JP5965445B2 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- JP5965445B2 JP5965445B2 JP2014186386A JP2014186386A JP5965445B2 JP 5965445 B2 JP5965445 B2 JP 5965445B2 JP 2014186386 A JP2014186386 A JP 2014186386A JP 2014186386 A JP2014186386 A JP 2014186386A JP 5965445 B2 JP5965445 B2 JP 5965445B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- secondary battery
- nli
- electrolyte
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩(以下、「金属塩」又は単に「塩」ということがある。)と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の振動分光スペクトルにおける有機溶媒由来のピーク強度につき、有機溶媒本来のピーク波数におけるピークの強度をIoとし、有機溶媒本来のピークが波数シフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
(R1X1)(R2X2)N 一般式(1)
(R1は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R2は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R1とR2は、互いに結合して環を形成しても良い。
X1は、SO2、C=O、C=S、RaP=O、RbP=S、S=O、Si=Oから選択される。
X2は、SO2、C=O、C=S、RcP=O、RdP=S、S=O、Si=Oから選択される。
Ra、Rb、Rc、Rdは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Ra、Rb、Rc、Rdは、R1又はR2と結合して環を形成しても良い。)
(R3は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
X3は、SO2、C=O、C=S、ReP=O、RfP=S、S=O、Si=Oから選択される。
Re、Rfは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Re、Rfは、R3と結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R4は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R5は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R6は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R4、R5、R6のうち、いずれか2つ又は3つが結合して環を形成しても良い。
X4は、SO2、C=O、C=S、RgP=O、RhP=S、S=O、Si=Oから選択される。
X5は、SO2、C=O、C=S、RiP=O、RjP=S、S=O、Si=Oから選択される。
X6は、SO2、C=O、C=S、RkP=O、RlP=S、S=O、Si=Oから選択される。
Rg、Rh、Ri、Rj、Rk、Rlは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rg、Rh、Ri、Rj、Rk、Rlは、R4、R5又はR6と結合して環を形成しても良い。)
(R7X7)(R8X8)N 一般式(4)
(R7、R8は、それぞれ独立に、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
また、R7とR8は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
X7は、SO2、C=O、C=S、RmP=O、RnP=S、S=O、Si=Oから選択される。
X8は、SO2、C=O、C=S、RoP=O、RpP=S、S=O、Si=Oから選択される。
Rm、Rn、Ro、Rpは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rm、Rn、Ro、Rpは、R7又はR8と結合して環を形成しても良い。)
(R9は、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
X9は、SO2、C=O、C=S、RqP=O、RrP=S、S=O、Si=Oから選択される。
Rq、Rrは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rq、Rrは、R9と結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R10、R11、R12は、それぞれ独立に、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
R10、R11、R12のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+e+f+g+hを満たし、1つの基が2n−1=a+b+c+d+e+f+g+hを満たす。
X10は、SO2、C=O、C=S、RsP=O、RtP=S、S=O、Si=Oから選択される。
X11は、SO2、C=O、C=S、RuP=O、RvP=S、S=O、Si=Oから選択される。
X12は、SO2、C=O、C=S、RwP=O、RxP=S、S=O、Si=Oから選択される。
Rs、Rt、Ru、Rv、Rw、Rxは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rs、Rt、Ru、Rv、Rw、Rxは、R10、R11又はR12と結合して環を形成しても良い。)
(R13SO2)(R14SO2)N 一般式(7)
(R13、R14は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
(R15は、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
(R16、R17、R18は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
R16、R17、R18のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+eを満たし、1つの基が2n−1=a+b+c+d+eを満たす。)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCnHaFbClcBrdIe、又は、環状アルキルを化学構造に含むCmHfFgClhBriIjのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
上記一般式(10)で表される鎖状カーボネートにおいて、nは1〜6の整数が好ましく、1〜4の整数がより好ましく、1〜2の整数が特に好ましい。mは3〜8の整数が好ましく、4〜7の整数がより好ましく、5〜6の整数が特に好ましい。また、上記一般式(10)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)が特に好ましい。
これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。
本発明のリチウムイオン二次電池は、正極と、負極と、金属塩としてリチウム塩を採用した本発明の電解液とを備える。
本発明で用いる電解液を以下のとおり製造した。
有機溶媒である1,2−ジメトキシエタン約5mLを、撹拌子及び温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2−ジメトキシエタンに対し、リチウム塩である(CF3SO2)2NLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CF3SO2)2NLiを加えた時点で(CF3SO2)2NLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CF3SO2)2NLiを溶解させた。約15gの(CF3SO2)2NLiを加えた時点で(CF3SO2)2NLiの溶解が再び停滞したので、1,2−ジメトキシエタンをピペットで1滴加えたところ、(CF3SO2)2NLiは溶解した。さらに(CF3SO2)2NLiを徐々に加え、所定の(CF3SO2)2NLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2−ジメトキシエタンを加えた。これを電解液E1とした。得られた電解液は容積20mLであり、この電解液に含まれる(CF3SO2)2NLiは18.38gであった。電解液E1における(CF3SO2)2NLiの濃度は3.2mol/Lであった。電解液E1においては、(CF3SO2)2NLi1分子に対し1,2−ジメトキシエタン1.6分子が含まれている。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
16.08gの(CF3SO2)2NLiを用い、電解液E1と同様の方法で、(CF3SO2)2NLiの濃度が2.8mol/Lである電解液E2を製造した。電解液E2においては、(CF3SO2)2NLi1分子に対し1,2−ジメトキシエタン2.1分子が含まれている。
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CF3SO2)2NLiを徐々に加え、溶解させた。(CF3SO2)2NLiを全量で19.52g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液E3とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E3における(CF3SO2)2NLiの濃度は3.4mol/Lであった。電解液E3においては、(CF3SO2)2NLi1分子に対しアセトニトリル3分子が含まれている。
24.11gの(CF3SO2)2NLiを用い、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が4.2mol/Lである電解液E4を製造した。電解液E4においては、(CF3SO2)2NLi1分子に対しアセトニトリル1.9分子が含まれている。
リチウム塩として13.47gの(FSO2)2NLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(FSO2)2NLiの濃度が3.6mol/Lである電解液E5を製造した。電解液E5においては、(FSO2)2NLi1分子に対し1,2−ジメトキシエタン1.9分子が含まれている。
14.97gの(FSO2)2NLiを用い、電解液E5と同様の方法で、(FSO2)2NLiの濃度が4.0mol/Lである電解液E6を製造した。電解液E6においては、(FSO2)2NLi1分子に対し1,2−ジメトキシエタン1.5分子が含まれている。
リチウム塩として15.72gの(FSO2)2NLiを用いた以外は、電解液E3と同様の方法で、(FSO2)2NLiの濃度が4.2mol/Lである電解液E7を製造した。電解液E7においては、(FSO2)2NLi1分子に対しアセトニトリル3分子が含まれている。
16.83gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が4.5mol/Lである電解液E8を製造した。電解液E8においては、(FSO2)2NLi1分子に対しアセトニトリル2.4分子が含まれている。
20.21gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が5.4mol/Lである電解液E9を製造した。電解液E9においては、(FSO2)2NLi1分子に対しアセトニトリル2分子が含まれている。
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液E10とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E10における(FSO2)2NLiの濃度は3.9mol/Lであった。電解液E10においては、(FSO2)2NLi1分子に対しジメチルカーボネート2分子が含まれている。
電解液E10にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が3.4mol/Lの電解液E11とした。電解液E11においては、(FSO2)2NLi1分子に対しジメチルカーボネート2.5分子が含まれている。
電解液E10にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.9mol/Lの電解液E12とした。電解液E12においては、(FSO2)2NLi1分子に対しジメチルカーボネート3分子が含まれている。
電解液E10にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.6mol/Lの電解液E13とした。電解液E13においては、(FSO2)2NLi1分子に対しジメチルカーボネート3.5分子が含まれている。
電解液E10にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.0mol/Lの電解液E14とした。電解液E14においては、(FSO2)2NLi1分子に対しジメチルカーボネート5分子が含まれている。
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液E15とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E15における(FSO2)2NLiの濃度は3.4mol/Lであった。電解液E15においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート2分子が含まれている。
電解液E15にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.9mol/Lの電解液E16とした。電解液E16においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート2.5分子が含まれている。
電解液E15にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.2mol/Lの電解液E17とした。電解液E17においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート3.5分子が含まれている。
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液E18とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E18における(FSO2)2NLiの濃度は3.0mol/Lであった。電解液E18においては、(FSO2)2NLi1分子に対しジエチルカーボネート2分子が含まれている。
電解液E18にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.6mol/Lの電解液E19とした。電解液E19においては、(FSO2)2NLi1分子に対しジエチルカーボネート2.5分子が含まれている。
電解液E18にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.0mol/Lの電解液E20とした。電解液E20においては、(FSO2)2NLi1分子に対しジエチルカーボネート3.5分子が含まれている。
18.71gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が5.0mol/Lである電解液E21を製造した。電解液E21においては、(FSO2)2NLi1分子に対しアセトニトリル2.1分子が含まれている。
5.74gの(CF3SO2)2NLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が1.0mol/Lである電解液C1を製造した。電解液C1においては、(CF3SO2)2NLi1分子に対し1,2−ジメトキシエタン8.3分子が含まれている。
5.74gの(CF3SO2)2NLiを用い、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が1.0mol/Lである電解液C2を製造した。電解液C2においては、(CF3SO2)2NLi1分子に対しアセトニトリル16分子が含まれている。
3.74gの(FSO2)2NLiを用い、電解液E5と同様の方法で、(FSO2)2NLiの濃度が1.0mol/Lである電解液C3を製造した。電解液C3においては、(FSO2)2NLi1分子に対し1,2−ジメトキシエタン8.8分子が含まれている。
3.74gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が1.0mol/Lである電解液C4を製造した。電解液C4においては、(FSO2)2NLi1分子に対しアセトニトリル17分子が含まれている。
有機溶媒としてエチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比3:7、以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPF6を用いた以外は、電解液E3と同様の方法で、LiPF6の濃度が1.0mol/Lである電解液C5を製造した。
電解液E10にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C6とした。電解液C6においては、(FSO2)2NLi1分子に対しジメチルカーボネート10分子が含まれている。
電解液E15にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C7とした。電解液C7においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート8分子が含まれている。
電解液E18にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C8とした。電解液C8においては、(FSO2)2NLi1分子に対しジエチルカーボネート7分子が含まれている。
電解液E3、電解液E4、電解液E7、電解液E8、電解液E9、電解液C2、電解液C4、並びに、アセトニトリル、(CF3SO2)2NLi、(FSO2)2NLiにつき、以下の条件でIR測定を行った。2100cm−1〜2400cm−1の範囲のIRスペクトルをそれぞれ図1〜図10に示す。さらに、電解液E10〜E20、電解液C6〜C8、並びに、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートにつき、以下の条件でIR測定を行った。1900〜1600cm−1の範囲のIRスペクトルをそれぞれ図11〜図27に示す。また、(FSO2)2NLiにつき、1900〜1600cm−1の範囲のIRスペクトルを図28に示す。図の横軸は波数(cm−1)であり、縦軸は吸光度(反射吸光度)である。
装置:FT−IR(ブルカーオプティクス社製)
測定条件:ATR法(ダイヤモンド使用)
測定雰囲気:不活性ガス雰囲気下
電解液E1、電解液E2、電解液E4〜E6、電解液E8、電解液E10、電解液E12、電解液E15、電解液E18、電解液E21のイオン伝導度を以下の条件で測定した。結果を表4に示す。
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
電解液E1、電解液E2、電解液E4〜E6、電解液E8、電解液E10、電解液E12、電解液E15、電解液E18、電解液E21、並びに電解液C1〜C4、電解液C6〜C8の粘度を以下の条件で測定した。結果を表5に示す。
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
電解液E2、E4、E8、E10、E12、C1、C2、C4、C6の揮発性を以下の方法で測定した。
電解液E4、電解液C2の燃焼性を以下の方法で試験した。
(参考例1)
電解液E8を用いたハーフセルを以下のとおり製造した。
活物質である平均粒径10μmの黒鉛90質量部、及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。
作用極、対極、両者の間に挟装した厚さ400μmのセパレータ(GEヘルスケア・ジャパン株式会社製Whatmanガラス繊維ろ紙)及び電解液E8を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを参考例1のハーフセルとした。
電解液として電解液C5を用いた以外は、参考例1と同様の方法で、参考例2のハーフセルを製造した。
参考例1、参考例2のハーフセルのレート特性を以下の方法で試験した。
参考例1、参考例2のハーフセルに対し、1Cレートで充放電を3回繰り返した際の、容量と電圧の変化を観察した。結果を図29に示す。
参考例2のハーフセルは充放電を繰り返すに伴い、1Cレートで電流を流した場合の分極が大きくなる傾向があり、2Vから0.01Vに到達するまでに得られる容量が急速に低下した。他方、参考例1のハーフセルは充放電を繰り返しても、図29において3本の曲線が重なっている様からも確認できるように分極の増減がほとんどなく、好適に容量を維持した。参考例2のハーフセルにおいて分極が増加した理由として、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。参考例1のハーフセルでは、Li濃度が高い本発明の電解液を用いたことで、電解液のLi濃度の偏在を抑制できたものと考えられる。本発明の電解液を使用した二次電池は、急速充放電に対し、優れた応答性を示すことが裏付けられた。
電解液E2、電解液E8、電解液C4及び電解液C5のLi輸率を以下の条件で測定した。結果を表8Aに示す。
電解液E2、電解液E8、電解液C4又は電解液C5を入れたNMR管をPFG−NMR装置(ECA−500、日本電子)に供し、7Li、19Fを対象として、室温30℃において、スピンエコー法を用い、磁場パルス幅を変化させながら、各電解液中のLiイオン及びアニオンの拡散係数を測定した。Li輸率は以下の式で算出した。
Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
電解液E8を用いた実施例1のリチウムイオン二次電池を以下のとおり製造した。
電解液E8に代えて電解液E4を用いた以外は、実施例1のリチウムイオン二次電池と同様にして、実施例2のリチウムイオン二次電池を作成した。
電解液E8に代えて電解液C5を用いた以外は、実施例1と同様にして、比較例1のリチウムイオン二次電池を作成した。
実施例1、比較例1のリチウムイオン二次電池の充電状態の正極に対する電解液の熱安定性を以下の方法で評価した。
(実施例12)
電解液E8を用いたハーフセルを以下のとおり製造した。
厚み20μmのSUS箔を作用極とした以外は実施例12と同様にして比較例7のハーフセルを作成した。
実施例1、実施例2及び比較例1のリチウムイオン二次電池を、使用電圧範囲3V〜4.2Vとし、レート1Cで充放電を100回繰り返し、充放電100回後に解体し、負極を取り出した。正極から電解液に溶出し、負極の表面へ沈着したAlの量をICP(高周波誘導結合プラズマ)発光分光分析装置で測定した。測定結果を表9に示す。表9のAl量(%)は負極活物質層1gあたりのAlの質量を%で示したものであり、Al量(μg/枚)は、負極活物質層1枚あたりのAlの質量(μg)を表し、Al量(%)÷100×各負極活物質層一枚の質量=Al量(μg/枚)の計算式により算出した。
実施例1及び実施例2のリチウムイオン二次電池を、使用電圧範囲3V〜4.2Vとし、レート1Cで充放電を100回繰り返し、充放電100回後に解体し、正極用集電体であるアルミニウム箔を各々取り出し、アルミニウム箔の表面をジメチルカーボネートで洗浄した。
(0℃、SOC20%での出力特性評価)
上記の実施例1及び比較例1のリチウムイオン二次電池の出力特性を評価した。評価条件は、充電状態(SOC)20%、0℃、使用電圧範囲3V−4.2V、容量13.5mAhである。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。実施例1及び比較例1のリチウムイオン二次電池の出力特性の評価は、それぞれ2秒出力と5秒出力についてそれぞれ3回行った。出力特性の評価結果を表10に示した。表10の中の「2秒出力」は、放電開始から2秒後での出力を意味し、「5秒出力」は放電開始から5秒後での出力を意味している。
実施例1及び比較例1のリチウムイオン電池の出力特性を、充電状態(SOC)20%、25℃、使用電圧範囲3V―4.2V、容量13.5mAhの条件で評価した。実施例1及び比較例1のリチウムイオン二次電池の出力特性の評価は、それぞれ2秒出力と5秒出力についてそれぞれ3回行った。評価結果を表10に示した。
また、上記の実施例1及び比較例1のリチウムイオン二次電池の出力特性に対する、測定時の温度の影響を調べた。0℃と25℃で測定し、いずれの温度下での測定においても、評価条件は、充電状態(SOC)20%、使用電圧範囲3V―4.2V、容量13.5mAhとした。25℃での出力に対する0℃での出力の比率(0℃出力/25℃出力)をもとめた。その結果を表10に示した。
実施例1及び比較例1のリチウムイオン二次電池のレート容量特性を評価した。各電池の容量は、160mAh/gとなるように調整した。評価条件は、0.1C、0.2C、0.5C、1C、2Cのレートで充電を行った後に放電を行い、それぞれのレートにおける正極の容量(放電容量)を測定した。0.1C放電後及び1C放電後の放電容量を表10に示した。表10に示した放電容量は、正極質量当たりの容量の算出値である。
(実施例3のリチウムイオン二次電池)
セパレータとして、厚さ20μmのセルロース製不織布を用いた以外は実施例1のリチウムイオン二次電池と同様にして実施例3のリチウムイオン二次電池を作成した。
以下のように作製した負極を用いた以外は実施例3のリチウムイオン二次電池と同様にして、実施例4のリチウムイオン二次電池を作成した。
電解液E8に代えて電解液C5を用いた以外は、実施例3のリチウムイオン二次電池と同様にして、比較例2のリチウムイオン二次電池を作成した。
電解液E8に代えて電解液C5を用いた以外は、実施例4のリチウムイオン二次電池と同様にして、比較例3のリチウムイオン二次電池を作成した。
評価条件は、充電状態(SOC)80%、0℃又は25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。入力特性の評価は、2秒入力と5秒入力について電池毎にそれぞれ3回行った。
評価条件は、充電状態(SOC)20%、0℃又は25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。出力特性の評価は、2秒出力と5秒出力について電池毎にそれぞれ3回行った。
電解液E10、電解液E12、電解液E15、電解液E18をそれぞれ容器に入れ、不活性ガスを充填して密閉した。これらを−30℃の冷凍庫に2日間保管した。保管後に各電解液を観察した。いずれの電解液も固化せず液体状態を維持しており、塩の析出も観察されなかった。
電解液E8を用いたハーフセルを以下のとおり製造した。
径13.82mm、面積1.5cm2のアルミニウム箔(JIS A1000番系)を作用極とした。対極は金属Liとした。セパレータは、GEヘルスケア・ジャパン株式会社製のWhatmanガラス繊維ろ紙とした。
作用極、対極、セパレータ及び電解液E8を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例5のハーフセルとした。
電解液E8に代えて電解液E10を用いた以外は、実施例5のハーフセルと同様にして、実施例6のハーフセルを作成した。
電解液E8に代えて電解液E15を用いた以外は、実施例5のハーフセルと同様にして、実施例7のハーフセルを作成した。
電解液E8に代えて電解液E18を用いた以外は、実施例5のハーフセルと同様にして、実施例8のハーフセルを作成した。
電解液E8に代えて電解液E12を用いた以外は、実施例5のハーフセルと同様にして、実施例9のハーフセルを作成した。
電解液E8に代えて電解液C5を用いた以外は、実施例5のハーフセルと同様にして、比較例4のハーフセルを作成した。
電解液E8に代えて電解液C6を用いた以外は、実施例5のハーフセルと同様にして、比較例5のハーフセルを作成した。
実施例5〜8、比較例4のハーフセルに対して、3.1V〜4.6V、1mV/sの条件で、5サイクルのサイクリックボルタンメトリー評価を行い、その後、実施例5〜8のハーフセルに対して、3.1V〜5.1V、1mV/sの条件で、5サイクルのサイクリックボルタンメトリー評価を行った。
(目付けの検討)
(実施例10)
正極の目付けを5.5mg/cm2、負極の目付けを4mg/cm2とした以外は実施例3のリチウムイオン二次電池と同様にして実施例10のリチウムイオン二次電池を作成した。
正極の目付けを5.5mg/cm2、負極の目付けを4mg/cm2とした以外は比較例2のリチウムイオン二次電池と同様にして比較例6のリチウムイオン二次電池を作成した。
実施例10、比較例6のリチウムイオン二次電池の入出力特性を以下の条件で評価した。
評価条件は、充電状態(SOC)80%、25℃、使用電圧範囲3V―4.2V、容量13.5mAh、5秒入力と、充電状態(SOC)30%、−10℃又は−30℃、使用電圧範囲3V―4.2V、容量13.5mAh、2秒出力とした。ここで−10℃、−30℃は、低温環境で使用する場合のように出力特性が出にくい領域である。
電解液E8、電解液E21、電解液C4、並びに、電解液E10、電解液E12、電解液E14、電解液C6につき、以下の条件でラマンスペクトル測定を行った。各電解液の金属塩のアニオン部分に由来するピークが観察されたラマンスペクトルをそれぞれ図50〜図56に示す。図の横軸は波数(cm−1)であり、縦軸は散乱強度である。
装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
レーザー波長:532nm
(実施例11)
リチウムイオン二次電池の電解液として、電解液E10を用いた以外は、実施例1のリチウムイオン二次電池と同様にして実施例11のリチウムイオン二次電池を作成した。
評価例20で容量維持率を測定したサイクル試験後の実施例11及び比較例1のリチウムイオン二次電池を解体し、負極を取り出した。負極の表面へ沈着したNi、Mn、Coの量をICP(高周波誘導結合プラズマ)発光分光分析装置で測定した。測定結果を表14に示す。表17のNi、Mn、Co量(%)は負極活物質層1gあたりのNi、Mn、Coの質量を%で示したものであり、Ni、Mn、Co量(μg/枚)は、負極活物質層1枚あたりのNi、Mn、Coの質量(μg)を表し、Ni、Mn、Co量(%)÷100×各負極活物質層一枚の質量=Ni、Mn、Co量(μg/枚)の計算式により算出した。
(参考例3)
活物質である平均粒径10μmの黒鉛90質量部、及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。
電解液として電解液C5を用いた以外は、参考例3のハーフセルと同様の方法で、参考例4のハーフセルを得た。
(2) 電圧範囲:2V→0.01V(v.s.Li/Li+)
(3) レート:0.02C、0.05C、0.1C、0.2C、0.5C (0.01V到達後に電流を停止)
なお、1Cは、一定電流において1時間で電池を完全充電、又は放電させるために要する電流値を示す。
(実施例13)
電解液E8を用いた実施例13のリチウムイオン二次電池を以下のとおり製造した。
電解液として電解液E10を用いた以外は、実施例13と同様の方法で、実施例14のリチウムイオン二次電池を得た。
電解液として電解液E12を用いた以外は、実施例13と同様の方法で、実施例15のリチウムイオン二次電池を得た。
電解液として電解液C5を用いた以外は、実施例13と同様の方法で、比較例8のリチウムイオン二次電池を得た。
実施例13〜15および比較例8のリチウムイオン二次電池について、室温、3.0V〜4.1V(vs.Li基準)の範囲でCC充放電を繰り返し、初回充放電時の放電容量、100サイクル時の放電容量、および500サイクル時の放電容量を測定した。そして、初回充放電時の各リチウムイオン二次電池の容量を100%とし、100サイクル時および500サイクル時の各リチウムイオン二次電池の容量維持率(%)を算出した。結果を表17に示す。
本発明の電解液を以下のとおり製造した。
電解液Aと同様の方法で、(CF3SO2)2NLiの濃度が2.8mol/Lであり、密度が1.36g/cm3である、電解液Bを製造した。
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CF3SO2)2NLiを徐々に加え、溶解させた。所定の(CF3SO2)2NLiを加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液Cとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Cは、(CF3SO2)2NLiの濃度が4.2mol/Lであり、密度が1.52g/cm3であった。
電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.0mol/Lであり、密度が1.31g/cm3である、電解液Dを製造した。
有機溶媒としてスルホランを用いた以外は、電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.0mol/Lであり、密度が1.57g/cm3である、電解液Eを製造した。
有機溶媒としてジメチルスルホキシドを用いた以外は、電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.2mol/Lであり、密度が1.49g/cm3である、電解液Fを製造した。
リチウム塩として(FSO2)2NLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、電解液Cと同様の方法で、(FSO2)2NLiの濃度が4.0mol/Lであり、密度が1.33g/cm3である、電解液Gを製造した。
電解液Gと同様の方法で、(FSO2)2NLiの濃度が3.6mol/Lであり、密度が1.29g/cm3である、電解液Hを製造した。
電解液Gと同様の方法で、(FSO2)2NLiの濃度が2.4mol/Lであり、密度が1.18g/cm3である、電解液Iを製造した。
有機溶媒としてアセトニトリルを用いた以外は、電解液Gと同様の方法で、(FSO2)2NLiの濃度が5.0mol/Lであり、密度が1.40g/cm3である、電解液Jを製造した。
電解液Jと同様の方法で、(FSO2)2NLiの濃度が4.5mol/Lであり、密度が1.34g/cm3である、電解液Kを製造した。
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液Lとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Lにおける(FSO2)2NLiの濃度は3.9mol/Lであり、電解液Lの密度は1.44g/cm3であった。
電解液Lと同様の方法で、(FSO2)2NLiの濃度が2.9mol/Lであり、密度が1.36g/cm3である、電解液Mを製造した。
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液Nとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Nにおける(FSO2)2NLiの濃度は3.4mol/Lであり、電解液Nの密度は1.35g/cm3であった。
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液Oとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Oにおける(FSO2)2NLiの濃度は3.0mol/Lであり、電解液Oの密度は1.29g/cm3であった。
Claims (6)
- 正極と、負極と、電解液とを有する非水電解質二次電池であって、
前記正極は、アルミニウム又はアルミニウム合金からなる正極用集電体を有し、
前記電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、 前記塩が(CF3SO2)2NLi、(FSO2)2NLi、(C2F5SO2)2NLi、FSO2(CF3SO2)NLi、(SO2CF2CF2SO2)NLi、又は(SO2CF2CF2CF2SO2)NLiから選ばれる少なくとも一種であり、
前記有機溶媒が、アセトニトリル、プロピオニトリル、アクリロニトリル、エチレンカーボネート、プロピレンカーボネート、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、イソプロピルイソシアネート、n−プロピルイソシアネート、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート、オキサゾール、アセトン、メチルエチルケトン、メチルイソブチルケトン、無水酢酸、無水プロピオン酸、スルホラン、ジメチルスルホキシド、1-ニトロプロパン、2-ニトロプロパン、フラン、フルフラール、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、チオフェン、ピリジン、1-メチルピロリジン、N-メチルモルフォリン、リン酸トリメチル、リン酸トリエチル又は下記一般式(10)で示される鎖状カーボネートから選択されることを特徴とする非水電解質二次電池。
R19OCOOR20 一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCnHaFbClcBrdIe、又は、環状アルキルを化学構造に含むCmHfFgClhBriIjのいずれかから選択される。nは1〜6の整数、mは3〜8の整数、a、b、c、d、e、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
(但し、電解液が、リチウム塩、アンモニウム塩、及び、ヘキサフルオロベンゼン、ペンタフルオロベンゼン、1,2,3,4−テトラフルオロベンゼン、1,2,3,5−テトラフルオロベンゼン、1,2,4,5−テトラフルオロベンゼン、及び1,2,3−トリフルオロベンゼンより選択される少なくとも一種のフッ素化ベンゼンが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、エトキシメトキシエタン、及びジエトキシエタンからなる群より選択される少なくとも一種である非水溶媒に溶解された非水電解液であるものを除く。) - 前記有機溶媒がアセトニトリル、ジメチルカーボネート、エチルメチルカーボネート又はジエチルカーボネートから選択される請求項1に記載の非水電解質二次電池。
- 前記Ioと前記Isとの関係がIs>2×Ioである請求項1又は2に記載の非水電解質二次電池。
- 前記電解液の密度d(g/cm3)を電解液の濃度c(mol/L)で除したd/cは、0.15≦d/c≦0.71の範囲内である請求項1〜3のいずれか一項に記載の非水電解質二次電池。
- 前記電解液の密度d(g/cm3)は、1.2≦d≦2.2である請求項4に記載の非水電解質二次電池。
- 前記非水電解質二次電池はリチウムイオン二次電池である請求項1〜5のいずれか一項に記載の非水電解質二次電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014186386A JP5965445B2 (ja) | 2013-09-25 | 2014-09-12 | 非水電解質二次電池 |
US15/024,418 US10686223B2 (en) | 2013-09-25 | 2014-09-25 | Nonaqueous electrolyte secondary battery |
PCT/JP2014/004916 WO2015045392A1 (ja) | 2013-09-25 | 2014-09-25 | 非水電解質二次電池 |
CN201480053187.XA CN105580191B (zh) | 2013-09-25 | 2014-09-25 | 非水电解质二次电池 |
KR1020187026146A KR101940152B1 (ko) | 2013-09-25 | 2014-09-25 | 비수 전해질 2차 전지 |
DE112014004410.5T DE112014004410T5 (de) | 2013-09-25 | 2014-09-25 | Sekundärbatterie mit nichtwässrigem Elektrolyt |
KR1020167010617A KR20160060717A (ko) | 2013-09-25 | 2014-09-25 | 비수 전해질 2차 전지 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198593 | 2013-09-25 | ||
JP2013198593 | 2013-09-25 | ||
JP2013255080 | 2013-12-10 | ||
JP2013255080 | 2013-12-10 | ||
JP2014186386A JP5965445B2 (ja) | 2013-09-25 | 2014-09-12 | 非水電解質二次電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016131137A Division JP2016189340A (ja) | 2013-09-25 | 2016-06-30 | 非水電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015133315A JP2015133315A (ja) | 2015-07-23 |
JP5965445B2 true JP5965445B2 (ja) | 2016-08-03 |
Family
ID=52742561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014186386A Active JP5965445B2 (ja) | 2013-09-25 | 2014-09-12 | 非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10686223B2 (ja) |
JP (1) | JP5965445B2 (ja) |
KR (2) | KR101940152B1 (ja) |
CN (1) | CN105580191B (ja) |
DE (1) | DE112014004410T5 (ja) |
WO (1) | WO2015045392A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10497980B2 (en) | 2014-10-23 | 2019-12-03 | University Of Tokyo | Electrolytic solution |
JP6666679B2 (ja) * | 2015-10-06 | 2020-03-18 | 株式会社日本触媒 | リチウムイオン二次電池 |
JP2017191740A (ja) * | 2016-04-15 | 2017-10-19 | 国立大学法人 東京大学 | リチウムイオン二次電池 |
JP6770701B2 (ja) * | 2016-05-02 | 2020-10-21 | 株式会社Gsユアサ | 蓄電素子 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
US10804562B2 (en) * | 2017-12-06 | 2020-10-13 | Tesla Motors Canada ULC | Method and system for determining concentration of electrolyte components for lithium-ion cells |
US11482696B2 (en) * | 2020-02-26 | 2022-10-25 | Ppg Industries Ohio, Inc. | Method of coating an electrical current collector and electrodes resulting therefrom |
WO2021230661A1 (ko) * | 2020-05-12 | 2021-11-18 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
CN116217355A (zh) * | 2023-05-08 | 2023-06-06 | 宁德时代新能源科技股份有限公司 | 氟代缩醛类化合物的制备方法 |
CN116666647B (zh) * | 2023-08-01 | 2024-04-12 | 宁德时代新能源科技股份有限公司 | 正极集流体及制备方法、正极极片、二次电池和用电装置 |
Family Cites Families (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036315B2 (ja) | 1977-11-14 | 1985-08-20 | 株式会社東芝 | 洗濯機の運転方式 |
JPH01131637A (ja) | 1987-11-18 | 1989-05-24 | Sanyo Electric Co Ltd | パン製造機 |
JP2709864B2 (ja) | 1991-01-25 | 1998-02-04 | 日本電池株式会社 | 非水電解質二次電池 |
US5418091A (en) * | 1993-03-05 | 1995-05-23 | Bell Communications Research, Inc. | Polymeric electrolytic cell separator membrane |
JPH1027733A (ja) | 1996-07-12 | 1998-01-27 | Matsushita Electric Ind Co Ltd | 電気二重層キャパシタおよびその製造方法 |
JP3269396B2 (ja) | 1996-08-27 | 2002-03-25 | 松下電器産業株式会社 | 非水電解質リチウム二次電池 |
US6340716B1 (en) | 1997-07-25 | 2002-01-22 | Acep Inc. | Ionic compounds with delocalized anionic charge, and their use as ion conducting components or as catalysts |
JP4168492B2 (ja) | 1997-09-19 | 2008-10-22 | 松下電器産業株式会社 | 非水電解質二次電池用負極およびそれを用いた電池 |
DE69812017T2 (de) | 1997-09-19 | 2003-12-11 | Matsushita Electric Industrial Co., Ltd. | Nichtwässrige Sekundär Batterie und ihre Anode |
JP2000077100A (ja) | 1998-08-28 | 2000-03-14 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
JP2001266878A (ja) | 2000-03-21 | 2001-09-28 | Nippon Steel Corp | リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池 |
CN1468455A (zh) | 2000-10-06 | 2004-01-14 | 纳幕尔杜邦公司 | 高性能锂或锂离子电池 |
JP2002203562A (ja) | 2000-12-28 | 2002-07-19 | Toshiba Corp | 非水電解質二次電池 |
EP2090565B1 (en) | 2001-03-26 | 2013-12-04 | Nisshinbo Industries, Inc. | Ionic liquids of quaternary ammonium salts |
WO2003044882A1 (fr) | 2001-11-20 | 2003-05-30 | Tdk Corporation | Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion |
JP2003268053A (ja) | 2002-03-13 | 2003-09-25 | Hitachi Chem Co Ltd | 電池用バインダ樹脂、これを含有する電極及び電池 |
WO2004019356A1 (ja) | 2002-08-23 | 2004-03-04 | Nisshinbo Industries, Inc. | 電気二重層キャパシタ |
AU2003264517A1 (en) | 2002-09-20 | 2004-04-08 | Nisshinbo Industries, Inc. | Composition for polyelectrolytes, polyelectrolytes, electrical double layer capacitors and nonaqueous electrolyte secondary cells |
JP4298246B2 (ja) | 2002-09-20 | 2009-07-15 | 日清紡ホールディングス株式会社 | 非水電解質、電気二重層キャパシタおよび非水電解質二次電池 |
US7709157B2 (en) | 2002-10-23 | 2010-05-04 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and electrolyte for the same |
KR100491026B1 (ko) | 2003-03-05 | 2005-05-24 | 주식회사 엘지화학 | 전지특성, 접착성, 코팅특성이 조절된 2상 이상의 구조를가지는 리튬 2차 전지용 바인더 |
JPWO2005076299A1 (ja) | 2004-02-03 | 2007-10-18 | 日清紡績株式会社 | 電気二重層キャパシタ |
JP2005243321A (ja) | 2004-02-25 | 2005-09-08 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP4667071B2 (ja) | 2004-03-30 | 2011-04-06 | 三洋電機株式会社 | 非水電解質二次電池 |
TWI269473B (en) | 2004-05-28 | 2006-12-21 | Lg Chemical Ltd | Lithium secondary batteries with charge-cutoff voltages over 4.35 |
JP4573098B2 (ja) | 2004-09-03 | 2010-11-04 | 株式会社Gsユアサ | 非水電解質二次電池 |
WO2006049027A1 (ja) | 2004-11-04 | 2006-05-11 | Matsushita Electric Industrial Co., Ltd. | 表面実装用端子付き二次電池 |
JP5030414B2 (ja) | 2004-11-15 | 2012-09-19 | パナソニック株式会社 | 非水電解質二次電池 |
JP5390736B2 (ja) | 2004-12-07 | 2014-01-15 | 富山薬品工業株式会社 | 電気化学デバイス用非水電解液 |
US20060127764A1 (en) | 2004-12-10 | 2006-06-15 | Muguo Chen | Electrochemical cells electrodes and binder materials for electrochemical cells electrodes |
CN101164189B (zh) | 2005-04-19 | 2011-05-04 | 松下电器产业株式会社 | 非水电解液、使用该非水电解液的电化学能量储存装置以及非水电解液二次电池 |
JP4889240B2 (ja) | 2005-05-20 | 2012-03-07 | 旭化成株式会社 | 非対称有機スルホニルイミド塩電解質とそれを用いた電解液および電気化学素子 |
JP2007091573A (ja) | 2005-06-10 | 2007-04-12 | Tosoh Corp | リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途 |
KR100684733B1 (ko) | 2005-07-07 | 2007-02-20 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR100992299B1 (ko) | 2005-07-19 | 2010-11-05 | 파나소닉 주식회사 | 비수전해액 및 그것을 이용한 전기화학에너지 축적 디바이스 |
JP2007115671A (ja) | 2005-09-22 | 2007-05-10 | Matsushita Electric Ind Co Ltd | リチウムイオン二次電池用負極およびそれを用いたリチウムイオン二次電池 |
CN110061283A (zh) | 2005-10-20 | 2019-07-26 | 三菱化学株式会社 | 锂二次电池以及其中使用的非水电解液 |
KR20130090913A (ko) | 2005-10-20 | 2013-08-14 | 미쓰비시 가가꾸 가부시키가이샤 | 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액 |
CA2535064A1 (fr) | 2006-02-01 | 2007-08-01 | Hydro Quebec | Materiau multi-couches, procede de fabrication et utilisation comme electrode |
JP4929766B2 (ja) | 2006-03-13 | 2012-05-09 | ダイキン工業株式会社 | 電解液 |
JP5241119B2 (ja) | 2006-03-17 | 2013-07-17 | 三洋電機株式会社 | 非水電解質電池 |
JP2007299569A (ja) | 2006-04-28 | 2007-11-15 | Matsushita Electric Ind Co Ltd | 電気化学エネルギー蓄積デバイス |
JP2008010613A (ja) | 2006-06-29 | 2008-01-17 | Nisshinbo Ind Inc | 電気二重層キャパシタ |
JP4862555B2 (ja) * | 2006-08-21 | 2012-01-25 | パナソニック株式会社 | 非水電解液およびそれを具備した電気化学エネルギー蓄積デバイス |
JP2009026514A (ja) | 2007-07-18 | 2009-02-05 | Panasonic Corp | 非水電解質二次電池 |
JP5731732B2 (ja) | 2007-10-17 | 2015-06-10 | 日立化成株式会社 | リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2009123474A (ja) | 2007-11-14 | 2009-06-04 | Sony Corp | 非水電解質電池 |
CA2625271A1 (en) | 2008-03-11 | 2009-09-11 | Hydro-Quebec | Method for preparing an electrochemical cell having a gel electrolyte |
WO2010030008A1 (ja) * | 2008-09-11 | 2010-03-18 | 日本電気株式会社 | 二次電池 |
JP2010073489A (ja) | 2008-09-18 | 2010-04-02 | Nissan Motor Co Ltd | 熱安定性に優れた電解液およびそれを用いた二次電池 |
JP2010097802A (ja) | 2008-10-16 | 2010-04-30 | Daikin Ind Ltd | 電解液 |
JP2012033268A (ja) | 2008-11-06 | 2012-02-16 | Hitachi Maxell Ltd | 電気化学素子 |
EP2405518B1 (en) | 2009-03-04 | 2014-10-01 | Lg Chem, Ltd. | Electrolyte comprising an amide compound, and an electrochemical element comprising the same |
JP2010225539A (ja) | 2009-03-25 | 2010-10-07 | Tdk Corp | リチウムイオン二次電池用電極及びリチウムイオン二次電池 |
CN101882696B (zh) | 2009-05-05 | 2014-11-26 | 中国科学院物理研究所 | 一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用 |
GB2470190B (en) | 2009-05-11 | 2011-07-13 | Nexeon Ltd | A binder for lithium ion rechargeable battery cells |
JP2011054298A (ja) | 2009-08-31 | 2011-03-17 | Hitachi Maxell Ltd | 電気化学素子 |
KR20120081078A (ko) | 2009-09-18 | 2012-07-18 | 아사히 가라스 가부시키가이샤 | 2 차 전지용 비수 전해액 |
JP2011119053A (ja) | 2009-12-01 | 2011-06-16 | Konica Minolta Holdings Inc | 電解質組成物及びそれを用いた二次電池 |
JP2011146359A (ja) | 2009-12-15 | 2011-07-28 | Toyota Central R&D Labs Inc | アルカリ金属硫黄二次電池 |
JP2011150958A (ja) | 2010-01-25 | 2011-08-04 | Sony Corp | 非水電解質および非水電解質電池 |
US8076026B2 (en) | 2010-02-05 | 2011-12-13 | International Battery, Inc. | Rechargeable battery using an aqueous binder |
JP5418664B2 (ja) | 2010-03-09 | 2014-02-19 | 株式会社豊田自動織機 | 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
JP5723186B2 (ja) | 2010-03-19 | 2015-05-27 | 株式会社半導体エネルギー研究所 | 非水電解液、およびリチウムイオン二次電池 |
JP5177211B2 (ja) | 2010-12-09 | 2013-04-03 | ソニー株式会社 | 負極活物質、負極および電池 |
JP2012160345A (ja) | 2011-01-31 | 2012-08-23 | Toshiba Corp | 非水電解質二次電池 |
JP6065367B2 (ja) | 2011-06-07 | 2017-01-25 | ソニー株式会社 | 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP2013065493A (ja) | 2011-09-20 | 2013-04-11 | Toyota Industries Corp | リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池 |
JP5803539B2 (ja) | 2011-10-11 | 2015-11-04 | 株式会社豊田自動織機 | リチウム含有複合酸化物粉末の製造方法 |
JP5834771B2 (ja) | 2011-10-26 | 2015-12-24 | 三菱化学株式会社 | 非水系電解液、それを用いた電池 |
JP5302456B1 (ja) | 2011-12-27 | 2013-10-02 | 株式会社日立製作所 | 非水二次電池 |
JP2013134922A (ja) | 2011-12-27 | 2013-07-08 | Panasonic Corp | 非水電解液二次電池 |
JP2013137873A (ja) | 2011-12-28 | 2013-07-11 | Toyota Industries Corp | リチウムイオン二次電池 |
JP6047881B2 (ja) | 2012-01-16 | 2016-12-21 | 株式会社Gsユアサ | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
JP2013149477A (ja) | 2012-01-19 | 2013-08-01 | Hitachi Maxell Ltd | 非水二次電池の製造方法 |
JP5950389B2 (ja) | 2012-02-28 | 2016-07-13 | 株式会社豊田自動織機 | リチウムシリケート系化合物、正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両 |
WO2013146714A1 (ja) | 2012-03-26 | 2013-10-03 | 国立大学法人 東京大学 | リチウム二次電池用電解液、及び当該電解液を含む二次電池 |
JP6227864B2 (ja) | 2012-11-12 | 2017-11-08 | 株式会社リコー | 非水電解液蓄電素子 |
JP5586116B2 (ja) | 2012-12-27 | 2014-09-10 | トヨタ自動車株式会社 | リチウム二次電池用の正極合材およびその使用 |
JP5817754B2 (ja) | 2013-02-25 | 2015-11-18 | 株式会社豊田自動織機 | 非水系二次電池用負極とその製造方法及び非水系二次電池 |
JP2013179067A (ja) | 2013-04-26 | 2013-09-09 | Sony Corp | 二次電池および二次電池用セパレータ |
-
2014
- 2014-09-12 JP JP2014186386A patent/JP5965445B2/ja active Active
- 2014-09-25 KR KR1020187026146A patent/KR101940152B1/ko not_active Expired - Fee Related
- 2014-09-25 US US15/024,418 patent/US10686223B2/en active Active
- 2014-09-25 KR KR1020167010617A patent/KR20160060717A/ko not_active Ceased
- 2014-09-25 CN CN201480053187.XA patent/CN105580191B/zh active Active
- 2014-09-25 WO PCT/JP2014/004916 patent/WO2015045392A1/ja active Application Filing
- 2014-09-25 DE DE112014004410.5T patent/DE112014004410T5/de not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2015045392A1 (ja) | 2015-04-02 |
CN105580191B (zh) | 2019-07-09 |
KR101940152B1 (ko) | 2019-01-18 |
US20160233548A1 (en) | 2016-08-11 |
KR20160060717A (ko) | 2016-05-30 |
CN105580191A (zh) | 2016-05-11 |
JP2015133315A (ja) | 2015-07-23 |
KR20180104178A (ko) | 2018-09-19 |
DE112014004410T5 (de) | 2016-07-21 |
US10686223B2 (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5965445B2 (ja) | 非水電解質二次電池 | |
KR101967677B1 (ko) | 비수계 2차 전지 | |
JP5967781B2 (ja) | 非水電解質二次電池 | |
JP5816997B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液 | |
WO2015045389A1 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ | |
JP5817009B1 (ja) | 非水系二次電池 | |
JP6575022B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液 | |
JP5965444B2 (ja) | 非水系二次電池 | |
WO2015045386A1 (ja) | 非水系二次電池 | |
JP5817004B2 (ja) | リチウムイオン二次電池 | |
JP5816999B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法 | |
JP6437399B2 (ja) | 非水系二次電池 | |
JP5965446B2 (ja) | 蓄電装置 | |
JP5817006B1 (ja) | 非水系二次電池 | |
JP2016189340A (ja) | 非水電解質二次電池 | |
JP5817003B2 (ja) | 非水電解質二次電池 | |
JP6423330B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群 | |
WO2015045393A1 (ja) | 非水電解質二次電池 | |
JP5817007B1 (ja) | 非水系二次電池 | |
JP5817008B1 (ja) | 非水系二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5965445 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |