[go: up one dir, main page]

JP5974960B2 - 電池温度調整装置 - Google Patents

電池温度調整装置 Download PDF

Info

Publication number
JP5974960B2
JP5974960B2 JP2013080540A JP2013080540A JP5974960B2 JP 5974960 B2 JP5974960 B2 JP 5974960B2 JP 2013080540 A JP2013080540 A JP 2013080540A JP 2013080540 A JP2013080540 A JP 2013080540A JP 5974960 B2 JP5974960 B2 JP 5974960B2
Authority
JP
Japan
Prior art keywords
refrigerant
battery
heat exchanger
heat
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013080540A
Other languages
English (en)
Other versions
JP2014203736A (ja
Inventor
功嗣 三浦
功嗣 三浦
山中 隆
隆 山中
康光 大見
康光 大見
木下 宏
宏 木下
竹内 雅之
雅之 竹内
英晃 大川
英晃 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013080540A priority Critical patent/JP5974960B2/ja
Publication of JP2014203736A publication Critical patent/JP2014203736A/ja
Application granted granted Critical
Publication of JP5974960B2 publication Critical patent/JP5974960B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池の温度を調整する電池温度調整装置の構成に関するものである。
二次電池の入出力特性はその二次電池の温度に影響されるものであり、高温時にも低温時にも悪化するものである。そこで、特許文献1は、車両用の二次電池を加熱または冷却する電池温度調整装置を開示している。その特許文献1において、電池温度調整装置はその二次電池に対して送風することにより電池パックの温度を調整する。
具体的に、その電池温度調整装置は、冷媒を凝縮させる凝縮器と冷媒を蒸発させる蒸発器とを有する冷凍サイクルを備えている。そして、二次電池を加熱する場合には、凝縮器により加熱された温風を二次電池に吹き付ける。その一方で、二次電池を冷却する場合には、蒸発器により冷却された冷風を二次電池に吹き付ける。
特開2011−178270号公報
電池温度調整装置により温度調整される二次電池は、通常、複数の電池セルから構成された電池パックである。そして、電池劣化を抑え電池性能を十分に引き出すためには個々の電池セルの入出力特性が揃っていることが好ましいところ、電池セルの入出力特性はその電池セルの温度にそれぞれ影響される。従って、電池温度調整装置は、例えば二次電池すなわち電池パックを加熱する場合には、単に加熱するのではなく、電池パック全体において温度むらを抑えるように、言い換えれば、電池セル毎の温度がばらつかないように、電池パックを加熱する必要がある。
しかし、引用文献1の電池温度調整装置では、過熱度の大きい冷媒が凝縮器に流入し、その凝縮器からの温風により電池パックが加熱される。そして、凝縮器内の冷媒温度は冷媒が飽和状態であれば殆ど変化しないが、冷媒が過熱状態であれば大きくばらつく。そのため、電池パックを加熱する温風に温度ばらつきが生じることになる。例えば、その電池パックを加熱する温風のうち、過熱状態の冷媒により加熱された空気は、飽和状態の冷媒により加熱された空気よりも高温になる。
その結果、引用文献1の電池温度調整装置では、電池パックが加熱される場合に、電池パックを構成する電池セル毎の温度のばらつきが大きくなるという課題があった。すなわち、電池パックである電池全体において温度のばらつきが大きくなるという課題があった。
本発明は上記点に鑑みて、電池全体における温度ばらつきを抑えつつ電池を暖機することができる電池温度調整装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、電池(12)を暖機する電池温度調整装置(10)であって、
冷凍サイクル(14、62)において冷媒を圧縮し循環させる圧縮機(16)と、
その圧縮機から吐出された冷媒が流入する冷媒入口(18a)を有し、その冷媒入口から流入した冷媒の熱によって電池を暖める電池用熱交換器(18)と、
電池用熱交換器の冷媒入口における冷媒の過熱状態を解消するように作動する過熱抑制装置(261、50、54)とを備えていることを特徴とする。
上述の発明によれば、過熱抑制装置は電池用熱交換器の冷媒入口における冷媒の過熱状態を解消するように作動するので、電池用熱交換器内の冷媒の温度ばらつきが抑えられ、それにより、電池全体における温度ばらつきを抑えつつ電池を暖機することができる。
なお、この欄および特許請求の範囲で記載した括弧内の各符号は、後述する実施形態に記載した各符号に対応したものである。
本発明の第1実施形態における電池温度調整装置10の回路構成を示すと共に、その回路内における冷媒の状態を示すようにモリエル線図を配置した図である。 図1の冷凍サイクル14に設けられた第1熱交換器18と電池12との構成を模式的に表した模式図である。 図1の冷凍サイクル14に設けられた膨張装置20の構造を模式的に表した模式図である。 図1の冷凍サイクル14に設けられた第1熱交換器18の冷媒出口18bにおける冷媒の状態を示す点Pexをモリエル線図上に表した図である。 第2実施形態における電池温度調整装置10の回路構成を示した図である。 第3実施形態における電池温度調整装置10の回路構成を示した図である。 第4実施形態における電池温度調整装置10の回路構成を示すと共に、その回路内における冷媒の状態を示すようにモリエル線図を配置した図である。 図7の冷凍サイクル14に設けられた気液分離装置54の概略構成を表した図である。 図8の気液分離装置54を制御する制御処理を示したフローチャートである。 図1に示す冷凍サイクル14の回路構成に対する第1の変形例を示した回路図である。 図1に示す冷凍サイクル14の回路構成に対する第2の変形例を示した回路図である。 図5および図6に示す冷凍サイクル14の回路構成に対する変形例を示した回路図である。 図1に示す冷凍サイクル14をガスインジェクションサイクルに変更したときの第1の変形例を示す回路図である。 図1に示す冷凍サイクル14をガスインジェクションサイクルに変更したときの第2の変形例を示す回路図である。 図1に示す冷凍サイクル14をガスインジェクションサイクルに変更したときの第3の変形例を示す回路図である。 図1に示す冷凍サイクル14をガスインジェクションサイクルに変更したときの第4の変形例を示す回路図である。 図2の第1熱交換器18と電池12との構成を変更した第1の変形例を模式的に表した模式図である。 図2の第1熱交換器18と電池12との構成を変更した第2の変形例を模式的に表した模式図である。 図2の第1熱交換器18と電池12との構成を変更した第3の変形例を模式的に表した模式図である。 図2の第1熱交換器18と電池12との構成を変更した第4の変形例を模式的に表した模式図である。 図2の第1熱交換器18と電池12との構成を変更した第5の変形例を模式的に表した模式図である。 図1の冷凍サイクル14に四方弁90が追加された回路図であって、その四方弁90が第1熱交換器18を凝縮器として機能させるように切り替えられたときの冷媒流れを表す図である。 図22と同じ構成の回路図であって、四方弁90が第1熱交換器18を蒸発器として機能させるように切り替えられたときの冷媒流れを表す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1は、本発明の第1実施形態における電池温度調整装置10のモリエル線図である。図1の破線Lstrは、モリエル線図における飽和液線と飽和蒸気線とから成る飽和曲線である。
図1に示す電池温度調整装置10は、車両用の電池12(図2参照)の温度を調整する車両用装置であり、例えばハイブリッド車や電気自動車等の車両に搭載される。具体的には、電池温度調整装置10は、例えば冷間時等において、電池12を暖機する。その電池12は二次電池であり、例えば車両走行用モータの電源として用いられる。
図1に示すように、電池温度調整装置10は、冷媒が循環する冷凍サイクル14から構成されている。その冷凍サイクル14は、蒸気圧縮式の冷凍サイクルであり、コンプレッサすなわち圧縮機16と、第1熱交換器18と、膨張装置20と、第2熱交換器22と、気液分離装置24と、内部熱交換器26とを備えている。
圧縮機16は、冷媒を吸入する吸入ポート16aと、冷媒を吐出する吐出ポート16bとを備えている。圧縮機16は、冷凍サイクル14において冷媒を吸入ポート16aから吸入して圧縮し、その圧縮した冷媒を吐出ポート16bから吐出する。このようにして冷媒を冷凍サイクル14において循環させる。
内部熱交換器26は、第1熱交換部261と第2熱交換部262とを備えており、第1熱交換部261と第2熱交換部262との間で熱交換を行わせる。
第1熱交換部261は、冷凍サイクル14において圧縮機16と第1熱交換器18の冷媒入口18aとの間に介装されている。そして、第1熱交換部261には、圧縮機16から吐出された高温高圧の過熱気相の冷媒が流入する。第1熱交換部261は、その第1熱交換部261内を流通する冷媒から熱を放出させ、その放熱させられた冷媒を第1熱交換器18の冷媒入口18aへ流出させる。すなわち、第1熱交換部261は、その内部を流通する冷媒から放熱させる放熱装置として機能する。言い換えれば、第1熱交換部261は、第1熱交換器18の冷媒入口18aに接続された入口側放熱装置である。
例えば、第1熱交換部261がその内部を流通する冷媒から放熱させることにより、図1のモリエル線図では、第1熱交換器18の冷媒入口18aにおいて冷媒の状態は二相域内の飽和蒸気線近傍になっている。
第2熱交換部262は、冷凍サイクル14において第2熱交換器22と気液分離装置24との間に介装されている。第2熱交換部262には第2熱交換器22からの冷媒が流入する。第2熱交換部262は、第1熱交換部261内を流通する冷媒から放出された熱によって、第2熱交換部262内を流通する冷媒を加熱する。そして、その加熱された冷媒を気液分離装置24へ流出させる。すなわち、第2熱交換部262は、その第2熱交換部262内を流通する冷媒へ第1熱交換部261からの熱を供給する吸熱装置である。
第1熱交換器18は、圧縮機16から吐出された冷媒が第1熱交換部261を介して流入する冷媒入口18aと、冷媒が流出する冷媒出口18bとを備えている。そして、第1熱交換器18は、冷媒入口18aから流入した冷媒の熱によって電池12(図2参照)を暖める電池用熱交換器である。すなわち、第1熱交換器18は、冷媒を凝縮させその冷媒の凝縮により放出される熱によって電池12を暖める凝縮器である。
第1熱交換器18は、例えば図2の模式図のように構成されている。図2は、第1熱交換器18と電池12との構成を模式的に表した図である。その図2に示すように、電池12は複数の電池セル121から成る組電池すなわち電池パックであり、第1熱交換器18は電池12と一体的に構成されている。すなわち、電池12と第1熱交換器18とは1つの電源ユニット30を構成している。
第1熱交換器18は例えばアルミニウム合金等の熱伝導性の良い材料で構成されている。そして、電池セル121は平板状の形状を有しており、電源ユニット30では、複数の電池セル121が、平板状の例えばアルミニウム合金等から成る熱拡散板32を挟んで厚み方向に交互に積層されている。また、互いに隣り合う熱拡散板32と電池セル121とは良好な熱伝達性能を有するように接触している。そして、その熱拡散板32の一端は第1熱交換器18にロウ付け等により接合されている。
このような構成から、電源ユニット30では、第1熱交換器18内を流通する冷媒から放出された熱は複数の熱拡散板32に伝達され、その熱拡散板32からそれに接触している各電池セル121に伝達される。それと共に、第1熱交換器18から電池セル121へ直接伝達される。図2における破線矢印は第1熱交換器18での冷媒流れを表しており、後述する図17および図18においても同様である。
なお、第1熱交換器18内の冷媒圧力は、圧縮機16の回転速度と膨張装置20とによって保たれ、電池12を暖機する際には、その第1熱交換器18内の冷媒温度は、例えば電池12を暖機するための目標温度である10℃以上に保たれる。また、電池温度が上昇し過ぎると電池劣化が促進されるので、第1熱交換器18内の冷媒温度は、40℃以下、高くても60℃以下に保たれることが望ましい。
図1に示す膨張装置20は、冷凍サイクル14において、第1熱交換器18の冷媒出口18bから流出した冷媒を減圧する。すなわち、第1熱交換器18の冷媒出口18bからの冷媒は膨張装置20に流入し、膨張装置20にて減圧され、その減圧された冷媒が膨張装置20から第2熱交換器22へ流出させられる。
図3は、膨張装置20の構造を模式的に表した模式図である。
図3に示すように、膨張装置20の流量調整装置34は、膨張装置20を流通する冷媒流量を調整する装置であって、冷媒を減圧する冷媒流路20aの開口面積を増減する開閉弁341と、例えばステッピングモータであり開閉弁341を作動させる電動機342とを備えている。すなわち、流量調整装置34は、冷媒流路20aの開口面積を減少させることにより冷媒流量を減少させ、冷媒流路20aの開口面積を増大させることにより冷媒流量を増加させる。流量調整装置34の電動機342は、例えば不図示の制御装置により駆動される。
例えば、図3において開閉弁341が、電動機342の駆動により矢印AR01方向に移動すると、冷媒流路20aの開口面積が減少する。すなわち、その冷媒流路20aが狭くなる。そうすると、図4に示すモリエル線図上で、膨張装置20の入口における冷媒の状態すなわち第1熱交換器18の冷媒出口18bにおける冷媒の状態を示す点Pexが、矢印AR11方向に移動する。要するに、点Pexが示す冷媒圧力が高くなると共に、その点Pexが示す冷媒の過冷却度すなわちサブクールが大きくなる。
逆に、開閉弁341が、電動機342の駆動により矢印AR02方向に移動すると、冷媒流路20aの開口面積が増大する。すなわち、その冷媒流路20aが広くなる。そうすると、図4に示すモリエル線図上で、点Pexが矢印AR12方向に移動する。要するに、点Pexが示す冷媒圧力が低くなると共に、その点Pexが示す冷媒の過冷却度が小さくなり、飽和状態であれば冷媒の乾き度が高くなる。
このように構成された膨張装置20は、電動機342の制御により、第1熱交換器18の冷媒出口18bにおける冷媒の過冷却状態を解消するように作動する過冷却抑制装置として機能する。すなわち、膨張装置20はその過冷却抑制装置を構成している。具体的には、膨張装置20は、冷媒出口18bにおける冷媒圧力PRexと冷媒温度Texとに基づき流量調整装置34によって冷媒流量を調整することにより過冷却抑制装置として作動する。なお、上記の冷媒の過冷却状態を解消するように作動することとは、その過冷却状態を完全に解消することだけでなく、冷媒を飽和状態に近い過冷却度の低い状態にすることも含んだ意味である。
例えば、図1に示すように、第1熱交換器18の冷媒出口18bにおいて冷媒圧力PRexを検出する冷媒出口圧力センサ36と、冷媒温度Texを検出する冷媒出口温度センサ38とが設けられている。そして、冷媒の飽和温度と冷媒圧力との関係である飽和温度特性マップが予め実験的に設定されており、その飽和温度特性マップから、冷媒の飽和温度STexが、冷媒出口圧力センサ36により検出された冷媒圧力PRexに基づいて不図示の制御装置により求められる。
次に、その飽和温度STexから、冷媒出口温度センサ38により検出された冷媒温度Texを差し引いた温度差ΔTexすなわち過冷却度が算出される。要するに、その温度差ΔTexは、「ΔTex=STex−Tex」という算出式から算出される。その温度差ΔTexが算出されると、その温度差ΔTexが所定の目標温度差以下になるように、流量調整装置34の電動機342が駆動される。
詳細に言えば、第1熱交換器18の冷媒出口18bにおける冷媒が過冷却状態になるように流量調整装置34の電動機342が予め位置決めされており、その電動機342は、温度差ΔTexが上記目標温度差以下になるまで、開閉弁341をAR02方向に徐々に移動させるように駆動される。なお、温度差ΔTexと比較される目標温度差は、例えば、冷媒が略飽和状態とみなせる程度になるように、零に近い正の値に予め実験的に設定されている。
図1に示すように、第2熱交換器22は、冷凍サイクル14において膨張装置20と内部熱交換器26の第2熱交換部262との間に介装されている。第2熱交換器22は、第1熱交換器18から流出し減圧された冷媒すなわち膨張装置20からの冷媒に吸熱させる蒸発器である。
例えば、第2熱交換器22は、空気が通過しその空気と冷媒とを熱交換させるコア部を備えており、そのコア部は、複数の冷媒チューブと複数のフィンとが交互に積層されて構成されている。そして、冷媒チューブ内の冷媒は、そのコア部において空気と熱交換させられることにより蒸発する。そのコア部を通過した冷媒は内部熱交換器26の第2熱交換部262へ流出させられる。
気液分離装置24は、冷凍サイクル14において内部熱交換器26の第2熱交換部262と圧縮機16の吸入ポート16aとの間に介装されている。気液分離装置24は、圧縮機16の吸入ポート16aにおける冷媒状態を管理するものである。具体的には、気液分離装置24は、第2熱交換器22から内部熱交換器26の第2熱交換部262を介して流入した冷媒の気液を分離する。そして、その分離された気体冷媒に液体冷媒を僅かに混合し、その混合後の冷媒を圧縮機16へ流出させる。このようにして、気液分離装置24は、圧縮機16の吸入ポート16aにおける冷媒の気液の混合割合を調整する。
上述したように、本実施形態によれば、内部熱交換器26の第1熱交換部261は、圧縮機16から吐出された高温高圧の過熱気相の冷媒を放熱させ、第1熱交換器18の冷媒入口18aにおける冷媒をモリエル線図の二相域に入れるので、その冷媒入口18aにおける冷媒の過熱状態を解消するように作動する過熱抑制装置として機能する。言い換えれば、第1熱交換部261はその過熱抑制装置を構成しており、圧縮機16から吐出された冷媒から熱を放出させてその冷媒を第1熱交換器18の冷媒入口18aへ流出させることにより上記過熱抑制装置として作動する。
従って、過熱度の大きい冷媒が第1熱交換器18に流入すると第1熱交換器18内の冷媒の温度ばらつきが大きくなるところ、その第1熱交換器18内の冷媒の温度ばらつきが抑えられる。これにより、第1熱交換器18により加熱される電池12全体における温度ばらつきを抑えつつ、電池12を暖機することができる。すなわち、電池12を構成する複数の電池セル121の相互間において温度ばらつきを抑えることができる。なお、上記の冷媒の過熱状態を解消するように作動することとは、その過熱状態を完全に解消することだけでなく、冷媒を飽和状態に近い過熱度の低い状態にすることも含んだ意味である。
また、本実施形態によれば、膨張装置20は、第1熱交換器18の冷媒出口18bにおける冷媒の過冷却状態を解消するように作動する過冷却抑制装置として機能するので、その冷媒出口18bにおける冷媒の過冷却度が大きいことに起因した第1熱交換器18内の冷媒の温度ばらつきを抑えることが可能である。その結果、電池12を暖機する際に、電池12を構成する複数の電池セル121の相互間において温度ばらつきを抑えることができる。
また、本実施形態によれば、内部熱交換器26において、第1熱交換部261を流れる冷媒から放出された熱は、膨張装置20で減圧され第2熱交換部262を流れる冷媒に吸収される。これにより、第2熱交換器22の必要とされる熱交換量を減らし、第2熱交換器22の小型化を図ることが可能である。
(第2実施形態)
次に、本発明の第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。後述の第3実施形態以降の説明でも同様である。
図5は、本実施形態における電池温度調整装置10の回路構成を示した図である。図5に示すように、本実施形態の電池温度調整装置10は、前述の第1実施形態と同様に、冷凍サイクル14から構成されている。しかし、第1実施形態とは異なり、本実施形態の冷凍サイクル14は、内部熱交換器26を備えてはおらず、その替わりに、放熱装置50を備えている。
放熱装置50は、冷凍サイクル14において圧縮機16と第1熱交換器18の冷媒入口18aとの間に介装されている。すなわち、放熱装置50は、第1熱交換器18の冷媒入口18aに接続された入口側放熱装置である。そして、第1実施形態における内部熱交換器26の第1熱交換部261と同様に、放熱装置50には、圧縮機16から吐出された高温高圧の過熱気相の冷媒が流入し、放熱装置50は、その流入した冷媒から熱を放出させ、その放熱させられた冷媒を第1熱交換器18の冷媒入口18aへ流出させる。例えば、放熱装置50は、第1熱交換器18の冷媒入口18aにおける冷媒の状態がモリエル線図の二相域内であり且つ飽和蒸気線近傍になるように、放熱装置50内の冷媒から放熱させる。
例えば、放熱装置50は、第1実施形態の第2熱交換器22と同様に、通風空気と冷媒とを熱交換させるコア部を備えており、そのコア部にて、冷媒から通風空気へ熱を放出させる。
また、放熱装置50の設置場所に限定はないが、例えば、放熱装置50は、車室内の冷暖房を行うために車室内へ空調空気を吹き出す車室内空調ユニット内、または、暖められた空調空気を車両用シートに送風するシートヒータ装置内に配設される。このようにすることにより、放熱装置50内の冷媒からの熱は空調空気に放出され、放熱装置50を暖房用の補助熱源として活用することができる。
本実施形態によれば、放熱装置50は、第1実施形態の内部熱交換器26の第1熱交換部261と同様に、第1熱交換器18の冷媒入口18aにおける冷媒の過熱状態を解消するように作動するので、電池12を暖機する際に、電池12を構成する複数の電池セル121の相互間において温度ばらつきを抑えることができる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。本実施形態では、前述の第2実施形態と異なる点を主として説明する。図6は、本実施形態における電池温度調整装置10の回路構成を示した図である。
図6に示すように、本実施形態の電池温度調整装置10は、前述の第2実施形態に対し、冷凍サイクル14での放熱装置50と第1熱交換器18との配置が入れ替わっている点において異なっている。すなわち、本実施形態では、放熱装置50は、冷凍サイクル14において第1熱交換器18の冷媒出口18bと膨張装置20との間に介装されている。言い換えれば、図6の放熱装置50は、第1熱交換器18の冷媒出口18bに接続された出口側放熱装置である。
そして、放熱装置50は、冷媒出口18bから流出した冷媒から熱を放出させてその冷媒を膨張装置20へ流出させる。このようにして、放熱装置50は、その冷媒出口18bにおける冷媒の過冷却度を小さくし、例えばその冷媒の状態をモリエル線図の二相域に入れる。
すなわち、放熱装置50は、冷媒出口18bにおける冷媒の過冷却状態を解消するように作動する過冷却抑制装置として機能する。言い換えれば、放熱装置50はその過冷却抑制装置を構成しており、冷媒出口18bから流出した冷媒から熱を放出させてその冷媒を膨張装置20へ流すことにより上記過冷却抑制装置として作動する。従って、第1熱交換器18の冷媒出口18bにおける冷媒の過冷却度が大きいことに起因した第1熱交換器18内の冷媒の温度ばらつきを抑えることが可能である。
(第4実施形態)
次に、本発明の第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。図7は、本実施形態における電池温度調整装置10のモリエル線図である。図7に示すように、本実施形態の電池温度調整装置10は、前述の第1実施形態と同様に、冷凍サイクル14から構成されている。しかし、第1実施形態とは異なり、本実施形態の冷凍サイクル14は、内部熱交換器26を備えてはおらず、更に、第1実施形態の気液分離装置24に替えて気液分離装置54を備えている。
図8は、気液分離装置54の概略構成を表した図である。図8に示すように、気液分離装置54は、第2熱交換器22に接続され冷媒が流入する冷媒流入配管541と、圧縮機16の吸入ポート16aに接続され冷媒が流出する冷媒流出配管542とを備えた公知の構造を備えている。例えば、第1実施形態の気液分離装置24と同様の構造を備えている。従って、気液分離装置54は、第1実施形態の気液分離装置24と同様に、第2熱交換器22から流入した冷媒の気液を分離し、その分離された気体冷媒に液体冷媒を僅かに混合したものを圧縮機16へ流出させる。
なお、冷媒流出配管542には、液体冷媒を気体冷媒に混合させるためのオイル戻り孔すなわち液戻り孔542aが形成されている。また、図8は断面図示されており、図8は、気液分離装置54の下方に溜まった液体冷媒の冷媒液面54aの上に気体冷媒が溜まっている状態を表している。
気液分離装置54は、上述したように基本的には公知の構造から成るが、一部に公知ではない構造を備えている。具体的に、気液分離装置54は、公知のものとは異なり、気体冷媒に液体冷媒を混合させる気液混合割合を調整する混合割合調整装置543を備えている。この混合割合調整装置543は、液戻り孔542aの開度を増減する孔開度調整弁543aと、例えばステッピングモータであり孔開度調整弁543aを作動させる電動機543bとを備えている。
すなわち、混合割合調整装置543は、電動機543bの駆動によって液戻り孔542aの開度を減少させることにより、気体冷媒に対する液体冷媒の混合割合を小さくする。逆に、電動機543bの駆動によって液戻り孔542aの開度を増大させることにより、その液体冷媒の混合割合を大きくする。混合割合調整装置543の電動機543bは、例えば不図示の制御装置により駆動される。
例えば、気液分離装置54において、液体冷媒の混合割合が、混合割合調整装置543の電動機543bにより大きくされるほど、気液分離装置54から流出する冷媒のエンタルピが図7の矢印AR41のように小さくなる。それと共に、圧縮機16の吐出ポート16bにおける冷媒のエンタルピすなわち第1熱交換器18の冷媒入口18aにおける冷媒のエンタルピも図7の矢印AR42のように小さくなる。
このように構成された気液分離装置54は、電動機543bの制御により、第1熱交換器18の冷媒入口18aにおける冷媒の過熱状態を解消するように作動する過熱抑制装置として機能する。すなわち、気液分離装置54はその過熱抑制装置を構成している。具体的には、気液分離装置54は、第1熱交換器18の冷媒入口18aにおける冷媒圧力PRinと冷媒温度Tinとに基づき混合割合調整装置543によって気体冷媒に対する液体冷媒の混合割合を調整することにより上記過熱抑制装置として作動する。
例えば、第1熱交換器18の冷媒入口18aにおける冷媒の過熱度が大きくその過熱度を小さくする必要がある場合に、図9のフローチャートが繰り返し実行されることにより、気液分離装置54は上記過熱抑制装置として作動する。そのために、本実施形態の電池温度調整装置10には、図7に示すように、第1熱交換器18の冷媒入口18aにおいて冷媒圧力PRinを検出する冷媒入口圧力センサ56と、冷媒温度Tinを検出する冷媒入口温度センサ58とが設けられている。
図9のフローチャートについて説明すると、先ず、S110において、第1熱交換器18の冷媒入口18aにおける冷媒圧力PRinが冷媒入口圧力センサ56により検出され、その冷媒入口18aにおける冷媒温度Tinが冷媒入口温度センサ58により検出される。
続くS120では、予め設定された前述の飽和温度特性マップから、冷媒入口18aの冷媒の飽和温度STinが冷媒圧力PRinに基づいて求められる。そして、冷媒温度Tinから飽和温度STinを差し引いた温度差ΔTinすなわち過熱度が算出される。要するに、その温度差ΔTinは、「ΔTin=Tin−STin」という算出式から算出される。
続くS130では、算出された温度差ΔTinが、所定の温度差許容値ΔTintよりも大きいか否かが判定される。その結果、温度差ΔTinが温度差許容値ΔTintよりも大きい場合には、S140へ進む。温度差許容値ΔTintは、例えば、冷媒が略飽和状態とみなせる程度になるように、零に近い正の値に予め実験的に設定されている。
S140では、電動機543bが、僅かなステップ量に設定されている所定作動量だけ、液戻り孔542aの開度を大きくするように作動させられる。
このように、S120で算出される温度差ΔTinが温度差許容値ΔTint以下になるまで、電動機543bが、液戻り孔542aの開度を大きくするように徐々に作動させられることにより、第1熱交換器18の冷媒入口18aにおいて冷媒の過熱度が零に近づけられる。
本実施形態によれば、気液分離装置54は、第1熱交換器18の冷媒入口18aにおける冷媒の過熱状態を解消するように作動するので、その冷媒入口18aにおける冷媒の過熱度が大きいことに起因した第1熱交換器18内の冷媒の温度ばらつきを抑えることが可能である。その結果、電池12を暖機する際に、電池12を構成する複数の電池セル121の相互間において温度ばらつきを抑えることができる。
(他の実施形態)
(1)上述の第1実施形態では、内部熱交換器26の第2熱交換部262は、冷凍サイクル14において第2熱交換器22と気液分離装置24との間に介装されているが、図10または図11のように、膨張装置20と第2熱交換器22との間に介装されていても差し支えない。
なお、図10の冷凍サイクル14は、図1に対し第2熱交換器22と第2熱交換部262との配置を入れ替えたものである。また、図11の冷凍サイクル14では、内部熱交換器26の第2熱交換部262と第2熱交換器22との間に膨張装置60が介装されている。その膨張装置60は、例えばオリフィスであってもよいし、膨張装置20と同じ構成であってもよい。
(2)上述の第2実施形態では、放熱装置50は、放熱装置50内の冷媒と通風空気とを熱交換させることによりその冷媒から放熱させるが、十分に冷却された蓄熱材を備えており、その蓄熱材と冷媒とを熱交換させることにより冷媒から放熱させても差し支えない。
(3)上述の第2実施形態では、放熱装置50は、冷凍サイクル14において圧縮機16と第1熱交換器18の冷媒入口18aとの間に介装されているが、それに加えて、もう1つの放熱装置50が、図12の回路図に示すように、第1熱交換器18の冷媒出口18bと膨張装置20との間に介装されていても差し支えない。
(4)上述の第1実施形態では、冷凍サイクル14はガスインジェクションサイクルではないが、例えば、電池温度調整装置10は、図13〜16に示すようなガスインジェクションサイクルである冷凍サイクル62から構成されていても差し支えない。
例えば、図13に示す冷凍サイクル62では、第1実施形態とは異なり、圧縮機16がガスインジェクションポート16cを備えたものとなっており、冷媒を気体冷媒と液体冷媒とに分離する気液分離装置66と、流入した冷媒を減圧して流出させる膨張装置68とが設けられている。また、膨張装置20からの冷媒は気液分離装置66に流入し、その気液分離装置66で分離された液体冷媒が膨張装置68に流入する。そして、膨張装置68で減圧された冷媒が第2熱交換器22に流入する。
その一方で、図13に示すように、内部熱交換器26の第2熱交換部262が気液分離装置66と圧縮機16のガスインジェクションポート16cとの間に介装されており、気液分離装置66で分離された気体冷媒は、内部熱交換器26の第2熱交換部262を介して圧縮機16のガスインジェクションポート16cに流入する。なお、気液分離装置66と第2熱交換器22との間に配設された膨張装置68は、例えばオリフィスであってもよいし、膨張装置20と同じ構成であってもよい。
図14に示す冷凍サイクル62は、内部熱交換器26の第2熱交換部262が膨張装置20と気液分離装置66との間に介装されている点において、図13とは異なっている。また、図15に示す冷凍サイクル62では、その第2熱交換部262が第2熱交換器22と気液分離装置24との間に介装されている点において、図13とは異なっている。また、図16に示す冷凍サイクル62では、その第2熱交換部262が膨張装置68と第2熱交換器22との間に介装されている点において、図13とは異なっている。
(5)上述の実施形態では、第1熱交換器18および電池12は図2に示すように構成されているが、例えば図17または図18に示すような構成であっても差し支えない。図17では、図2の熱拡散板32は設けられておらず、その一方で、第1熱交換器18は、厚み方向に積層された複数の電池セル121の相互間に冷媒熱交換路18cを備えている。そして、第1熱交換器18の冷媒入口18aから流入した冷媒は複数の冷媒熱交換路18cを並列に流れ、その冷媒熱交換路18cにて電池セル121と熱交換を行う。そして、第1熱交換器18の冷媒出口18bから流出する。
図18では、電池12は、その電池12の筐体である外装部材122を備えており、複数の電池セル121はその外装部材122内に収容されている。また、第1熱交換器18はその外装部材122を取り囲み外装部材122の外側に貼りつくように接合されている。第1熱交換器18の冷媒入口18aから流入した冷媒は、電池12の外装部材122まわりにおいて第1熱交換器18内を流れ、それにより、外装部材122を介して各電池セル121と熱交換を行う。そして、第1熱交換器18の冷媒出口18bから流出する。
(6)上述の実施形態では、電池温度調整装置10は、第1熱交換器18の熱で加熱された空気を電池12まわりに流すことにより電池12を暖機するものではないが、例えば図19〜21に示すように、送風装置70を備え、その送風装置70により送風され第1熱交換器18で加熱された空気によって電池12を暖機してもよい。
例えば、図19では、複数の電池セル121と熱拡散板32とが、図2と同様に、交互に厚み方向に積層されている。また、その熱拡散板32の一端および電池セル121の一端がそれぞれ、アルミニウム合金等から成る底板71とロウ付け等により接合されている。送風装置70から送られた空気が底板71に適切に当るように、ダクト部材72が設けられている。送風装置70により送風される空気は、第1熱交換器18で加熱された上でダクト部材72内に流通させられる。そして、そのダクト部材72内の空気の熱は、底板71を介して複数の熱拡散板32に伝達され、その熱拡散板32からそれに接触している各電池セル121に伝達される。なお、図19における破線矢印は、送風装置70から吹き出される空気の流れを表している。図20および図21においても同様である。
図20では、電池温度調整装置10は、温風が流入する入口側ダクト部76と、その温風が流出する出口側ダクト部78と、厚み方向に積層された複数の電池セル121の各々の間に介装され温風が流れる複数の平板状の温風流通部80とを有する温風流通部材82を備えている。その温風流通部80はそれぞれ、隣接する電池セル121と熱交換可能なように接触しており、温風流通部80の一端において入口側ダクト部76に連結され、他端において出口側ダクト部78に連結されている。
図20の破線矢印に示すように、送風装置70により送風され第1熱交換器18で加熱された空気は入口側ダクト部76に流入し、各温風流通部80に分配される。そして、温風流通部80を流れる空気すなわち温風からの熱が電池セル121に伝達され、その温風流通部80からの空気は、出口側ダクト部78に集合し出口側ダクト部78から流れ出る。
図21では、前述の図18と同様に、複数の電池セル121は電池12の外装部材122内に収容されている。そして、送風装置70により送風され第1熱交換器18で加熱された空気は電池12に向けて吹き付けられる。すなわち、第1熱交換器18で加熱された空気は電池12の外装部材122まわりに流通し、外装部材122を介して各電池セル121と熱交換を行う。
(7)上述の実施形態では、第1熱交換器18は凝縮器として機能するが、例えば図22および図23の回路図に示すように、冷凍サイクル14が四方弁90を備え、その四方弁90が切り替えられることにより、第1熱交換器18が凝縮器として機能する場合と蒸発器として機能する場合とに択一的に切り替えられても差し支えない。図22は第1熱交換器18が凝縮器として機能する場合すなわち電池12を暖機する場合の回路図であり、図23は第1熱交換器18が蒸発器として機能する場合すなわち電池12を冷却する場合の回路図である。図22および図23において矢印は冷媒流れを表している。
具体的に、電池12を暖機する場合には、四方弁90が図22のように操作され、その四方弁90は、図22の回路図に示すように、圧縮機16の吐出ポート16bを内部熱交換器26の第1熱交換部261に接続すると共に、内部熱交換器26の第2熱交換部262を気液分離装置24に接続する。そのため、図22の冷凍サイクル14における冷媒流れは、図1と同じになる。
すなわち、図22では、圧縮機16の吐出ポート16bから吐出された冷媒は、内部熱交換器26の第1熱交換部261、第1熱交換器18、膨張装置20、第2熱交換器22、内部熱交換器26の第2熱交換部262、気液分離装置24という順に流れ、気液分離装置24から圧縮機16の吸入ポート16aへ流れ込む。これにより、第1熱交換器18は凝縮器として機能し、第2熱交換器22は蒸発器として機能する。
一方で、電池12を冷却する場合には、四方弁90が図23のように操作され、その四方弁90は、図23の回路図に示すように、圧縮機16の吐出ポート16bを内部熱交換器26の第2熱交換部262に接続すると共に、内部熱交換器26の第1熱交換部261を気液分離装置24に接続する。
そのため、図23では、圧縮機16の吐出ポート16bから吐出された冷媒は、内部熱交換器26の第2熱交換部262、第2熱交換器22、膨張装置20、第1熱交換器18、内部熱交換器26の第1熱交換部261、気液分離装置24という順に流れ、気液分離装置24から圧縮機16の吸入ポート16aへ流れ込む。これにより、第1熱交換器18は蒸発器として機能し、第2熱交換器22は凝縮器として機能する。
このように、四方弁90の操作により、第1熱交換器18が凝縮器としても蒸発器としても機能するので、電池12の暖機だけでなく電池12の冷却も行うことが可能である。
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
10 電池温度調整装置
12 電池
14、62 冷凍サイクル
16 圧縮機
18 第1熱交換器(電池用熱交換器)
18a 第1熱交換器18の冷媒入口
26 内部熱交換器
261 内部熱交換器26の第1熱交換部(過熱抑制装置)

Claims (9)

  1. 電池(12)を暖機する電池温度調整装置(10)であって、
    冷凍サイクル(14、62)において冷媒を圧縮し循環させる圧縮機(16)と、
    該圧縮機から吐出された前記冷媒が流入する冷媒入口(18a)を有し、該冷媒入口から流入した前記冷媒の熱によって前記電池を暖める電池用熱交換器(18)と、
    前記電池用熱交換器の冷媒入口における前記冷媒の過熱状態を解消するように作動する過熱抑制装置(261、50、54)とを備えていることを特徴とする電池温度調整装置。
  2. 前記過熱抑制装置は、前記冷凍サイクルにおいて前記圧縮機と前記電池用熱交換器の冷媒入口との間に介装された入口側放熱装置(261、50)を有し、
    該入口側放熱装置は、前記圧縮機から吐出された前記冷媒から熱を放出させて該冷媒を前記電池用熱交換器の冷媒入口へ流すことにより前記過熱抑制装置として作動することを特徴とする請求項1に記載の電池温度調整装置。
  3. 前記入口側放熱装置の前記冷媒から放出された熱を、前記電池用熱交換器から前記圧縮機へ戻る経路において前記冷媒に供給する吸熱装置(262)を備えていることを特徴とする請求項2に記載の電池温度調整装置。
  4. 車両用の電池温度調整装置であって、
    前記入口側放熱装置は、前記圧縮機から吐出された前記冷媒から車室内へ熱を放出させることを特徴とする請求項2に記載の電池温度調整装置。
  5. 前記電池用熱交換器から流出し減圧された前記冷媒に吸熱させる蒸発器(22)を備え、
    前記過熱抑制装置は、前記冷凍サイクルにおいて前記蒸発器と前記圧縮機との間に介装され前記蒸発器からの前記冷媒の気液を分離しその分離された気体冷媒と液体冷媒とを混合して前記圧縮機へ流す気液分離装置(54)を有し、
    該気液分離装置は、前記気体冷媒に前記液体冷媒を混合させる混合割合を調整する混合割合調整装置を有し、前記電池用熱交換器の冷媒入口における冷媒圧力と冷媒温度とに基づき前記混合割合調整装置によって前記混合割合を調整することにより前記過熱抑制装置として作動することを特徴とする請求項1に記載の電池温度調整装置。
  6. 前記電池用熱交換器は前記冷媒が流出する冷媒出口(18b)を備え、
    該冷媒出口における前記冷媒の過冷却状態を解消するように作動する過冷却抑制装置(20、50)を備えていることを特徴とする請求項1ないし5のいずれか1つに記載の電池温度調整装置。
  7. 前記電池用熱交換器の冷媒出口から流出した前記冷媒を減圧する膨張装置(20)を備え、
    前記過冷却抑制装置は、前記冷凍サイクルにおいて前記電池用熱交換器の冷媒出口と前記膨張装置との間に介装された出口側放熱装置(50)を有し、
    該出口側放熱装置は、前記冷媒出口から流出した前記冷媒から熱を放出させて該冷媒を前記膨張装置へ流すことにより前記過冷却抑制装置として作動することを特徴とする請求項6に記載の電池温度調整装置。
  8. 車両用の電池温度調整装置であって、
    前記出口側放熱装置は、前記冷媒出口から流出した前記冷媒から車室内へ熱を放出させることを特徴とする請求項7に記載の電池温度調整装置。
  9. 前記過冷却抑制装置は、前記電池用熱交換器の冷媒出口から流出した前記冷媒を減圧する膨張装置(20)を有し、
    該膨張装置は、該膨張装置を流通する冷媒流量を調整する流量調整装置(34)を有し、前記電池用熱交換器の冷媒出口における冷媒圧力と冷媒温度とに基づき前記流量調整装置によって前記冷媒流量を調整することにより前記過冷却抑制装置として作動することを特徴とする請求項6に記載の電池温度調整装置。
JP2013080540A 2013-04-08 2013-04-08 電池温度調整装置 Expired - Fee Related JP5974960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080540A JP5974960B2 (ja) 2013-04-08 2013-04-08 電池温度調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080540A JP5974960B2 (ja) 2013-04-08 2013-04-08 電池温度調整装置

Publications (2)

Publication Number Publication Date
JP2014203736A JP2014203736A (ja) 2014-10-27
JP5974960B2 true JP5974960B2 (ja) 2016-08-23

Family

ID=52353980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080540A Expired - Fee Related JP5974960B2 (ja) 2013-04-08 2013-04-08 電池温度調整装置

Country Status (1)

Country Link
JP (1) JP5974960B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12038207B2 (en) 2018-09-06 2024-07-16 Denso Corporation Refrigeration cycle device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065325A1 (fr) * 2017-04-14 2018-10-19 Valeo Systemes Thermiques Dispositif de gestion thermique d'un pack-batterie
US10847851B2 (en) 2017-10-12 2020-11-24 Hanon Systems Battery thermal management system for hybrid and full electric vehicles using heat capacitor
DE102018217298B4 (de) * 2017-10-12 2024-10-17 Hanon Systems Batterie-Wärmemanagement-System für Hybrid und vollelektrische Fahrzeuge unter Verwendung eines Heizkondensators
JP7155771B2 (ja) * 2018-09-06 2022-10-19 株式会社デンソー 冷凍サイクル装置
CN109149013A (zh) * 2018-10-11 2019-01-04 中国电子科技集团公司第十六研究所 电动汽车用半导体控温的泵驱两相循环系统及其控制方法
DE102019203303B4 (de) 2019-03-12 2024-05-16 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Temperierung eines in einem Fahrzeug angeordneten elektrochemischen Speichers sowie Fahrzeug
JP7234869B2 (ja) * 2019-09-10 2023-03-08 株式会社Soken 電池温調装置
JP2022034161A (ja) * 2020-08-18 2022-03-03 株式会社豊田自動織機 電池温調システム
CN117581070A (zh) 2021-07-07 2024-02-20 三菱电机株式会社 储蓄器以及制冷循环装置
JP2023168866A (ja) * 2022-05-16 2023-11-29 株式会社豊田自動織機 電池温調システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4195523B2 (ja) * 1998-04-14 2008-12-10 三菱重工業株式会社 空調装置の冷媒回路
JP2003097857A (ja) * 2001-07-12 2003-04-03 Calsonic Kansei Corp 冷房サイクル
JP4884365B2 (ja) * 2007-12-28 2012-02-29 三菱電機株式会社 冷凍空調装置、冷凍空調装置の室外機および冷凍空調装置の制御装置
JP2011049139A (ja) * 2009-07-31 2011-03-10 Sanyo Electric Co Ltd バッテリー装置
JP5515858B2 (ja) * 2010-03-01 2014-06-11 株式会社デンソー バッテリ温度調整装置
DE102010033518A1 (de) * 2010-08-05 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Klimaanlage und Verfahren zum Betreiben einer Klimaanlage
JP5560403B2 (ja) * 2010-09-07 2014-07-30 株式会社テージーケー ステッピングモータ駆動式の制御弁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12038207B2 (en) 2018-09-06 2024-07-16 Denso Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP2014203736A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5974960B2 (ja) 電池温度調整装置
JP6724888B2 (ja) 機器温調装置
JP6852642B2 (ja) ヒートポンプサイクル
JP6992411B2 (ja) 機器冷却装置
US20150000327A1 (en) Heat exchanger
JP7176405B2 (ja) 温度調整装置
CN107421161B (zh) 热泵式饮水系统及其控制方法、热泵式饮水装置
JP5094942B2 (ja) ヒートポンプ装置
JP2019077398A5 (ja)
WO2015011919A1 (ja) 車両用空調装置
KR101280211B1 (ko) 착상 방지 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
JP5685886B2 (ja) 給湯装置
JP5919036B2 (ja) ヒートポンプ式給湯装置
WO2015008463A1 (ja) 車両用空調装置およびその構成ユニット
KR20090102478A (ko) 차량용 히트펌프시스템
WO2017163563A1 (ja) 熱交換ユニットおよび車両用空調装置
JP4155334B2 (ja) 自動販売機
CN111811157A (zh) 换热设备、热水器和空调
JP5793715B2 (ja) 空気調和装置
KR102066694B1 (ko) 히트펌프 시스템
JP5436631B2 (ja) 冷凍装置
JP2013044239A (ja) 車両用排熱回収装置
JP2009036404A (ja) 冷凍サイクル
JP5997057B2 (ja) ヒートポンプ式加熱装置
KR102240147B1 (ko) 부하 가변형 초소형 히트펌프 냉난방 장치 및 이의 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees