 2013-05-03 | 2014-04-30 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
JP2016170773A Expired - Fee Related JP6087015B2 (ja) | 2013-05-03 | 2016-09-01 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
JP2017015639A Expired - Fee Related JP6193518B2 (ja) | 2013-05-03 | 2017-01-31 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
JP2017154017A Pending JP2017216004A (ja) | 2013-05-03 | 2017-08-09 | 検索クエリ対話 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016170773A Expired - Fee Related JP6087015B2 (ja) | 2013-05-03 | 2016-09-01 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
JP2017015639A Expired - Fee Related JP6193518B2 (ja) | 2013-05-03 | 2017-01-31 | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 |
JP2017154017A Pending JP2017216004A (ja) | 2013-05-03 | 2017-08-09 | 検索クエリ対話 |
Country Status (7)
Country | Link |
---|---|
US (4) | US9367625B2 (ja) |
JP (4) | JP6001809B2 (ja) |
KR (3) | KR101854799B1 (ja) |
AU (4) | AU2014259934B2 (ja) |
CA (3) | CA2966826C (ja) |
IL (2) | IL242367A (ja) |
WO (1) | WO2014179426A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202022104673U1 (de) | 2022-08-17 | 2022-09-05 | Aamir Junaid Ahmad | System zur Rückverfolgbarkeit von sozialen Netzwerken |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9367880B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Search intent for queries on online social networks |
US9367536B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Using inverse operators for queries on online social networks |
US9367625B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Search query interactions on online social networks |
US9552055B2 (en) * | 2013-07-15 | 2017-01-24 | Facebook, Inc. | Large scale page recommendations on online social networks |
US12235913B2 (en) * | 2013-10-22 | 2025-02-25 | Steven Michael VITTORIO | Content search and results |
US11238056B2 (en) * | 2013-10-28 | 2022-02-01 | Microsoft Technology Licensing, Llc | Enhancing search results with social labels |
US20150169285A1 (en) * | 2013-12-18 | 2015-06-18 | Microsoft Corporation | Intent-based user experience |
US11645289B2 (en) * | 2014-02-04 | 2023-05-09 | Microsoft Technology Licensing, Llc | Ranking enterprise graph queries |
US9870432B2 (en) | 2014-02-24 | 2018-01-16 | Microsoft Technology Licensing, Llc | Persisted enterprise graph queries |
US11657060B2 (en) | 2014-02-27 | 2023-05-23 | Microsoft Technology Licensing, Llc | Utilizing interactivity signals to generate relationships and promote content |
US10757201B2 (en) | 2014-03-01 | 2020-08-25 | Microsoft Technology Licensing, Llc | Document and content feed |
US10255563B2 (en) | 2014-03-03 | 2019-04-09 | Microsoft Technology Licensing, Llc | Aggregating enterprise graph content around user-generated topics |
US10394827B2 (en) | 2014-03-03 | 2019-08-27 | Microsoft Technology Licensing, Llc | Discovering enterprise content based on implicit and explicit signals |
US10169457B2 (en) | 2014-03-03 | 2019-01-01 | Microsoft Technology Licensing, Llc | Displaying and posting aggregated social activity on a piece of enterprise content |
WO2015153211A1 (en) * | 2014-03-30 | 2015-10-08 | Digital Signal Corporation | System and method for detecting potential matches between a candidate biometric and a dataset of biometrics |
WO2015162458A1 (en) | 2014-04-24 | 2015-10-29 | Singapore Telecommunications Limited | Knowledge model for personalization and location services |
US9916328B1 (en) | 2014-07-11 | 2018-03-13 | Google Llc | Providing user assistance from interaction understanding |
US9875322B2 (en) * | 2014-07-31 | 2018-01-23 | Google Llc | Saving and retrieving locations of objects |
US10061826B2 (en) | 2014-09-05 | 2018-08-28 | Microsoft Technology Licensing, Llc. | Distant content discovery |
US20160148264A1 (en) * | 2014-11-24 | 2016-05-26 | Facebook, Inc. | Searching for Offers and Advertisements on Online Social Networks |
US20160203238A1 (en) * | 2015-01-09 | 2016-07-14 | Facebook, Inc. | Suggested Keywords for Searching News-Related Content on Online Social Networks |
US9965560B2 (en) * | 2015-02-02 | 2018-05-08 | Samsung Electronics Co., Ltd. | Social-distance permission-based search algorithm |
US10762143B2 (en) * | 2015-02-13 | 2020-09-01 | Microsoft Technology Licensing, Llc | Extension of third party application functionality for intent determination |
US11250008B2 (en) | 2015-04-17 | 2022-02-15 | Steven Michael VITTORIO | Content search and results |
US10503764B2 (en) * | 2015-06-01 | 2019-12-10 | Oath Inc. | Location-awareness search assistance system and method |
US10180989B2 (en) | 2015-07-24 | 2019-01-15 | International Business Machines Corporation | Generating and executing query language statements from natural language |
US10332511B2 (en) | 2015-07-24 | 2019-06-25 | International Business Machines Corporation | Processing speech to text queries by optimizing conversion of speech queries to text |
US10970646B2 (en) | 2015-10-01 | 2021-04-06 | Google Llc | Action suggestions for user-selected content |
US10841852B2 (en) | 2015-12-09 | 2020-11-17 | DataSpark, PTE. LTD. | Transportation network monitoring using cellular radio metadata |
RU2632148C2 (ru) * | 2015-12-28 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Система и способ ранжирования результатов поиска |
US10162899B2 (en) * | 2016-01-15 | 2018-12-25 | Facebook, Inc. | Typeahead intent icons and snippets on online social networks |
US10515424B2 (en) * | 2016-02-12 | 2019-12-24 | Microsoft Technology Licensing, Llc | Machine learned query generation on inverted indices |
US10380145B2 (en) * | 2016-02-24 | 2019-08-13 | Microsoft Technology Licensing, Llc | Universal concept graph for a social networking service |
US10255282B2 (en) | 2016-03-04 | 2019-04-09 | Microsoft Technology Licensing, Llc | Determining key concepts in documents based on a universal concept graph |
US10176340B2 (en) * | 2016-03-13 | 2019-01-08 | DataSpark, PTE. LTD. | Abstracted graphs from social relationship graph |
US11157520B2 (en) | 2016-03-28 | 2021-10-26 | DataSpark, Pte Ltd. | Uniqueness level for anonymized datasets |
US10423683B2 (en) * | 2016-05-02 | 2019-09-24 | Microsoft Technology Licensing, Llc | Personalized content suggestions in computer networks |
US12174839B2 (en) * | 2016-05-23 | 2024-12-24 | Microsoft Technology Licensing, Llc | Relevant passage retrieval system |
US10409824B2 (en) * | 2016-06-29 | 2019-09-10 | International Business Machines Corporation | System, method and recording medium for cognitive proximates |
US10769156B2 (en) * | 2016-08-26 | 2020-09-08 | Microsoft Technology Licensing, Llc | Rank query results for relevance utilizing external context |
US10535005B1 (en) | 2016-10-26 | 2020-01-14 | Google Llc | Providing contextual actions for mobile onscreen content |
WO2018150228A1 (en) | 2017-02-17 | 2018-08-23 | Dataspark Pte, Ltd | Mobility gene for visit data |
US10873832B2 (en) | 2017-02-17 | 2020-12-22 | DataSpark, PTE. LTD. | Mobility gene for trajectory data |
US11418915B2 (en) | 2017-02-17 | 2022-08-16 | DataSpark, PTE. LTD. | Trajectory analysis with mode of transportation analysis |
US10909124B2 (en) * | 2017-05-18 | 2021-02-02 | Google Llc | Predicting intent of a search for a particular context |
US11074280B2 (en) * | 2017-05-18 | 2021-07-27 | Aiqudo, Inc | Cluster based search and recommendation method to rapidly on-board commands in personal assistants |
KR102599947B1 (ko) | 2017-10-27 | 2023-11-09 | 삼성전자주식회사 | 관련 이미지를 검색하기 위한 전자 장치 및 이의 제어 방법 |
US11093561B2 (en) * | 2017-12-11 | 2021-08-17 | Facebook, Inc. | Fast indexing with graphs and compact regression codes on online social networks |
KR102141640B1 (ko) * | 2020-04-13 | 2020-08-05 | 주식회사 데이터월드 | 실시간 네트워크 데이터 관리 방법 및 이를 실행하는 서버 |
CN111931001B (zh) * | 2020-06-23 | 2024-08-23 | 联想(北京)有限公司 | 一种图数据的查询方法、装置及存储介质 |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2839555B2 (ja) | 1989-06-14 | 1998-12-16 | 株式会社日立製作所 | 情報検索方法 |
JPS61220027A (ja) | 1985-03-27 | 1986-09-30 | Hitachi Ltd | 文書ファイリングシステム及び情報記憶検索システム |
JPH05128157A (ja) | 1991-11-08 | 1993-05-25 | Ricoh Co Ltd | 文書検索装置 |
JPH0744573A (ja) | 1993-07-27 | 1995-02-14 | Fujitsu Ltd | 電子ファイリング装置 |
US7631012B2 (en) | 1997-05-22 | 2009-12-08 | Computer Associates Think, Inc. | System and method of operating a database |
JP2000187663A (ja) | 1998-12-22 | 2000-07-04 | Hitachi Zosen Corp | ファイル管理装置およびファイル管理方法並びにそのプログラムを記録した記録媒体 |
US7752326B2 (en) | 2001-08-20 | 2010-07-06 | Masterobjects, Inc. | System and method for utilizing asynchronous client server communication objects |
US8112529B2 (en) | 2001-08-20 | 2012-02-07 | Masterobjects, Inc. | System and method for asynchronous client server session communication |
US20090006543A1 (en) | 2001-08-20 | 2009-01-01 | Masterobjects | System and method for asynchronous retrieval of information based on incremental user input |
US20030225761A1 (en) * | 2002-05-31 | 2003-12-04 | American Management Systems, Inc. | System for managing and searching links |
US7171407B2 (en) | 2002-10-03 | 2007-01-30 | International Business Machines Corporation | Method for streaming XPath processing with forward and backward axes |
CN1809829A (zh) | 2003-04-25 | 2006-07-26 | 惠普开发有限公司 | 数据库装置和作成方法、数据库检索装置及检索方法 |
US20050131872A1 (en) | 2003-12-16 | 2005-06-16 | Microsoft Corporation | Query recognizer |
US7836044B2 (en) | 2004-06-22 | 2010-11-16 | Google Inc. | Anticipated query generation and processing in a search engine |
US7809695B2 (en) * | 2004-08-23 | 2010-10-05 | Thomson Reuters Global Resources | Information retrieval systems with duplicate document detection and presentation functions |
US7499940B1 (en) | 2004-11-11 | 2009-03-03 | Google Inc. | Method and system for URL autocompletion using ranked results |
US7333981B2 (en) | 2004-12-17 | 2008-02-19 | International Business Machines Corporation | Transformation of a physical query into an abstract query |
JP4635659B2 (ja) * | 2005-03-14 | 2011-02-23 | 富士ゼロックス株式会社 | 質問応答システム、およびデータ検索方法、並びにコンピュータ・プログラム |
TWI443547B (zh) | 2005-12-07 | 2014-07-01 | Telecomm Systems Inc | 有限電信裝置的使用者輸入方案的方法以及其系統 |
US7702689B2 (en) | 2006-07-13 | 2010-04-20 | Sap Ag | Systems and methods for querying metamodel data |
US7636712B2 (en) * | 2006-11-14 | 2009-12-22 | Microsoft Corporation | Batching document identifiers for result trimming |
US7840538B2 (en) | 2006-12-20 | 2010-11-23 | Yahoo! Inc. | Discovering query intent from search queries and concept networks |
US8280978B2 (en) | 2006-12-29 | 2012-10-02 | Prodea Systems, Inc. | Demarcation between service provider and user in multi-services gateway device at user premises |
US7904461B2 (en) | 2007-05-01 | 2011-03-08 | Google Inc. | Advertiser and user association |
US8862622B2 (en) * | 2007-12-10 | 2014-10-14 | Sprylogics International Corp. | Analysis, inference, and visualization of social networks |
US20090171929A1 (en) * | 2007-12-26 | 2009-07-02 | Microsoft Corporation | Toward optimized query suggeston: user interfaces and algorithms |
US20090228296A1 (en) | 2008-03-04 | 2009-09-10 | Collarity, Inc. | Optimization of social distribution networks |
US8645406B2 (en) | 2008-04-11 | 2014-02-04 | Microsoft Corporation | Exploiting conditions to optimize expensive database queries |
US8417698B2 (en) | 2008-05-06 | 2013-04-09 | Yellowpages.Com Llc | Systems and methods to provide search based on social graphs and affinity groups |
US8027990B1 (en) | 2008-07-09 | 2011-09-27 | Google Inc. | Dynamic query suggestion |
US8386506B2 (en) * | 2008-08-21 | 2013-02-26 | Yahoo! Inc. | System and method for context enhanced messaging |
US8370329B2 (en) * | 2008-09-22 | 2013-02-05 | Microsoft Corporation | Automatic search query suggestions with search result suggestions from user history |
US9607052B2 (en) * | 2008-12-29 | 2017-03-28 | Technion Research & Development Foundation Limited | Query networks evaluation system and method |
US8412749B2 (en) | 2009-01-16 | 2013-04-02 | Google Inc. | Populating a structured presentation with new values |
US20100235354A1 (en) | 2009-03-12 | 2010-09-16 | International Business Machines Corporation | Collaborative search engine system |
JP2010218376A (ja) | 2009-03-18 | 2010-09-30 | Nomura Research Institute Ltd | ユーザ関心ジャンル分析システム |
US20110078166A1 (en) | 2009-09-29 | 2011-03-31 | Nokia Corporation | Method and apparatus for creating and utilizing information representation of queries |
JP5292250B2 (ja) | 2009-10-13 | 2013-09-18 | 日本電信電話株式会社 | 文書検索装置、文書検索方法、文書検索プログラム |
US20110087534A1 (en) | 2009-10-14 | 2011-04-14 | Wantsa Media (Canada), Inc. | Search queries and advertising platforms utilizing at least one social graph |
US8239364B2 (en) | 2009-12-08 | 2012-08-07 | Facebook, Inc. | Search and retrieval of objects in a social networking system |
KR101123697B1 (ko) | 2010-01-22 | 2012-03-20 | 유플리트 주식회사 | 공통 관심 사용자 검색장치 및 방법 |
US8595297B2 (en) | 2010-02-08 | 2013-11-26 | At&T Intellectual Property I, L.P. | Searching data in a social network to provide an answer to an information request |
US8527496B2 (en) | 2010-02-11 | 2013-09-03 | Facebook, Inc. | Real time content searching in social network |
JP2011170471A (ja) | 2010-02-17 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | ソーシャルグラフ生成方法、ソーシャルグラフ生成装置、およびプログラム |
US8185558B1 (en) | 2010-04-19 | 2012-05-22 | Facebook, Inc. | Automatically generating nodes and edges in an integrated social graph |
US8180804B1 (en) * | 2010-04-19 | 2012-05-15 | Facebook, Inc. | Dynamically generating recommendations based on social graph information |
US8386471B2 (en) | 2010-05-27 | 2013-02-26 | Salesforce.Com, Inc. | Optimizing queries in a multi-tenant database system environment |
JP2012038023A (ja) * | 2010-08-05 | 2012-02-23 | Nippon Telegr & Teleph Corp <Ntt> | クエリ生成装置およびその動作方法 |
US20120059708A1 (en) | 2010-08-27 | 2012-03-08 | Adchemy, Inc. | Mapping Advertiser Intents to Keywords |
KR20120045861A (ko) * | 2010-11-01 | 2012-05-09 | 주식회사 케이티 | 소셜 네트워크 기반의 질의 응답 서비스 제공 서버 및 제공 방법 |
US8364709B1 (en) | 2010-11-22 | 2013-01-29 | Google Inc. | Determining word boundary likelihoods in potentially incomplete text |
US8538978B2 (en) * | 2010-11-22 | 2013-09-17 | International Business Machines Corporation | Presenting a search suggestion with a social comments icon |
KR101073602B1 (ko) | 2010-11-30 | 2011-10-14 | 중앙대학교 산학협력단 | 소셜 신뢰도 모델 생성 시스템 및 방법 |
US20120150850A1 (en) | 2010-12-08 | 2012-06-14 | Microsoft Corporation | Search result relevance by determining query intent |
US20120278127A1 (en) | 2011-04-28 | 2012-11-01 | Rawllin International Inc. | Generating product recommendations based on dynamic product context data and/or social activity data related to a product |
EP2521066A1 (en) | 2011-05-05 | 2012-11-07 | Axiomatics AB | Fine-grained relational database access-control policy enforcement using reverse queries |
US20120311034A1 (en) | 2011-06-03 | 2012-12-06 | Cbs Interactive Inc. | System and methods for filtering based on social media |
US9268857B2 (en) * | 2011-06-03 | 2016-02-23 | Facebook, Inc. | Suggesting search results to users before receiving any search query from the users |
US8601027B2 (en) | 2011-06-20 | 2013-12-03 | Google Inc. | Query-based user groups in social networks |
US20130031106A1 (en) | 2011-07-29 | 2013-01-31 | Microsoft Corporation | Social network powered query suggestions |
US8538960B2 (en) | 2011-08-05 | 2013-09-17 | Microsoft Corporation | Providing objective and people results for search |
US8495058B2 (en) * | 2011-08-05 | 2013-07-23 | Google Inc. | Filtering social search results |
US20130041876A1 (en) | 2011-08-08 | 2013-02-14 | Paul Alexander Dow | Link recommendation and densification |
US8504561B2 (en) | 2011-09-02 | 2013-08-06 | Microsoft Corporation | Using domain intent to provide more search results that correspond to a domain |
US11620719B2 (en) | 2011-09-12 | 2023-04-04 | Microsoft Technology Licensing, Llc | Identifying unseen content of interest |
US8918354B2 (en) * | 2011-10-03 | 2014-12-23 | Microsoft Corporation | Intelligent intent detection from social network messages |
US8949232B2 (en) * | 2011-10-04 | 2015-02-03 | Microsoft Corporation | Social network recommended content and recommending members for personalized search results |
US8977611B2 (en) * | 2011-10-18 | 2015-03-10 | Facebook, Inc. | Ranking objects by social relevance |
US8321364B1 (en) | 2012-02-08 | 2012-11-27 | Google Inc. | Method and system for including robots into social networks |
JP2013242675A (ja) * | 2012-05-18 | 2013-12-05 | Nippon Telegr & Teleph Corp <Ntt> | 分散情報制御装置、分散情報検索方法、データ分散配置方法、及びプログラム |
US8924434B2 (en) * | 2012-06-29 | 2014-12-30 | Oracle International Corporation | Project resource comparison view |
US8983991B2 (en) | 2012-07-27 | 2015-03-17 | Facebook, Inc. | Generating logical expressions for search queries |
US9158801B2 (en) | 2012-07-27 | 2015-10-13 | Facebook, Inc. | Indexing based on object type |
US8935271B2 (en) | 2012-12-21 | 2015-01-13 | Facebook, Inc. | Extract operator |
EP2784697A1 (en) * | 2013-03-28 | 2014-10-01 | Fujitsu Limited | Graph database query handling method and apparatus |
US9367625B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Search query interactions on online social networks |
US9367880B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Search intent for queries on online social networks |
US9367536B2 (en) | 2013-05-03 | 2016-06-14 | Facebook, Inc. | Using inverse operators for queries on online social networks |
-
2013
- 2013-05-03 US US13/887,049 patent/US9367625B2/en active Active
-
2014
- 2014-04-30 KR KR1020177010897A patent/KR101854799B1/ko not_active Expired - Fee Related
- 2014-04-30 WO PCT/US2014/036105 patent/WO2014179426A1/en active Application Filing
- 2014-04-30 KR KR1020157034389A patent/KR101630349B1/ko active Active
- 2014-04-30 CA CA2966826A patent/CA2966826C/en not_active Expired - Fee Related
- 2014-04-30 CA CA2910864A patent/CA2910864C/en not_active Expired - Fee Related
- 2014-04-30 CA CA2932334A patent/CA2932334C/en not_active Expired - Fee Related
- 2014-04-30 JP JP2016511830A patent/JP6001809B2/ja not_active Expired - Fee Related
- 2014-04-30 KR KR1020167013598A patent/KR101733135B1/ko not_active Expired - Fee Related
- 2014-04-30 AU AU2014259934A patent/AU2014259934B2/en not_active Ceased
-
2015
- 2015-10-29 IL IL242367A patent/IL242367A/en active IP Right Grant
- 2015-12-29 US US14/983,245 patent/US9471692B2/en active Active
-
2016
- 2016-09-01 JP JP2016170773A patent/JP6087015B2/ja not_active Expired - Fee Related
- 2016-10-11 AU AU2016244209A patent/AU2016244209B2/en not_active Ceased
- 2016-10-17 US US15/295,818 patent/US9697291B2/en active Active
- 2016-10-19 IL IL248386A patent/IL248386B/en active IP Right Grant
-
2017
- 2017-01-31 JP JP2017015639A patent/JP6193518B2/ja not_active Expired - Fee Related
- 2017-04-20 AU AU2017202634A patent/AU2017202634B2/en not_active Ceased
- 2017-06-19 US US15/627,065 patent/US10423687B2/en active Active
- 2017-08-09 JP JP2017154017A patent/JP2017216004A/ja active Pending
- 2017-09-01 AU AU2017221856A patent/AU2017221856B2/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202022104673U1 (de) | 2022-08-17 | 2022-09-05 | Aamir Junaid Ahmad | System zur Rückverfolgbarkeit von sozialen Netzwerken |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6419905B2 (ja) | クエリについての逆演算子の使用 | |
JP6193518B2 (ja) | オンライン・ソーシャル・ネットワーク上での検索クエリ対話 | |
JP6435307B2 (ja) | クエリについての検索意図 | |
JP6568609B2 (ja) | 構造化された検索クエリのための文法モデル | |
JP6306120B2 (ja) | 構造化検索クエリの自然言語レンダリング |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20160517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6001809 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |