JP5977609B2 - Saving Ni-type austenitic stainless steel - Google Patents
Saving Ni-type austenitic stainless steel Download PDFInfo
- Publication number
- JP5977609B2 JP5977609B2 JP2012161711A JP2012161711A JP5977609B2 JP 5977609 B2 JP5977609 B2 JP 5977609B2 JP 2012161711 A JP2012161711 A JP 2012161711A JP 2012161711 A JP2012161711 A JP 2012161711A JP 5977609 B2 JP5977609 B2 JP 5977609B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- mass
- stainless steel
- austenitic stainless
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、軟質で適度な加工硬化性を有し、張出し性に優れる省Ni型オーステナイト系ステンレス鋼に関する。 The present invention relates to a Ni-saving austenitic stainless steel that is soft and has an appropriate work hardening property and excellent extrudability.
オーステナイト系ステンレス鋼の代表的なものとして、JIS G 4305などで規格されている300系(SUS301,SUS304,SUS316等)のものや、JIS G 4303などで規格されている200系(SUS201,SUS202等)のもの等がある。 As typical examples of austenitic stainless steel, 300 series (SUS301, SUS304, SUS316, etc.) standardized by JIS G 4305, 200 series (SUS201, SUS202, etc.) standardized by JIS G 4303, etc. ) Etc.
このうち、300系のオーステナイト系ステンレス鋼は、Mnが2.0質量%以下、Niが6〜15質量%程度含まれていることから、良好な加工性を有し、耐発銹性にも優れる。特に、SUS304は、オーステナイト相が準安定であり、溶体化処理された後、冷間圧延などの冷間加工を受けることによって加工誘起マルテンサイト(α’)が生成される。つまり、成形加工中にマルテンサイト変態を生じて加工硬化が大きくなるために、「張出し性」が良好なものとなる。しかしながら、この300系のオーステナイト系ステンレス鋼は、上述したように、高価なNiを多量に含むことから原料コストが高いという欠点がある。 Of these, the 300 series austenitic stainless steel has good workability because it contains Mn of 2.0% by mass or less and Ni of about 6 to 15% by mass, and is also resistant to galling. Excellent. In particular, SUS304 has a metastable austenite phase, and after being solution-treated, it undergoes cold working such as cold rolling to produce work-induced martensite (α ′ ). That is, since the martensite transformation occurs during the molding process and the work hardening is increased, the “extrusion property” is improved. However, as described above, the 300 series austenitic stainless steel contains a large amount of expensive Ni, and thus has a disadvantage of high raw material costs.
一方、200系のオーステナイト系ステンレス鋼は、上記300系のNiをMnで置換した省Ni型(高Mn型)のステンレス鋼である。この200系のオーステナイト系ステンレス鋼は、上記Mnの他にもCやNを多く含むため、強度が高く非磁性となっている。また、200系のオーステナイト系ステンレス鋼は、Ni系のオーステナイト系ステンレス鋼と比較して原料コストが安価である。しかしながら、SUS201やSUS202等に代表される高Mn型ステンレス鋼は、上述したようにCやNなどの侵入型固溶元素を多く含むため、固溶化処理状態において硬質で且つ強度が高いため、プレス成形性に劣るという問題がある。 On the other hand, the 200 series austenitic stainless steel is a Ni-saving (high Mn type) stainless steel in which the 300 series Ni is replaced with Mn. The 200 series austenitic stainless steel contains a large amount of C and N in addition to the Mn, and therefore has high strength and is nonmagnetic. In addition, the 200-series austenitic stainless steel has a lower raw material cost than the Ni-based austenitic stainless steel. However, high Mn type stainless steel represented by SUS201, SUS202, and the like contains a large amount of interstitial solid solution elements such as C and N as described above, and therefore is hard in the solution treatment state and has high strength. There is a problem of inferior moldability.
そこで、この200系に代表される省Ni型オーステナイト系ステンレス鋼の加工性を改善する技術として、例えば、特許文献1乃至3等には、%C+%Nを特定の領域まで削減したり、所定量のCuを添加すること等によって、延性や加工性を向上させた省Ni型オーステナイト系ステンレス鋼を提供する技術が開示されている。これらの技術は、オーステナイト安定度を示す指標である「Md30値」が所定の範囲内となるように調整して張出し性を改善したものである。 Therefore, as a technique for improving the workability of Ni-saving austenitic stainless steel represented by the 200 series, for example, Patent Documents 1 to 3 show that% C +% N is reduced to a specific region, A technique for providing a Ni-saving austenitic stainless steel with improved ductility and workability by adding a certain amount of Cu is disclosed. In these techniques, the “Md 30 value”, which is an index indicating austenite stability, is adjusted so as to be within a predetermined range to improve the stretchability.
ここで、「%C」や「%N」のように「%元素記号」で表したものは「鋼中における或る元素の配合割合を質量%で表したもの」を意味する(以下、同じ。)。 Here, “% element symbol” such as “% C” and “% N” means “a ratio of a certain element in steel expressed in mass%” (hereinafter the same). .)
また、「Md30」とは、「オーステナイト系ステンレス鋼に30%の伸び歪みを与えた時、50%がマルテンサイトに変態する加工温度」と定義されるものであり、その値は、オーステナイト系ステンレス鋼の成分組成を基に、Md30=551−462[%C+%N]−9.2[%Si]−8.1[%Mn]−29[%Ni+%Cu]−13.7[%Cr]−18.5[%Mo]−68[%Nb]−1.42[υ−8](但し、υは結晶粒度番号。)で示される「野原の改良式」を用いて算出される。 “Md 30 ” is defined as “processing temperature at which 50% is transformed into martensite when 30% elongation strain is applied to austenitic stainless steel”. Based on the composition of the stainless steel, Md 30 = 551-462 [% C +% N] -9.2 [% Si] -8.1 [% Mn] -29 [% Ni +% Cu] -13.7 [ % Cr] -18.5 [% Mo] -68 [% Nb] -1.42 [υ-8] (where υ is the grain size number). The
しかしながら、上記張出し性を改善した省Ni型オーステナイト系ステンレス鋼では、以下のような問題が懸念される。すなわち、オーステナイト系ステンレス鋼では、その鋼種が持つ加工限界以上の加工を行なった場合に「時期割れ」と称される遅れ破壊が発生して問題となるケースがある。この時期割れの感受性は、%C+%Nやオーステナイト安定度に依存することが知られているが、上記特許文献に記載の技術では、時期割れ感受性について具体的な検討がなされておらず、単に張出し性がよくても時期割れ感受性が劣る場合には、実用上、高加工率のプレス成形に不向きであると云える。 However, in the Ni-saving austenitic stainless steel with improved overhang, the following problems are concerned. That is, in austenitic stainless steel, there is a case in which delayed fracture called “time crack” occurs when processing exceeding the processing limit of the steel type occurs. It is known that the susceptibility of this time crack depends on% C +% N and austenite stability, but in the technique described in the above patent document, no specific examination has been made on the susceptibility to time crack, If the susceptibility to time cracking is inferior even though the stretchability is good, it can be said that it is practically unsuitable for press forming at a high processing rate.
それゆえに、本発明の主たる課題は、Niの配合割合が4質量%以下の省Ni型の成分系であるにも拘らず、張出し性などの成形性に優れると共に、時期割れ感受性にも優れた省Ni型オーステナイト系ステンレス鋼を提供することである。 Therefore, the main problem of the present invention is that it is excellent in formability such as stretchability and excellent in cracking at the time, even though it is a Ni-saving component system with a Ni content of 4% by mass or less. It is to provide a reduced Ni type austenitic stainless steel.
発明者らは、前記課題を解決するために鋭意研究を重ねた結果、以下に示す発明を完成するに至った。すなわち、本発明は、
(1)質量%で、C≦0.08%、N≦0.08%、Si≦1.0%、8.05≦Mn≦10.0%、14.0%≦Cr≦16.0%、2.0%≦Ni≦4.0%、1.0%≦Cu≦2.5%、Mo≦0.5%を含有し、残部がFeおよび不可避不純物からなり、
(2)Md30Mn=551−462([%C]+[%N])−9.2[%Si]−19.1[%Mn]−13.7[%Cr]−29([%Ni]+[%Cu])−18.5[%Mo]に従うMd30Mn値が、−45≦Md30Mn≦−5を満たす
(3)ことを特徴とする「省Ni型オーステナイト系ステンレス鋼」、である。
The inventors have intensively studied to solve the above problems, and as a result, have completed the invention shown below. That is, the present invention
(1) By mass%, C ≦ 0.08%, N ≦ 0.08%, Si ≦ 1.0%, 8.05 ≦ Mn ≦ 10.0%, 14.0% ≦ Cr ≦ 16.0% 2.0% ≦ Ni ≦ 4.0%, 1.0% ≦ Cu ≦ 2.5% , Mo ≦ 0.5% , the balance being Fe and inevitable impurities,
(2) Md 30 Mn = 551-462 ([% C] + [% N]) − 9.2 [% Si] −19.1 [% Mn] −13.7 [% Cr] −29 ([% Ni] + [% Cu])-18.5 [% Mo] Md 30 Mn value satisfies (3) −45 ≦ Md 30 Mn ≦ −5 (3) Ni-saving austenitic stainless steel ".
さらに、上記発明において、時期割れを生じさせることなく高い加工率で張出し加工ができるプレス成形性を確保するためには、固溶化熱処理状態での伸びが53%以上であると共に、エリクセン値が12.5mm以上であるのが好ましい。 Furthermore, in the above invention, in order to ensure press formability that allows the stretch processing at a high processing rate without causing a time crack, the elongation in the solution heat treatment state is 53% or more, and the Erichsen value is 12 It is preferably 5 mm or more.
本発明によれば、高価なNiの配合割合を2.0質量%〜4.0質量%の範囲内に抑えているので、所定のオーステナイト系ステンレス鋼を経済的に製造することができる。 According to the present invention, since the blending ratio of expensive Ni is kept within the range of 2.0 mass% to 4.0 mass%, the predetermined austenitic stainless steel can be produced economically.
また、鋼の伸びやエリクセン値との間に相関があるMd30Mn値を−45≦Md30Mn≦−5の範囲にしているので、得られる鋼は、伸びや張出し性と云った成形性のみならず、時期割れ感受性にも優れたものとなる。 Further, since the Md 30 Mn value correlated with the elongation and Erichsen value of the steel is in the range of −45 ≦ Md 30 Mn ≦ −5, the obtained steel has formability such as elongation and stretchability. As well as excellent cracking susceptibility.
つまり、本発明によれば、Niの配合割合が4質量%以下の省Ni型の成分系であるにも拘らず、張出し性などの成形性に優れると共に、時期割れ感受性にも優れた省Ni型オーステナイト系ステンレス鋼を提供することができる。 In other words, according to the present invention, despite the Ni-saving component system with a Ni content of 4% by mass or less, it has excellent formability such as stretchability and excellent time-cracking susceptibility. Type austenitic stainless steel can be provided.
まず、本発明に係る「省Ni型オーステナイト系ステンレス鋼」(以下、単に「鋼」とも称する。)を構成する各成分の限定理由について説明する。 First, the reasons for limiting each component constituting the “Ni-saving austenitic stainless steel” (hereinafter also simply referred to as “steel”) according to the present invention will be described.
1)C≦0.08質量%:C(炭素)は、マルテンサイト相の強化に極めて有効な元素であると共に、オーステナイト形成元素として、凝固時や高温域で形成されるδフェライトを減少させ、熱間加工性の低下を抑制する。しかし、Cの過剰添加は、溶接熱影響部および熱延巻取り後の熱延コイルにおいて、クロム炭化物が粒界に析出して粒界腐食感受性を高めるとともに、粒界型の応力腐食割れを発生しやすくする。更には、固溶強化により鋼の0.2%耐力を上昇させて冷間加工性を低下させる。したがって、鋼のC含有量は0.08質量%以下とする必要がある。 1) C ≦ 0.08% by mass: C (carbon) is an extremely effective element for strengthening the martensite phase, and as austenite forming element, reduces δ ferrite formed during solidification and in a high temperature range, Reduces hot workability. However, excessive addition of C increases the susceptibility to intergranular corrosion and precipitates intergranular stress corrosion cracking in the heat affected zone of the weld and the hot rolled coil after coiling, thereby increasing the susceptibility to intergranular corrosion. Make it easier to do. Furthermore, the 0.2% proof stress of the steel is increased by solid solution strengthening, thereby reducing the cold workability. Therefore, the C content of steel needs to be 0.08% by mass or less.
なお、このCの含有量の下限値については特に限定する必要はないが、上記C含有の効果を顕著に発揮させるためにはCの含有量は0.04質量%以上であることが好ましい。 The lower limit of the C content is not particularly limited, but the C content is preferably 0.04% by mass or more in order to exhibit the C-containing effect remarkably.
2)N≦0.08質量%:N(窒素)は、Cと同様にオーステナイト形成元素である。また、Nは、オーステナイト組織の安定化、金属組織の強化、および鋼の耐食性向上に有効な元素である。しかし、Nは固溶強化能が大きいことから、0.08質量%を超えるNの添加は、鋼に著しい硬化をもたらす。したがって、N含有量の上限を0.08質量%とした。 2) N ≦ 0.08 mass%: N (nitrogen) is an austenite-forming element like C. N is an element effective for stabilizing the austenite structure, strengthening the metal structure, and improving the corrosion resistance of the steel. However, since N has a high solid solution strengthening ability, the addition of N exceeding 0.08% by mass brings about significant hardening of the steel. Therefore, the upper limit of the N content is set to 0.08% by mass.
なお、このNの含有量の下限値については特に限定する必要はないが、上記N含有の効果を顕著に発揮させるためにはNの含有量は0.04質量%以上であることが好ましい。 The lower limit of the N content is not particularly limited, but the N content is preferably 0.04% by mass or more in order to exert the above N-containing effect remarkably.
3)Si≦1.0質量%:Si(ケイ素)は、製鋼時において脱酸剤としての効果を奏する元素である。しかし、このSiは大量に含有すると凝固時および高温域において、多くのδフェライトが生成される。つまり、オーステナイト組織を得るためには不利であるため、鋼のSi含有量の上限を1.0質量%(より好ましくは0.6質量%以下)とした。 3) Si ≦ 1.0% by mass: Si (silicon) is an element that exerts an effect as a deoxidizer during steelmaking. However, if this Si is contained in a large amount, a lot of δ ferrite is generated at the time of solidification and in a high temperature range. That is, since it is disadvantageous for obtaining an austenite structure, the upper limit of the Si content of the steel is set to 1.0 mass% (more preferably 0.6 mass% or less).
なお、このSiの含有量の下限値については特に限定する必要はないが、上記Si含有の効果を顕著に発揮させるためにはSiの含有量は0.4質量%以上であることが好ましい
4)7.0≦Mn≦10.0質量%:Mn(マンガン)は、オーステナイト形成元素としてNiの代替にすることができる元素であり、可能な限りMn含有量を高くすることにより、高価なNiの使用割合を低減することができるので鋼の製品コスト低減に有効である。そこで、Ni含有量を極力抑え、コスト低減効果を大きくするためにMn含有量の下限を7.0質量%(より好ましくは7.5質量%以上)とした。一方、Mnの過剰添加は、鋼の耐食性を低下させることから、その含有量の上限を10.0質量%(より好ましくは9.0質量%以下)とした。
The lower limit of the Si content is not particularly limited, but the Si content is preferably 0.4% by mass or more in order to exert the Si-containing effect remarkably. ) 7.0 ≦ Mn ≦ 10.0 mass%: Mn (manganese) is an element that can replace Ni as an austenite-forming element. By increasing the Mn content as much as possible, expensive Ni This is effective in reducing the product cost of steel. Therefore, in order to suppress the Ni content as much as possible and increase the cost reduction effect, the lower limit of the Mn content is set to 7.0% by mass (more preferably 7.5% by mass or more). On the other hand, excessive addition of Mn reduces the corrosion resistance of the steel, so the upper limit of its content was 10.0% by mass (more preferably 9.0% by mass or less).
5)14.0≦Cr≦16.0質量%:Cr(クロム)は、鋼の耐食性を高めるのにもっとも有効な元素のひとつであり、十分な耐食性を得るためには14.0質量%以上のCr含有量が必要である。しかし、Cr含有量が16.0質量%を超えると、凝固時および高温域において、多くのδフェライトが生成されるため、鋼の熱間加工性が低下する。よって、Cr含有量の上限を16.0質量%とした。 5) 14.0 ≦ Cr ≦ 16.0% by mass: Cr (chromium) is one of the most effective elements for enhancing the corrosion resistance of steel. In order to obtain sufficient corrosion resistance, 14.0% by mass or more Cr content is required. However, if the Cr content exceeds 16.0% by mass, a lot of δ ferrite is generated at the time of solidification and in a high temperature range, so that the hot workability of the steel is lowered. Therefore, the upper limit of the Cr content is set to 16.0% by mass.
6)2.0≦Ni≦4.0質量%:Ni(ニッケル)は、オーステナイト形成元素である。そして、Niは、オーステナイト組織の安定性、鋼の良好な熱間加工性、および鋼の良好な冷間加工性を得るため、本発明に係る鋼において不可欠な元素である。しかし、前述のように、Niは高価な元素であり、また、金属アレルギーの原因にもなることから、Ni含有量の上限を4.0質量%にすると共にその下限を2.0質量%とした。 6) 2.0 ≦ Ni ≦ 4.0 mass%: Ni (nickel) is an austenite forming element. Ni is an essential element in the steel according to the present invention in order to obtain the stability of the austenite structure, the good hot workability of the steel, and the good cold workability of the steel. However, as described above, Ni is an expensive element and also causes metal allergy, so the upper limit of Ni content is 4.0% by mass and the lower limit is 2.0% by mass. did.
7)Mo≦0.5質量%:Mo(モリブデン)は、鋼の耐食性を向上させることができる元素であるが、Moの含有によって凝固時および高温域において、多くのδフェライトが生成され、鋼の熱間加工性を低下させる虞がある。したがって、鋼の熱間加工性の低下を抑えつつ鋼の耐食性を向上させることができるようにするため、Mo含有量の上限を0.5質量%とした。 7) Mo ≦ 0.5% by mass: Mo (molybdenum) is an element that can improve the corrosion resistance of steel. However, inclusion of Mo generates a lot of δ-ferrite during solidification and in a high-temperature region. There is a risk of reducing the hot workability. Therefore, the upper limit of the Mo content is set to 0.5% by mass so that the corrosion resistance of the steel can be improved while suppressing the decrease in hot workability of the steel.
8)Cu≦2.5質量%:Cu(銅)は、オーステナイト形成元素であり、Niの代替元素として有効である。また、このCuは、鋼の耐食性を高めると共に、軟質化に寄与する元素であるが、過剰量のCuの添加は、熱間加工性や張出し性を低下させる虞があるため、Cu含有量の上限を2.5質量%とした。 8) Cu ≦ 2.5% by mass: Cu (copper) is an austenite forming element and is effective as a substitute element for Ni. In addition, this Cu is an element that increases the corrosion resistance of the steel and contributes to softening. However, the addition of an excessive amount of Cu may reduce the hot workability and the stretchability. The upper limit was 2.5% by mass.
なお、このCuの含有量の下限値については特に限定する必要はないが、上記Cu含有の効果を顕著に発揮させるためにはCuの含有量は1.0質量%以上であることが好ましい。 The lower limit of the Cu content is not particularly limited, but the Cu content is preferably 1.0% by mass or more in order to exert the above Cu-containing effect remarkably.
9)−45≦Md30Mn≦−5:Md30Mn値は、NiをMnで置換したタイプの省Ni型オーステナイト系ステンレス鋼におけるオーステナイト安定度の指標となる値である。即ち、本成分系のオーステナイト系ステンレス鋼を冷間加工した際に生じる加工誘起マルテンサイト(α’)変態のし易さを表す値で、Md30Mn=551−462([%C]+[%N])−9.2[%Si]−19.1[%Mn]−13.7[%Cr]−29([%Ni]+[%Cu])−18.5[%Mo]に従って求められ、この値が大きいほど、オーステナイト安定度は低下し、加工に伴う加工誘起マルテンサイト(α’)変態が生じ易くなる。 9) −45 ≦ Md 30 Mn ≦ −5: The Md 30 Mn value is a value serving as an index of austenite stability in a Ni-saving austenitic stainless steel of a type in which Ni is replaced with Mn. That is, it is a value representing the ease of work-induced martensite (α ′ ) transformation that occurs when cold-working the austenitic stainless steel of this component system, Md 30 Mn = 551-462 ([% C] + [ % N])-9.2 [% Si] -19. 1 [% Mn] -13.7 [% Cr] -29 ([% Ni] + [% Cu])-18.5 [% Mo] The larger the value, the lower the austenite stability, and the more easily the processing-induced martensite (α ′ ) transformation occurs during processing.
ところで、オーステナイト系ステンレス鋼の延性や張出し成形性は、オーステナイト安定度を所定の範囲に調整することにより、最も良好になることが知られている。すなわち、オーステナイト安定度の指標であるMd30Mn値が或る範囲の上限値までは、加工時に適度な量の加工誘起マルテンサイト相(α’)が生じ、変形部の加工硬化が大きくなることから、くびれなど局部変形が抑制され、大きな均一伸びが得られ延性や張出し性が向上する。しかしながら、Md30Mn値が或る範囲の上限値を超えてオーステナイト安定度が或るレベルよりも低くなる、つまり、上記の或る範囲以上にオーステナイト相が不安定になると、変形初期の内にマルテンサイト変態による加工硬化が完了し、それ以降は上記のくびれ防止効果が得られなくなる結果、延性や張出し性が低下するようになる。 By the way, it is known that the ductility and stretch formability of austenitic stainless steel become the best by adjusting the austenite stability to a predetermined range. That is, when the Md 30 Mn value, which is an index of austenite stability, reaches an upper limit within a certain range, an appropriate amount of processing-induced martensite phase (α ′ ) occurs during processing, and work hardening of the deformed portion increases. Therefore, local deformation such as constriction is suppressed, large uniform elongation is obtained, and ductility and stretchability are improved. However, when the Md 30 Mn value exceeds the upper limit of a certain range and the austenite stability becomes lower than a certain level, that is, when the austenite phase becomes unstable beyond the above certain range, Work hardening by martensitic transformation is completed, and after that, the above-mentioned necking prevention effect cannot be obtained, resulting in a decrease in ductility and stretchability.
また、オーステナイト系ステンレス鋼は、深絞り成形などのプレス加工を行った場合に、その加工度が限界を超えると時期割れと称する遅れ破壊を生じ、問題となることが多くある。時期割れの感受性に影響を及ぼす因子としては、CおよびN量、鋼中水素、成形品の残留応力などと共にオーステナイト安定度などが挙げられ、特に、Md30Mn値が大きく(すなわち、オーステナイト安定度が低く)、加工誘起マルテンサイト相(α’)が生じやすい鋼ほど時期割れ感受性に劣る傾向があることが知られている。 In addition, austenitic stainless steel, when subjected to press working such as deep drawing, often causes a problem of delayed fracture called time cracking when the degree of work exceeds a limit. Factors that affect the susceptibility to time cracking include C and N content, hydrogen in steel, residual stress of the molded article, and austenite stability, etc., especially Md 30 Mn value is large (that is, austenite stability It is known that steels that are more prone to work-induced martensite phase (α ′ ) tend to be less susceptible to time cracking.
以上を纏めると、Md30Mn値が大きいと、溶体化処理を施した製品板にプレス加工などの成形加工を行った場合に、加工誘起マルテンサイト相(α’)が適性量以上に過大に生じ、延性や張出し性が低下すると共に、時期割れ感受性も低下する。本発明では延性や張出し性を適度に保ちつつ、時期割れ感受性にも優れた鋼を得るためにはMd30Mn≦−5とする必要があることを見出した。 In summary, if the Md 30 Mn value is large, the work-induced martensite phase (α ′ ) is excessively larger than the appropriate amount when forming the product plate that has undergone solution treatment, such as pressing. As a result, ductility and overhanging properties are lowered, and the sensitivity to time cracking is also lowered. In the present invention, it has been found that Md 30 Mn ≦ −5 is necessary to obtain a steel excellent in time cracking susceptibility while maintaining appropriate ductility and stretchability.
一方、Md30Mn値が小さいと、プレス成形後の時期割れの懸念はなくなるが、Md30Mnが−45未満の場合には、加工誘起マルテンサイト(α’)相の生成量が極めて少なくなり、加工誘起変態を利用した延性の上昇効果が得られなくなり、溶体化処理後の製品板の成形性低下が懸念される。よって、その下限は−45(Md30Mn≧−45)とするのが好ましい。 On the other hand, if the Md 30 Mn value is small, there is no fear of time cracking after press forming, but if Md 30 Mn is less than −45, the amount of work-induced martensite (α ′ ) phase generated becomes extremely small. In addition, the effect of increasing the ductility using the processing-induced transformation cannot be obtained, and there is a concern that the formability of the product plate after the solution treatment is lowered. Therefore, the lower limit is preferably −45 (Md 30 Mn ≧ −45).
つまり、上述したオーステナイト系ステンレス鋼の延性や張出し成形性を最も良好にする所定の範囲とは、−45≦Md30Mn≦−5の範囲である。 That is, the predetermined range that makes the ductility and stretch formability of the austenitic stainless steel described above most favorable is a range of −45 ≦ Md 30 Mn ≦ −5.
なお、上式における「%」は「質量%」を意味し、「%元素記号」は「鋼中における元素の配合割合を質量%で表したもの」を意味する。 In the above formula, “%” means “% by mass”, and “% element symbol” means “a ratio of elements in steel expressed in mass%”.
さらに、上記各元素およびパラメーターに加え、以下の元素の含有量を調整するのがより好ましい。 Furthermore, in addition to the above elements and parameters, it is more preferable to adjust the content of the following elements.
10)P≦0.05質量%:P(リン)は、鋼の耐食性および熱間加工性を劣化させる要因となる元素であるため、その含有量の上限を0.05質量%とした。なお、このPを不可避不純物と見做すようにしてもよい。 10) P ≦ 0.05% by mass: P (phosphorus) is an element that causes deterioration of the corrosion resistance and hot workability of steel, so the upper limit of its content was set to 0.05% by mass. Note that this P may be regarded as an inevitable impurity.
11)S≦0.01質量%:S(硫黄)は、介在物を増加させると共に、鋼の耐発銹性を低下させる要因となる元素である。また、S含有量の増加は熱間加工性を著しく低下させることから、S含有量の上限を0.01質量%とした。なお、このSを不可避不純物と見做すようにしてもよい。 11) S ≦ 0.01% by mass: S (sulfur) is an element that increases inclusions and decreases the resistance to galling of steel. Moreover, since the increase in the S content significantly decreases the hot workability, the upper limit of the S content is set to 0.01% by mass. The S may be regarded as an inevitable impurity.
以上のような各元素で構成された本発明に係る鋼は、一般的なステンレス鋼製造工程により製造される。すなわち、溶解、鋳造、熱間圧延および冷間圧延を経た後、溶体化熱処理が行われる。 The steel according to the present invention composed of the elements as described above is manufactured by a general stainless steel manufacturing process. That is, solution heat treatment is performed after melting, casting, hot rolling and cold rolling.
以下に、本発明に係る実施例として、鋼試料の製造方法、試験の方法および結果について説明する。なお、本発明は当該実施例に限定されるものではない。 Below, the manufacturing method of a steel sample, the method of a test, and a result are demonstrated as an Example which concerns on this invention. In addition, this invention is not limited to the said Example.
1)鋼試料の作製
表1に示す化学組成を有する発明鋼及び比較鋼を得るため、高周波溶解炉にて38mm×90mm×150mmのインゴットを製作し、このインゴットを電気炉内で、1200℃で60分間加熱し、4段圧延機で3.0mm厚まで熱間圧延して熱延板を得た。
1) Preparation of steel samples In order to obtain invention steels and comparative steels having the chemical compositions shown in Table 1, an ingot of 38 mm x 90 mm x 150 mm was manufactured in a high-frequency melting furnace, and this ingot was heated at 1200 ° C in an electric furnace. It was heated for 60 minutes and hot-rolled to a thickness of 3.0 mm with a four-high rolling mill to obtain a hot-rolled sheet.
2)試験の方法
(1)硬さ
前述の工程で作製した発明鋼及び比較鋼となる冷延焼鈍酸洗板から、試験片を切り出し、JIS Z 2244に準拠してビッカース硬さ試験を行い、硬さを評価した。得られた結果を表2に示す。
2) Test method (1) Hardness A test piece was cut out from the cold-rolled annealed pickled steel plate used as the inventive steel and comparative steel prepared in the above-described steps, and a Vickers hardness test was performed according to JIS Z 2244. Hardness was evaluated. The obtained results are shown in Table 2.
(2)引張強さ、0.2%耐力、伸び
前述の工程で作製した発明鋼及び比較鋼となる冷延焼鈍酸洗板の圧延方向から、JIS13B号試験片を切り出し、JIS Z 2241に準拠して引張試験を行い、引張強さ、0.2%耐力、伸びを測定した。得られた結果を表2に示す。
(2) Tensile strength, 0.2% proof stress, elongation From the rolling direction of the cold-rolled annealed pickled steel plate used as the inventive steel and the comparative steel produced in the above-mentioned process, a JIS 13B test piece was cut out and conformed to JIS Z 2241 Then, a tensile test was performed, and tensile strength, 0.2% proof stress, and elongation were measured. The obtained results are shown in Table 2.
(3)エリクセン値
前述の工程で作製した発明鋼及び比較鋼となる冷延焼鈍酸洗板より、一辺90mmの正方形状の試験片を切り出し、JIS Z 2247に準拠してエリクセン試験を行った。得られた結果を表2に示す。
(3) Erichsen value From the cold-rolled annealed pickled steel plate used as the inventive steel and the comparative steel produced in the above-described process, a square test piece having a side of 90 mm was cut out and subjected to an Erichsen test in accordance with JIS Z 2247. The obtained results are shown in Table 2.
(4)時期割れ感受性
前述の工程にて製作した発明鋼及び比較鋼となる冷延焼鈍酸洗板より、円形の試験片(φ100mm)を採取し、試験片を絞り比:2.0でカップ状に絞り成形試験を行った(絞り試験条件 ポンチ径:φ50mm、ダイス径:φ53mm、絞り速度:25mm/min、しわ押さえ圧23.5kN、試験温度:25℃、試験数:n=3)。
(4) Time cracking sensitivity A round test piece (φ100 mm) is taken from the cold-rolled annealed pickled steel plate as the invention steel and comparative steel manufactured in the above-mentioned process, and the test piece is cupd at a drawing ratio of 2.0. (Drawing test conditions: punch diameter: φ50 mm, die diameter: φ53 mm, drawing speed: 25 mm / min, wrinkle holding pressure 23.5 kN, test temperature: 25 ° C., number of tests: n = 3).
次に、絞り加工後の試験片に潤滑油を塗布し、40℃の環境下で500時間保持し、時期割れの発生有無、個数を確認した。得られた結果を表2に示す。なお、表2におけるブランク(−)部分は、所定のカップ状に絞り成形ができなかったものを示している。 Next, lubricating oil was applied to the test piece after drawing, and held in an environment of 40 ° C. for 500 hours, and the presence / absence and number of time cracks were confirmed. The obtained results are shown in Table 2. In addition, the blank (-) part in Table 2 shows what could not be drawn into a predetermined cup shape.
3)試験結果
上記表2から明らかなように、発明鋼1乃至7は、53%以上の伸びと12.5mm以上のエリクセン値を有しており、高い加工率で張出し加工ができるプレス成形性を有している。また、発明鋼1乃至7においては、時期割れ感受性試験の結果、全く時期割れが発生しなかった。つまり、本発明鋼は、伸びや張出し性と云った成形性のみならず、時期割れ感受性にも優れたものとなっている。
3) Test results As is clear from Table 2 above, the inventive steels 1 to 7 have an elongation of 53% or more and an Erichsen value of 12.5 mm or more, and press formability capable of being stretched at a high processing rate. have. In the inventive steels 1 to 7, no time cracking occurred as a result of the time crack susceptibility test. That is, the steel of the present invention is excellent not only in formability such as elongation and stretchability, but also in time cracking susceptibility.
なお、比較鋼5及び比較鋼6もMd30Mn値が本発明の範囲内にあり、53%以上の伸びと12.5mm以上のエリクセン値が得られ、時期割れの発生もなかったが、これらの鋼は、Ni含有量が4.0質量%を超えており(つまり、本発明の成分組成の範囲外である)、Niアレルギーの危険性が高まる上、経済性にも欠けると云った問題がある。 The comparative steel 5 and the comparative steel 6 also had an Md 30 Mn value within the range of the present invention, and an elongation of 53% or more and an Erichsen value of 12.5 mm or more were obtained. This steel has a Ni content exceeding 4.0% by mass (that is, outside the range of the component composition of the present invention), which increases the risk of Ni allergy and is also not economical. There is.
ここで、上記各種データを用い、オーステナイト安定度と、オーステナイト系ステンレス鋼の伸び,エリクセン値及び時期割れ個数それぞれとの関係をプロットしたのが図1乃至図3である。なお、各図中の(a)は、オーステナイト安定度を示す指標として本発明に係る「Md30Mn値」、すなわちMd30Mn=551−462([%C]+[%N])−9.2[%Si]−19.1[%Mn]−13.7[%Cr]−29([%Ni]+[%Cu])−18.5[%Mo]に従って求められるMd30Mn値を用いたものであり、(b)は、オーステナイト安定度を示す一般的な指標である「野原の改良式に基づくMd30値」を用いたものである。また、各図の(a)において薄墨で示した領域は、本発明に係る鋼のMd30Mnの範囲を示すものである。 Here, FIG. 1 to FIG. 3 plot the relationship between the austenite stability and the elongation, Erichsen value, and number of time cracks of austenitic stainless steel using the various data. In addition, (a) in each figure is the “Md 30 Mn value” according to the present invention as an index indicating austenite stability, that is, Md 30 Mn = 551-462 ([% C] + [% N]) − 9. .2 [% Si] -19.1 [% Mn] -13.7 [% Cr] -29 ([% Ni] + [% Cu]) - 18.5 Md 30 Mn value determined in accordance with [% Mo] (B) uses the “Md 30 value based on the improved field formula”, which is a general index indicating austenite stability. The region indicated by Usuzumi in (a) of each figure shows the Md 30 Mn range of the steel according to the present invention.
これらの図が示すように、本発明鋼を含む省Ni−高Mnの原料系では、オーステナイト安定度を示す一般的な指標である「野原の改良式に基づくMd30値」と、鋼の伸び,エリクセン値及び時期割れ個数との間に相関は得られない。これに対し、本発明に係る「Md30Mn値」と、鋼の伸び,エリクセン値及び時期割れ個数との間、すなわち張出し性や時期割れ感受性との間には高い相関が得られる。つまり、省Ni−高Mn鋼の成分設計をする際には、本発明に係る「Md30Mn値」を用いるのが極めて有効であることが窺える。 As shown in these figures, in the Ni-saving and high-Mn raw material system including the steel of the present invention, the “Md 30 value based on Nohara's modified formula”, which is a general indicator of austenite stability, and the elongation of steel Therefore, no correlation is obtained between the Erichsen value and the number of cracks. On the other hand, a high correlation is obtained between the “Md 30 Mn value” according to the present invention and the steel elongation, Erichsen value and the number of time cracks, that is, the stretchability and the time crack sensitivity. That is, it can be seen that it is extremely effective to use the “Md 30 Mn value” according to the present invention when designing the component of the Ni-saving high-Mn steel.
そこで、この「Md30Mn値」を用いて検討すると、上述したように、「Md30Mn値」を−45≦Md30Mn≦−5の範囲とすることによって、得られる鋼は、伸びや張出し性と云った成形性のみならず、時期割れ感受性にも優れたものとなる。 Therefore, when this “Md 30 Mn value” is examined, as described above, when the “Md 30 Mn value” is in the range of −45 ≦ Md 30 Mn ≦ −5, In addition to formability such as stretchability, it is excellent in sensitivity to time cracking.
以上のように、本発明の「省Ni型オーステナイト系ステンレス鋼」によれば、Niの配合割合が4質量%以下と経済的な省Ni型の成分系であるにも拘らず、張出し性などの成形性に優れると共に、時期割れ感受性にも優れた省Ni型オーステナイト系ステンレス鋼を提供することができる。 As described above, according to the “Ni-saving austenitic stainless steel” of the present invention, although the Ni content is 4% by mass or less and is an economical Ni-saving component system, the extruding property, etc. It is possible to provide a Ni-saving austenitic stainless steel having excellent formability and excellent cracking susceptibility.
Claims (2)
Md30Mn=551−462([%C]+[%N])−9.2[%Si]−19.1[%Mn]−13.7[%Cr]−29([%Ni]+[%Cu])−18.5[%Mo]に従うMd30Mn値が、−45≦Md30Mn≦−5を満たすことを特徴とする省Ni型オーステナイト系ステンレス鋼。 % By mass, C ≦ 0.08%, N ≦ 0.08%, Si ≦ 1.0%, 8.05 % ≦ Mn ≦ 10.0%, 14.0% ≦ Cr ≦ 16.0%, 2 0.0% ≦ Ni ≦ 4.0%, 1.0% ≦ Cu ≦ 2.5% , Mo ≦ 0.5% , the balance being Fe and inevitable impurities,
Md 30 Mn = 551-462 ([% C] + [% N]) − 9.2 [% Si] −19.1 [% Mn] −13.7 [% Cr] −29 ([% Ni] + Ni-saving austenitic stainless steel characterized in that the Md 30 Mn value according to [% Cu])-18.5 [% Mo] satisfies −45 ≦ Md 30 Mn ≦ −5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012161711A JP5977609B2 (en) | 2012-07-20 | 2012-07-20 | Saving Ni-type austenitic stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012161711A JP5977609B2 (en) | 2012-07-20 | 2012-07-20 | Saving Ni-type austenitic stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014019925A JP2014019925A (en) | 2014-02-03 |
JP5977609B2 true JP5977609B2 (en) | 2016-08-24 |
Family
ID=50195175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012161711A Active JP5977609B2 (en) | 2012-07-20 | 2012-07-20 | Saving Ni-type austenitic stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5977609B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169421A (en) * | 2015-03-13 | 2016-09-23 | 日新製鋼株式会社 | Austenitic stainless steel excellent in stress corrosion cracking resistance |
JP6279011B2 (en) | 2016-05-13 | 2018-02-14 | 三菱電機株式会社 | Thermal infrared detector and method for manufacturing thermal infrared detector |
KR20190065720A (en) * | 2017-12-04 | 2019-06-12 | 주식회사 포스코 | Austenitic stainless steel with excellent workability and resistance of season cracking |
CN116024486B (en) * | 2022-12-28 | 2024-10-11 | 宝钢德盛不锈钢有限公司 | Production method for reducing cold-rolled edge scaling of nickel-saving austenitic stainless steel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI247813B (en) * | 2002-10-23 | 2006-01-21 | Yieh United Steel Corp | Austenite stainless steel with low nickel content |
US20050103404A1 (en) * | 2003-01-28 | 2005-05-19 | Yieh United Steel Corp. | Low nickel containing chromim-nickel-mananese-copper austenitic stainless steel |
CN101328565A (en) * | 2007-06-22 | 2008-12-24 | 宝山钢铁股份有限公司 | Low nickle type austenitic stainless steel and manufacturing method thereof |
-
2012
- 2012-07-20 JP JP2012161711A patent/JP5977609B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014019925A (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4498847B2 (en) | Austenitic high Mn stainless steel with excellent workability | |
JP5462281B2 (en) | Stainless austenitic low Ni steel alloy | |
JP5500960B2 (en) | Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability | |
JP5308726B2 (en) | Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same | |
CN110088323B (en) | Article comprising a duplex stainless steel and use thereof | |
JP5977609B2 (en) | Saving Ni-type austenitic stainless steel | |
JP2011219809A (en) | High strength steel sheet | |
CN114787406A (en) | Austenitic stainless steel material, method for producing same, and plate spring | |
JP4327030B2 (en) | Low Ni austenitic stainless steel with excellent overhanging and rust resistance | |
JP7422218B2 (en) | Ferritic stainless steel cold-rolled steel sheet and method for producing ferritic stainless cold-rolled steel sheet | |
JP2018003139A (en) | Stainless steel | |
JP7598219B2 (en) | Austenitic stainless steel and method for producing same | |
TW202233863A (en) | Austenitic stainless steel material, method for producing same, and leaf spring | |
JP4331731B2 (en) | Austenitic stainless steel and springs made of that steel | |
CN108138295B (en) | Novel austenitic stainless alloy | |
WO2012160594A1 (en) | Austenitic stainless steel for spring, and stainless processing material for spring | |
JP2011047008A (en) | Austenitic stainless steel for spring | |
JP7624506B2 (en) | Austenitic stainless steel cold-rolled and annealed steel sheet with improved deep drawability | |
CN100372961C (en) | Austenitic high Mn stainless steel with excellent workability | |
US20240271242A1 (en) | Austenitic stainless steel and manufacturing method thereof | |
JP7462439B2 (en) | Austenitic stainless steel and calculation method for upper limit of N | |
JP2012201924A (en) | Stainless steel sheet and method for producing the same | |
WO2023153185A1 (en) | Austenitic stainless steel and method for producing austenitic stainless steel | |
JP4498912B2 (en) | Austenitic stainless steel sheet with excellent overhang formability and method for producing the same | |
JP2013112829A (en) | Austenitic stainless steel and press plate using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140605 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5977609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |